staging: lustre: obdclass: lu_site_purge() to handle purge-all
[linux-2.6/btrfs-unstable.git] / drivers / staging / lustre / lustre / obdclass / lu_object.c
bloba02aaa3a3b37c4de8d88d84384c81414f5a76820
1 /*
2 * GPL HEADER START
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.gnu.org/licenses/gpl-2.0.html
20 * GPL HEADER END
23 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Use is subject to license terms.
26 * Copyright (c) 2011, 2015, Intel Corporation.
29 * This file is part of Lustre, http://www.lustre.org/
30 * Lustre is a trademark of Sun Microsystems, Inc.
32 * lustre/obdclass/lu_object.c
34 * Lustre Object.
35 * These are the only exported functions, they provide some generic
36 * infrastructure for managing object devices
38 * Author: Nikita Danilov <nikita.danilov@sun.com>
41 #define DEBUG_SUBSYSTEM S_CLASS
43 #include "../../include/linux/libcfs/libcfs.h"
45 # include <linux/module.h>
47 /* hash_long() */
48 #include "../../include/linux/libcfs/libcfs_hash.h"
49 #include "../include/obd_class.h"
50 #include "../include/obd_support.h"
51 #include "../include/lustre_disk.h"
52 #include "../include/lustre_fid.h"
53 #include "../include/lu_object.h"
54 #include "../include/cl_object.h"
55 #include "../include/lu_ref.h"
56 #include <linux/list.h>
58 enum {
59 LU_CACHE_PERCENT_MAX = 50,
60 LU_CACHE_PERCENT_DEFAULT = 20
63 #define LU_CACHE_NR_MAX_ADJUST 128
64 #define LU_CACHE_NR_UNLIMITED -1
65 #define LU_CACHE_NR_DEFAULT LU_CACHE_NR_UNLIMITED
66 #define LU_CACHE_NR_LDISKFS_LIMIT LU_CACHE_NR_UNLIMITED
67 #define LU_CACHE_NR_ZFS_LIMIT 256
69 #define LU_SITE_BITS_MIN 12
70 #define LU_SITE_BITS_MAX 24
71 /**
72 * total 256 buckets, we don't want too many buckets because:
73 * - consume too much memory
74 * - avoid unbalanced LRU list
76 #define LU_SITE_BKT_BITS 8
78 static unsigned int lu_cache_percent = LU_CACHE_PERCENT_DEFAULT;
79 module_param(lu_cache_percent, int, 0644);
80 MODULE_PARM_DESC(lu_cache_percent, "Percentage of memory to be used as lu_object cache");
82 static long lu_cache_nr = LU_CACHE_NR_DEFAULT;
83 module_param(lu_cache_nr, long, 0644);
84 MODULE_PARM_DESC(lu_cache_nr, "Maximum number of objects in lu_object cache");
86 static void lu_object_free(const struct lu_env *env, struct lu_object *o);
87 static __u32 ls_stats_read(struct lprocfs_stats *stats, int idx);
89 /**
90 * Decrease reference counter on object. If last reference is freed, return
91 * object to the cache, unless lu_object_is_dying(o) holds. In the latter
92 * case, free object immediately.
94 void lu_object_put(const struct lu_env *env, struct lu_object *o)
96 struct lu_site_bkt_data *bkt;
97 struct lu_object_header *top;
98 struct lu_site *site;
99 struct lu_object *orig;
100 struct cfs_hash_bd bd;
101 const struct lu_fid *fid;
103 top = o->lo_header;
104 site = o->lo_dev->ld_site;
105 orig = o;
108 * till we have full fids-on-OST implemented anonymous objects
109 * are possible in OSP. such an object isn't listed in the site
110 * so we should not remove it from the site.
112 fid = lu_object_fid(o);
113 if (fid_is_zero(fid)) {
114 LASSERT(!top->loh_hash.next && !top->loh_hash.pprev);
115 LASSERT(list_empty(&top->loh_lru));
116 if (!atomic_dec_and_test(&top->loh_ref))
117 return;
118 list_for_each_entry_reverse(o, &top->loh_layers, lo_linkage) {
119 if (o->lo_ops->loo_object_release)
120 o->lo_ops->loo_object_release(env, o);
122 lu_object_free(env, orig);
123 return;
126 cfs_hash_bd_get(site->ls_obj_hash, &top->loh_fid, &bd);
127 bkt = cfs_hash_bd_extra_get(site->ls_obj_hash, &bd);
129 if (!cfs_hash_bd_dec_and_lock(site->ls_obj_hash, &bd, &top->loh_ref)) {
130 if (lu_object_is_dying(top)) {
132 * somebody may be waiting for this, currently only
133 * used for cl_object, see cl_object_put_last().
135 wake_up_all(&bkt->lsb_marche_funebre);
137 return;
141 * When last reference is released, iterate over object
142 * layers, and notify them that object is no longer busy.
144 list_for_each_entry_reverse(o, &top->loh_layers, lo_linkage) {
145 if (o->lo_ops->loo_object_release)
146 o->lo_ops->loo_object_release(env, o);
149 if (!lu_object_is_dying(top)) {
150 LASSERT(list_empty(&top->loh_lru));
151 list_add_tail(&top->loh_lru, &bkt->lsb_lru);
152 bkt->lsb_lru_len++;
153 lprocfs_counter_incr(site->ls_stats, LU_SS_LRU_LEN);
154 CDEBUG(D_INODE, "Add %p to site lru. hash: %p, bkt: %p, lru_len: %ld\n",
155 o, site->ls_obj_hash, bkt, bkt->lsb_lru_len);
156 cfs_hash_bd_unlock(site->ls_obj_hash, &bd, 1);
157 return;
161 * If object is dying (will not be cached), then removed it
162 * from hash table and LRU.
164 * This is done with hash table and LRU lists locked. As the only
165 * way to acquire first reference to previously unreferenced
166 * object is through hash-table lookup (lu_object_find()),
167 * or LRU scanning (lu_site_purge()), that are done under hash-table
168 * and LRU lock, no race with concurrent object lookup is possible
169 * and we can safely destroy object below.
171 if (!test_and_set_bit(LU_OBJECT_UNHASHED, &top->loh_flags))
172 cfs_hash_bd_del_locked(site->ls_obj_hash, &bd, &top->loh_hash);
173 cfs_hash_bd_unlock(site->ls_obj_hash, &bd, 1);
175 * Object was already removed from hash and lru above, can
176 * kill it.
178 lu_object_free(env, orig);
180 EXPORT_SYMBOL(lu_object_put);
183 * Kill the object and take it out of LRU cache.
184 * Currently used by client code for layout change.
186 void lu_object_unhash(const struct lu_env *env, struct lu_object *o)
188 struct lu_object_header *top;
190 top = o->lo_header;
191 set_bit(LU_OBJECT_HEARD_BANSHEE, &top->loh_flags);
192 if (!test_and_set_bit(LU_OBJECT_UNHASHED, &top->loh_flags)) {
193 struct lu_site *site = o->lo_dev->ld_site;
194 struct cfs_hash *obj_hash = site->ls_obj_hash;
195 struct cfs_hash_bd bd;
197 cfs_hash_bd_get_and_lock(obj_hash, &top->loh_fid, &bd, 1);
198 if (!list_empty(&top->loh_lru)) {
199 struct lu_site_bkt_data *bkt;
201 list_del_init(&top->loh_lru);
202 bkt = cfs_hash_bd_extra_get(obj_hash, &bd);
203 bkt->lsb_lru_len--;
204 lprocfs_counter_decr(site->ls_stats, LU_SS_LRU_LEN);
206 cfs_hash_bd_del_locked(obj_hash, &bd, &top->loh_hash);
207 cfs_hash_bd_unlock(obj_hash, &bd, 1);
210 EXPORT_SYMBOL(lu_object_unhash);
213 * Allocate new object.
215 * This follows object creation protocol, described in the comment within
216 * struct lu_device_operations definition.
218 static struct lu_object *lu_object_alloc(const struct lu_env *env,
219 struct lu_device *dev,
220 const struct lu_fid *f,
221 const struct lu_object_conf *conf)
223 struct lu_object *scan;
224 struct lu_object *top;
225 struct list_head *layers;
226 unsigned int init_mask = 0;
227 unsigned int init_flag;
228 int clean;
229 int result;
232 * Create top-level object slice. This will also create
233 * lu_object_header.
235 top = dev->ld_ops->ldo_object_alloc(env, NULL, dev);
236 if (!top)
237 return ERR_PTR(-ENOMEM);
238 if (IS_ERR(top))
239 return top;
241 * This is the only place where object fid is assigned. It's constant
242 * after this point.
244 top->lo_header->loh_fid = *f;
245 layers = &top->lo_header->loh_layers;
247 do {
249 * Call ->loo_object_init() repeatedly, until no more new
250 * object slices are created.
