cleancache: Make cleancache_init use a pointer for the ops
[linux-2.6/btrfs-unstable.git] / drivers / mfd / db8500-prcmu.c
blob21f261bf9e95fd27825a50af02e6e014ec768dea
1 /*
2 * Copyright (C) STMicroelectronics 2009
3 * Copyright (C) ST-Ericsson SA 2010
5 * License Terms: GNU General Public License v2
6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
10 * U8500 PRCM Unit interface driver
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/platform_device.h>
28 #include <linux/uaccess.h>
29 #include <linux/irqchip/arm-gic.h>
30 #include <linux/mfd/core.h>
31 #include <linux/mfd/dbx500-prcmu.h>
32 #include <linux/mfd/abx500/ab8500.h>
33 #include <linux/regulator/db8500-prcmu.h>
34 #include <linux/regulator/machine.h>
35 #include <linux/cpufreq.h>
36 #include <linux/platform_data/ux500_wdt.h>
37 #include <mach/hardware.h>
38 #include <mach/irqs.h>
39 #include <mach/db8500-regs.h>
40 #include "dbx500-prcmu-regs.h"
42 /* Index of different voltages to be used when accessing AVSData */
43 #define PRCM_AVS_BASE 0x2FC
44 #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
45 #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
46 #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
47 #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
48 #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
49 #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
50 #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
51 #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
52 #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
53 #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
54 #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
55 #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
56 #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
58 #define PRCM_AVS_VOLTAGE 0
59 #define PRCM_AVS_VOLTAGE_MASK 0x3f
60 #define PRCM_AVS_ISSLOWSTARTUP 6
61 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
62 #define PRCM_AVS_ISMODEENABLE 7
63 #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
65 #define PRCM_BOOT_STATUS 0xFFF
66 #define PRCM_ROMCODE_A2P 0xFFE
67 #define PRCM_ROMCODE_P2A 0xFFD
68 #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
70 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
72 #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
73 #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
74 #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
75 #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
76 #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
77 #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
78 #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
79 #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
81 /* Req Mailboxes */
82 #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
83 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
84 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
85 #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
86 #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
87 #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
89 /* Ack Mailboxes */
90 #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
91 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
92 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
93 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
94 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
95 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
97 /* Mailbox 0 headers */
98 #define MB0H_POWER_STATE_TRANS 0
99 #define MB0H_CONFIG_WAKEUPS_EXE 1
100 #define MB0H_READ_WAKEUP_ACK 3
101 #define MB0H_CONFIG_WAKEUPS_SLEEP 4
103 #define MB0H_WAKEUP_EXE 2
104 #define MB0H_WAKEUP_SLEEP 5
106 /* Mailbox 0 REQs */
107 #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
108 #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
109 #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
110 #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
111 #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
112 #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
114 /* Mailbox 0 ACKs */
115 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
116 #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
117 #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
118 #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
119 #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
120 #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
121 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
123 /* Mailbox 1 headers */
124 #define MB1H_ARM_APE_OPP 0x0
125 #define MB1H_RESET_MODEM 0x2
126 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
127 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
128 #define MB1H_RELEASE_USB_WAKEUP 0x5
129 #define MB1H_PLL_ON_OFF 0x6
131 /* Mailbox 1 Requests */
132 #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
133 #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
134 #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
135 #define PLL_SOC0_OFF 0x1
136 #define PLL_SOC0_ON 0x2
137 #define PLL_SOC1_OFF 0x4
138 #define PLL_SOC1_ON 0x8
140 /* Mailbox 1 ACKs */
141 #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
142 #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
143 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
144 #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
146 /* Mailbox 2 headers */
147 #define MB2H_DPS 0x0
148 #define MB2H_AUTO_PWR 0x1
150 /* Mailbox 2 REQs */
151 #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
152 #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
153 #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
154 #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
155 #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
156 #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
157 #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
158 #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
159 #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
160 #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
162 /* Mailbox 2 ACKs */
163 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
164 #define HWACC_PWR_ST_OK 0xFE
166 /* Mailbox 3 headers */
167 #define MB3H_ANC 0x0
168 #define MB3H_SIDETONE 0x1
169 #define MB3H_SYSCLK 0xE
171 /* Mailbox 3 Requests */
172 #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
173 #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
174 #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
175 #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
176 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
177 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
178 #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
180 /* Mailbox 4 headers */
181 #define MB4H_DDR_INIT 0x0
182 #define MB4H_MEM_ST 0x1
183 #define MB4H_HOTDOG 0x12
184 #define MB4H_HOTMON 0x13
185 #define MB4H_HOT_PERIOD 0x14
186 #define MB4H_A9WDOG_CONF 0x16
187 #define MB4H_A9WDOG_EN 0x17
188 #define MB4H_A9WDOG_DIS 0x18
189 #define MB4H_A9WDOG_LOAD 0x19
190 #define MB4H_A9WDOG_KICK 0x20
192 /* Mailbox 4 Requests */
193 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
194 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
195 #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
196 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
197 #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
198 #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
199 #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
200 #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
201 #define HOTMON_CONFIG_LOW BIT(0)
202 #define HOTMON_CONFIG_HIGH BIT(1)
203 #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
204 #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
205 #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
206 #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
207 #define A9WDOG_AUTO_OFF_EN BIT(7)
208 #define A9WDOG_AUTO_OFF_DIS 0
209 #define A9WDOG_ID_MASK 0xf
211 /* Mailbox 5 Requests */
212 #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
213 #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
214 #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
215 #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
216 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
217 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
218 #define PRCMU_I2C_STOP_EN BIT(3)
220 /* Mailbox 5 ACKs */
221 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
222 #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
223 #define I2C_WR_OK 0x1
224 #define I2C_RD_OK 0x2
226 #define NUM_MB 8
227 #define MBOX_BIT BIT
228 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
231 * Wakeups/IRQs
234 #define WAKEUP_BIT_RTC BIT(0)
235 #define WAKEUP_BIT_RTT0 BIT(1)
236 #define WAKEUP_BIT_RTT1 BIT(2)
237 #define WAKEUP_BIT_HSI0 BIT(3)
238 #define WAKEUP_BIT_HSI1 BIT(4)
239 #define WAKEUP_BIT_CA_WAKE BIT(5)
240 #define WAKEUP_BIT_USB BIT(6)
241 #define WAKEUP_BIT_ABB BIT(7)
242 #define WAKEUP_BIT_ABB_FIFO BIT(8)
243 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
244 #define WAKEUP_BIT_CA_SLEEP BIT(10)
245 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
246 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
247 #define WAKEUP_BIT_ANC_OK BIT(13)
248 #define WAKEUP_BIT_SW_ERROR BIT(14)
249 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
250 #define WAKEUP_BIT_ARM BIT(17)
251 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
252 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
253 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
254 #define WAKEUP_BIT_GPIO0 BIT(23)
255 #define WAKEUP_BIT_GPIO1 BIT(24)
256 #define WAKEUP_BIT_GPIO2 BIT(25)
257 #define WAKEUP_BIT_GPIO3 BIT(26)
258 #define WAKEUP_BIT_GPIO4 BIT(27)
259 #define WAKEUP_BIT_GPIO5 BIT(28)
260 #define WAKEUP_BIT_GPIO6 BIT(29)
261 #define WAKEUP_BIT_GPIO7 BIT(30)
262 #define WAKEUP_BIT_GPIO8 BIT(31)
264 static struct {
265 bool valid;
266 struct prcmu_fw_version version;
267 } fw_info;
269 static struct irq_domain *db8500_irq_domain;
272 * This vector maps irq numbers to the bits in the bit field used in
273 * communication with the PRCMU firmware.
275 * The reason for having this is to keep the irq numbers contiguous even though
276 * the bits in the bit field are not. (The bits also have a tendency to move
277 * around, to further complicate matters.)
279 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
280 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
281 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
282 IRQ_ENTRY(RTC),
283 IRQ_ENTRY(RTT0),
284 IRQ_ENTRY(RTT1),
285 IRQ_ENTRY(HSI0),
286 IRQ_ENTRY(HSI1),
287 IRQ_ENTRY(CA_WAKE),
288 IRQ_ENTRY(USB),
289 IRQ_ENTRY(ABB),
290 IRQ_ENTRY(ABB_FIFO),
291 IRQ_ENTRY(CA_SLEEP),
292 IRQ_ENTRY(ARM),
293 IRQ_ENTRY(HOTMON_LOW),
294 IRQ_ENTRY(HOTMON_HIGH),
295 IRQ_ENTRY(MODEM_SW_RESET_REQ),
296 IRQ_ENTRY(GPIO0),
297 IRQ_ENTRY(GPIO1),
298 IRQ_ENTRY(GPIO2),
299 IRQ_ENTRY(GPIO3),
300 IRQ_ENTRY(GPIO4),
301 IRQ_ENTRY(GPIO5),
302 IRQ_ENTRY(GPIO6),
303 IRQ_ENTRY(GPIO7),
304 IRQ_ENTRY(GPIO8)
307 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
308 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
309 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
310 WAKEUP_ENTRY(RTC),
311 WAKEUP_ENTRY(RTT0),
312 WAKEUP_ENTRY(RTT1),
313 WAKEUP_ENTRY(HSI0),
314 WAKEUP_ENTRY(HSI1),
315 WAKEUP_ENTRY(USB),
316 WAKEUP_ENTRY(ABB),
317 WAKEUP_ENTRY(ABB_FIFO),
318 WAKEUP_ENTRY(ARM)
322 * mb0_transfer - state needed for mailbox 0 communication.
323 * @lock: The transaction lock.
324 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
325 * the request data.
326 * @mask_work: Work structure used for (un)masking wakeup interrupts.
