bpf, arm64: implement jiting of BPF_XADD
[linux-2.6/btrfs-unstable.git] / arch / cris / mm / fault.c
blob1fca464f1b9e75d85e47b323d785add006dfd131
1 /*
2 * arch/cris/mm/fault.c
4 * Copyright (C) 2000-2010 Axis Communications AB
5 */
7 #include <linux/mm.h>
8 #include <linux/interrupt.h>
9 #include <linux/extable.h>
10 #include <linux/wait.h>
11 #include <linux/sched/signal.h>
12 #include <linux/uaccess.h>
13 #include <arch/system.h>
15 extern int find_fixup_code(struct pt_regs *);
16 extern void die_if_kernel(const char *, struct pt_regs *, long);
17 extern void show_registers(struct pt_regs *regs);
19 /* debug of low-level TLB reload */
20 #undef DEBUG
22 #ifdef DEBUG
23 #define D(x) x
24 #else
25 #define D(x)
26 #endif
28 /* debug of higher-level faults */
29 #define DPG(x)
31 /* current active page directory */
33 DEFINE_PER_CPU(pgd_t *, current_pgd);
34 unsigned long cris_signal_return_page;
37 * This routine handles page faults. It determines the address,
38 * and the problem, and then passes it off to one of the appropriate
39 * routines.
41 * Notice that the address we're given is aligned to the page the fault
42 * occurred in, since we only get the PFN in R_MMU_CAUSE not the complete
43 * address.
45 * error_code:
46 * bit 0 == 0 means no page found, 1 means protection fault
47 * bit 1 == 0 means read, 1 means write
49 * If this routine detects a bad access, it returns 1, otherwise it
50 * returns 0.
53 asmlinkage void
54 do_page_fault(unsigned long address, struct pt_regs *regs,
55 int protection, int writeaccess)
57 struct task_struct *tsk;
58 struct mm_struct *mm;
59 struct vm_area_struct * vma;
60 siginfo_t info;
61 int fault;
62 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
64 D(printk(KERN_DEBUG
65 "Page fault for %lX on %X at %lX, prot %d write %d\n",
66 address, smp_processor_id(), instruction_pointer(regs),
67 protection, writeaccess));
69 tsk = current;
72 * We fault-in kernel-space virtual memory on-demand. The
73 * 'reference' page table is init_mm.pgd.
75 * NOTE! We MUST NOT take any locks for this case. We may
76 * be in an interrupt or a critical region, and should
77 * only copy the information from the master page table,
78 * nothing more.
80 * NOTE2: This is done so that, when updating the vmalloc
81 * mappings we don't have to walk all processes pgdirs and
82 * add the high mappings all at once. Instead we do it as they
83 * are used. However vmalloc'ed page entries have the PAGE_GLOBAL
84 * bit set so sometimes the TLB can use a lingering entry.
86 * This verifies that the fault happens in kernel space
87 * and that the fault was not a protection error (error_code & 1).
90 if (address >= VMALLOC_START &&
91 !protection &&
92 !user_mode(regs))
93 goto vmalloc_fault;
95 /* When stack execution is not allowed we store the signal
96 * trampolines in the reserved cris_signal_return_page.
97 * Handle this in the exact same way as vmalloc (we know
98 * that the mapping is there and is valid so no need to
99 * call handle_mm_fault).
101 if (cris_signal_return_page &&
102 address == cris_signal_return_page &&
103 !protection && user_mode(regs))
104 goto vmalloc_fault;
106 /* we can and should enable interrupts at this point */
107 local_irq_enable();
109 mm = tsk->mm;
110 info.si_code = SEGV_MAPERR;
113 * If we're in an interrupt, have pagefaults disabled or have no
114 * user context, we must not take the fault.