252 clean = 1;
253 init_flag = 1;
254 list_for_each_entry(scan, layers, lo_linkage) {
255 if (init_mask & init_flag)
256 goto next;
257 clean = 0;
258 scan->lo_header = top->lo_header;
259 result = scan->lo_ops->loo_object_init(env, scan, conf);
260 if (result != 0) {
261 lu_object_free(env, top);
262 return ERR_PTR(result);
264 init_mask |= init_flag;
265 next:
266 init_flag <<= 1;
268 } while (!clean);
270 list_for_each_entry_reverse(scan, layers, lo_linkage) {
271 if (scan->lo_ops->loo_object_start) {
272 result = scan->lo_ops->loo_object_start(env, scan);
273 if (result != 0) {
274 lu_object_free(env, top);
275 return ERR_PTR(result);
280 lprocfs_counter_incr(dev->ld_site->ls_stats, LU_SS_CREATED);
281 return top;
285 * Free an object.
287 static void lu_object_free(const struct lu_env *env, struct lu_object *o)
289 struct lu_site_bkt_data *bkt;
290 struct lu_site *site;
291 struct lu_object *scan;
292 struct list_head *layers;
293 struct list_head splice;
295 site = o->lo_dev->ld_site;
296 layers = &o->lo_header->loh_layers;
297 bkt = lu_site_bkt_from_fid(site, &o->lo_header->loh_fid);
299 * First call ->loo_object_delete() method to release all resources.
301 list_for_each_entry_reverse(scan, layers, lo_linkage) {
302 if (scan->lo_ops->loo_object_delete)
303 scan->lo_ops->loo_object_delete(env, scan);
307 * Then, splice object layers into stand-alone list, and call
308 * ->loo_object_free() on all layers to free memory. Splice is
309 * necessary, because lu_object_header is freed together with the
310 * top-level slice.
312 INIT_LIST_HEAD(&splice);
313 list_splice_init(layers, &splice);
314 while (!list_empty(&splice)) {
316 * Free layers in bottom-to-top order, so that object header
317 * lives as long as possible and ->loo_object_free() methods
318 * can look at its contents.
320 o = container_of0(splice.prev, struct lu_object, lo_linkage);
321 list_del_init(&o->lo_linkage);
322 o->lo_ops->loo_object_free(env, o);
325 if (waitqueue_active(&bkt->lsb_marche_funebre))
326 wake_up_all(&bkt->lsb_marche_funebre);
330 * Free \a nr objects from the cold end of the site LRU list.
332 int lu_site_purge(const struct lu_env *env, struct lu_site *s, int nr)
334 struct lu_object_header *h;
335 struct lu_object_header *temp;
336 struct lu_site_bkt_data *bkt;
337 struct cfs_hash_bd bd;
338 struct cfs_hash_bd bd2;
339 struct list_head dispose;
340 int did_sth;
341 unsigned int start = 0;
342 int count;
343 int bnr;
344 unsigned int i;
346 if (OBD_FAIL_CHECK(OBD_FAIL_OBD_NO_LRU))
347 return 0;
349 INIT_LIST_HEAD(&dispose);
351 * Under LRU list lock, scan LRU list and move unreferenced objects to
352 * the dispose list, removing them from LRU and hash table.
354 if (nr != ~0)
355 start = s->ls_purge_start;
356 bnr = (nr == ~0) ? -1 : nr / (int)CFS_HASH_NBKT(s->ls_obj_hash) + 1;
357 again:
359 * It doesn't make any sense to make purge threads parallel, that can
360 * only bring troubles to us. See LU-5331.
362 mutex_lock(&s->ls_purge_mutex);
363 did_sth = 0;
364 cfs_hash_for_each_bucket(s->ls_obj_hash, &bd, i) {
365 if (i < start)
366 continue;
367 count = bnr;
368 cfs_hash_bd_lock(s->ls_obj_hash, &bd, 1);
369 bkt = cfs_hash_bd_extra_get(s->ls_obj_hash, &bd);
371 list_for_each_entry_safe(h, temp, &bkt->lsb_lru, loh_lru) {
372 LASSERT(atomic_read(&h->loh_ref) == 0);
374 cfs_hash_bd_get(s->ls_obj_hash, &h->loh_fid, &bd2);
375 LASSERT(bd.bd_bucket == bd2.bd_bucket);
377 cfs_hash_bd_del_locked(s->ls_obj_hash,
378 &bd2, &h->loh_hash);
379 list_move(&h->loh_lru, &dispose);
380 bkt->lsb_lru_len--;
381 lprocfs_counter_decr(s->ls_stats, LU_SS_LRU_LEN);
382 if (did_sth == 0)
383 did_sth = 1;
385 if (nr != ~0 && --nr == 0)
386 break;
388 if (count > 0 && --count == 0)
389 break;
391 cfs_hash_bd_unlock(s->ls_obj_hash, &bd, 1);
392 cond_resched();
394 * Free everything on the dispose list. This is safe against
395 * races due to the reasons described in lu_object_put().
397 while (!list_empty(&dispose)) {
398 h = container_of0(dispose.next,
399 struct lu_object_header, loh_lru);
400 list_del_init(&h->loh_lru);
401 lu_object_free(env, lu_object_top(h));
402 lprocfs_counter_incr(s->ls_stats, LU_SS_LRU_PURGED);
405 if (nr == 0)
406 break;
408 mutex_unlock(&s->ls_purge_mutex);
410 if (nr != 0 && did_sth && start != 0) {
411 start = 0; /* restart from the first bucket */
412 goto again;
414 /* race on s->ls_purge_start, but nobody cares */
415 s->ls_purge_start = i % CFS_HASH_NBKT(s->ls_obj_hash);
417 return nr;
419 EXPORT_SYMBOL(lu_site_purge);
422 * Object printing.
424 * Code below has to jump through certain loops to output object description
425 * into libcfs_debug_msg-based log. The problem is that lu_object_print()
426 * composes object description from strings that are parts of _lines_ of
427 * output (i.e., strings that are not terminated by newline). This doesn't fit
428 * very well into libcfs_debug_msg() interface that assumes that each message
429 * supplied to it is a self-contained output line.
431 * To work around this, strings are collected in a temporary buffer
432 * (implemented as a value of lu_cdebug_key key), until terminating newline
433 * character is detected.
437 enum {
439 * Maximal line size.
441 * XXX overflow is not handled correctly.
443 LU_CDEBUG_LINE = 512
446 struct lu_cdebug_data {
448 * Temporary buffer.
450 char lck_area[LU_CDEBUG_LINE];
453 /* context key constructor/destructor: lu_global_key_init, lu_global_key_fini */
454 LU_KEY_INIT_FINI(lu_global, struct lu_cdebug_data);
457 * Key, holding temporary buffer. This key is registered very early by
458 * lu_global_init().
460 static struct lu_context_key lu_global_key = {
461 .lct_tags = LCT_MD_THREAD | LCT_DT_THREAD |
462 LCT_MG_THREAD | LCT_CL_THREAD | LCT_LOCAL,
463 .lct_init = lu_global_key_init,
464 .lct_fini = lu_global_key_fini
468 * Printer function emitting messages through libcfs_debug_msg().
470 int lu_cdebug_printer(const struct lu_env *env,
471 void *cookie, const char *format, ...)
473 struct libcfs_debug_msg_data *msgdata = cookie;
474 struct lu_cdebug_data *key;
475 int used;
476 int complete;
477 va_list args;
479 va_start(args, format);
481 key = lu_context_key_get(&env->le_ctx, &lu_global_key);
483 used = strlen(key->lck_area);
484 complete = format[strlen(format) - 1] == '\n';
486 * Append new chunk to the buffer.
488 vsnprintf(key->lck_area + used,
489 ARRAY_SIZE(key->lck_area) - used, format, args);
490 if (complete) {
491 if (cfs_cdebug_show(msgdata->msg_mask, msgdata->msg_subsys))
492 libcfs_debug_msg(msgdata, "%s\n", key->lck_area);
493 key->lck_area[0] = 0;
495 va_end(args);
496 return 0;
498 EXPORT_SYMBOL(lu_cdebug_printer);
501 * Print object header.
503 void lu_object_header_print(const struct lu_env *env, void *cookie,
504 lu_printer_t printer,
505 const struct lu_object_header *hdr)
507 (*printer)(env, cookie, "header@%p[%#lx, %d, "DFID"%s%s%s]",
508 hdr, hdr->loh_flags, atomic_read(&hdr->loh_ref),
509 PFID(&hdr->loh_fid),
510 hlist_unhashed(&hdr->loh_hash) ? "" : " hash",
511 list_empty((struct list_head *)&hdr->loh_lru) ? \
512 "" : " lru",
513 hdr->loh_attr & LOHA_EXISTS ? " exist":"");
515 EXPORT_SYMBOL(lu_object_header_print);
518 * Print human readable representation of the \a o to the \a printer.
