ASoC: wm_adsp: Use __leXX for little endian data
[linux-2.6/btrfs-unstable.git] / block / blk-core.c
blobfd154b94447a25788f48d5e8cc04bc803d1efdb8
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/block.h>
39 #include "blk.h"
40 #include "blk-cgroup.h"
41 #include "blk-mq.h"
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
49 DEFINE_IDA(blk_queue_ida);
52 * For the allocated request tables
54 struct kmem_cache *request_cachep = NULL;
57 * For queue allocation
59 struct kmem_cache *blk_requestq_cachep;
62 * Controlling structure to kblockd
64 static struct workqueue_struct *kblockd_workqueue;
66 void blk_queue_congestion_threshold(struct request_queue *q)
68 int nr;
70 nr = q->nr_requests - (q->nr_requests / 8) + 1;
71 if (nr > q->nr_requests)
72 nr = q->nr_requests;
73 q->nr_congestion_on = nr;
75 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
76 if (nr < 1)
77 nr = 1;
78 q->nr_congestion_off = nr;
81 /**
82 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
83 * @bdev: device
85 * Locates the passed device's request queue and returns the address of its
86 * backing_dev_info. This function can only be called if @bdev is opened
87 * and the return value is never NULL.
89 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
91 struct request_queue *q = bdev_get_queue(bdev);
93 return &q->backing_dev_info;
95 EXPORT_SYMBOL(blk_get_backing_dev_info);
97 void blk_rq_init(struct request_queue *q, struct request *rq)
99 memset(rq, 0, sizeof(*rq));
101 INIT_LIST_HEAD(&rq->queuelist);
102 INIT_LIST_HEAD(&rq->timeout_list);
103 rq->cpu = -1;
104 rq->q = q;
105 rq->__sector = (sector_t) -1;
106 INIT_HLIST_NODE(&rq->hash);
107 RB_CLEAR_NODE(&rq->rb_node);
108 rq->cmd = rq->__cmd;
109 rq->cmd_len = BLK_MAX_CDB;
110 rq->tag = -1;
111 rq->start_time = jiffies;
112 set_start_time_ns(rq);
113 rq->part = NULL;
115 EXPORT_SYMBOL(blk_rq_init);
117 static void req_bio_endio(struct request *rq, struct bio *bio,
118 unsigned int nbytes, int error)
120 if (error)
121 clear_bit(BIO_UPTODATE, &bio->bi_flags);
122 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
123 error = -EIO;
125 if (unlikely(rq->cmd_flags & REQ_QUIET))
126 set_bit(BIO_QUIET, &bio->bi_flags);
128 bio_advance(bio, nbytes);
130 /* don't actually finish bio if it's part of flush sequence */
131 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
132 bio_endio(bio, error);
135 void blk_dump_rq_flags(struct request *rq, char *msg)
137 int bit;
139 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
140 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
141 (unsigned long long) rq->cmd_flags);
143 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
144 (unsigned long long)blk_rq_pos(rq),
145 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
146 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
147 rq->bio, rq->biotail, blk_rq_bytes(rq));
149 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
150 printk(KERN_INFO " cdb: ");
151 for (bit = 0; bit < BLK_MAX_CDB; bit++)
152 printk("%02x ", rq->cmd[bit]);
153 printk("\n");
156 EXPORT_SYMBOL(blk_dump_rq_flags);
158 static void blk_delay_work(struct work_struct *work)
160 struct request_queue *q;
162 q = container_of(work, struct request_queue, delay_work.work);
163 spin_lock_irq(q->queue_lock);
164 __blk_run_queue(q);
165 spin_unlock_irq(q->queue_lock);
169 * blk_delay_queue - restart queueing after defined interval
170 * @q: The &struct request_queue in question
171 * @msecs: Delay in msecs
173 * Description:
174 * Sometimes queueing needs to be postponed for a little while, to allow
175 * resources to come back. This function will make sure that queueing is
176 * restarted around the specified time. Queue lock must be held.
178 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
180 if (likely(!blk_queue_dead(q)))
181 queue_delayed_work(kblockd_workqueue, &q->delay_work,
182 msecs_to_jiffies(msecs));
184 EXPORT_SYMBOL(blk_delay_queue);
187 * blk_start_queue - restart a previously stopped queue
188 * @q: The &struct request_queue in question
190 * Description:
191 * blk_start_queue() will clear the stop flag on the queue, and call
192 * the request_fn for the queue if it was in a stopped state when
193 * entered. Also see blk_stop_queue(). Queue lock must be held.
