Add a bitmap that is used to track flags affecting a block of pages
[linux-2.6/btrfs-unstable.git] / include / linux / mmzone.h
blob322e8048463ee488faa9523d76c68272344b367a
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
4 #ifdef __KERNEL__
5 #ifndef __ASSEMBLY__
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/cache.h>
11 #include <linux/threads.h>
12 #include <linux/numa.h>
13 #include <linux/init.h>
14 #include <linux/seqlock.h>
15 #include <linux/nodemask.h>
16 #include <linux/pageblock-flags.h>
17 #include <asm/atomic.h>
18 #include <asm/page.h>
20 /* Free memory management - zoned buddy allocator. */
21 #ifndef CONFIG_FORCE_MAX_ZONEORDER
22 #define MAX_ORDER 11
23 #else
24 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
25 #endif
26 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
30 * costly to service. That is between allocation orders which should
31 * coelesce naturally under reasonable reclaim pressure and those which
32 * will not.
34 #define PAGE_ALLOC_COSTLY_ORDER 3
36 struct free_area {
37 struct list_head free_list;
38 unsigned long nr_free;
41 struct pglist_data;
44 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
45 * So add a wild amount of padding here to ensure that they fall into separate
46 * cachelines. There are very few zone structures in the machine, so space
47 * consumption is not a concern here.
49 #if defined(CONFIG_SMP)
50 struct zone_padding {
51 char x[0];
52 } ____cacheline_internodealigned_in_smp;
53 #define ZONE_PADDING(name) struct zone_padding name;
54 #else
55 #define ZONE_PADDING(name)
56 #endif
58 enum zone_stat_item {
59 /* First 128 byte cacheline (assuming 64 bit words) */
60 NR_FREE_PAGES,
61 NR_INACTIVE,
62 NR_ACTIVE,
63 NR_ANON_PAGES, /* Mapped anonymous pages */
64 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65 only modified from process context */
66 NR_FILE_PAGES,
67 NR_FILE_DIRTY,
68 NR_WRITEBACK,
69 /* Second 128 byte cacheline */
70 NR_SLAB_RECLAIMABLE,
71 NR_SLAB_UNRECLAIMABLE,
72 NR_PAGETABLE, /* used for pagetables */
73 NR_UNSTABLE_NFS, /* NFS unstable pages */
74 NR_BOUNCE,
75 NR_VMSCAN_WRITE,
76 #ifdef CONFIG_NUMA
77 NUMA_HIT, /* allocated in intended node */
78 NUMA_MISS, /* allocated in non intended node */
79 NUMA_FOREIGN, /* was intended here, hit elsewhere */
80 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
81 NUMA_LOCAL, /* allocation from local node */
82 NUMA_OTHER, /* allocation from other node */
83 #endif
84 NR_VM_ZONE_STAT_ITEMS };
86 struct per_cpu_pages {
87 int count; /* number of pages in the list */
88 int high; /* high watermark, emptying needed */
89 int batch; /* chunk size for buddy add/remove */
90 struct list_head list; /* the list of pages */
93 struct per_cpu_pageset {
94 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
95 #ifdef CONFIG_NUMA
96 s8 expire;
97 #endif
98 #ifdef CONFIG_SMP
99 s8 stat_threshold;
100 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
101 #endif
102 } ____cacheline_aligned_in_smp;
104 #ifdef CONFIG_NUMA
105 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
106 #else
107 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
108 #endif
110 enum zone_type {
111 #ifdef CONFIG_ZONE_DMA
113 * ZONE_DMA is used when there are devices that are not able
114 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
115 * carve out the portion of memory that is needed for these devices.
116 * The range is arch specific.
118 * Some examples
120 * Architecture Limit
121 * ---------------------------
122 * parisc, ia64, sparc <4G
123 * s390 <2G
124 * arm Various
125 * alpha Unlimited or 0-16MB.
127 * i386, x86_64 and multiple other arches
128 * <16M.
130 ZONE_DMA,
131 #endif
132 #ifdef CONFIG_ZONE_DMA32
134 * x86_64 needs two ZONE_DMAs because it supports devices that are
135 * only able to do DMA to the lower 16M but also 32 bit devices that
136 * can only do DMA areas below 4G.
138 ZONE_DMA32,
139 #endif
141 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
142 * performed on pages in ZONE_NORMAL if the DMA devices support
143 * transfers to all addressable memory.