520 void lu_object_print(const struct lu_env *env, void *cookie,
521 lu_printer_t printer, const struct lu_object *o)
523 static const char ruler[] = "........................................";
524 struct lu_object_header *top;
525 int depth = 4;
527 top = o->lo_header;
528 lu_object_header_print(env, cookie, printer, top);
529 (*printer)(env, cookie, "{\n");
531 list_for_each_entry(o, &top->loh_layers, lo_linkage) {
533 * print `.' \a depth times followed by type name and address
535 (*printer)(env, cookie, "%*.*s%s@%p", depth, depth, ruler,
536 o->lo_dev->ld_type->ldt_name, o);
538 if (o->lo_ops->loo_object_print)
539 (*o->lo_ops->loo_object_print)(env, cookie, printer, o);
541 (*printer)(env, cookie, "\n");
544 (*printer)(env, cookie, "} header@%p\n", top);
546 EXPORT_SYMBOL(lu_object_print);
548 static struct lu_object *htable_lookup(struct lu_site *s,
549 struct cfs_hash_bd *bd,
550 const struct lu_fid *f,
551 wait_queue_t *waiter,
552 __u64 *version)
554 struct lu_site_bkt_data *bkt;
555 struct lu_object_header *h;
556 struct hlist_node *hnode;
557 __u64 ver = cfs_hash_bd_version_get(bd);
559 if (*version == ver)
560 return ERR_PTR(-ENOENT);
562 *version = ver;
563 bkt = cfs_hash_bd_extra_get(s->ls_obj_hash, bd);
564 /* cfs_hash_bd_peek_locked is a somehow "internal" function
565 * of cfs_hash, it doesn't add refcount on object.
567 hnode = cfs_hash_bd_peek_locked(s->ls_obj_hash, bd, (void *)f);
568 if (!hnode) {
569 lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_MISS);
570 return ERR_PTR(-ENOENT);
573 h = container_of0(hnode, struct lu_object_header, loh_hash);
574 if (likely(!lu_object_is_dying(h))) {
575 cfs_hash_get(s->ls_obj_hash, hnode);
576 lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_HIT);
577 if (!list_empty(&h->loh_lru)) {
578 list_del_init(&h->loh_lru);
579 bkt->lsb_lru_len--;
580 lprocfs_counter_decr(s->ls_stats, LU_SS_LRU_LEN);
582 return lu_object_top(h);
586 * Lookup found an object being destroyed this object cannot be
587 * returned (to assure that references to dying objects are eventually
588 * drained), and moreover, lookup has to wait until object is freed.
591 init_waitqueue_entry(waiter, current);
592 add_wait_queue(&bkt->lsb_marche_funebre, waiter);
593 set_current_state(TASK_UNINTERRUPTIBLE);
594 lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_DEATH_RACE);
595 return ERR_PTR(-EAGAIN);
599 * Search cache for an object with the fid \a f. If such object is found,
600 * return it. Otherwise, create new object, insert it into cache and return
601 * it. In any case, additional reference is acquired on the returned object.
603 static struct lu_object *lu_object_find(const struct lu_env *env,
604 struct lu_device *dev,
605 const struct lu_fid *f,
606 const struct lu_object_conf *conf)
608 return lu_object_find_at(env, dev->ld_site->ls_top_dev, f, conf);
612 * Limit the lu_object cache to a maximum of lu_cache_nr objects. Because
613 * the calculation for the number of objects to reclaim is not covered by
614 * a lock the maximum number of objects is capped by LU_CACHE_MAX_ADJUST.
615 * This ensures that many concurrent threads will not accidentally purge
616 * the entire cache.
618 static void lu_object_limit(const struct lu_env *env, struct lu_device *dev)
620 __u64 size, nr;
622 if (lu_cache_nr == LU_CACHE_NR_UNLIMITED)
623 return;
625 size = cfs_hash_size_get(dev->ld_site->ls_obj_hash);
626 nr = (__u64)lu_cache_nr;
627 if (size > nr)
628 lu_site_purge(env, dev->ld_site,
629 min_t(__u64, size - nr, LU_CACHE_NR_MAX_ADJUST));
632 static struct lu_object *lu_object_new(const struct lu_env *env,
633 struct lu_device *dev,
634 const struct lu_fid *f,
635 const struct lu_object_conf *conf)
637 struct lu_object *o;
638 struct cfs_hash *hs;
639 struct cfs_hash_bd bd;
641 o = lu_object_alloc(env, dev, f, conf);
642 if (IS_ERR(o))
643 return o;
645 hs = dev->ld_site->ls_obj_hash;
646 cfs_hash_bd_get_and_lock(hs, (void *)f, &bd, 1);
647 cfs_hash_bd_add_locked(hs, &bd, &o->lo_header->loh_hash);
648 cfs_hash_bd_unlock(hs, &bd, 1);
650 lu_object_limit(env, dev);
652 return o;
656 * Core logic of lu_object_find*() functions.
658 static struct lu_object *lu_object_find_try(const struct lu_env *env,
659 struct lu_device *dev,
660 const struct lu_fid *f,
661 const struct lu_object_conf *conf,
662 wait_queue_t *waiter)
664 struct lu_object *o;
665 struct lu_object *shadow;
666 struct lu_site *s;
667 struct cfs_hash *hs;
668 struct cfs_hash_bd bd;
669 __u64 version = 0;
672 * This uses standard index maintenance protocol:
674 * - search index under lock, and return object if found;
675 * - otherwise, unlock index, allocate new object;
676 * - lock index and search again;
677 * - if nothing is found (usual case), insert newly created
678 * object into index;
679 * - otherwise (race: other thread inserted object), free
680 * object just allocated.
681 * - unlock index;
682 * - return object.
684 * For "LOC_F_NEW" case, we are sure the object is new established.
685 * It is unnecessary to perform lookup-alloc-lookup-insert, instead,
686 * just alloc and insert directly.
688 * If dying object is found during index search, add @waiter to the
689 * site wait-queue and return ERR_PTR(-EAGAIN).
691 if (conf && conf->loc_flags & LOC_F_NEW)
692 return lu_object_new(env, dev, f, conf);
694 s = dev->ld_site;
695 hs = s->ls_obj_hash;
696 cfs_hash_bd_get_and_lock(hs, (void *)f, &bd, 1);
697 o = htable_lookup(s, &bd, f, waiter, &version);
698 cfs_hash_bd_unlock(hs, &bd, 1);
699 if (!IS_ERR(o) || PTR_ERR(o) != -ENOENT)
700 return o;
703 * Allocate new object. This may result in rather complicated
704 * operations, including fld queries, inode loading, etc.
706 o = lu_object_alloc(env, dev, f, conf);
707 if (IS_ERR(o))
708 return o;
710 LASSERT(lu_fid_eq(lu_object_fid(o), f));
712 cfs_hash_bd_lock(hs, &bd, 1);
714 shadow = htable_lookup(s, &bd, f, waiter, &version);
715 if (likely(PTR_ERR(shadow) == -ENOENT)) {
716 cfs_hash_bd_add_locked(hs, &bd, &o->lo_header->loh_hash);
717 cfs_hash_bd_unlock(hs, &bd, 1);
719 lu_object_limit(env, dev);
721 return o;
724 lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_RACE);
725 cfs_hash_bd_unlock(hs, &bd, 1);
726 lu_object_free(env, o);
727 return shadow;
731 * Much like lu_object_find(), but top level device of object is specifically
732 * \a dev rather than top level device of the site. This interface allows
733 * objects of different "stacking" to be created within the same site.
735 struct lu_object *lu_object_find_at(const struct lu_env *env,
736 struct lu_device *dev,
737 const struct lu_fid *f,
738 const struct lu_object_conf *conf)
740 struct lu_site_bkt_data *bkt;
741 struct lu_object *obj;
742 wait_queue_t wait;
744 while (1) {
745 obj = lu_object_find_try(env, dev, f, conf, &wait);
746 if (obj != ERR_PTR(-EAGAIN))
747 return obj;
749 * lu_object_find_try() already added waiter into the
750 * wait queue.
752 schedule();
753 bkt = lu_site_bkt_from_fid(dev->ld_site, (void *)f);
754 remove_wait_queue(&bkt->lsb_marche_funebre, &wait);
757 EXPORT_SYMBOL(lu_object_find_at);
760 * Find object with given fid, and return its slice belonging to given device.
762 struct lu_object *lu_object_find_slice(const struct lu_env *env,
763 struct lu_device *dev,
764 const struct lu_fid *f,
765 const struct lu_object_conf *conf)
767 struct lu_object *top;
768 struct lu_object *obj;
770 top = lu_object_find(env, dev, f, conf);
771 if (IS_ERR(top))
772 return top;
774 obj = lu_object_locate(top->lo_header, dev->ld_type);
775 if (unlikely(!obj)) {
776 lu_object_put(env, top);
777 obj = ERR_PTR(-ENOENT);
780 return obj;
782 EXPORT_SYMBOL(lu_object_find_slice);
785 * Global list of all device types.