195 void blk_start_queue(struct request_queue *q)
197 WARN_ON(!irqs_disabled());
199 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
200 __blk_run_queue(q);
202 EXPORT_SYMBOL(blk_start_queue);
205 * blk_stop_queue - stop a queue
206 * @q: The &struct request_queue in question
208 * Description:
209 * The Linux block layer assumes that a block driver will consume all
210 * entries on the request queue when the request_fn strategy is called.
211 * Often this will not happen, because of hardware limitations (queue
212 * depth settings). If a device driver gets a 'queue full' response,
213 * or if it simply chooses not to queue more I/O at one point, it can
214 * call this function to prevent the request_fn from being called until
215 * the driver has signalled it's ready to go again. This happens by calling
216 * blk_start_queue() to restart queue operations. Queue lock must be held.
218 void blk_stop_queue(struct request_queue *q)
220 cancel_delayed_work(&q->delay_work);
221 queue_flag_set(QUEUE_FLAG_STOPPED, q);
223 EXPORT_SYMBOL(blk_stop_queue);
226 * blk_sync_queue - cancel any pending callbacks on a queue
227 * @q: the queue
229 * Description:
230 * The block layer may perform asynchronous callback activity
231 * on a queue, such as calling the unplug function after a timeout.
232 * A block device may call blk_sync_queue to ensure that any
233 * such activity is cancelled, thus allowing it to release resources
234 * that the callbacks might use. The caller must already have made sure
235 * that its ->make_request_fn will not re-add plugging prior to calling
236 * this function.
238 * This function does not cancel any asynchronous activity arising
239 * out of elevator or throttling code. That would require elevator_exit()
240 * and blkcg_exit_queue() to be called with queue lock initialized.
243 void blk_sync_queue(struct request_queue *q)
245 del_timer_sync(&q->timeout);
247 if (q->mq_ops) {
248 struct blk_mq_hw_ctx *hctx;
249 int i;
251 queue_for_each_hw_ctx(q, hctx, i) {
252 cancel_delayed_work_sync(&hctx->run_work);
253 cancel_delayed_work_sync(&hctx->delay_work);
255 } else {
256 cancel_delayed_work_sync(&q->delay_work);
259 EXPORT_SYMBOL(blk_sync_queue);
262 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
263 * @q: The queue to run
265 * Description:
266 * Invoke request handling on a queue if there are any pending requests.
267 * May be used to restart request handling after a request has completed.
268 * This variant runs the queue whether or not the queue has been
269 * stopped. Must be called with the queue lock held and interrupts
270 * disabled. See also @blk_run_queue.
272 inline void __blk_run_queue_uncond(struct request_queue *q)
274 if (unlikely(blk_queue_dead(q)))
275 return;
278 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
279 * the queue lock internally. As a result multiple threads may be
280 * running such a request function concurrently. Keep track of the
281 * number of active request_fn invocations such that blk_drain_queue()
282 * can wait until all these request_fn calls have finished.
284 q->request_fn_active++;
285 q->request_fn(q);
286 q->request_fn_active--;
290 * __blk_run_queue - run a single device queue
291 * @q: The queue to run
293 * Description:
294 * See @blk_run_queue. This variant must be called with the queue lock
295 * held and interrupts disabled.
297 void __blk_run_queue(struct request_queue *q)
299 if (unlikely(blk_queue_stopped(q)))
300 return;
302 __blk_run_queue_uncond(q);
304 EXPORT_SYMBOL(__blk_run_queue);
307 * blk_run_queue_async - run a single device queue in workqueue context
308 * @q: The queue to run
310 * Description:
311 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
312 * of us. The caller must hold the queue lock.
314 void blk_run_queue_async(struct request_queue *q)
316 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
317 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
319 EXPORT_SYMBOL(blk_run_queue_async);
322 * blk_run_queue - run a single device queue
323 * @q: The queue to run
325 * Description:
326 * Invoke request handling on this queue, if it has pending work to do.
327 * May be used to restart queueing when a request has completed.