145 ZONE_NORMAL,
146 #ifdef CONFIG_HIGHMEM
148 * A memory area that is only addressable by the kernel through
149 * mapping portions into its own address space. This is for example
150 * used by i386 to allow the kernel to address the memory beyond
151 * 900MB. The kernel will set up special mappings (page
152 * table entries on i386) for each page that the kernel needs to
153 * access.
155 ZONE_HIGHMEM,
156 #endif
157 ZONE_MOVABLE,
158 MAX_NR_ZONES
162 * When a memory allocation must conform to specific limitations (such
163 * as being suitable for DMA) the caller will pass in hints to the
164 * allocator in the gfp_mask, in the zone modifier bits. These bits
165 * are used to select a priority ordered list of memory zones which
166 * match the requested limits. See gfp_zone() in include/linux/gfp.h
170 * Count the active zones. Note that the use of defined(X) outside
171 * #if and family is not necessarily defined so ensure we cannot use
172 * it later. Use __ZONE_COUNT to work out how many shift bits we need.
174 #define __ZONE_COUNT ( \
175 defined(CONFIG_ZONE_DMA) \
176 + defined(CONFIG_ZONE_DMA32) \
177 + 1 \
178 + defined(CONFIG_HIGHMEM) \
179 + 1 \
181 #if __ZONE_COUNT < 2
182 #define ZONES_SHIFT 0
183 #elif __ZONE_COUNT <= 2
184 #define ZONES_SHIFT 1
185 #elif __ZONE_COUNT <= 4
186 #define ZONES_SHIFT 2
187 #else
188 #error ZONES_SHIFT -- too many zones configured adjust calculation
189 #endif
190 #undef __ZONE_COUNT
192 struct zone {
193 /* Fields commonly accessed by the page allocator */
194 unsigned long pages_min, pages_low, pages_high;
196 * We don't know if the memory that we're going to allocate will be freeable
197 * or/and it will be released eventually, so to avoid totally wasting several
198 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
199 * to run OOM on the lower zones despite there's tons of freeable ram
200 * on the higher zones). This array is recalculated at runtime if the
201 * sysctl_lowmem_reserve_ratio sysctl changes.
203 unsigned long lowmem_reserve[MAX_NR_ZONES];
205 #ifdef CONFIG_NUMA
206 int node;
208 * zone reclaim becomes active if more unmapped pages exist.
210 unsigned long min_unmapped_pages;
211 unsigned long min_slab_pages;
212 struct per_cpu_pageset *pageset[NR_CPUS];
213 #else
214 struct per_cpu_pageset pageset[NR_CPUS];
215 #endif
217 * free areas of different sizes
219 spinlock_t lock;
220 #ifdef CONFIG_MEMORY_HOTPLUG
221 /* see spanned/present_pages for more description */
222 seqlock_t span_seqlock;
223 #endif
224 struct free_area free_area[MAX_ORDER];
226 #ifndef CONFIG_SPARSEMEM
228 * Flags for a MAX_ORDER_NR_PAGES block. See pageblock-flags.h.
229 * In SPARSEMEM, this map is stored in struct mem_section
231 unsigned long *pageblock_flags;
232 #endif /* CONFIG_SPARSEMEM */
235 ZONE_PADDING(_pad1_)
237 /* Fields commonly accessed by the page reclaim scanner */
238 spinlock_t lru_lock;
239 struct list_head active_list;
240 struct list_head inactive_list;
241 unsigned long nr_scan_active;
242 unsigned long nr_scan_inactive;
243 unsigned long pages_scanned; /* since last reclaim */
244 int all_unreclaimable; /* All pages pinned */
246 /* A count of how many reclaimers are scanning this zone */
247 atomic_t reclaim_in_progress;
249 /* Zone statistics */
250 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
253 * prev_priority holds the scanning priority for this zone. It is
254 * defined as the scanning priority at which we achieved our reclaim
255 * target at the previous try_to_free_pages() or balance_pgdat()
256 * invokation.
258 * We use prev_priority as a measure of how much stress page reclaim is
259 * under - it drives the swappiness decision: whether to unmap mapped
260 * pages.
262 * Access to both this field is quite racy even on uniprocessor. But
263 * it is expected to average out OK.