787 static LIST_HEAD(lu_device_types);
789 int lu_device_type_init(struct lu_device_type *ldt)
791 int result = 0;
793 atomic_set(&ldt->ldt_device_nr, 0);
794 INIT_LIST_HEAD(&ldt->ldt_linkage);
795 if (ldt->ldt_ops->ldto_init)
796 result = ldt->ldt_ops->ldto_init(ldt);
798 if (!result) {
799 spin_lock(&obd_types_lock);
800 list_add(&ldt->ldt_linkage, &lu_device_types);
801 spin_unlock(&obd_types_lock);
804 return result;
806 EXPORT_SYMBOL(lu_device_type_init);
808 void lu_device_type_fini(struct lu_device_type *ldt)
810 spin_lock(&obd_types_lock);
811 list_del_init(&ldt->ldt_linkage);
812 spin_unlock(&obd_types_lock);
813 if (ldt->ldt_ops->ldto_fini)
814 ldt->ldt_ops->ldto_fini(ldt);
816 EXPORT_SYMBOL(lu_device_type_fini);
819 * Global list of all sites on this node
821 static LIST_HEAD(lu_sites);
822 static DEFINE_MUTEX(lu_sites_guard);
825 * Global environment used by site shrinker.
827 static struct lu_env lu_shrink_env;
829 struct lu_site_print_arg {
830 struct lu_env *lsp_env;
831 void *lsp_cookie;
832 lu_printer_t lsp_printer;
835 static int
836 lu_site_obj_print(struct cfs_hash *hs, struct cfs_hash_bd *bd,
837 struct hlist_node *hnode, void *data)
839 struct lu_site_print_arg *arg = (struct lu_site_print_arg *)data;
840 struct lu_object_header *h;
842 h = hlist_entry(hnode, struct lu_object_header, loh_hash);
843 if (!list_empty(&h->loh_layers)) {
844 const struct lu_object *o;
846 o = lu_object_top(h);
847 lu_object_print(arg->lsp_env, arg->lsp_cookie,
848 arg->lsp_printer, o);
849 } else {
850 lu_object_header_print(arg->lsp_env, arg->lsp_cookie,
851 arg->lsp_printer, h);
853 return 0;
857 * Print all objects in \a s.
859 void lu_site_print(const struct lu_env *env, struct lu_site *s, void *cookie,
860 lu_printer_t printer)
862 struct lu_site_print_arg arg = {
863 .lsp_env = (struct lu_env *)env,
864 .lsp_cookie = cookie,
865 .lsp_printer = printer,
868 cfs_hash_for_each(s->ls_obj_hash, lu_site_obj_print, &arg);
870 EXPORT_SYMBOL(lu_site_print);
873 * Return desired hash table order.
875 static unsigned long lu_htable_order(struct lu_device *top)
877 unsigned long bits_max = LU_SITE_BITS_MAX;
878 unsigned long cache_size;
879 unsigned long bits;
882 * Calculate hash table size, assuming that we want reasonable
883 * performance when 20% of total memory is occupied by cache of
884 * lu_objects.
886 * Size of lu_object is (arbitrary) taken as 1K (together with inode).
888 cache_size = totalram_pages;
890 #if BITS_PER_LONG == 32
891 /* limit hashtable size for lowmem systems to low RAM */
892 if (cache_size > 1 << (30 - PAGE_SHIFT))
893 cache_size = 1 << (30 - PAGE_SHIFT) * 3 / 4;
894 #endif
896 /* clear off unreasonable cache setting. */
897 if (lu_cache_percent == 0 || lu_cache_percent > LU_CACHE_PERCENT_MAX) {
898 CWARN("obdclass: invalid lu_cache_percent: %u, it must be in the range of (0, %u]. Will use default value: %u.\n",
899 lu_cache_percent, LU_CACHE_PERCENT_MAX,
900 LU_CACHE_PERCENT_DEFAULT);
902 lu_cache_percent = LU_CACHE_PERCENT_DEFAULT;
904 cache_size = cache_size / 100 * lu_cache_percent *
905 (PAGE_SIZE / 1024);
907 for (bits = 1; (1 << bits) < cache_size; ++bits) {
910 return clamp_t(typeof(bits), bits, LU_SITE_BITS_MIN, bits_max);
913 static unsigned lu_obj_hop_hash(struct cfs_hash *hs,
914 const void *key, unsigned mask)
916 struct lu_fid *fid = (struct lu_fid *)key;
917 __u32 hash;
919 hash = fid_flatten32(fid);
920 hash += (hash >> 4) + (hash << 12); /* mixing oid and seq */
921 hash = hash_long(hash, hs->hs_bkt_bits);
923 /* give me another random factor */
924 hash -= hash_long((unsigned long)hs, fid_oid(fid) % 11 + 3);
926 hash <<= hs->hs_cur_bits - hs->hs_bkt_bits;
927 hash |= (fid_seq(fid) + fid_oid(fid)) & (CFS_HASH_NBKT(hs) - 1);
929 return hash & mask;
932 static void *lu_obj_hop_object(struct hlist_node *hnode)
934 return hlist_entry(hnode, struct lu_object_header, loh_hash);
937 static void *lu_obj_hop_key(struct hlist_node *hnode)
939 struct lu_object_header *h;
941 h = hlist_entry(hnode, struct lu_object_header, loh_hash);
942 return &h->loh_fid;
945 static int lu_obj_hop_keycmp(const void *key, struct hlist_node *hnode)
947 struct lu_object_header *h;
949 h = hlist_entry(hnode, struct lu_object_header, loh_hash);
950 return lu_fid_eq(&h->loh_fid, (struct lu_fid *)key);
953 static void lu_obj_hop_get(struct cfs_hash *hs, struct hlist_node *hnode)
955 struct lu_object_header *h;
957 h = hlist_entry(hnode, struct lu_object_header, loh_hash);
958 atomic_inc(&h->loh_ref);
961 static void lu_obj_hop_put_locked(struct cfs_hash *hs, struct hlist_node *hnode)
963 LBUG(); /* we should never called it */
966 static struct cfs_hash_ops lu_site_hash_ops = {
967 .hs_hash = lu_obj_hop_hash,
968 .hs_key = lu_obj_hop_key,
969 .hs_keycmp = lu_obj_hop_keycmp,
970 .hs_object = lu_obj_hop_object,
971 .hs_get = lu_obj_hop_get,
972 .hs_put_locked = lu_obj_hop_put_locked,
975 static void lu_dev_add_linkage(struct lu_site *s, struct lu_device *d)
977 spin_lock(&s->ls_ld_lock);
978 if (list_empty(&d->ld_linkage))
979 list_add(&d->ld_linkage, &s->ls_ld_linkage);
980 spin_unlock(&s->ls_ld_lock);
984 * Initialize site \a s, with \a d as the top level device.
986 int lu_site_init(struct lu_site *s, struct lu_device *top)
988 struct lu_site_bkt_data *bkt;
989 struct cfs_hash_bd bd;
990 unsigned long bits;
991 unsigned long i;
992 char name[16];
994 memset(s, 0, sizeof(*s));
995 mutex_init(&s->ls_purge_mutex);
996 snprintf(name, sizeof(name), "lu_site_%s", top->ld_type->ldt_name);
997 for (bits = lu_htable_order(top); bits >= LU_SITE_BITS_MIN; bits--) {
998 s->ls_obj_hash = cfs_hash_create(name, bits, bits,
999 bits - LU_SITE_BKT_BITS,
1000 sizeof(*bkt), 0, 0,
1001 &lu_site_hash_ops,
1002 CFS_HASH_SPIN_BKTLOCK |
1003 CFS_HASH_NO_ITEMREF |
1004 CFS_HASH_DEPTH |
1005 CFS_HASH_ASSERT_EMPTY |
1006 CFS_HASH_COUNTER);
1007 if (s->ls_obj_hash)
1008 break;
1011 if (!s->ls_obj_hash) {
1012 CERROR("failed to create lu_site hash with bits: %lu\n", bits);
1013 return -ENOMEM;
1016 cfs_hash_for_each_bucket(s->ls_obj_hash, &bd, i) {
1017 bkt = cfs_hash_bd_extra_get(s->ls_obj_hash, &bd);
1018 INIT_LIST_HEAD(&bkt->lsb_lru);
1019 init_waitqueue_head(&bkt->lsb_marche_funebre);
1022 s->ls_stats = lprocfs_alloc_stats(LU_SS_LAST_STAT, 0);
1023 if (!s->ls_stats) {
1024 cfs_hash_putref(s->ls_obj_hash);
1025 s->ls_obj_hash = NULL;
1026 return -ENOMEM;
1029 lprocfs_counter_init(s->ls_stats, LU_SS_CREATED,
1030 0, "created", "created");
1031 lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_HIT,
1032 0, "cache_hit", "cache_hit");
1033 lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_MISS,
1034 0, "cache_miss", "cache_miss");
1035 lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_RACE,
1036 0, "cache_race", "cache_race");
1037 lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_DEATH_RACE,
1038 0, "cache_death_race", "cache_death_race");
1039 lprocfs_counter_init(s->ls_stats, LU_SS_LRU_PURGED,
1040 0, "lru_purged", "lru_purged");
1042 * Unlike other counters, lru_len can be decremented so
1043 * need lc_sum instead of just lc_count
1045 lprocfs_counter_init(s->ls_stats, LU_SS_LRU_LEN,
1046 LPROCFS_CNTR_AVGMINMAX, "lru_len", "lru_len");
1048 INIT_LIST_HEAD(&s->ls_linkage);
1049 s->ls_top_dev = top;
1050 top->ld_site = s;
1051 lu_device_get(top);
1052 lu_ref_add(&top->ld_reference, "site-top", s);
1054 INIT_LIST_HEAD(&s->ls_ld_linkage);
1055 spin_lock_init(&s->ls_ld_lock);
1057 lu_dev_add_linkage(s, top);
1059 return 0;
1061 EXPORT_SYMBOL(lu_site_init);
1064 * Finalize \a s and release its resources.