117 if (faulthandler_disabled() || !mm)
118 goto no_context;
120 if (user_mode(regs))
121 flags |= FAULT_FLAG_USER;
122 retry:
123 down_read(&mm->mmap_sem);
124 vma = find_vma(mm, address);
125 if (!vma)
126 goto bad_area;
127 if (vma->vm_start <= address)
128 goto good_area;
129 if (!(vma->vm_flags & VM_GROWSDOWN))
130 goto bad_area;
131 if (user_mode(regs)) {
133 * accessing the stack below usp is always a bug.
134 * we get page-aligned addresses so we can only check
135 * if we're within a page from usp, but that might be
136 * enough to catch brutal errors at least.
138 if (address + PAGE_SIZE < rdusp())
139 goto bad_area;
141 if (expand_stack(vma, address))
142 goto bad_area;
145 * Ok, we have a good vm_area for this memory access, so
146 * we can handle it..
149 good_area:
150 info.si_code = SEGV_ACCERR;
152 /* first do some preliminary protection checks */
154 if (writeaccess == 2){
155 if (!(vma->vm_flags & VM_EXEC))
156 goto bad_area;
157 } else if (writeaccess == 1) {
158 if (!(vma->vm_flags & VM_WRITE))
159 goto bad_area;
160 flags |= FAULT_FLAG_WRITE;
161 } else {
162 if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
163 goto bad_area;
167 * If for any reason at all we couldn't handle the fault,
168 * make sure we exit gracefully rather than endlessly redo
169 * the fault.
172 fault = handle_mm_fault(vma, address, flags);
174 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
175 return;
177 if (unlikely(fault & VM_FAULT_ERROR)) {
178 if (fault & VM_FAULT_OOM)
179 goto out_of_memory;
180 else if (fault & VM_FAULT_SIGSEGV)
181 goto bad_area;
182 else if (fault & VM_FAULT_SIGBUS)
183 goto do_sigbus;
184 BUG();
187 if (flags & FAULT_FLAG_ALLOW_RETRY) {
188 if (fault & VM_FAULT_MAJOR)
189 tsk->maj_flt++;
190 else
191 tsk->min_flt++;
192 if (fault & VM_FAULT_RETRY) {
193 flags &= ~FAULT_FLAG_ALLOW_RETRY;
194 flags |= FAULT_FLAG_TRIED;
197 * No need to up_read(&mm->mmap_sem) as we would
198 * have already released it in __lock_page_or_retry
199 * in mm/filemap.c.
202 goto retry;
206 up_read(&mm->mmap_sem);
207 return;
210 * Something tried to access memory that isn't in our memory map..
211 * Fix it, but check if it's kernel or user first..
214 bad_area:
215 up_read(&mm->mmap_sem);
217 bad_area_nosemaphore:
218 DPG(show_registers(regs));
220 /* User mode accesses just cause a SIGSEGV */
222 if (user_mode(regs)) {
223 #ifdef CONFIG_NO_SEGFAULT_TERMINATION
224 DECLARE_WAIT_QUEUE_HEAD(wq);
225 #endif
226 printk(KERN_NOTICE "%s (pid %d) segfaults for page "
227 "address %08lx at pc %08lx\n",
228 tsk->comm, tsk->pid,
229 address, instruction_pointer(regs));
231 /* With DPG on, we've already dumped registers above. */
232 DPG(if (0))
233 show_registers(regs);
235 #ifdef CONFIG_NO_SEGFAULT_TERMINATION
236 wait_event_interruptible(wq, 0 == 1);
237 #else
238 info.si_signo = SIGSEGV;
239 info.si_errno = 0;
240 /* info.si_code has been set above */
241 info.si_addr = (void *)address;
242 force_sig_info(SIGSEGV, &info, tsk);
243 #endif
244 return;
247 no_context:
249 /* Are we prepared to handle this kernel fault?