265 int prev_priority;
268 ZONE_PADDING(_pad2_)
269 /* Rarely used or read-mostly fields */
272 * wait_table -- the array holding the hash table
273 * wait_table_hash_nr_entries -- the size of the hash table array
274 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
276 * The purpose of all these is to keep track of the people
277 * waiting for a page to become available and make them
278 * runnable again when possible. The trouble is that this
279 * consumes a lot of space, especially when so few things
280 * wait on pages at a given time. So instead of using
281 * per-page waitqueues, we use a waitqueue hash table.
283 * The bucket discipline is to sleep on the same queue when
284 * colliding and wake all in that wait queue when removing.
285 * When something wakes, it must check to be sure its page is
286 * truly available, a la thundering herd. The cost of a
287 * collision is great, but given the expected load of the
288 * table, they should be so rare as to be outweighed by the
289 * benefits from the saved space.
291 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
292 * primary users of these fields, and in mm/page_alloc.c
293 * free_area_init_core() performs the initialization of them.
295 wait_queue_head_t * wait_table;
296 unsigned long wait_table_hash_nr_entries;
297 unsigned long wait_table_bits;
300 * Discontig memory support fields.
302 struct pglist_data *zone_pgdat;
303 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
304 unsigned long zone_start_pfn;
307 * zone_start_pfn, spanned_pages and present_pages are all
308 * protected by span_seqlock. It is a seqlock because it has
309 * to be read outside of zone->lock, and it is done in the main
310 * allocator path. But, it is written quite infrequently.
312 * The lock is declared along with zone->lock because it is
313 * frequently read in proximity to zone->lock. It's good to
314 * give them a chance of being in the same cacheline.
316 unsigned long spanned_pages; /* total size, including holes */
317 unsigned long present_pages; /* amount of memory (excluding holes) */
320 * rarely used fields:
322 const char *name;
323 } ____cacheline_internodealigned_in_smp;
326 * The "priority" of VM scanning is how much of the queues we will scan in one
327 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
328 * queues ("queue_length >> 12") during an aging round.
330 #define DEF_PRIORITY 12
332 /* Maximum number of zones on a zonelist */
333 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
335 #ifdef CONFIG_NUMA
338 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
339 * allocations to a single node for GFP_THISNODE.
341 * [0 .. MAX_NR_ZONES -1] : Zonelists with fallback
342 * [MAZ_NR_ZONES ... MAZ_ZONELISTS -1] : No fallback (GFP_THISNODE)
344 #define MAX_ZONELISTS (2 * MAX_NR_ZONES)
348 * We cache key information from each zonelist for smaller cache
349 * footprint when scanning for free pages in get_page_from_freelist().
351 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
352 * up short of free memory since the last time (last_fullzone_zap)
353 * we zero'd fullzones.
354 * 2) The array z_to_n[] maps each zone in the zonelist to its node
355 * id, so that we can efficiently evaluate whether that node is
356 * set in the current tasks mems_allowed.
358 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
359 * indexed by a zones offset in the zonelist zones[] array.
361 * The get_page_from_freelist() routine does two scans. During the
362 * first scan, we skip zones whose corresponding bit in 'fullzones'
363 * is set or whose corresponding node in current->mems_allowed (which
364 * comes from cpusets) is not set. During the second scan, we bypass
365 * this zonelist_cache, to ensure we look methodically at each zone.
367 * Once per second, we zero out (zap) fullzones, forcing us to
368 * reconsider nodes that might have regained more free memory.
369 * The field last_full_zap is the time we last zapped fullzones.
371 * This mechanism reduces the amount of time we waste repeatedly
372 * reexaming zones for free memory when they just came up low on
373 * memory momentarilly ago.
375 * The zonelist_cache struct members logically belong in struct
376 * zonelist. However, the mempolicy zonelists constructed for
377 * MPOL_BIND are intentionally variable length (and usually much
378 * shorter). A general purpose mechanism for handling structs with
379 * multiple variable length members is more mechanism than we want
380 * here. We resort to some special case hackery instead.
382 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
383 * part because they are shorter), so we put the fixed length stuff
384 * at the front of the zonelist struct, ending in a variable length
385 * zones[], as is needed by MPOL_BIND.