1066 void lu_site_fini(struct lu_site *s)
1068 mutex_lock(&lu_sites_guard);
1069 list_del_init(&s->ls_linkage);
1070 mutex_unlock(&lu_sites_guard);
1072 if (s->ls_obj_hash) {
1073 cfs_hash_putref(s->ls_obj_hash);
1074 s->ls_obj_hash = NULL;
1077 if (s->ls_top_dev) {
1078 s->ls_top_dev->ld_site = NULL;
1079 lu_ref_del(&s->ls_top_dev->ld_reference, "site-top", s);
1080 lu_device_put(s->ls_top_dev);
1081 s->ls_top_dev = NULL;
1084 if (s->ls_stats)
1085 lprocfs_free_stats(&s->ls_stats);
1087 EXPORT_SYMBOL(lu_site_fini);
1090 * Called when initialization of stack for this site is completed.
1092 int lu_site_init_finish(struct lu_site *s)
1094 int result;
1096 mutex_lock(&lu_sites_guard);
1097 result = lu_context_refill(&lu_shrink_env.le_ctx);
1098 if (result == 0)
1099 list_add(&s->ls_linkage, &lu_sites);
1100 mutex_unlock(&lu_sites_guard);
1101 return result;
1103 EXPORT_SYMBOL(lu_site_init_finish);
1106 * Acquire additional reference on device \a d
1108 void lu_device_get(struct lu_device *d)
1110 atomic_inc(&d->ld_ref);
1112 EXPORT_SYMBOL(lu_device_get);
1115 * Release reference on device \a d.
1117 void lu_device_put(struct lu_device *d)
1119 LASSERT(atomic_read(&d->ld_ref) > 0);
1120 atomic_dec(&d->ld_ref);
1122 EXPORT_SYMBOL(lu_device_put);
1125 * Initialize device \a d of type \a t.
1127 int lu_device_init(struct lu_device *d, struct lu_device_type *t)
1129 if (atomic_inc_return(&t->ldt_device_nr) == 1 &&
1130 t->ldt_ops->ldto_start)
1131 t->ldt_ops->ldto_start(t);
1133 memset(d, 0, sizeof(*d));
1134 atomic_set(&d->ld_ref, 0);
1135 d->ld_type = t;
1136 lu_ref_init(&d->ld_reference);
1137 INIT_LIST_HEAD(&d->ld_linkage);
1138 return 0;
1140 EXPORT_SYMBOL(lu_device_init);
1143 * Finalize device \a d.
1145 void lu_device_fini(struct lu_device *d)
1147 struct lu_device_type *t = d->ld_type;
1149 if (d->ld_obd) {
1150 d->ld_obd->obd_lu_dev = NULL;
1151 d->ld_obd = NULL;
1154 lu_ref_fini(&d->ld_reference);
1155 LASSERTF(atomic_read(&d->ld_ref) == 0,
1156 "Refcount is %u\n", atomic_read(&d->ld_ref));
1157 LASSERT(atomic_read(&t->ldt_device_nr) > 0);
1159 if (atomic_dec_and_test(&t->ldt_device_nr) &&
1160 t->ldt_ops->ldto_stop)
1161 t->ldt_ops->ldto_stop(t);
1163 EXPORT_SYMBOL(lu_device_fini);
1166 * Initialize object \a o that is part of compound object \a h and was created
1167 * by device \a d.
1169 int lu_object_init(struct lu_object *o, struct lu_object_header *h,
1170 struct lu_device *d)
1172 memset(o, 0, sizeof(*o));
1173 o->lo_header = h;
1174 o->lo_dev = d;
1175 lu_device_get(d);
1176 lu_ref_add_at(&d->ld_reference, &o->lo_dev_ref, "lu_object", o);
1177 INIT_LIST_HEAD(&o->lo_linkage);
1179 return 0;
1181 EXPORT_SYMBOL(lu_object_init);
1184 * Finalize object and release its resources.
1186 void lu_object_fini(struct lu_object *o)
1188 struct lu_device *dev = o->lo_dev;
1190 LASSERT(list_empty(&o->lo_linkage));
1192 if (dev) {
1193 lu_ref_del_at(&dev->ld_reference, &o->lo_dev_ref,
1194 "lu_object", o);
1195 lu_device_put(dev);
1196 o->lo_dev = NULL;
1199 EXPORT_SYMBOL(lu_object_fini);
1202 * Add object \a o as first layer of compound object \a h
1204 * This is typically called by the ->ldo_object_alloc() method of top-level
1205 * device.
1207 void lu_object_add_top(struct lu_object_header *h, struct lu_object *o)
1209 list_move(&o->lo_linkage, &h->loh_layers);
1211 EXPORT_SYMBOL(lu_object_add_top);
1214 * Add object \a o as a layer of compound object, going after \a before.
1216 * This is typically called by the ->ldo_object_alloc() method of \a
1217 * before->lo_dev.
1219 void lu_object_add(struct lu_object *before, struct lu_object *o)
1221 list_move(&o->lo_linkage, &before->lo_linkage);
1223 EXPORT_SYMBOL(lu_object_add);
1226 * Initialize compound object.
1228 int lu_object_header_init(struct lu_object_header *h)
1230 memset(h, 0, sizeof(*h));
1231 atomic_set(&h->loh_ref, 1);
1232 INIT_HLIST_NODE(&h->loh_hash);
1233 INIT_LIST_HEAD(&h->loh_lru);
1234 INIT_LIST_HEAD(&h->loh_layers);
1235 lu_ref_init(&h->loh_reference);
1236 return 0;
1238 EXPORT_SYMBOL(lu_object_header_init);
1241 * Finalize compound object.
1243 void lu_object_header_fini(struct lu_object_header *h)
1245 LASSERT(list_empty(&h->loh_layers));
1246 LASSERT(list_empty(&h->loh_lru));
1247 LASSERT(hlist_unhashed(&h->loh_hash));
1248 lu_ref_fini(&h->loh_reference);
1250 EXPORT_SYMBOL(lu_object_header_fini);
1253 * Given a compound object, find its slice, corresponding to the device type
1254 * \a dtype.
1256 struct lu_object *lu_object_locate(struct lu_object_header *h,
1257 const struct lu_device_type *dtype)
1259 struct lu_object *o;
1261 list_for_each_entry(o, &h->loh_layers, lo_linkage) {
1262 if (o->lo_dev->ld_type == dtype)
1263 return o;
1265 return NULL;
1267 EXPORT_SYMBOL(lu_object_locate);
1270 * Finalize and free devices in the device stack.
1272 * Finalize device stack by purging object cache, and calling
1273 * lu_device_type_operations::ldto_device_fini() and
1274 * lu_device_type_operations::ldto_device_free() on all devices in the stack.
1276 void lu_stack_fini(const struct lu_env *env, struct lu_device *top)
1278 struct lu_site *site = top->ld_site;
1279 struct lu_device *scan;
1280 struct lu_device *next;
1282 lu_site_purge(env, site, ~0);
1283 for (scan = top; scan; scan = next) {
1284 next = scan->ld_type->ldt_ops->ldto_device_fini(env, scan);
1285 lu_ref_del(&scan->ld_reference, "lu-stack", &lu_site_init);
1286 lu_device_put(scan);
1289 /* purge again. */
1290 lu_site_purge(env, site, ~0);
1292 for (scan = top; scan; scan = next) {
1293 const struct lu_device_type *ldt = scan->ld_type;
1294 struct obd_type *type;
1296 next = ldt->ldt_ops->ldto_device_free(env, scan);
1297 type = ldt->ldt_obd_type;
1298 if (type) {
1299 type->typ_refcnt--;
1300 class_put_type(type);
1305 enum {
1307 * Maximal number of tld slots.