329 void blk_run_queue(struct request_queue *q)
331 unsigned long flags;
333 spin_lock_irqsave(q->queue_lock, flags);
334 __blk_run_queue(q);
335 spin_unlock_irqrestore(q->queue_lock, flags);
337 EXPORT_SYMBOL(blk_run_queue);
339 void blk_put_queue(struct request_queue *q)
341 kobject_put(&q->kobj);
343 EXPORT_SYMBOL(blk_put_queue);
346 * __blk_drain_queue - drain requests from request_queue
347 * @q: queue to drain
348 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
350 * Drain requests from @q. If @drain_all is set, all requests are drained.
351 * If not, only ELVPRIV requests are drained. The caller is responsible
352 * for ensuring that no new requests which need to be drained are queued.
354 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
355 __releases(q->queue_lock)
356 __acquires(q->queue_lock)
358 int i;
360 lockdep_assert_held(q->queue_lock);
362 while (true) {
363 bool drain = false;
366 * The caller might be trying to drain @q before its
367 * elevator is initialized.
369 if (q->elevator)
370 elv_drain_elevator(q);
372 blkcg_drain_queue(q);
375 * This function might be called on a queue which failed
376 * driver init after queue creation or is not yet fully
377 * active yet. Some drivers (e.g. fd and loop) get unhappy
378 * in such cases. Kick queue iff dispatch queue has
379 * something on it and @q has request_fn set.
381 if (!list_empty(&q->queue_head) && q->request_fn)
382 __blk_run_queue(q);
384 drain |= q->nr_rqs_elvpriv;
385 drain |= q->request_fn_active;
388 * Unfortunately, requests are queued at and tracked from
389 * multiple places and there's no single counter which can
390 * be drained. Check all the queues and counters.
392 if (drain_all) {
393 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
394 drain |= !list_empty(&q->queue_head);
395 for (i = 0; i < 2; i++) {
396 drain |= q->nr_rqs[i];
397 drain |= q->in_flight[i];
398 if (fq)
399 drain |= !list_empty(&fq->flush_queue[i]);
403 if (!drain)
404 break;
406 spin_unlock_irq(q->queue_lock);
408 msleep(10);
410 spin_lock_irq(q->queue_lock);
414 * With queue marked dead, any woken up waiter will fail the
415 * allocation path, so the wakeup chaining is lost and we're
416 * left with hung waiters. We need to wake up those waiters.
418 if (q->request_fn) {
419 struct request_list *rl;
421 blk_queue_for_each_rl(rl, q)
422 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
423 wake_up_all(&rl->wait[i]);
428 * blk_queue_bypass_start - enter queue bypass mode
429 * @q: queue of interest
431 * In bypass mode, only the dispatch FIFO queue of @q is used. This
432 * function makes @q enter bypass mode and drains all requests which were
433 * throttled or issued before. On return, it's guaranteed that no request
434 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
435 * inside queue or RCU read lock.
437 void blk_queue_bypass_start(struct request_queue *q)
439 spin_lock_irq(q->queue_lock);
440 q->bypass_depth++;
441 queue_flag_set(QUEUE_FLAG_BYPASS, q);
442 spin_unlock_irq(q->queue_lock);
445 * Queues start drained. Skip actual draining till init is
446 * complete. This avoids lenghty delays during queue init which
447 * can happen many times during boot.
449 if (blk_queue_init_done(q)) {
450 spin_lock_irq(q->queue_lock);
451 __blk_drain_queue(q, false);
452 spin_unlock_irq(q->queue_lock);
454 /* ensure blk_queue_bypass() is %true inside RCU read lock */
455 synchronize_rcu();
458 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
461 * blk_queue_bypass_end - leave queue bypass mode
462 * @q: queue of interest
464 * Leave bypass mode and restore the normal queueing behavior.
466 void blk_queue_bypass_end(struct request_queue *q)
468 spin_lock_irq(q->queue_lock);
469 if (!--q->bypass_depth)
470 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
471 WARN_ON_ONCE(q->bypass_depth < 0);
472 spin_unlock_irq(q->queue_lock);
474 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
476 void blk_set_queue_dying(struct request_queue *q)
478 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
480 if (q->mq_ops)
481 blk_mq_wake_waiters(q);
482 else {
483 struct request_list *rl;
485 blk_queue_for_each_rl(rl, q) {
486 if (rl->rq_pool) {
487 wake_up(&rl->wait[BLK_RW_SYNC]);
488 wake_up(&rl->wait[BLK_RW_ASYNC]);
493 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
496 * blk_cleanup_queue - shutdown a request queue
497 * @q: request queue to shutdown
499 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
500 * put it. All future requests will be failed immediately with -ENODEV.