327 * @req: Request data that need to persist between requests.
329 static struct {
330 spinlock_t lock;
331 spinlock_t dbb_irqs_lock;
332 struct work_struct mask_work;
333 struct mutex ac_wake_lock;
334 struct completion ac_wake_work;
335 struct {
336 u32 dbb_irqs;
337 u32 dbb_wakeups;
338 u32 abb_events;
339 } req;
340 } mb0_transfer;
343 * mb1_transfer - state needed for mailbox 1 communication.
344 * @lock: The transaction lock.
345 * @work: The transaction completion structure.
346 * @ape_opp: The current APE OPP.
347 * @ack: Reply ("acknowledge") data.
349 static struct {
350 struct mutex lock;
351 struct completion work;
352 u8 ape_opp;
353 struct {
354 u8 header;
355 u8 arm_opp;
356 u8 ape_opp;
357 u8 ape_voltage_status;
358 } ack;
359 } mb1_transfer;
362 * mb2_transfer - state needed for mailbox 2 communication.
363 * @lock: The transaction lock.
364 * @work: The transaction completion structure.
365 * @auto_pm_lock: The autonomous power management configuration lock.
366 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
367 * @req: Request data that need to persist between requests.
368 * @ack: Reply ("acknowledge") data.
370 static struct {
371 struct mutex lock;
372 struct completion work;
373 spinlock_t auto_pm_lock;
374 bool auto_pm_enabled;
375 struct {
376 u8 status;
377 } ack;
378 } mb2_transfer;
381 * mb3_transfer - state needed for mailbox 3 communication.
382 * @lock: The request lock.
383 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
384 * @sysclk_work: Work structure used for sysclk requests.
386 static struct {
387 spinlock_t lock;
388 struct mutex sysclk_lock;
389 struct completion sysclk_work;
390 } mb3_transfer;
393 * mb4_transfer - state needed for mailbox 4 communication.
394 * @lock: The transaction lock.
395 * @work: The transaction completion structure.
397 static struct {
398 struct mutex lock;
399 struct completion work;
400 } mb4_transfer;
403 * mb5_transfer - state needed for mailbox 5 communication.
404 * @lock: The transaction lock.
405 * @work: The transaction completion structure.
406 * @ack: Reply ("acknowledge") data.
408 static struct {
409 struct mutex lock;
410 struct completion work;
411 struct {
412 u8 status;
413 u8 value;
414 } ack;
415 } mb5_transfer;
417 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
419 /* Spinlocks */
420 static DEFINE_SPINLOCK(prcmu_lock);
421 static DEFINE_SPINLOCK(clkout_lock);
423 /* Global var to runtime determine TCDM base for v2 or v1 */
424 static __iomem void *tcdm_base;
426 struct clk_mgt {
427 void __iomem *reg;
428 u32 pllsw;
429 int branch;
430 bool clk38div;
433 enum {
434 PLL_RAW,
435 PLL_FIX,
436 PLL_DIV
439 static DEFINE_SPINLOCK(clk_mgt_lock);
441 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
442 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
443 struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
444 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
445 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
446 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
447 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
448 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
449 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
450 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
451 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
452 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
453 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
454 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
455 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
456 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
457 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
458 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
459 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
460 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
461 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
462 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
463 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
464 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
465 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
466 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
467 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
468 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
469 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
470 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
471 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
472 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
475 struct dsiclk {
476 u32 divsel_mask;
477 u32 divsel_shift;
478 u32 divsel;
481 static struct dsiclk dsiclk[2] = {
483 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
484 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
485 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
488 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
489 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
490 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
494 struct dsiescclk {
495 u32 en;
496 u32 div_mask;
497 u32 div_shift;
500 static struct dsiescclk dsiescclk[3] = {
502 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
503 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
504 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
507 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
508 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
509 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
512 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
513 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
514 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
520 * Used by MCDE to setup all necessary PRCMU registers
522 #define PRCMU_RESET_DSIPLL 0x00004000
523 #define PRCMU_UNCLAMP_DSIPLL 0x00400800
525 #define PRCMU_CLK_PLL_DIV_SHIFT 0
526 #define PRCMU_CLK_PLL_SW_SHIFT 5
527 #define PRCMU_CLK_38 (1 << 9)
528 #define PRCMU_CLK_38_SRC (1 << 10)
529 #define PRCMU_CLK_38_DIV (1 << 11)
531 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
532 #define PRCMU_DSI_CLOCK_SETTING 0x0000008C
534 /* DPI 50000000 Hz */
535 #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
536 (16 << PRCMU_CLK_PLL_DIV_SHIFT))
537 #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
539 /* D=101, N=1, R=4, SELDIV2=0 */
540 #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
542 #define PRCMU_ENABLE_PLLDSI 0x00000001
543 #define PRCMU_DISABLE_PLLDSI 0x00000000
544 #define PRCMU_RELEASE_RESET_DSS 0x0000400C
545 #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
546 /* ESC clk, div0=1, div1=1, div2=3 */
547 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
548 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
549 #define PRCMU_DSI_RESET_SW 0x00000007
551 #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
553 int db8500_prcmu_enable_dsipll(void)
555 int i;
557 /* Clear DSIPLL_RESETN */
558 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
559 /* Unclamp DSIPLL in/out */
560 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
562 /* Set DSI PLL FREQ */
563 writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
564 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
565 /* Enable Escape clocks */
566 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
568 /* Start DSI PLL */
569 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
570 /* Reset DSI PLL */
571 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
572 for (i = 0; i < 10; i++) {
573 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
574 == PRCMU_PLLDSI_LOCKP_LOCKED)
575 break;
576 udelay(100);
578 /* Set DSIPLL_RESETN */
579 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
580 return 0;
583 int db8500_prcmu_disable_dsipll(void)
585 /* Disable dsi pll */
586 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
587 /* Disable escapeclock */
588 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
589 return 0;
592 int db8500_prcmu_set_display_clocks(void)
594 unsigned long flags;
596 spin_lock_irqsave(&clk_mgt_lock, flags);
598 /* Grab the HW semaphore. */
599 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
600 cpu_relax();
602 writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
603 writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
604 writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
606 /* Release the HW semaphore. */
607 writel(0, PRCM_SEM);
609 spin_unlock_irqrestore(&clk_mgt_lock, flags);
611 return 0;
614 u32 db8500_prcmu_read(unsigned int reg)
616 return readl(_PRCMU_BASE + reg);
619 void db8500_prcmu_write(unsigned int reg, u32 value)
621 unsigned long flags;
623 spin_lock_irqsave(&prcmu_lock, flags);
624 writel(value, (_PRCMU_BASE + reg));
625 spin_unlock_irqrestore(&prcmu_lock, flags);
628 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
630 u32 val;
631 unsigned long flags;
633 spin_lock_irqsave(&prcmu_lock, flags);
634 val = readl(_PRCMU_BASE + reg);
635 val = ((val & ~mask) | (value & mask));
636 writel(val, (_PRCMU_BASE + reg));
637 spin_unlock_irqrestore(&prcmu_lock, flags);
640 struct prcmu_fw_version *prcmu_get_fw_version(void)
642 return fw_info.valid ? &fw_info.version : NULL;
645 bool prcmu_has_arm_maxopp(void)
647 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
648 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
652 * prcmu_get_boot_status - PRCMU boot status checking
653 * Returns: the current PRCMU boot status
655 int prcmu_get_boot_status(void)
657 return readb(tcdm_base + PRCM_BOOT_STATUS);
661 * prcmu_set_rc_a2p - This function is used to run few power state sequences
662 * @val: Value to be set, i.e. transition requested
663 * Returns: 0 on success, -EINVAL on invalid argument
665 * This function is used to run the following power state sequences -
666 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
668 int prcmu_set_rc_a2p(enum romcode_write val)
670 if (val < RDY_2_DS || val > RDY_2_XP70_RST)
671 return -EINVAL;
672 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
673 return 0;
677 * prcmu_get_rc_p2a - This function is used to get power state sequences
678 * Returns: the power transition that has last happened
680 * This function can return the following transitions-
681 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
683 enum romcode_read prcmu_get_rc_p2a(void)
685 return readb(tcdm_base + PRCM_ROMCODE_P2A);
689 * prcmu_get_current_mode - Return the current XP70 power mode
690 * Returns: Returns the current AP(ARM) power mode: init,
691 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
693 enum ap_pwrst prcmu_get_xp70_current_state(void)
695 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
699 * prcmu_config_clkout - Configure one of the programmable clock outputs.
700 * @clkout: The CLKOUT number (0 or 1).
701 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
702 * @div: The divider to be applied.
704 * Configures one of the programmable clock outputs (CLKOUTs).
705 * @div should be in the range [1,63] to request a configuration, or 0 to
706 * inform that the configuration is no longer requested.