387 * Then we put the optional zonelist cache on the end of the zonelist
388 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
389 * the fixed length portion at the front of the struct. This pointer
390 * both enables us to find the zonelist cache, and in the case of
391 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
392 * to know that the zonelist cache is not there.
394 * The end result is that struct zonelists come in two flavors:
395 * 1) The full, fixed length version, shown below, and
396 * 2) The custom zonelists for MPOL_BIND.
397 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
399 * Even though there may be multiple CPU cores on a node modifying
400 * fullzones or last_full_zap in the same zonelist_cache at the same
401 * time, we don't lock it. This is just hint data - if it is wrong now
402 * and then, the allocator will still function, perhaps a bit slower.
406 struct zonelist_cache {
407 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
408 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
409 unsigned long last_full_zap; /* when last zap'd (jiffies) */
411 #else
412 #define MAX_ZONELISTS MAX_NR_ZONES
413 struct zonelist_cache;
414 #endif
417 * One allocation request operates on a zonelist. A zonelist
418 * is a list of zones, the first one is the 'goal' of the
419 * allocation, the other zones are fallback zones, in decreasing
420 * priority.
422 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
423 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
426 struct zonelist {
427 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
428 struct zone *zones[MAX_ZONES_PER_ZONELIST + 1]; // NULL delimited
429 #ifdef CONFIG_NUMA
430 struct zonelist_cache zlcache; // optional ...
431 #endif
434 #ifdef CONFIG_NUMA
436 * Only custom zonelists like MPOL_BIND need to be filtered as part of
437 * policies. As described in the comment for struct zonelist_cache, these
438 * zonelists will not have a zlcache so zlcache_ptr will not be set. Use
439 * that to determine if the zonelists needs to be filtered or not.
441 static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
443 return !zonelist->zlcache_ptr;
445 #else
446 static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
448 return 0;
450 #endif /* CONFIG_NUMA */
452 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
453 struct node_active_region {
454 unsigned long start_pfn;
455 unsigned long end_pfn;
456 int nid;
458 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
460 #ifndef CONFIG_DISCONTIGMEM
461 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
462 extern struct page *mem_map;
463 #endif
466 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
467 * (mostly NUMA machines?) to denote a higher-level memory zone than the
468 * zone denotes.
470 * On NUMA machines, each NUMA node would have a pg_data_t to describe
471 * it's memory layout.
473 * Memory statistics and page replacement data structures are maintained on a
474 * per-zone basis.
476 struct bootmem_data;
477 typedef struct pglist_data {
478 struct zone node_zones[MAX_NR_ZONES];
479 struct zonelist node_zonelists[MAX_ZONELISTS];
480 int nr_zones;
481 #ifdef CONFIG_FLAT_NODE_MEM_MAP
482 struct page *node_mem_map;
483 #endif
484 struct bootmem_data *bdata;
485 #ifdef CONFIG_MEMORY_HOTPLUG
487 * Must be held any time you expect node_start_pfn, node_present_pages
488 * or node_spanned_pages stay constant. Holding this will also
489 * guarantee that any pfn_valid() stays that way.
491 * Nests above zone->lock and zone->size_seqlock.