1309 LU_CONTEXT_KEY_NR = 40
1312 static struct lu_context_key *lu_keys[LU_CONTEXT_KEY_NR] = { NULL, };
1314 static DEFINE_SPINLOCK(lu_keys_guard);
1315 static atomic_t lu_key_initing_cnt = ATOMIC_INIT(0);
1318 * Global counter incremented whenever key is registered, unregistered,
1319 * revived or quiesced. This is used to void unnecessary calls to
1320 * lu_context_refill(). No locking is provided, as initialization and shutdown
1321 * are supposed to be externally serialized.
1323 static unsigned key_set_version;
1326 * Register new key.
1328 int lu_context_key_register(struct lu_context_key *key)
1330 int result;
1331 unsigned int i;
1333 LASSERT(key->lct_init);
1334 LASSERT(key->lct_fini);
1335 LASSERT(key->lct_tags != 0);
1337 result = -ENFILE;
1338 spin_lock(&lu_keys_guard);
1339 for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1340 if (!lu_keys[i]) {
1341 key->lct_index = i;
1342 atomic_set(&key->lct_used, 1);
1343 lu_keys[i] = key;
1344 lu_ref_init(&key->lct_reference);
1345 result = 0;
1346 ++key_set_version;
1347 break;
1350 spin_unlock(&lu_keys_guard);
1351 return result;
1353 EXPORT_SYMBOL(lu_context_key_register);
1355 static void key_fini(struct lu_context *ctx, int index)
1357 if (ctx->lc_value && ctx->lc_value[index]) {
1358 struct lu_context_key *key;
1360 key = lu_keys[index];
1361 LASSERT(atomic_read(&key->lct_used) > 1);
1363 key->lct_fini(ctx, key, ctx->lc_value[index]);
1364 lu_ref_del(&key->lct_reference, "ctx", ctx);
1365 atomic_dec(&key->lct_used);
1367 if ((ctx->lc_tags & LCT_NOREF) == 0) {
1368 #ifdef CONFIG_MODULE_UNLOAD
1369 LINVRNT(module_refcount(key->lct_owner) > 0);
1370 #endif
1371 module_put(key->lct_owner);
1373 ctx->lc_value[index] = NULL;
1378 * Deregister key.
1380 void lu_context_key_degister(struct lu_context_key *key)
1382 LASSERT(atomic_read(&key->lct_used) >= 1);
1383 LINVRNT(0 <= key->lct_index && key->lct_index < ARRAY_SIZE(lu_keys));
1385 lu_context_key_quiesce(key);
1387 ++key_set_version;
1388 spin_lock(&lu_keys_guard);
1389 key_fini(&lu_shrink_env.le_ctx, key->lct_index);
1392 * Wait until all transient contexts referencing this key have
1393 * run lu_context_key::lct_fini() method.
1395 while (atomic_read(&key->lct_used) > 1) {
1396 spin_unlock(&lu_keys_guard);
1397 CDEBUG(D_INFO, "lu_context_key_degister: \"%s\" %p, %d\n",
1398 key->lct_owner ? key->lct_owner->name : "", key,
1399 atomic_read(&key->lct_used));
1400 schedule();
1401 spin_lock(&lu_keys_guard);
1403 if (lu_keys[key->lct_index]) {
1404 lu_keys[key->lct_index] = NULL;
1405 lu_ref_fini(&key->lct_reference);
1407 spin_unlock(&lu_keys_guard);
1409 LASSERTF(atomic_read(&key->lct_used) == 1,
1410 "key has instances: %d\n",
1411 atomic_read(&key->lct_used));
1413 EXPORT_SYMBOL(lu_context_key_degister);
1416 * Register a number of keys. This has to be called after all keys have been
1417 * initialized by a call to LU_CONTEXT_KEY_INIT().
1419 int lu_context_key_register_many(struct lu_context_key *k, ...)
1421 struct lu_context_key *key = k;
1422 va_list args;
1423 int result;
1425 va_start(args, k);
1426 do {
1427 result = lu_context_key_register(key);
1428 if (result)
1429 break;
1430 key = va_arg(args, struct lu_context_key *);
1431 } while (key);
1432 va_end(args);
1434 if (result != 0) {
1435 va_start(args, k);
1436 while (k != key) {
1437 lu_context_key_degister(k);
1438 k = va_arg(args, struct lu_context_key *);
1440 va_end(args);
1443 return result;
1445 EXPORT_SYMBOL(lu_context_key_register_many);
1448 * De-register a number of keys. This is a dual to
1449 * lu_context_key_register_many().
1451 void lu_context_key_degister_many(struct lu_context_key *k, ...)
1453 va_list args;
1455 va_start(args, k);
1456 do {
1457 lu_context_key_degister(k);
1458 k = va_arg(args, struct lu_context_key*);
1459 } while (k);
1460 va_end(args);
1462 EXPORT_SYMBOL(lu_context_key_degister_many);
1465 * Revive a number of keys.
1467 void lu_context_key_revive_many(struct lu_context_key *k, ...)
1469 va_list args;
1471 va_start(args, k);
1472 do {
1473 lu_context_key_revive(k);
1474 k = va_arg(args, struct lu_context_key*);
1475 } while (k);
1476 va_end(args);
1478 EXPORT_SYMBOL(lu_context_key_revive_many);
1481 * Quiescent a number of keys.
1483 void lu_context_key_quiesce_many(struct lu_context_key *k, ...)
1485 va_list args;
1487 va_start(args, k);
1488 do {
1489 lu_context_key_quiesce(k);
1490 k = va_arg(args, struct lu_context_key*);
1491 } while (k);
1492 va_end(args);
1494 EXPORT_SYMBOL(lu_context_key_quiesce_many);
1497 * Return value associated with key \a key in context \a ctx.
1499 void *lu_context_key_get(const struct lu_context *ctx,
1500 const struct lu_context_key *key)
1502 LINVRNT(ctx->lc_state == LCS_ENTERED);
1503 LINVRNT(0 <= key->lct_index && key->lct_index < ARRAY_SIZE(lu_keys));
1504 LASSERT(lu_keys[key->lct_index] == key);
1505 return ctx->lc_value[key->lct_index];
1507 EXPORT_SYMBOL(lu_context_key_get);
1510 * List of remembered contexts. XXX document me.
1512 static LIST_HEAD(lu_context_remembered);
1515 * Destroy \a key in all remembered contexts. This is used to destroy key
1516 * values in "shared" contexts (like service threads), when a module owning
1517 * the key is about to be unloaded.
1519 void lu_context_key_quiesce(struct lu_context_key *key)
1521 struct lu_context *ctx;
1523 if (!(key->lct_tags & LCT_QUIESCENT)) {
1525 * XXX memory barrier has to go here.
1527 spin_lock(&lu_keys_guard);
1528 key->lct_tags |= LCT_QUIESCENT;
1531 * Wait until all lu_context_key::lct_init() methods
1532 * have completed.
1534 while (atomic_read(&lu_key_initing_cnt) > 0) {
1535 spin_unlock(&lu_keys_guard);
1536 CDEBUG(D_INFO, "lu_context_key_quiesce: \"%s\" %p, %d (%d)\n",
1537 key->lct_owner ? key->lct_owner->name : "",
1538 key, atomic_read(&key->lct_used),
1539 atomic_read(&lu_key_initing_cnt));
1540 schedule();
1541 spin_lock(&lu_keys_guard);
1544 list_for_each_entry(ctx, &lu_context_remembered, lc_remember)
1545 key_fini(ctx, key->lct_index);
1546 spin_unlock(&lu_keys_guard);
1547 ++key_set_version;
1551 void lu_context_key_revive(struct lu_context_key *key)
1553 key->lct_tags &= ~LCT_QUIESCENT;
1554 ++key_set_version;
1557 static void keys_fini(struct lu_context *ctx)
1559 unsigned int i;
1561 if (!ctx->lc_value)
1562 return;
1564 for (i = 0; i < ARRAY_SIZE(lu_keys); ++i)
1565 key_fini(ctx, i);
1567 kfree(ctx->lc_value);
1568 ctx->lc_value = NULL;
1571 static int keys_fill(struct lu_context *ctx)
1573 unsigned int i;
1576 * A serialisation with lu_context_key_quiesce() is needed, but some
1577 * "key->lct_init()" are calling kernel memory allocation routine and
1578 * can't be called while holding a spin_lock.
1579 * "lu_keys_guard" is held while incrementing "lu_key_initing_cnt"
1580 * to ensure the start of the serialisation.
1581 * An atomic_t variable is still used, in order not to reacquire the
1582 * lock when decrementing the counter.