708 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
710 static int requests[2];
711 int r = 0;
712 unsigned long flags;
713 u32 val;
714 u32 bits;
715 u32 mask;
716 u32 div_mask;
718 BUG_ON(clkout > 1);
719 BUG_ON(div > 63);
720 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
722 if (!div && !requests[clkout])
723 return -EINVAL;
725 switch (clkout) {
726 case 0:
727 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
728 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
729 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
730 (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
731 break;
732 case 1:
733 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
734 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
735 PRCM_CLKOCR_CLK1TYPE);
736 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
737 (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
738 break;
740 bits &= mask;
742 spin_lock_irqsave(&clkout_lock, flags);
744 val = readl(PRCM_CLKOCR);
745 if (val & div_mask) {
746 if (div) {
747 if ((val & mask) != bits) {
748 r = -EBUSY;
749 goto unlock_and_return;
751 } else {
752 if ((val & mask & ~div_mask) != bits) {
753 r = -EINVAL;
754 goto unlock_and_return;
758 writel((bits | (val & ~mask)), PRCM_CLKOCR);
759 requests[clkout] += (div ? 1 : -1);
761 unlock_and_return:
762 spin_unlock_irqrestore(&clkout_lock, flags);
764 return r;
767 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
769 unsigned long flags;
771 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
773 spin_lock_irqsave(&mb0_transfer.lock, flags);
775 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
776 cpu_relax();
778 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
779 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
780 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
781 writeb((keep_ulp_clk ? 1 : 0),
782 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
783 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
784 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
786 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
788 return 0;
791 u8 db8500_prcmu_get_power_state_result(void)
793 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
796 /* This function decouple the gic from the prcmu */
797 int db8500_prcmu_gic_decouple(void)
799 u32 val = readl(PRCM_A9_MASK_REQ);
801 /* Set bit 0 register value to 1 */
802 writel(val | PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ,
803 PRCM_A9_MASK_REQ);
805 /* Make sure the register is updated */
806 readl(PRCM_A9_MASK_REQ);
808 /* Wait a few cycles for the gic mask completion */
809 udelay(1);
811 return 0;
814 /* This function recouple the gic with the prcmu */
815 int db8500_prcmu_gic_recouple(void)
817 u32 val = readl(PRCM_A9_MASK_REQ);
819 /* Set bit 0 register value to 0 */
820 writel(val & ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, PRCM_A9_MASK_REQ);
822 return 0;
825 #define PRCMU_GIC_NUMBER_REGS 5
828 * This function checks if there are pending irq on the gic. It only
829 * makes sense if the gic has been decoupled before with the
830 * db8500_prcmu_gic_decouple function. Disabling an interrupt only
831 * disables the forwarding of the interrupt to any CPU interface. It
832 * does not prevent the interrupt from changing state, for example
833 * becoming pending, or active and pending if it is already
834 * active. Hence, we have to check the interrupt is pending *and* is
835 * active.
837 bool db8500_prcmu_gic_pending_irq(void)
839 u32 pr; /* Pending register */
840 u32 er; /* Enable register */
841 void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
842 int i;
844 /* 5 registers. STI & PPI not skipped */
845 for (i = 0; i < PRCMU_GIC_NUMBER_REGS; i++) {
847 pr = readl_relaxed(dist_base + GIC_DIST_PENDING_SET + i * 4);
848 er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
850 if (pr & er)
851 return true; /* There is a pending interrupt */
854 return false;
858 * This function checks if there are pending interrupt on the
859 * prcmu which has been delegated to monitor the irqs with the
860 * db8500_prcmu_copy_gic_settings function.
862 bool db8500_prcmu_pending_irq(void)
864 u32 it, im;
865 int i;
867 for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
868 it = readl(PRCM_ARMITVAL31TO0 + i * 4);
869 im = readl(PRCM_ARMITMSK31TO0 + i * 4);
870 if (it & im)
871 return true; /* There is a pending interrupt */
874 return false;
878 * This function checks if the specified cpu is in in WFI. It's usage
879 * makes sense only if the gic is decoupled with the db8500_prcmu_gic_decouple
880 * function. Of course passing smp_processor_id() to this function will
881 * always return false...
883 bool db8500_prcmu_is_cpu_in_wfi(int cpu)
885 return readl(PRCM_ARM_WFI_STANDBY) & cpu ? PRCM_ARM_WFI_STANDBY_WFI1 :
886 PRCM_ARM_WFI_STANDBY_WFI0;
890 * This function copies the gic SPI settings to the prcmu in order to
891 * monitor them and abort/finish the retention/off sequence or state.
893 int db8500_prcmu_copy_gic_settings(void)
895 u32 er; /* Enable register */
896 void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
897 int i;
899 /* We skip the STI and PPI */
900 for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
901 er = readl_relaxed(dist_base +
902 GIC_DIST_ENABLE_SET + (i + 1) * 4);
903 writel(er, PRCM_ARMITMSK31TO0 + i * 4);
906 return 0;
909 /* This function should only be called while mb0_transfer.lock is held. */
910 static void config_wakeups(void)
912 const u8 header[2] = {
913 MB0H_CONFIG_WAKEUPS_EXE,
914 MB0H_CONFIG_WAKEUPS_SLEEP
916 static u32 last_dbb_events;
917 static u32 last_abb_events;
918 u32 dbb_events;
919 u32 abb_events;
920 unsigned int i;
922 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
923 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
925 abb_events = mb0_transfer.req.abb_events;
927 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
928 return;
930 for (i = 0; i < 2; i++) {
931 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
932 cpu_relax();
933 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
934 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
935 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
936 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
938 last_dbb_events = dbb_events;
939 last_abb_events = abb_events;
942 void db8500_prcmu_enable_wakeups(u32 wakeups)
944 unsigned long flags;
945 u32 bits;
946 int i;
948 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
950 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
951 if (wakeups & BIT(i))
952 bits |= prcmu_wakeup_bit[i];
955 spin_lock_irqsave(&mb0_transfer.lock, flags);
957 mb0_transfer.req.dbb_wakeups = bits;
958 config_wakeups();
960 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
963 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
965 unsigned long flags;
967 spin_lock_irqsave(&mb0_transfer.lock, flags);
969 mb0_transfer.req.abb_events = abb_events;
970 config_wakeups();
972 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
975 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
977 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
978 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
979 else
980 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
984 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
985 * @opp: The new ARM operating point to which transition is to be made
986 * Returns: 0 on success, non-zero on failure
988 * This function sets the the operating point of the ARM.
990 int db8500_prcmu_set_arm_opp(u8 opp)
992 int r;
994 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
995 return -EINVAL;
997 r = 0;
999 mutex_lock(&mb1_transfer.lock);
1001 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1002 cpu_relax();
1004 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1005 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1006 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1008 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1009 wait_for_completion(&mb1_transfer.work);
1011 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1012 (mb1_transfer.ack.arm_opp != opp))
1013 r = -EIO;
1015 mutex_unlock(&mb1_transfer.lock);
1017 return r;
1021 * db8500_prcmu_get_arm_opp - get the current ARM OPP
1023 * Returns: the current ARM OPP
1025 int db8500_prcmu_get_arm_opp(void)
1027 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
1031 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
1033 * Returns: the current DDR OPP
1035 int db8500_prcmu_get_ddr_opp(void)
1037 return readb(PRCM_DDR_SUBSYS_APE_MINBW);
1041 * db8500_set_ddr_opp - set the appropriate DDR OPP
1042 * @opp: The new DDR operating point to which transition is to be made
1043 * Returns: 0 on success, non-zero on failure
1045 * This function sets the operating point of the DDR.
1047 static bool enable_set_ddr_opp;
1048 int db8500_prcmu_set_ddr_opp(u8 opp)
1050 if (opp < DDR_100_OPP || opp > DDR_25_OPP)
1051 return -EINVAL;
1052 /* Changing the DDR OPP can hang the hardware pre-v21 */
1053 if (enable_set_ddr_opp)
1054 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
1056 return 0;
1059 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
1060 static void request_even_slower_clocks(bool enable)
1062 void __iomem *clock_reg[] = {
1063 PRCM_ACLK_MGT,
1064 PRCM_DMACLK_MGT
1066 unsigned long flags;
1067 unsigned int i;
1069 spin_lock_irqsave(&clk_mgt_lock, flags);
1071 /* Grab the HW semaphore. */
1072 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1073 cpu_relax();
1075 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
1076 u32 val;
1077 u32 div;
1079 val = readl(clock_reg[i]);
1080 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
1081 if (enable) {
1082 if ((div <= 1) || (div > 15)) {
1083 pr_err("prcmu: Bad clock divider %d in %s\n",
1084 div, __func__);
1085 goto unlock_and_return;
1087 div <<= 1;
1088 } else {
1089 if (div <= 2)
1090 goto unlock_and_return;
1091 div >>= 1;
1093 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
1094 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
1095 writel(val, clock_reg[i]);
1098 unlock_and_return:
1099 /* Release the HW semaphore. */
1100 writel(0, PRCM_SEM);
1102 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1106 * db8500_set_ape_opp - set the appropriate APE OPP
1107 * @opp: The new APE operating point to which transition is to be made
1108 * Returns: 0 on success, non-zero on failure
1110 * This function sets the operating point of the APE.
1112 int db8500_prcmu_set_ape_opp(u8 opp)
1114 int r = 0;
1116 if (opp == mb1_transfer.ape_opp)
1117 return 0;
1119 mutex_lock(&mb1_transfer.lock);
1121 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1122 request_even_slower_clocks(false);
1124 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1125 goto skip_message;
1127 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1128 cpu_relax();
1130 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1131 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1132 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1133 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1135 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1136 wait_for_completion(&mb1_transfer.work);
1138 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1139 (mb1_transfer.ack.ape_opp != opp))
1140 r = -EIO;
1142 skip_message:
1143 if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1144 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1145 request_even_slower_clocks(true);
1146 if (!r)
1147 mb1_transfer.ape_opp = opp;
1149 mutex_unlock(&mb1_transfer.lock);
1151 return r;
1155 * db8500_prcmu_get_ape_opp - get the current APE OPP
1157 * Returns: the current APE OPP
1159 int db8500_prcmu_get_ape_opp(void)
1161 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1165 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1166 * @enable: true to request the higher voltage, false to drop a request.
1168 * Calls to this function to enable and disable requests must be balanced.