493 spinlock_t node_size_lock;
494 #endif
495 unsigned long node_start_pfn;
496 unsigned long node_present_pages; /* total number of physical pages */
497 unsigned long node_spanned_pages; /* total size of physical page
498 range, including holes */
499 int node_id;
500 wait_queue_head_t kswapd_wait;
501 struct task_struct *kswapd;
502 int kswapd_max_order;
503 } pg_data_t;
505 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
506 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
507 #ifdef CONFIG_FLAT_NODE_MEM_MAP
508 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
509 #else
510 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
511 #endif
512 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
514 #include <linux/memory_hotplug.h>
516 void get_zone_counts(unsigned long *active, unsigned long *inactive,
517 unsigned long *free);
518 void build_all_zonelists(void);
519 void wakeup_kswapd(struct zone *zone, int order);
520 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
521 int classzone_idx, int alloc_flags);
522 enum memmap_context {
523 MEMMAP_EARLY,
524 MEMMAP_HOTPLUG,
526 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
527 unsigned long size,
528 enum memmap_context context);
530 #ifdef CONFIG_HAVE_MEMORY_PRESENT
531 void memory_present(int nid, unsigned long start, unsigned long end);
532 #else
533 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
534 #endif
536 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
537 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
538 #endif
541 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
543 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
545 static inline int populated_zone(struct zone *zone)
547 return (!!zone->present_pages);
550 extern int movable_zone;
552 static inline int zone_movable_is_highmem(void)
554 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
555 return movable_zone == ZONE_HIGHMEM;
556 #else
557 return 0;
558 #endif
561 static inline int is_highmem_idx(enum zone_type idx)
563 #ifdef CONFIG_HIGHMEM
564 return (idx == ZONE_HIGHMEM ||
565 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
566 #else
567 return 0;
568 #endif
571 static inline int is_normal_idx(enum zone_type idx)
573 return (idx == ZONE_NORMAL);
577 * is_highmem - helper function to quickly check if a struct zone is a
578 * highmem zone or not. This is an attempt to keep references
579 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
580 * @zone - pointer to struct zone variable
582 static inline int is_highmem(struct zone *zone)
584 #ifdef CONFIG_HIGHMEM
585 int zone_idx = zone - zone->zone_pgdat->node_zones;
586 return zone_idx == ZONE_HIGHMEM ||
587 (zone_idx == ZONE_MOVABLE && zone_movable_is_highmem());
588 #else
589 return 0;
590 #endif
593 static inline int is_normal(struct zone *zone)
595 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
598 static inline int is_dma32(struct zone *zone)
600 #ifdef CONFIG_ZONE_DMA32
601 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
602 #else
603 return 0;
604 #endif
607 static inline int is_dma(struct zone *zone)
609 #ifdef CONFIG_ZONE_DMA
610 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
611 #else
612 return 0;
613 #endif
616 /* These two functions are used to setup the per zone pages min values */
617 struct ctl_table;
618 struct file;
619 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
620 void __user *, size_t *, loff_t *);
621 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
622 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
623 void __user *, size_t *, loff_t *);
624 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
625 void __user *, size_t *, loff_t *);
626 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
627 struct file *, void __user *, size_t *, loff_t *);
628 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
629 struct file *, void __user *, size_t *, loff_t *);
631 extern int numa_zonelist_order_handler(struct ctl_table *, int,
632 struct file *, void __user *, size_t *, loff_t *);
633 extern char numa_zonelist_order[];
634 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
636 #include <linux/topology.h>
637 /* Returns the number of the current Node. */
638 #ifndef numa_node_id
639 #define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
640 #endif
642 #ifndef CONFIG_NEED_MULTIPLE_NODES
644 extern struct pglist_data contig_page_data;
645 #define NODE_DATA(nid) (&contig_page_data)
646 #define NODE_MEM_MAP(nid) mem_map
647 #define MAX_NODES_SHIFT 1
649 #else /* CONFIG_NEED_MULTIPLE_NODES */
651 #include <asm/mmzone.h>
653 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
655 extern struct pglist_data *first_online_pgdat(void);
656 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
657 extern struct zone *next_zone(struct zone *zone);
660 * for_each_pgdat - helper macro to iterate over all nodes
661 * @pgdat - pointer to a pg_data_t variable
663 #define for_each_online_pgdat(pgdat) \
664 for (pgdat = first_online_pgdat(); \
665 pgdat; \
666 pgdat = next_online_pgdat(pgdat))
668 * for_each_zone - helper macro to iterate over all memory zones
669 * @zone - pointer to struct zone variable
671 * The user only needs to declare the zone variable, for_each_zone
672 * fills it in.
674 #define for_each_zone(zone) \
675 for (zone = (first_online_pgdat())->node_zones; \
676 zone; \
677 zone = next_zone(zone))
679 #ifdef CONFIG_SPARSEMEM
680 #include <asm/sparsemem.h>
681 #endif
683 #if BITS_PER_LONG == 32
685 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
686 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
688 #define FLAGS_RESERVED 9
690 #elif BITS_PER_LONG == 64
692 * with 64 bit flags field, there's plenty of room.