1584 spin_lock(&lu_keys_guard);
1585 atomic_inc(&lu_key_initing_cnt);
1586 spin_unlock(&lu_keys_guard);
1588 LINVRNT(ctx->lc_value);
1589 for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1590 struct lu_context_key *key;
1592 key = lu_keys[i];
1593 if (!ctx->lc_value[i] && key &&
1594 (key->lct_tags & ctx->lc_tags) &&
1596 * Don't create values for a LCT_QUIESCENT key, as this
1597 * will pin module owning a key.
1599 !(key->lct_tags & LCT_QUIESCENT)) {
1600 void *value;
1602 LINVRNT(key->lct_init);
1603 LINVRNT(key->lct_index == i);
1605 LASSERT(key->lct_owner);
1606 if (!(ctx->lc_tags & LCT_NOREF) &&
1607 !try_module_get(key->lct_owner)) {
1608 /* module is unloading, skip this key */
1609 continue;
1612 value = key->lct_init(ctx, key);
1613 if (unlikely(IS_ERR(value))) {
1614 atomic_dec(&lu_key_initing_cnt);
1615 return PTR_ERR(value);
1618 lu_ref_add_atomic(&key->lct_reference, "ctx", ctx);
1619 atomic_inc(&key->lct_used);
1621 * This is the only place in the code, where an
1622 * element of ctx->lc_value[] array is set to non-NULL
1623 * value.
1625 ctx->lc_value[i] = value;
1626 if (key->lct_exit)
1627 ctx->lc_tags |= LCT_HAS_EXIT;
1629 ctx->lc_version = key_set_version;
1631 atomic_dec(&lu_key_initing_cnt);
1632 return 0;
1635 static int keys_init(struct lu_context *ctx)
1637 ctx->lc_value = kcalloc(ARRAY_SIZE(lu_keys), sizeof(ctx->lc_value[0]),
1638 GFP_NOFS);
1639 if (likely(ctx->lc_value))
1640 return keys_fill(ctx);
1642 return -ENOMEM;
1646 * Initialize context data-structure. Create values for all keys.
1648 int lu_context_init(struct lu_context *ctx, __u32 tags)
1650 int rc;
1652 memset(ctx, 0, sizeof(*ctx));
1653 ctx->lc_state = LCS_INITIALIZED;
1654 ctx->lc_tags = tags;
1655 if (tags & LCT_REMEMBER) {
1656 spin_lock(&lu_keys_guard);
1657 list_add(&ctx->lc_remember, &lu_context_remembered);
1658 spin_unlock(&lu_keys_guard);
1659 } else {
1660 INIT_LIST_HEAD(&ctx->lc_remember);
1663 rc = keys_init(ctx);
1664 if (rc != 0)
1665 lu_context_fini(ctx);
1667 return rc;
1669 EXPORT_SYMBOL(lu_context_init);
1672 * Finalize context data-structure. Destroy key values.
1674 void lu_context_fini(struct lu_context *ctx)
1676 LINVRNT(ctx->lc_state == LCS_INITIALIZED || ctx->lc_state == LCS_LEFT);
1677 ctx->lc_state = LCS_FINALIZED;
1679 if ((ctx->lc_tags & LCT_REMEMBER) == 0) {
1680 LASSERT(list_empty(&ctx->lc_remember));
1681 keys_fini(ctx);
1683 } else { /* could race with key degister */
1684 spin_lock(&lu_keys_guard);
1685 keys_fini(ctx);
1686 list_del_init(&ctx->lc_remember);
1687 spin_unlock(&lu_keys_guard);
1690 EXPORT_SYMBOL(lu_context_fini);
1693 * Called before entering context.
1695 void lu_context_enter(struct lu_context *ctx)
1697 LINVRNT(ctx->lc_state == LCS_INITIALIZED || ctx->lc_state == LCS_LEFT);
1698 ctx->lc_state = LCS_ENTERED;
1700 EXPORT_SYMBOL(lu_context_enter);
1703 * Called after exiting from \a ctx
1705 void lu_context_exit(struct lu_context *ctx)
1707 unsigned int i;
1709 LINVRNT(ctx->lc_state == LCS_ENTERED);
1710 ctx->lc_state = LCS_LEFT;
1711 if (ctx->lc_tags & LCT_HAS_EXIT && ctx->lc_value) {
1712 for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1713 /* could race with key quiescency */
1714 if (ctx->lc_tags & LCT_REMEMBER)
1715 spin_lock(&lu_keys_guard);
1716 if (ctx->lc_value[i]) {
1717 struct lu_context_key *key;
1719 key = lu_keys[i];
1720 if (key->lct_exit)
1721 key->lct_exit(ctx,
1722 key, ctx->lc_value[i]);
1724 if (ctx->lc_tags & LCT_REMEMBER)
1725 spin_unlock(&lu_keys_guard);
1729 EXPORT_SYMBOL(lu_context_exit);
1732 * Allocate for context all missing keys that were registered after context
1733 * creation. key_set_version is only changed in rare cases when modules
1734 * are loaded and removed.
1736 int lu_context_refill(struct lu_context *ctx)
1738 return likely(ctx->lc_version == key_set_version) ? 0 : keys_fill(ctx);
1742 * lu_ctx_tags/lu_ses_tags will be updated if there are new types of
1743 * obd being added. Currently, this is only used on client side, specifically
1744 * for echo device client, for other stack (like ptlrpc threads), context are
1745 * predefined when the lu_device type are registered, during the module probe
1746 * phase.
1748 __u32 lu_context_tags_default;
1749 __u32 lu_session_tags_default;
1751 int lu_env_init(struct lu_env *env, __u32 tags)
1753 int result;
1755 env->le_ses = NULL;
1756 result = lu_context_init(&env->le_ctx, tags);
1757 if (likely(result == 0))
1758 lu_context_enter(&env->le_ctx);
1759 return result;
1761 EXPORT_SYMBOL(lu_env_init);
1763 void lu_env_fini(struct lu_env *env)
1765 lu_context_exit(&env->le_ctx);
1766 lu_context_fini(&env->le_ctx);
1767 env->le_ses = NULL;
1769 EXPORT_SYMBOL(lu_env_fini);
1771 int lu_env_refill(struct lu_env *env)
1773 int result;
1775 result = lu_context_refill(&env->le_ctx);
1776 if (result == 0 && env->le_ses)
1777 result = lu_context_refill(env->le_ses);
1778 return result;
1780 EXPORT_SYMBOL(lu_env_refill);
1782 struct lu_site_stats {
1783 unsigned lss_populated;
1784 unsigned lss_max_search;
1785 unsigned lss_total;
1786 unsigned lss_busy;
1789 static void lu_site_stats_get(struct cfs_hash *hs,
1790 struct lu_site_stats *stats, int populated)
1792 struct cfs_hash_bd bd;
1793 unsigned int i;
1795 cfs_hash_for_each_bucket(hs, &bd, i) {
1796 struct lu_site_bkt_data *bkt = cfs_hash_bd_extra_get(hs, &bd);
1797 struct hlist_head *hhead;
1799 cfs_hash_bd_lock(hs, &bd, 1);
1800 stats->lss_busy +=
1801 cfs_hash_bd_count_get(&bd) - bkt->lsb_lru_len;
1802 stats->lss_total += cfs_hash_bd_count_get(&bd);
1803 stats->lss_max_search = max((int)stats->lss_max_search,
1804 cfs_hash_bd_depmax_get(&bd));
1805 if (!populated) {
1806 cfs_hash_bd_unlock(hs, &bd, 1);
1807 continue;
1810 cfs_hash_bd_for_each_hlist(hs, &bd, hhead) {
1811 if (!hlist_empty(hhead))
1812 stats->lss_populated++;
1814 cfs_hash_bd_unlock(hs, &bd, 1);
1819 * lu_cache_shrink_count returns the number of cached objects that are
1820 * candidates to be freed by shrink_slab(). A counter, which tracks
1821 * the number of items in the site's lru, is maintained in the per cpu
1822 * stats of each site. The counter is incremented when an object is added
1823 * to a site's lru and decremented when one is removed. The number of
1824 * free-able objects is the sum of all per cpu counters for all sites.
1826 * Using a per cpu counter is a compromise solution to concurrent access:
1827 * lu_object_put() can update the counter without locking the site and
1828 * lu_cache_shrink_count can sum the counters without locking each
1829 * ls_obj_hash bucket.