1170 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1172 int r = 0;
1173 u8 header;
1174 static unsigned int requests;
1176 mutex_lock(&mb1_transfer.lock);
1178 if (enable) {
1179 if (0 != requests++)
1180 goto unlock_and_return;
1181 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1182 } else {
1183 if (requests == 0) {
1184 r = -EIO;
1185 goto unlock_and_return;
1186 } else if (1 != requests--) {
1187 goto unlock_and_return;
1189 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1192 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1193 cpu_relax();
1195 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1197 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1198 wait_for_completion(&mb1_transfer.work);
1200 if ((mb1_transfer.ack.header != header) ||
1201 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1202 r = -EIO;
1204 unlock_and_return:
1205 mutex_unlock(&mb1_transfer.lock);
1207 return r;
1211 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1213 * This function releases the power state requirements of a USB wakeup.
1215 int prcmu_release_usb_wakeup_state(void)
1217 int r = 0;
1219 mutex_lock(&mb1_transfer.lock);
1221 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1222 cpu_relax();
1224 writeb(MB1H_RELEASE_USB_WAKEUP,
1225 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1227 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1228 wait_for_completion(&mb1_transfer.work);
1230 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1231 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1232 r = -EIO;
1234 mutex_unlock(&mb1_transfer.lock);
1236 return r;
1239 static int request_pll(u8 clock, bool enable)
1241 int r = 0;
1243 if (clock == PRCMU_PLLSOC0)
1244 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1245 else if (clock == PRCMU_PLLSOC1)
1246 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1247 else
1248 return -EINVAL;
1250 mutex_lock(&mb1_transfer.lock);
1252 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1253 cpu_relax();
1255 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1256 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1258 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1259 wait_for_completion(&mb1_transfer.work);
1261 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1262 r = -EIO;
1264 mutex_unlock(&mb1_transfer.lock);
1266 return r;
1270 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1271 * @epod_id: The EPOD to set
1272 * @epod_state: The new EPOD state
1274 * This function sets the state of a EPOD (power domain). It may not be called
1275 * from interrupt context.
1277 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1279 int r = 0;
1280 bool ram_retention = false;
1281 int i;
1283 /* check argument */
1284 BUG_ON(epod_id >= NUM_EPOD_ID);
1286 /* set flag if retention is possible */
1287 switch (epod_id) {
1288 case EPOD_ID_SVAMMDSP:
1289 case EPOD_ID_SIAMMDSP:
1290 case EPOD_ID_ESRAM12:
1291 case EPOD_ID_ESRAM34:
1292 ram_retention = true;
1293 break;
1296 /* check argument */
1297 BUG_ON(epod_state > EPOD_STATE_ON);
1298 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1300 /* get lock */
1301 mutex_lock(&mb2_transfer.lock);
1303 /* wait for mailbox */
1304 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1305 cpu_relax();
1307 /* fill in mailbox */
1308 for (i = 0; i < NUM_EPOD_ID; i++)
1309 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1310 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1312 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1314 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1317 * The current firmware version does not handle errors correctly,
1318 * and we cannot recover if there is an error.
1319 * This is expected to change when the firmware is updated.
1321 if (!wait_for_completion_timeout(&mb2_transfer.work,
1322 msecs_to_jiffies(20000))) {
1323 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1324 __func__);
1325 r = -EIO;
1326 goto unlock_and_return;
1329 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1330 r = -EIO;
1332 unlock_and_return:
1333 mutex_unlock(&mb2_transfer.lock);
1334 return r;
1338 * prcmu_configure_auto_pm - Configure autonomous power management.
1339 * @sleep: Configuration for ApSleep.
1340 * @idle: Configuration for ApIdle.
1342 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1343 struct prcmu_auto_pm_config *idle)
1345 u32 sleep_cfg;
1346 u32 idle_cfg;
1347 unsigned long flags;
1349 BUG_ON((sleep == NULL) || (idle == NULL));
1351 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1352 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1353 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1354 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1355 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1356 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1358 idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1359 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1360 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1361 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1362 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1363 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1365 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1368 * The autonomous power management configuration is done through
1369 * fields in mailbox 2, but these fields are only used as shared
1370 * variables - i.e. there is no need to send a message.
1372 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1373 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1375 mb2_transfer.auto_pm_enabled =
1376 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1377 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1378 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1379 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1381 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1383 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1385 bool prcmu_is_auto_pm_enabled(void)
1387 return mb2_transfer.auto_pm_enabled;
1390 static int request_sysclk(bool enable)
1392 int r;
1393 unsigned long flags;
1395 r = 0;
1397 mutex_lock(&mb3_transfer.sysclk_lock);
1399 spin_lock_irqsave(&mb3_transfer.lock, flags);
1401 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1402 cpu_relax();
1404 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1406 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1407 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1409 spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1412 * The firmware only sends an ACK if we want to enable the
1413 * SysClk, and it succeeds.
1415 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1416 msecs_to_jiffies(20000))) {
1417 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1418 __func__);
1419 r = -EIO;
1422 mutex_unlock(&mb3_transfer.sysclk_lock);
1424 return r;
1427 static int request_timclk(bool enable)
1429 u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1431 if (!enable)
1432 val |= PRCM_TCR_STOP_TIMERS;
1433 writel(val, PRCM_TCR);
1435 return 0;
1438 static int request_clock(u8 clock, bool enable)
1440 u32 val;
1441 unsigned long flags;
1443 spin_lock_irqsave(&clk_mgt_lock, flags);
1445 /* Grab the HW semaphore. */
1446 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1447 cpu_relax();
1449 val = readl(clk_mgt[clock].reg);
1450 if (enable) {
1451 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1452 } else {
1453 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1454 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1456 writel(val, clk_mgt[clock].reg);
1458 /* Release the HW semaphore. */
1459 writel(0, PRCM_SEM);
1461 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1463 return 0;
1466 static int request_sga_clock(u8 clock, bool enable)
1468 u32 val;
1469 int ret;
1471 if (enable) {
1472 val = readl(PRCM_CGATING_BYPASS);
1473 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1476 ret = request_clock(clock, enable);
1478 if (!ret && !enable) {
1479 val = readl(PRCM_CGATING_BYPASS);
1480 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1483 return ret;
1486 static inline bool plldsi_locked(void)
1488 return (readl(PRCM_PLLDSI_LOCKP) &
1489 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1490 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1491 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1492 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1495 static int request_plldsi(bool enable)
1497 int r = 0;
1498 u32 val;
1500 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1501 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1502 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1504 val = readl(PRCM_PLLDSI_ENABLE);
1505 if (enable)
1506 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1507 else
1508 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1509 writel(val, PRCM_PLLDSI_ENABLE);
1511 if (enable) {
1512 unsigned int i;
1513 bool locked = plldsi_locked();
1515 for (i = 10; !locked && (i > 0); --i) {
1516 udelay(100);
1517 locked = plldsi_locked();
1519 if (locked) {
1520 writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1521 PRCM_APE_RESETN_SET);
1522 } else {
1523 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1524 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1525 PRCM_MMIP_LS_CLAMP_SET);
1526 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1527 writel(val, PRCM_PLLDSI_ENABLE);
1528 r = -EAGAIN;
1530 } else {
1531 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1533 return r;
1536 static int request_dsiclk(u8 n, bool enable)
1538 u32 val;
1540 val = readl(PRCM_DSI_PLLOUT_SEL);
1541 val &= ~dsiclk[n].divsel_mask;
1542 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1543 dsiclk[n].divsel_shift);
1544 writel(val, PRCM_DSI_PLLOUT_SEL);
1545 return 0;
1548 static int request_dsiescclk(u8 n, bool enable)
1550 u32 val;
1552 val = readl(PRCM_DSITVCLK_DIV);
1553 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1554 writel(val, PRCM_DSITVCLK_DIV);
1555 return 0;
1559 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1560 * @clock: The clock for which the request is made.
1561 * @enable: Whether the clock should be enabled (true) or disabled (false).
1563 * This function should only be used by the clock implementation.
1564 * Do not use it from any other place!