502 void blk_cleanup_queue(struct request_queue *q)
504 spinlock_t *lock = q->queue_lock;
506 /* mark @q DYING, no new request or merges will be allowed afterwards */
507 mutex_lock(&q->sysfs_lock);
508 blk_set_queue_dying(q);
509 spin_lock_irq(lock);
512 * A dying queue is permanently in bypass mode till released. Note
513 * that, unlike blk_queue_bypass_start(), we aren't performing
514 * synchronize_rcu() after entering bypass mode to avoid the delay
515 * as some drivers create and destroy a lot of queues while
516 * probing. This is still safe because blk_release_queue() will be
517 * called only after the queue refcnt drops to zero and nothing,
518 * RCU or not, would be traversing the queue by then.
520 q->bypass_depth++;
521 queue_flag_set(QUEUE_FLAG_BYPASS, q);
523 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
524 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
525 queue_flag_set(QUEUE_FLAG_DYING, q);
526 spin_unlock_irq(lock);
527 mutex_unlock(&q->sysfs_lock);
530 * Drain all requests queued before DYING marking. Set DEAD flag to
531 * prevent that q->request_fn() gets invoked after draining finished.
533 if (q->mq_ops) {
534 blk_mq_freeze_queue(q);
535 spin_lock_irq(lock);
536 } else {
537 spin_lock_irq(lock);
538 __blk_drain_queue(q, true);
540 queue_flag_set(QUEUE_FLAG_DEAD, q);
541 spin_unlock_irq(lock);
543 /* @q won't process any more request, flush async actions */
544 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
545 blk_sync_queue(q);
547 if (q->mq_ops)
548 blk_mq_free_queue(q);
550 spin_lock_irq(lock);
551 if (q->queue_lock != &q->__queue_lock)
552 q->queue_lock = &q->__queue_lock;
553 spin_unlock_irq(lock);
555 /* @q is and will stay empty, shutdown and put */
556 blk_put_queue(q);
558 EXPORT_SYMBOL(blk_cleanup_queue);
560 /* Allocate memory local to the request queue */
561 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
563 int nid = (int)(long)data;
564 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
567 static void free_request_struct(void *element, void *unused)
569 kmem_cache_free(request_cachep, element);
572 int blk_init_rl(struct request_list *rl, struct request_queue *q,
573 gfp_t gfp_mask)
575 if (unlikely(rl->rq_pool))
576 return 0;
578 rl->q = q;
579 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
580 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
581 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
582 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
584 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
585 free_request_struct,
586 (void *)(long)q->node, gfp_mask,
587 q->node);
588 if (!rl->rq_pool)
589 return -ENOMEM;
591 return 0;
594 void blk_exit_rl(struct request_list *rl)
596 if (rl->rq_pool)
597 mempool_destroy(rl->rq_pool);
600 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
602 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
604 EXPORT_SYMBOL(blk_alloc_queue);
606 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
608 struct request_queue *q;
609 int err;
611 q = kmem_cache_alloc_node(blk_requestq_cachep,
612 gfp_mask | __GFP_ZERO, node_id);
613 if (!q)
614 return NULL;
616 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
617 if (q->id < 0)
618 goto fail_q;
620 q->backing_dev_info.ra_pages =
621 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
622 q->backing_dev_info.state = 0;
623 q->backing_dev_info.capabilities = 0;
624 q->backing_dev_info.name = "block";
625 q->node = node_id;
627 err = bdi_init(&q->backing_dev_info);
628 if (err)
629 goto fail_id;
631 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
632 laptop_mode_timer_fn, (unsigned long) q);
633 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
634 INIT_LIST_HEAD(&q->queue_head);
635 INIT_LIST_HEAD(&q->timeout_list);
636 INIT_LIST_HEAD(&q->icq_list);
637 #ifdef CONFIG_BLK_CGROUP
638 INIT_LIST_HEAD(&q->blkg_list);
639 #endif
640 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
642 kobject_init(&q->kobj, &blk_queue_ktype);
644 mutex_init(&q->sysfs_lock);
645 spin_lock_init(&q->__queue_lock);
648 * By default initialize queue_lock to internal lock and driver can
649 * override it later if need be.