1831 static unsigned long lu_cache_shrink_count(struct shrinker *sk,
1832 struct shrink_control *sc)
1834 struct lu_site *s;
1835 struct lu_site *tmp;
1836 unsigned long cached = 0;
1838 if (!(sc->gfp_mask & __GFP_FS))
1839 return 0;
1841 mutex_lock(&lu_sites_guard);
1842 list_for_each_entry_safe(s, tmp, &lu_sites, ls_linkage) {
1843 cached += ls_stats_read(s->ls_stats, LU_SS_LRU_LEN);
1845 mutex_unlock(&lu_sites_guard);
1847 cached = (cached / 100) * sysctl_vfs_cache_pressure;
1848 CDEBUG(D_INODE, "%ld objects cached, cache pressure %d\n",
1849 cached, sysctl_vfs_cache_pressure);
1851 return cached;
1854 static unsigned long lu_cache_shrink_scan(struct shrinker *sk,
1855 struct shrink_control *sc)
1857 struct lu_site *s;
1858 struct lu_site *tmp;
1859 unsigned long remain = sc->nr_to_scan, freed = 0;
1860 LIST_HEAD(splice);
1862 if (!(sc->gfp_mask & __GFP_FS))
1863 /* We must not take the lu_sites_guard lock when
1864 * __GFP_FS is *not* set because of the deadlock
1865 * possibility detailed above. Additionally,
1866 * since we cannot determine the number of
1867 * objects in the cache without taking this
1868 * lock, we're in a particularly tough spot. As
1869 * a result, we'll just lie and say our cache is
1870 * empty. This _should_ be ok, as we can't
1871 * reclaim objects when __GFP_FS is *not* set
1872 * anyways.
1874 return SHRINK_STOP;
1876 mutex_lock(&lu_sites_guard);
1877 list_for_each_entry_safe(s, tmp, &lu_sites, ls_linkage) {
1878 freed = lu_site_purge(&lu_shrink_env, s, remain);
1879 remain -= freed;
1881 * Move just shrunk site to the tail of site list to
1882 * assure shrinking fairness.
1884 list_move_tail(&s->ls_linkage, &splice);
1886 list_splice(&splice, lu_sites.prev);
1887 mutex_unlock(&lu_sites_guard);
1889 return sc->nr_to_scan - remain;
1893 * Debugging printer function using printk().
1895 static struct shrinker lu_site_shrinker = {
1896 .count_objects = lu_cache_shrink_count,
1897 .scan_objects = lu_cache_shrink_scan,
1898 .seeks = DEFAULT_SEEKS,
1902 * Initialization of global lu_* data.
1904 int lu_global_init(void)
1906 int result;
1908 CDEBUG(D_INFO, "Lustre LU module (%p).\n", &lu_keys);
1910 result = lu_ref_global_init();
1911 if (result != 0)
1912 return result;
1914 LU_CONTEXT_KEY_INIT(&lu_global_key);
1915 result = lu_context_key_register(&lu_global_key);
1916 if (result != 0)
1917 return result;
1920 * At this level, we don't know what tags are needed, so allocate them
1921 * conservatively. This should not be too bad, because this
1922 * environment is global.
1924 mutex_lock(&lu_sites_guard);
1925 result = lu_env_init(&lu_shrink_env, LCT_SHRINKER);
1926 mutex_unlock(&lu_sites_guard);
1927 if (result != 0)
1928 return result;
1931 * seeks estimation: 3 seeks to read a record from oi, one to read
1932 * inode, one for ea. Unfortunately setting this high value results in
1933 * lu_object/inode cache consuming all the memory.
1935 register_shrinker(&lu_site_shrinker);
1937 return result;
1941 * Dual to lu_global_init().
1943 void lu_global_fini(void)
1945 unregister_shrinker(&lu_site_shrinker);
1946 lu_context_key_degister(&lu_global_key);
1949 * Tear shrinker environment down _after_ de-registering
1950 * lu_global_key, because the latter has a value in the former.
1952 mutex_lock(&lu_sites_guard);
1953 lu_env_fini(&lu_shrink_env);
1954 mutex_unlock(&lu_sites_guard);
1956 lu_ref_global_fini();
1959 static __u32 ls_stats_read(struct lprocfs_stats *stats, int idx)
1961 struct lprocfs_counter ret;
1963 lprocfs_stats_collect(stats, idx, &ret);
1964 if (idx == LU_SS_LRU_LEN)
1966 * protect against counter on cpu A being decremented
1967 * before counter is incremented on cpu B; unlikely
1969 return (__u32)((ret.lc_sum > 0) ? ret.lc_sum : 0);
1971 return (__u32)ret.lc_count;
1975 * Output site statistical counters into a buffer. Suitable for
1976 * lprocfs_rd_*()-style functions.
1978 int lu_site_stats_print(const struct lu_site *s, struct seq_file *m)
1980 struct lu_site_stats stats;
1982 memset(&stats, 0, sizeof(stats));
1983 lu_site_stats_get(s->ls_obj_hash, &stats, 1);
1985 seq_printf(m, "%d/%d %d/%ld %d %d %d %d %d %d %d %d\n",
1986 stats.lss_busy,
1987 stats.lss_total,
1988 stats.lss_populated,
1989 CFS_HASH_NHLIST(s->ls_obj_hash),
1990 stats.lss_max_search,
1991 ls_stats_read(s->ls_stats, LU_SS_CREATED),
1992 ls_stats_read(s->ls_stats, LU_SS_CACHE_HIT),
1993 ls_stats_read(s->ls_stats, LU_SS_CACHE_MISS),
1994 ls_stats_read(s->ls_stats, LU_SS_CACHE_RACE),
1995 ls_stats_read(s->ls_stats, LU_SS_CACHE_DEATH_RACE),
1996 ls_stats_read(s->ls_stats, LU_SS_LRU_PURGED),
1997 ls_stats_read(s->ls_stats, LU_SS_LRU_LEN));
1998 return 0;
2000 EXPORT_SYMBOL(lu_site_stats_print);
2003 * Helper function to initialize a number of kmem slab caches at once.
2005 int lu_kmem_init(struct lu_kmem_descr *caches)
2007 int result;
2008 struct lu_kmem_descr *iter = caches;
2010 for (result = 0; iter->ckd_cache; ++iter) {
2011 *iter->ckd_cache = kmem_cache_create(iter->ckd_name,
2012 iter->ckd_size,
2013 0, 0, NULL);
2014 if (!*iter->ckd_cache) {
2015 result = -ENOMEM;
2016 /* free all previously allocated caches */
2017 lu_kmem_fini(caches);
2018 break;
2021 return result;
2023 EXPORT_SYMBOL(lu_kmem_init);
2026 * Helper function to finalize a number of kmem slab cached at once. Dual to
2027 * lu_kmem_init().
2029 void lu_kmem_fini(struct lu_kmem_descr *caches)
2031 for (; caches->ckd_cache; ++caches) {
2032 kmem_cache_destroy(*caches->ckd_cache);
2033 *caches->ckd_cache = NULL;
2036 EXPORT_SYMBOL(lu_kmem_fini);
2038 void lu_buf_free(struct lu_buf *buf)
2040 LASSERT(buf);
2041 if (buf->lb_buf) {
2042 LASSERT(buf->lb_len > 0);
2043 kvfree(buf->lb_buf);
2044 buf->lb_buf = NULL;
2045 buf->lb_len = 0;
2048 EXPORT_SYMBOL(lu_buf_free);
2050 void lu_buf_alloc(struct lu_buf *buf, size_t size)
2052 LASSERT(buf);
2053 LASSERT(!buf->lb_buf);
2054 LASSERT(!buf->lb_len);
2055 buf->lb_buf = libcfs_kvzalloc(size, GFP_NOFS);
2056 if (likely(buf->lb_buf))
2057 buf->lb_len = size;
2059 EXPORT_SYMBOL(lu_buf_alloc);
2061 void lu_buf_realloc(struct lu_buf *buf, size_t size)
2063 lu_buf_free(buf);
2064 lu_buf_alloc(buf, size);
2066 EXPORT_SYMBOL(lu_buf_realloc);
2068 struct lu_buf *lu_buf_check_and_alloc(struct lu_buf *buf, size_t len)
2070 if (!buf->lb_buf && !buf->lb_len)
2071 lu_buf_alloc(buf, len);
2073 if ((len > buf->lb_len) && buf->lb_buf)
2074 lu_buf_realloc(buf, len);
2076 return buf;
2078 EXPORT_SYMBOL(lu_buf_check_and_alloc);
2081 * Increase the size of the \a buf.
2082 * preserves old data in buffer
2083 * old buffer remains unchanged on error
2084 * \retval 0 or -ENOMEM
2086 int lu_buf_check_and_grow(struct lu_buf *buf, size_t len)
2088 char *ptr;
2090 if (len <= buf->lb_len)
2091 return 0;
2093 ptr = libcfs_kvzalloc(len, GFP_NOFS);
2094 if (!ptr)
2095 return -ENOMEM;
2097 /* Free the old buf */
2098 if (buf->lb_buf) {
2099 memcpy(ptr, buf->lb_buf, buf->lb_len);
2100 kvfree(buf->lb_buf);
2103 buf->lb_buf = ptr;
2104 buf->lb_len = len;
2105 return 0;