1566 int db8500_prcmu_request_clock(u8 clock, bool enable)
1568 if (clock == PRCMU_SGACLK)
1569 return request_sga_clock(clock, enable);
1570 else if (clock < PRCMU_NUM_REG_CLOCKS)
1571 return request_clock(clock, enable);
1572 else if (clock == PRCMU_TIMCLK)
1573 return request_timclk(enable);
1574 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1575 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1576 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1577 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1578 else if (clock == PRCMU_PLLDSI)
1579 return request_plldsi(enable);
1580 else if (clock == PRCMU_SYSCLK)
1581 return request_sysclk(enable);
1582 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1583 return request_pll(clock, enable);
1584 else
1585 return -EINVAL;
1588 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1589 int branch)
1591 u64 rate;
1592 u32 val;
1593 u32 d;
1594 u32 div = 1;
1596 val = readl(reg);
1598 rate = src_rate;
1599 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1601 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1602 if (d > 1)
1603 div *= d;
1605 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1606 if (d > 1)
1607 div *= d;
1609 if (val & PRCM_PLL_FREQ_SELDIV2)
1610 div *= 2;
1612 if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1613 (val & PRCM_PLL_FREQ_DIV2EN) &&
1614 ((reg == PRCM_PLLSOC0_FREQ) ||
1615 (reg == PRCM_PLLARM_FREQ) ||
1616 (reg == PRCM_PLLDDR_FREQ))))
1617 div *= 2;
1619 (void)do_div(rate, div);
1621 return (unsigned long)rate;
1624 #define ROOT_CLOCK_RATE 38400000
1626 static unsigned long clock_rate(u8 clock)
1628 u32 val;
1629 u32 pllsw;
1630 unsigned long rate = ROOT_CLOCK_RATE;
1632 val = readl(clk_mgt[clock].reg);
1634 if (val & PRCM_CLK_MGT_CLK38) {
1635 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1636 rate /= 2;
1637 return rate;
1640 val |= clk_mgt[clock].pllsw;
1641 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1643 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1644 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1645 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1646 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1647 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1648 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1649 else
1650 return 0;
1652 if ((clock == PRCMU_SGACLK) &&
1653 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1654 u64 r = (rate * 10);
1656 (void)do_div(r, 25);
1657 return (unsigned long)r;
1659 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1660 if (val)
1661 return rate / val;
1662 else
1663 return 0;
1666 static unsigned long armss_rate(void)
1668 u32 r;
1669 unsigned long rate;
1671 r = readl(PRCM_ARM_CHGCLKREQ);
1673 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1674 /* External ARMCLKFIX clock */
1676 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1678 /* Check PRCM_ARM_CHGCLKREQ divider */
1679 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1680 rate /= 2;
1682 /* Check PRCM_ARMCLKFIX_MGT divider */
1683 r = readl(PRCM_ARMCLKFIX_MGT);
1684 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1685 rate /= r;
1687 } else {/* ARM PLL */
1688 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1691 return rate;
1694 static unsigned long dsiclk_rate(u8 n)
1696 u32 divsel;
1697 u32 div = 1;
1699 divsel = readl(PRCM_DSI_PLLOUT_SEL);
1700 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1702 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1703 divsel = dsiclk[n].divsel;
1705 switch (divsel) {
1706 case PRCM_DSI_PLLOUT_SEL_PHI_4:
1707 div *= 2;
1708 case PRCM_DSI_PLLOUT_SEL_PHI_2:
1709 div *= 2;
1710 case PRCM_DSI_PLLOUT_SEL_PHI:
1711 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1712 PLL_RAW) / div;
1713 default:
1714 return 0;
1718 static unsigned long dsiescclk_rate(u8 n)
1720 u32 div;
1722 div = readl(PRCM_DSITVCLK_DIV);
1723 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1724 return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1727 unsigned long prcmu_clock_rate(u8 clock)
1729 if (clock < PRCMU_NUM_REG_CLOCKS)
1730 return clock_rate(clock);
1731 else if (clock == PRCMU_TIMCLK)
1732 return ROOT_CLOCK_RATE / 16;
1733 else if (clock == PRCMU_SYSCLK)
1734 return ROOT_CLOCK_RATE;
1735 else if (clock == PRCMU_PLLSOC0)
1736 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1737 else if (clock == PRCMU_PLLSOC1)
1738 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1739 else if (clock == PRCMU_ARMSS)
1740 return armss_rate();
1741 else if (clock == PRCMU_PLLDDR)
1742 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1743 else if (clock == PRCMU_PLLDSI)
1744 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1745 PLL_RAW);
1746 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1747 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1748 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1749 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1750 else
1751 return 0;
1754 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1756 if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1757 return ROOT_CLOCK_RATE;
1758 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1759 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1760 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1761 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1762 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1763 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1764 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1765 else
1766 return 0;
1769 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1771 u32 div;
1773 div = (src_rate / rate);
1774 if (div == 0)
1775 return 1;
1776 if (rate < (src_rate / div))
1777 div++;
1778 return div;
1781 static long round_clock_rate(u8 clock, unsigned long rate)
1783 u32 val;
1784 u32 div;
1785 unsigned long src_rate;
1786 long rounded_rate;
1788 val = readl(clk_mgt[clock].reg);
1789 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1790 clk_mgt[clock].branch);
1791 div = clock_divider(src_rate, rate);
1792 if (val & PRCM_CLK_MGT_CLK38) {
1793 if (clk_mgt[clock].clk38div) {
1794 if (div > 2)
1795 div = 2;
1796 } else {
1797 div = 1;
1799 } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1800 u64 r = (src_rate * 10);
1802 (void)do_div(r, 25);
1803 if (r <= rate)
1804 return (unsigned long)r;
1806 rounded_rate = (src_rate / min(div, (u32)31));
1808 return rounded_rate;
1811 /* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
1812 static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
1813 { .frequency = 200000, .index = ARM_EXTCLK,},
1814 { .frequency = 400000, .index = ARM_50_OPP,},
1815 { .frequency = 800000, .index = ARM_100_OPP,},
1816 { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
1817 { .frequency = CPUFREQ_TABLE_END,},
1820 static long round_armss_rate(unsigned long rate)
1822 long freq = 0;
1823 int i = 0;
1825 /* cpufreq table frequencies is in KHz. */
1826 rate = rate / 1000;
1828 /* Find the corresponding arm opp from the cpufreq table. */
1829 while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1830 freq = db8500_cpufreq_table[i].frequency;
1831 if (freq == rate)
1832 break;
1833 i++;
1836 /* Return the last valid value, even if a match was not found. */
1837 return freq * 1000;
1840 #define MIN_PLL_VCO_RATE 600000000ULL
1841 #define MAX_PLL_VCO_RATE 1680640000ULL
1843 static long round_plldsi_rate(unsigned long rate)
1845 long rounded_rate = 0;
1846 unsigned long src_rate;
1847 unsigned long rem;
1848 u32 r;
1850 src_rate = clock_rate(PRCMU_HDMICLK);
1851 rem = rate;
1853 for (r = 7; (rem > 0) && (r > 0); r--) {
1854 u64 d;
1856 d = (r * rate);
1857 (void)do_div(d, src_rate);
1858 if (d < 6)
1859 d = 6;
1860 else if (d > 255)
1861 d = 255;
1862 d *= src_rate;
1863 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1864 ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1865 continue;
1866 (void)do_div(d, r);
1867 if (rate < d) {
1868 if (rounded_rate == 0)
1869 rounded_rate = (long)d;
1870 break;
1872 if ((rate - d) < rem) {
1873 rem = (rate - d);
1874 rounded_rate = (long)d;
1877 return rounded_rate;
1880 static long round_dsiclk_rate(unsigned long rate)
1882 u32 div;
1883 unsigned long src_rate;
1884 long rounded_rate;
1886 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1887 PLL_RAW);
1888 div = clock_divider(src_rate, rate);
1889 rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1891 return rounded_rate;
1894 static long round_dsiescclk_rate(unsigned long rate)
1896 u32 div;
1897 unsigned long src_rate;
1898 long rounded_rate;
1900 src_rate = clock_rate(PRCMU_TVCLK);
1901 div = clock_divider(src_rate, rate);
1902 rounded_rate = (src_rate / min(div, (u32)255));
1904 return rounded_rate;
1907 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1909 if (clock < PRCMU_NUM_REG_CLOCKS)
1910 return round_clock_rate(clock, rate);
1911 else if (clock == PRCMU_ARMSS)
1912 return round_armss_rate(rate);
1913 else if (clock == PRCMU_PLLDSI)
1914 return round_plldsi_rate(rate);
1915 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1916 return round_dsiclk_rate(rate);
1917 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1918 return round_dsiescclk_rate(rate);
1919 else
1920 return (long)prcmu_clock_rate(clock);
1923 static void set_clock_rate(u8 clock, unsigned long rate)
1925 u32 val;
1926 u32 div;
1927 unsigned long src_rate;
1928 unsigned long flags;
1930 spin_lock_irqsave(&clk_mgt_lock, flags);
1932 /* Grab the HW semaphore. */
1933 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1934 cpu_relax();
1936 val = readl(clk_mgt[clock].reg);
1937 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1938 clk_mgt[clock].branch);
1939 div = clock_divider(src_rate, rate);
1940 if (val & PRCM_CLK_MGT_CLK38) {
1941 if (clk_mgt[clock].clk38div) {
1942 if (div > 1)
1943 val |= PRCM_CLK_MGT_CLK38DIV;
1944 else
1945 val &= ~PRCM_CLK_MGT_CLK38DIV;
1947 } else if (clock == PRCMU_SGACLK) {
1948 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1949 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1950 if (div == 3) {
1951 u64 r = (src_rate * 10);
1953 (void)do_div(r, 25);
1954 if (r <= rate) {
1955 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1956 div = 0;
1959 val |= min(div, (u32)31);
1960 } else {
1961 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1962 val |= min(div, (u32)31);
1964 writel(val, clk_mgt[clock].reg);
1966 /* Release the HW semaphore. */
1967 writel(0, PRCM_SEM);
1969 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1972 static int set_armss_rate(unsigned long rate)
1974 int i = 0;
1976 /* cpufreq table frequencies is in KHz. */
1977 rate = rate / 1000;
1979 /* Find the corresponding arm opp from the cpufreq table. */
1980 while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1981 if (db8500_cpufreq_table[i].frequency == rate)
1982 break;
1983 i++;
1986 if (db8500_cpufreq_table[i].frequency != rate)
1987 return -EINVAL;
1989 /* Set the new arm opp. */
1990 return db8500_prcmu_set_arm_opp(db8500_cpufreq_table[i].index);
1993 static int set_plldsi_rate(unsigned long rate)
1995 unsigned long src_rate;
1996 unsigned long rem;
1997 u32 pll_freq = 0;
1998 u32 r;
2000 src_rate = clock_rate(PRCMU_HDMICLK);
2001 rem = rate;
2003 for (r = 7; (rem > 0) && (r > 0); r--) {
2004 u64 d;
2005 u64 hwrate;
2007 d = (r * rate);
2008 (void)do_div(d, src_rate);
2009 if (d < 6)
2010 d = 6;
2011 else if (d > 255)
2012 d = 255;
2013 hwrate = (d * src_rate);
2014 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
2015 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
2016 continue;
2017 (void)do_div(hwrate, r);