694 #define FLAGS_RESERVED 32
696 #else
698 #error BITS_PER_LONG not defined
700 #endif
702 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
703 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
704 #define early_pfn_to_nid(nid) (0UL)
705 #endif
707 #ifdef CONFIG_FLATMEM
708 #define pfn_to_nid(pfn) (0)
709 #endif
711 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
712 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
714 #ifdef CONFIG_SPARSEMEM
717 * SECTION_SHIFT #bits space required to store a section #
719 * PA_SECTION_SHIFT physical address to/from section number
720 * PFN_SECTION_SHIFT pfn to/from section number
722 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
724 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
725 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
727 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
729 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
730 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
732 #define SECTION_BLOCKFLAGS_BITS \
733 ((SECTION_SIZE_BITS - (MAX_ORDER-1)) * NR_PAGEBLOCK_BITS)
735 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
736 #error Allocator MAX_ORDER exceeds SECTION_SIZE
737 #endif
739 struct page;
740 struct mem_section {
742 * This is, logically, a pointer to an array of struct
743 * pages. However, it is stored with some other magic.
744 * (see sparse.c::sparse_init_one_section())
746 * Additionally during early boot we encode node id of
747 * the location of the section here to guide allocation.
748 * (see sparse.c::memory_present())
750 * Making it a UL at least makes someone do a cast
751 * before using it wrong.
753 unsigned long section_mem_map;
754 DECLARE_BITMAP(pageblock_flags, SECTION_BLOCKFLAGS_BITS);
757 #ifdef CONFIG_SPARSEMEM_EXTREME
758 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
759 #else
760 #define SECTIONS_PER_ROOT 1
761 #endif
763 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
764 #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
765 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
767 #ifdef CONFIG_SPARSEMEM_EXTREME
768 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
769 #else
770 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
771 #endif
773 static inline struct mem_section *__nr_to_section(unsigned long nr)
775 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
776 return NULL;
777 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
779 extern int __section_nr(struct mem_section* ms);
782 * We use the lower bits of the mem_map pointer to store
783 * a little bit of information. There should be at least
784 * 3 bits here due to 32-bit alignment.
786 #define SECTION_MARKED_PRESENT (1UL<<0)
787 #define SECTION_HAS_MEM_MAP (1UL<<1)
788 #define SECTION_MAP_LAST_BIT (1UL<<2)
789 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
790 #define SECTION_NID_SHIFT 2
792 static inline struct page *__section_mem_map_addr(struct mem_section *section)
794 unsigned long map = section->section_mem_map;
795 map &= SECTION_MAP_MASK;
796 return (struct page *)map;
799 static inline int present_section(struct mem_section *section)
801 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
804 static inline int present_section_nr(unsigned long nr)
806 return present_section(__nr_to_section(nr));
809 static inline int valid_section(struct mem_section *section)
811 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
814 static inline int valid_section_nr(unsigned long nr)
816 return valid_section(__nr_to_section(nr));
819 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
821 return __nr_to_section(pfn_to_section_nr(pfn));
824 static inline int pfn_valid(unsigned long pfn)
826 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
827 return 0;
828 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
831 static inline int pfn_present(unsigned long pfn)
833 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
834 return 0;
835 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
839 * These are _only_ used during initialisation, therefore they
840 * can use __initdata ... They could have names to indicate
841 * this restriction.
843 #ifdef CONFIG_NUMA
844 #define pfn_to_nid(pfn) \
845 ({ \
846 unsigned long __pfn_to_nid_pfn = (pfn); \
847 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
849 #else
850 #define pfn_to_nid(pfn) (0)
851 #endif
853 #define early_pfn_valid(pfn) pfn_valid(pfn)
854 void sparse_init(void);
855 #else
856 #define sparse_init() do {} while (0)
857 #define sparse_index_init(_sec, _nid) do {} while (0)
858 #endif /* CONFIG_SPARSEMEM */
860 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
861 #define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
862 #else
863 #define early_pfn_in_nid(pfn, nid) (1)
864 #endif
866 #ifndef early_pfn_valid
867 #define early_pfn_valid(pfn) (1)
868 #endif
870 void memory_present(int nid, unsigned long start, unsigned long end);
871 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
874 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
875 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
876 * pfn_valid_within() should be used in this case; we optimise this away
877 * when we have no holes within a MAX_ORDER_NR_PAGES block.
879 #ifdef CONFIG_HOLES_IN_ZONE
880 #define pfn_valid_within(pfn) pfn_valid(pfn)
881 #else
882 #define pfn_valid_within(pfn) (1)
883 #endif
885 #endif /* !__ASSEMBLY__ */
886 #endif /* __KERNEL__ */
887 #endif /* _LINUX_MMZONE_H */