251 * (The kernel has valid exception-points in the source
252 * when it accesses user-memory. When it fails in one
253 * of those points, we find it in a table and do a jump
254 * to some fixup code that loads an appropriate error
255 * code)
258 if (find_fixup_code(regs))
259 return;
262 * Oops. The kernel tried to access some bad page. We'll have to
263 * terminate things with extreme prejudice.
266 if (!oops_in_progress) {
267 oops_in_progress = 1;
268 if ((unsigned long) (address) < PAGE_SIZE)
269 printk(KERN_ALERT "Unable to handle kernel NULL "
270 "pointer dereference");
271 else
272 printk(KERN_ALERT "Unable to handle kernel access"
273 " at virtual address %08lx\n", address);
275 die_if_kernel("Oops", regs, (writeaccess << 1) | protection);
276 oops_in_progress = 0;
279 do_exit(SIGKILL);
282 * We ran out of memory, or some other thing happened to us that made
283 * us unable to handle the page fault gracefully.
286 out_of_memory:
287 up_read(&mm->mmap_sem);
288 if (!user_mode(regs))
289 goto no_context;
290 pagefault_out_of_memory();
291 return;
293 do_sigbus:
294 up_read(&mm->mmap_sem);
297 * Send a sigbus, regardless of whether we were in kernel
298 * or user mode.
300 info.si_signo = SIGBUS;
301 info.si_errno = 0;
302 info.si_code = BUS_ADRERR;
303 info.si_addr = (void *)address;
304 force_sig_info(SIGBUS, &info, tsk);
306 /* Kernel mode? Handle exceptions or die */
307 if (!user_mode(regs))
308 goto no_context;
309 return;
311 vmalloc_fault:
314 * Synchronize this task's top level page-table
315 * with the 'reference' page table.
317 * Use current_pgd instead of tsk->active_mm->pgd
318 * since the latter might be unavailable if this
319 * code is executed in a misfortunately run irq
320 * (like inside schedule() between switch_mm and
321 * switch_to...).
324 int offset = pgd_index(address);
325 pgd_t *pgd, *pgd_k;
326 pud_t *pud, *pud_k;
327 pmd_t *pmd, *pmd_k;
328 pte_t *pte_k;
330 pgd = (pgd_t *)per_cpu(current_pgd, smp_processor_id()) + offset;
331 pgd_k = init_mm.pgd + offset;
333 /* Since we're two-level, we don't need to do both
334 * set_pgd and set_pmd (they do the same thing). If
335 * we go three-level at some point, do the right thing
336 * with pgd_present and set_pgd here.
338 * Also, since the vmalloc area is global, we don't
339 * need to copy individual PTE's, it is enough to
340 * copy the pgd pointer into the pte page of the
341 * root task. If that is there, we'll find our pte if
342 * it exists.
345 pud = pud_offset(pgd, address);
346 pud_k = pud_offset(pgd_k, address);
347 if (!pud_present(*pud_k))
348 goto no_context;
350 pmd = pmd_offset(pud, address);
351 pmd_k = pmd_offset(pud_k, address);
353 if (!pmd_present(*pmd_k))
354 goto bad_area_nosemaphore;
356 set_pmd(pmd, *pmd_k);
358 /* Make sure the actual PTE exists as well to
359 * catch kernel vmalloc-area accesses to non-mapped
360 * addresses. If we don't do this, this will just
361 * silently loop forever.
364 pte_k = pte_offset_kernel(pmd_k, address);
365 if (!pte_present(*pte_k))
366 goto no_context;
368 return;
372 /* Find fixup code. */
374 find_fixup_code(struct pt_regs *regs)
376 const struct exception_table_entry *fixup;
377 /* in case of delay slot fault (v32) */
378 unsigned long ip = (instruction_pointer(regs) & ~0x1);
380 fixup = search_exception_tables(ip);
381 if (fixup != 0) {
382 /* Adjust the instruction pointer in the stackframe. */
383 instruction_pointer(regs) = fixup->fixup;
384 arch_fixup(regs);
385 return 1;
388 return 0;