2018 if (rate < hwrate) {
2019 if (pll_freq == 0)
2020 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
2021 (r << PRCM_PLL_FREQ_R_SHIFT));
2022 break;
2024 if ((rate - hwrate) < rem) {
2025 rem = (rate - hwrate);
2026 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
2027 (r << PRCM_PLL_FREQ_R_SHIFT));
2030 if (pll_freq == 0)
2031 return -EINVAL;
2033 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
2034 writel(pll_freq, PRCM_PLLDSI_FREQ);
2036 return 0;
2039 static void set_dsiclk_rate(u8 n, unsigned long rate)
2041 u32 val;
2042 u32 div;
2044 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
2045 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
2047 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
2048 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
2049 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
2051 val = readl(PRCM_DSI_PLLOUT_SEL);
2052 val &= ~dsiclk[n].divsel_mask;
2053 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
2054 writel(val, PRCM_DSI_PLLOUT_SEL);
2057 static void set_dsiescclk_rate(u8 n, unsigned long rate)
2059 u32 val;
2060 u32 div;
2062 div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
2063 val = readl(PRCM_DSITVCLK_DIV);
2064 val &= ~dsiescclk[n].div_mask;
2065 val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
2066 writel(val, PRCM_DSITVCLK_DIV);
2069 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
2071 if (clock < PRCMU_NUM_REG_CLOCKS)
2072 set_clock_rate(clock, rate);
2073 else if (clock == PRCMU_ARMSS)
2074 return set_armss_rate(rate);
2075 else if (clock == PRCMU_PLLDSI)
2076 return set_plldsi_rate(rate);
2077 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
2078 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
2079 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
2080 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
2081 return 0;
2084 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
2086 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
2087 (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
2088 return -EINVAL;
2090 mutex_lock(&mb4_transfer.lock);
2092 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2093 cpu_relax();
2095 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2096 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2097 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2098 writeb(DDR_PWR_STATE_ON,
2099 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2100 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2102 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2103 wait_for_completion(&mb4_transfer.work);
2105 mutex_unlock(&mb4_transfer.lock);
2107 return 0;
2110 int db8500_prcmu_config_hotdog(u8 threshold)
2112 mutex_lock(&mb4_transfer.lock);
2114 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2115 cpu_relax();
2117 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2118 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2120 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2121 wait_for_completion(&mb4_transfer.work);
2123 mutex_unlock(&mb4_transfer.lock);
2125 return 0;
2128 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2130 mutex_lock(&mb4_transfer.lock);
2132 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2133 cpu_relax();
2135 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2136 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2137 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2138 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2139 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2141 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2142 wait_for_completion(&mb4_transfer.work);
2144 mutex_unlock(&mb4_transfer.lock);
2146 return 0;
2149 static int config_hot_period(u16 val)
2151 mutex_lock(&mb4_transfer.lock);
2153 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2154 cpu_relax();
2156 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2157 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2159 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2160 wait_for_completion(&mb4_transfer.work);
2162 mutex_unlock(&mb4_transfer.lock);
2164 return 0;
2167 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2169 if (cycles32k == 0xFFFF)
2170 return -EINVAL;
2172 return config_hot_period(cycles32k);
2175 int db8500_prcmu_stop_temp_sense(void)
2177 return config_hot_period(0xFFFF);
2180 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2183 mutex_lock(&mb4_transfer.lock);
2185 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2186 cpu_relax();
2188 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2189 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2190 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2191 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2193 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2195 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2196 wait_for_completion(&mb4_transfer.work);
2198 mutex_unlock(&mb4_transfer.lock);
2200 return 0;
2204 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2206 BUG_ON(num == 0 || num > 0xf);
2207 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2208 sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2209 A9WDOG_AUTO_OFF_DIS);
2211 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2213 int db8500_prcmu_enable_a9wdog(u8 id)
2215 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2217 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2219 int db8500_prcmu_disable_a9wdog(u8 id)
2221 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2223 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2225 int db8500_prcmu_kick_a9wdog(u8 id)
2227 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2229 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2232 * timeout is 28 bit, in ms.
2234 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2236 return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2237 (id & A9WDOG_ID_MASK) |
2239 * Put the lowest 28 bits of timeout at
2240 * offset 4. Four first bits are used for id.
2242 (u8)((timeout << 4) & 0xf0),
2243 (u8)((timeout >> 4) & 0xff),
2244 (u8)((timeout >> 12) & 0xff),
2245 (u8)((timeout >> 20) & 0xff));
2247 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2250 * prcmu_abb_read() - Read register value(s) from the ABB.
2251 * @slave: The I2C slave address.
2252 * @reg: The (start) register address.
2253 * @value: The read out value(s).
2254 * @size: The number of registers to read.
2256 * Reads register value(s) from the ABB.
2257 * @size has to be 1 for the current firmware version.
2259 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2261 int r;
2263 if (size != 1)
2264 return -EINVAL;
2266 mutex_lock(&mb5_transfer.lock);
2268 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2269 cpu_relax();
2271 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2272 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2273 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2274 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2275 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2277 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2279 if (!wait_for_completion_timeout(&mb5_transfer.work,
2280 msecs_to_jiffies(20000))) {
2281 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2282 __func__);
2283 r = -EIO;
2284 } else {
2285 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2288 if (!r)
2289 *value = mb5_transfer.ack.value;
2291 mutex_unlock(&mb5_transfer.lock);
2293 return r;
2297 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2298 * @slave: The I2C slave address.
2299 * @reg: The (start) register address.
2300 * @value: The value(s) to write.
2301 * @mask: The mask(s) to use.
2302 * @size: The number of registers to write.
2304 * Writes masked register value(s) to the ABB.
2305 * For each @value, only the bits set to 1 in the corresponding @mask
2306 * will be written. The other bits are not changed.
2307 * @size has to be 1 for the current firmware version.
2309 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2311 int r;
2313 if (size != 1)
2314 return -EINVAL;
2316 mutex_lock(&mb5_transfer.lock);
2318 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2319 cpu_relax();
2321 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2322 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2323 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2324 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2325 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2327 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2329 if (!wait_for_completion_timeout(&mb5_transfer.work,
2330 msecs_to_jiffies(20000))) {
2331 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2332 __func__);
2333 r = -EIO;
2334 } else {
2335 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2338 mutex_unlock(&mb5_transfer.lock);
2340 return r;
2344 * prcmu_abb_write() - Write register value(s) to the ABB.
2345 * @slave: The I2C slave address.
2346 * @reg: The (start) register address.
2347 * @value: The value(s) to write.
2348 * @size: The number of registers to write.
2350 * Writes register value(s) to the ABB.
2351 * @size has to be 1 for the current firmware version.
2353 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2355 u8 mask = ~0;
2357 return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2361 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2363 int prcmu_ac_wake_req(void)
2365 u32 val;
2366 int ret = 0;
2368 mutex_lock(&mb0_transfer.ac_wake_lock);
2370 val = readl(PRCM_HOSTACCESS_REQ);
2371 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2372 goto unlock_and_return;
2374 atomic_set(&ac_wake_req_state, 1);
2377 * Force Modem Wake-up before hostaccess_req ping-pong.
2378 * It prevents Modem to enter in Sleep while acking the hostaccess
2379 * request. The 31us delay has been calculated by HWI.
2381 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2382 writel(val, PRCM_HOSTACCESS_REQ);
2384 udelay(31);
2386 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2387 writel(val, PRCM_HOSTACCESS_REQ);
2389 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2390 msecs_to_jiffies(5000))) {
2391 #if defined(CONFIG_DBX500_PRCMU_DEBUG)
2392 db8500_prcmu_debug_dump(__func__, true, true);
2393 #endif
2394 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2395 __func__);
2396 ret = -EFAULT;
2399 unlock_and_return:
2400 mutex_unlock(&mb0_transfer.ac_wake_lock);
2401 return ret;
2405 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2407 void prcmu_ac_sleep_req()
2409 u32 val;
2411 mutex_lock(&mb0_transfer.ac_wake_lock);
2413 val = readl(PRCM_HOSTACCESS_REQ);
2414 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2415 goto unlock_and_return;
2417 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2418 PRCM_HOSTACCESS_REQ);
2420 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2421 msecs_to_jiffies(5000))) {
2422 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2423 __func__);
2426 atomic_set(&ac_wake_req_state, 0);
2428 unlock_and_return:
2429 mutex_unlock(&mb0_transfer.ac_wake_lock);
2432 bool db8500_prcmu_is_ac_wake_requested(void)
2434 return (atomic_read(&ac_wake_req_state) != 0);
2438 * db8500_prcmu_system_reset - System reset
2440 * Saves the reset reason code and then sets the APE_SOFTRST register which
2441 * fires interrupt to fw
2443 void db8500_prcmu_system_reset(u16 reset_code)
2445 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2446 writel(1, PRCM_APE_SOFTRST);
2450 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2452 * Retrieves the reset reason code stored by prcmu_system_reset() before
2453 * last restart.
2455 u16 db8500_prcmu_get_reset_code(void)
2457 return readw(tcdm_base + PRCM_SW_RST_REASON);
2461 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2463 void db8500_prcmu_modem_reset(void)
2465 mutex_lock(&mb1_transfer.lock);
2467 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2468 cpu_relax();
2470 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2471 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2472 wait_for_completion(&mb1_transfer.work);
2475 * No need to check return from PRCMU as modem should go in reset state
2476 * This state is already managed by upper layer
2479 mutex_unlock(&mb1_transfer.lock);
2482 static void ack_dbb_wakeup(void)
2484 unsigned long flags;
2486 spin_lock_irqsave(&mb0_transfer.lock, flags);
2488 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2489 cpu_relax();
2491 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2492 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2494 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2497 static inline void print_unknown_header_warning(u8 n, u8 header)
2499 pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2500 header, n);
2503 static bool read_mailbox_0(void)
2505 bool r;
2506 u32 ev;
2507 unsigned int n;
2508 u8 header;
2510 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2511 switch (header) {
2512 case MB0H_WAKEUP_EXE:
2513 case MB0H_WAKEUP_SLEEP:
2514 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2515 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2516 else
2517 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2519 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2520 complete(&mb0_transfer.ac_wake_work);
2521 if (ev & WAKEUP_BIT_SYSCLK_OK)
2522 complete(&mb3_transfer.sysclk_work);
2524 ev &= mb0_transfer.req.dbb_irqs;
2526 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2527 if (ev & prcmu_irq_bit[n])
2528 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2530 r = true;
2531 break;
2532 default:
2533 print_unknown_header_warning(0, header);
2534 r = false;
2535 break;
2537 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2538 return r;
2541 static bool read_mailbox_1(void)
2543 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2544 mb1_transfer.ack.arm_opp = readb(tcdm_base +
2545 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2546 mb1_transfer.ack.ape_opp = readb(tcdm_base +
2547 PRCM_ACK_MB1_CURRENT_APE_OPP);
2548 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2549 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2550 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2551 complete(&mb1_transfer.work);
2552 return false;
2555 static bool read_mailbox_2(void)
2557 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2558 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2559 complete(&mb2_transfer.work);
2560 return false;
2563 static bool read_mailbox_3(void)
2565 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2566 return false;
2569 static bool read_mailbox_4(void)
2571 u8 header;
2572 bool do_complete = true;
2574 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2575 switch (header) {
2576 case MB4H_MEM_ST:
2577 case MB4H_HOTDOG:
2578 case MB4H_HOTMON:
2579 case MB4H_HOT_PERIOD:
2580 case MB4H_A9WDOG_CONF:
2581 case MB4H_A9WDOG_EN:
2582 case MB4H_A9WDOG_DIS:
2583 case MB4H_A9WDOG_LOAD:
2584 case MB4H_A9WDOG_KICK:
2585 break;
2586 default:
2587 print_unknown_header_warning(4, header);
2588 do_complete = false;
2589 break;
2592 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2594 if (do_complete)
2595 complete(&mb4_transfer.work);
2597 return false;
2600 static bool read_mailbox_5(void)
2602 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2603 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2604 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2605 complete(&mb5_transfer.work);
2606 return false;
2609 static bool read_mailbox_6(void)
2611 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2612 return false;
2615 static bool read_mailbox_7(void)
2617 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2618 return false;
2621 static bool (* const read_mailbox[NUM_MB])(void) = {
2622 read_mailbox_0,
2623 read_mailbox_1,
2624 read_mailbox_2,
2625 read_mailbox_3,
2626 read_mailbox_4,
2627 read_mailbox_5,
2628 read_mailbox_6,
2629 read_mailbox_7
2632 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2634 u32 bits;
2635 u8 n;
2636 irqreturn_t r;
2638 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2639 if (unlikely(!bits))
2640 return IRQ_NONE;
2642 r = IRQ_HANDLED;
2643 for (n = 0; bits; n++) {
2644 if (bits & MBOX_BIT(n)) {
2645 bits -= MBOX_BIT(n);
2646 if (read_mailbox[n]())
2647 r = IRQ_WAKE_THREAD;
2650 return r;
2653 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2655 ack_dbb_wakeup();
2656 return IRQ_HANDLED;
2659 static void prcmu_mask_work(struct work_struct *work)
2661 unsigned long flags;
2663 spin_lock_irqsave(&mb0_transfer.lock, flags);
2665 config_wakeups();
2667 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2670 static void prcmu_irq_mask(struct irq_data *d)
2672 unsigned long flags;
2674 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2676 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2678 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2680 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2681 schedule_work(&mb0_transfer.mask_work);
2684 static void prcmu_irq_unmask(struct irq_data *d)
2686 unsigned long flags;
2688 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2690 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2692 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2694 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2695 schedule_work(&mb0_transfer.mask_work);
2698 static void noop(struct irq_data *d)
2702 static struct irq_chip prcmu_irq_chip = {
2703 .name = "prcmu",
2704 .irq_disable = prcmu_irq_mask,
2705 .irq_ack = noop,
2706 .irq_mask = prcmu_irq_mask,
2707 .irq_unmask = prcmu_irq_unmask,
2710 static __init char *fw_project_name(u32 project)
2712 switch (project) {
2713 case PRCMU_FW_PROJECT_U8500:
2714 return "U8500";
2715 case PRCMU_FW_PROJECT_U8400:
2716 return "U8400";
2717 case PRCMU_FW_PROJECT_U9500:
2718 return "U9500";
2719 case PRCMU_FW_PROJECT_U8500_MBB:
2720 return "U8500 MBB";
2721 case PRCMU_FW_PROJECT_U8500_C1:
2722 return "U8500 C1";
2723 case PRCMU_FW_PROJECT_U8500_C2:
2724 return "U8500 C2";
2725 case PRCMU_FW_PROJECT_U8500_C3:
2726 return "U8500 C3";
2727 case PRCMU_FW_PROJECT_U8500_C4:
2728 return "U8500 C4";
2729 case PRCMU_FW_PROJECT_U9500_MBL:
2730 return "U9500 MBL";
2731 case PRCMU_FW_PROJECT_U8500_MBL:
2732 return "U8500 MBL";
2733 case PRCMU_FW_PROJECT_U8500_MBL2:
2734 return "U8500 MBL2";
2735 case PRCMU_FW_PROJECT_U8520:
2736 return "U8520 MBL";
2737 case PRCMU_FW_PROJECT_U8420:
2738 return "U8420";
2739 case PRCMU_FW_PROJECT_U9540:
2740 return "U9540";
2741 case PRCMU_FW_PROJECT_A9420:
2742 return "A9420";
2743 case PRCMU_FW_PROJECT_L8540:
2744 return "L8540";
2745 case PRCMU_FW_PROJECT_L8580:
2746 return "L8580";
2747 default:
2748 return "Unknown";
2752 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2753 irq_hw_number_t hwirq)
2755 irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2756 handle_simple_irq);
2757 set_irq_flags(virq, IRQF_VALID);
2759 return 0;
2762 static struct irq_domain_ops db8500_irq_ops = {
2763 .map = db8500_irq_map,
2764 .xlate = irq_domain_xlate_twocell,
2767 static int db8500_irq_init(struct device_node *np)
2769 int irq_base = 0;
2770 int i;
2772 /* In the device tree case, just take some IRQs */
2773 if (!np)
2774 irq_base = IRQ_PRCMU_BASE;
2776 db8500_irq_domain = irq_domain_add_simple(
2777 np, NUM_PRCMU_WAKEUPS, irq_base,
2778 &db8500_irq_ops, NULL);
2780 if (!db8500_irq_domain) {
2781 pr_err("Failed to create irqdomain\n");
2782 return -ENOSYS;
2785 /* All wakeups will be used, so create mappings for all */
2786 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2787 irq_create_mapping(db8500_irq_domain, i);
2789 return 0;
2792 static void dbx500_fw_version_init(struct platform_device *pdev,
2793 u32 version_offset)
2795 struct resource *res;
2796 void __iomem *tcpm_base;
2798 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2799 "prcmu-tcpm");
2800 if (!res) {
2801 dev_err(&pdev->dev,
2802 "Error: no prcmu tcpm memory region provided\n");
2803 return;
2805 tcpm_base = ioremap(res->start, resource_size(res));
2806 if (tcpm_base != NULL) {
2807 u32 version;
2809 version = readl(tcpm_base + version_offset);
2810 fw_info.version.project = (version & 0xFF);
2811 fw_info.version.api_version = (version >> 8) & 0xFF;
2812 fw_info.version.func_version = (version >> 16) & 0xFF;
2813 fw_info.version.errata = (version >> 24) & 0xFF;
2814 strncpy(fw_info.version.project_name,
2815 fw_project_name(fw_info.version.project),
2816 PRCMU_FW_PROJECT_NAME_LEN);
2817 fw_info.valid = true;
2818 pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2819 fw_info.version.project_name,
2820 fw_info.version.project,
2821 fw_info.version.api_version,
2822 fw_info.version.func_version,
2823 fw_info.version.errata);
2824 iounmap(tcpm_base);
2828 void __init db8500_prcmu_early_init(void)
2830 spin_lock_init(&mb0_transfer.lock);
2831 spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2832 mutex_init(&mb0_transfer.ac_wake_lock);
2833 init_completion(&mb0_transfer.ac_wake_work);
2834 mutex_init(&mb1_transfer.lock);
2835 init_completion(&mb1_transfer.work);
2836 mb1_transfer.ape_opp = APE_NO_CHANGE;
2837 mutex_init(&mb2_transfer.lock);
2838 init_completion(&mb2_transfer.work);
2839 spin_lock_init(&mb2_transfer.auto_pm_lock);
2840 spin_lock_init(&mb3_transfer.lock);
2841 mutex_init(&mb3_transfer.sysclk_lock);
2842 init_completion(&mb3_transfer.sysclk_work);
2843 mutex_init(&mb4_transfer.lock);
2844 init_completion(&mb4_transfer.work);
2845 mutex_init(&mb5_transfer.lock);
2846 init_completion(&mb5_transfer.work);
2848 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2851 static void __init init_prcm_registers(void)
2853 u32 val;
2855 val = readl(PRCM_A9PL_FORCE_CLKEN);
2856 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2857 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2858 writel(val, (PRCM_A9PL_FORCE_CLKEN));
2862 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2864 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2865 REGULATOR_SUPPLY("v-ape", NULL),
2866 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2867 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2868 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2869 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2870 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2871 /* "v-mmc" changed to "vcore" in the mainline kernel */
2872 REGULATOR_SUPPLY("vcore", "sdi0"),
2873 REGULATOR_SUPPLY("vcore", "sdi1"),
2874 REGULATOR_SUPPLY("vcore", "sdi2"),
2875 REGULATOR_SUPPLY("vcore", "sdi3"),
2876 REGULATOR_SUPPLY("vcore", "sdi4"),
2877 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2878 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2879 /* "v-uart" changed to "vcore" in the mainline kernel */
2880 REGULATOR_SUPPLY("vcore", "uart0"),
2881 REGULATOR_SUPPLY("vcore", "uart1"),
2882 REGULATOR_SUPPLY("vcore", "uart2"),
2883 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2884 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2885 REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2888 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2889 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2890 /* AV8100 regulator */
2891 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2894 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2895 REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2896 REGULATOR_SUPPLY("vsupply", "mcde"),
2899 /* SVA MMDSP regulator switch */
2900 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2901 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2904 /* SVA pipe regulator switch */
2905 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2906 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2909 /* SIA MMDSP regulator switch */
2910 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2911 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2914 /* SIA pipe regulator switch */
2915 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2916 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2919 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2920 REGULATOR_SUPPLY("v-mali", NULL),
2923 /* ESRAM1 and 2 regulator switch */
2924 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2925 REGULATOR_SUPPLY("esram12", "cm_control"),
2928 /* ESRAM3 and 4 regulator switch */
2929 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2930 REGULATOR_SUPPLY("v-esram34", "mcde"),
2931 REGULATOR_SUPPLY("esram34", "cm_control"),
2932 REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2935 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2936 [DB8500_REGULATOR_VAPE] = {
2937 .constraints = {
2938 .name = "db8500-vape",
2939 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2940 .always_on = true,
2942 .consumer_supplies = db8500_vape_consumers,
2943 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2945 [DB8500_REGULATOR_VARM] = {
2946 .constraints = {
2947 .name = "db8500-varm",
2948 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2951 [DB8500_REGULATOR_VMODEM] = {
2952 .constraints = {
2953 .name = "db8500-vmodem",
2954 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2957 [DB8500_REGULATOR_VPLL] = {
2958 .constraints = {
2959 .name = "db8500-vpll",
2960 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2963 [DB8500_REGULATOR_VSMPS1] = {
2964 .constraints = {
2965 .name = "db8500-vsmps1",
2966 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2969 [DB8500_REGULATOR_VSMPS2] = {
2970 .constraints = {
2971 .name = "db8500-vsmps2",
2972 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2974 .consumer_supplies = db8500_vsmps2_consumers,
2975 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2977 [DB8500_REGULATOR_VSMPS3] = {
2978 .constraints = {
2979 .name = "db8500-vsmps3",
2980 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2983 [DB8500_REGULATOR_VRF1] = {
2984 .constraints = {
2985 .name = "db8500-vrf1",
2986 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2989 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2990 /* dependency to u8500-vape is handled outside regulator framework */
2991 .constraints = {
2992 .name = "db8500-sva-mmdsp",
2993 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2995 .consumer_supplies = db8500_svammdsp_consumers,
2996 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2998 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2999 .constraints = {
3000 /* "ret" means "retention" */
3001 .name = "db8500-sva-mmdsp-ret",
3002 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3005 [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
3006 /* dependency to u8500-vape is handled outside regulator framework */
3007 .constraints = {
3008 .name = "db8500-sva-pipe",
3009 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3011 .consumer_supplies = db8500_svapipe_consumers,
3012 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
3014 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
3015 /* dependency to u8500-vape is handled outside regulator framework */
3016 .constraints = {
3017 .name = "db8500-sia-mmdsp",
3018 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3020 .consumer_supplies = db8500_siammdsp_consumers,
3021 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
3023 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
3024 .constraints = {
3025 .name = "db8500-sia-mmdsp-ret",
3026 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3029 [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
3030 /* dependency to u8500-vape is handled outside regulator framework */
3031 .constraints = {
3032 .name = "db8500-sia-pipe",
3033 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3035 .consumer_supplies = db8500_siapipe_consumers,
3036 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
3038 [DB8500_REGULATOR_SWITCH_SGA] = {
3039 .supply_regulator = "db8500-vape",
3040 .constraints = {
3041 .name = "db8500-sga",
3042 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3044 .consumer_supplies = db8500_sga_consumers,
3045 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
3048 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
3049 .supply_regulator = "db8500-vape",
3050 .constraints = {
3051 .name = "db8500-b2r2-mcde",
3052 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3054 .consumer_supplies = db8500_b2r2_mcde_consumers,
3055 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
3057 [DB8500_REGULATOR_SWITCH_ESRAM12] = {
3059 * esram12 is set in retention and supplied by Vsafe when Vape is off,
3060 * no need to hold Vape
3062 .constraints = {
3063 .name = "db8500-esram12",
3064 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3066 .consumer_supplies = db8500_esram12_consumers,
3067 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
3069 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
3070 .constraints = {
3071 .name = "db8500-esram12-ret",
3072 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3075 [DB8500_REGULATOR_SWITCH_ESRAM34] = {
3077 * esram34 is set in retention and supplied by Vsafe when Vape is off,
3078 * no need to hold Vape
3080 .constraints = {
3081 .name = "db8500-esram34",
3082 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3084 .consumer_supplies = db8500_esram34_consumers,
3085 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
3087 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
3088 .constraints = {
3089 .name = "db8500-esram34-ret",
3090 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3095 static struct resource ab8500_resources[] = {
3096 [0] = {
3097 .start = IRQ_DB8500_AB8500,
3098 .end = IRQ_DB8500_AB8500,
3099 .flags = IORESOURCE_IRQ
3103 static struct ux500_wdt_data db8500_wdt_pdata = {
3104 .timeout = 600, /* 10 minutes */
3105 .has_28_bits_resolution = true,
3108 static struct mfd_cell db8500_prcmu_devs[] = {
3110 .name = "db8500-prcmu-regulators",
3111 .of_compatible = "stericsson,db8500-prcmu-regulator",
3112 .platform_data = &db8500_regulators,
3113 .pdata_size = sizeof(db8500_regulators),
3116 .name = "cpufreq-ux500",
3117 .of_compatible = "stericsson,cpufreq-ux500",
3118 .platform_data = &db8500_cpufreq_table,
3119 .pdata_size = sizeof(db8500_cpufreq_table),
3122 .name = "ux500_wdt",
3123 .platform_data = &db8500_wdt_pdata,
3124 .pdata_size = sizeof(db8500_wdt_pdata),
3125 .id = -1,
3128 .name = "ab8500-core",
3129 .of_compatible = "stericsson,ab8500",
3130 .num_resources = ARRAY_SIZE(ab8500_resources),
3131 .resources = ab8500_resources,
3132 .id = AB8500_VERSION_AB8500,
3136 static void db8500_prcmu_update_cpufreq(void)
3138 if (prcmu_has_arm_maxopp()) {
3139 db8500_cpufreq_table[3].frequency = 1000000;
3140 db8500_cpufreq_table[3].index = ARM_MAX_OPP;
3145 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3148 static int db8500_prcmu_probe(struct platform_device *pdev)
3150 struct device_node *np = pdev->dev.of_node;
3151 struct prcmu_pdata *pdata = dev_get_platdata(&pdev->dev);
3152 int irq = 0, err = 0, i;
3153 struct resource *res;
3155 init_prcm_registers();
3157 dbx500_fw_version_init(pdev, pdata->version_offset);
3158 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3159 if (!res) {
3160 dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3161 return -ENOENT;
3163 tcdm_base = devm_ioremap(&pdev->dev, res->start,
3164 resource_size(res));
3166 /* Clean up the mailbox interrupts after pre-kernel code. */
3167 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3169 irq = platform_get_irq(pdev, 0);
3170 if (irq <= 0) {
3171 dev_err(&pdev->dev, "no prcmu irq provided\n");
3172 return -ENOENT;
3175 err = request_threaded_irq(irq, prcmu_irq_handler,
3176 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3177 if (err < 0) {
3178 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3179 err = -EBUSY;
3180 goto no_irq_return;
3183 db8500_irq_init(np);
3185 for (i = 0; i < ARRAY_SIZE(db8500_prcmu_devs); i++) {
3186 if (!strcmp(db8500_prcmu_devs[i].name, "ab8500-core")) {
3187 db8500_prcmu_devs[i].platform_data = pdata->ab_platdata;
3188 db8500_prcmu_devs[i].pdata_size = sizeof(struct ab8500_platform_data);
3192 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3194 db8500_prcmu_update_cpufreq();
3196 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3197 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, NULL);
3198 if (err) {
3199 pr_err("prcmu: Failed to add subdevices\n");
3200 return err;
3203 pr_info("DB8500 PRCMU initialized\n");
3205 no_irq_return:
3206 return err;
3208 static const struct of_device_id db8500_prcmu_match[] = {
3209 { .compatible = "stericsson,db8500-prcmu"},
3210 { },
3213 static struct platform_driver db8500_prcmu_driver = {
3214 .driver = {
3215 .name = "db8500-prcmu",
3216 .owner = THIS_MODULE,
3217 .of_match_table = db8500_prcmu_match,
3219 .probe = db8500_prcmu_probe,
3222 static int __init db8500_prcmu_init(void)
3224 return platform_driver_register(&db8500_prcmu_driver);
3227 core_initcall(db8500_prcmu_init);
3229 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3230 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3231 MODULE_LICENSE("GPL v2");