651 q->queue_lock = &q->__queue_lock;
654 * A queue starts its life with bypass turned on to avoid
655 * unnecessary bypass on/off overhead and nasty surprises during
656 * init. The initial bypass will be finished when the queue is
657 * registered by blk_register_queue().
659 q->bypass_depth = 1;
660 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
662 init_waitqueue_head(&q->mq_freeze_wq);
664 if (blkcg_init_queue(q))
665 goto fail_bdi;
667 return q;
669 fail_bdi:
670 bdi_destroy(&q->backing_dev_info);
671 fail_id:
672 ida_simple_remove(&blk_queue_ida, q->id);
673 fail_q:
674 kmem_cache_free(blk_requestq_cachep, q);
675 return NULL;
677 EXPORT_SYMBOL(blk_alloc_queue_node);
680 * blk_init_queue - prepare a request queue for use with a block device
681 * @rfn: The function to be called to process requests that have been
682 * placed on the queue.
683 * @lock: Request queue spin lock
685 * Description:
686 * If a block device wishes to use the standard request handling procedures,
687 * which sorts requests and coalesces adjacent requests, then it must
688 * call blk_init_queue(). The function @rfn will be called when there
689 * are requests on the queue that need to be processed. If the device
690 * supports plugging, then @rfn may not be called immediately when requests
691 * are available on the queue, but may be called at some time later instead.
692 * Plugged queues are generally unplugged when a buffer belonging to one
693 * of the requests on the queue is needed, or due to memory pressure.
695 * @rfn is not required, or even expected, to remove all requests off the
696 * queue, but only as many as it can handle at a time. If it does leave
697 * requests on the queue, it is responsible for arranging that the requests
698 * get dealt with eventually.
700 * The queue spin lock must be held while manipulating the requests on the
701 * request queue; this lock will be taken also from interrupt context, so irq
702 * disabling is needed for it.
704 * Function returns a pointer to the initialized request queue, or %NULL if
705 * it didn't succeed.
707 * Note:
708 * blk_init_queue() must be paired with a blk_cleanup_queue() call
709 * when the block device is deactivated (such as at module unload).
712 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
714 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
716 EXPORT_SYMBOL(blk_init_queue);
718 struct request_queue *
719 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
721 struct request_queue *uninit_q, *q;
723 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
724 if (!uninit_q)
725 return NULL;
727 q = blk_init_allocated_queue(uninit_q, rfn, lock);
728 if (!q)
729 blk_cleanup_queue(uninit_q);
731 return q;
733 EXPORT_SYMBOL(blk_init_queue_node);
735 struct request_queue *
736 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
737 spinlock_t *lock)
739 if (!q)
740 return NULL;
742 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
743 if (!q->fq)
744 return NULL;
746 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
747 goto fail;
749 q->request_fn = rfn;
750 q->prep_rq_fn = NULL;
751 q->unprep_rq_fn = NULL;
752 q->queue_flags |= QUEUE_FLAG_DEFAULT;
754 /* Override internal queue lock with supplied lock pointer */
755 if (lock)
756 q->queue_lock = lock;
759 * This also sets hw/phys segments, boundary and size
761 blk_queue_make_request(q, blk_queue_bio);
763 q->sg_reserved_size = INT_MAX;
765 /* Protect q->elevator from elevator_change */
766 mutex_lock(&q->sysfs_lock);
768 /* init elevator */
769 if (elevator_init(q, NULL)) {
770 mutex_unlock(&q->sysfs_lock);
771 goto fail;
774 mutex_unlock(&q->sysfs_lock);
776 return q;
778 fail:
779 blk_free_flush_queue(q->fq);
780 return NULL;
782 EXPORT_SYMBOL(blk_init_allocated_queue);
784 bool blk_get_queue(struct request_queue *q)
786 if (likely(!blk_queue_dying(q))) {
787 __blk_get_queue(q);
788 return true;
791 return false;
793 EXPORT_SYMBOL(blk_get_queue);
795 static inline void blk_free_request(struct request_list *rl, struct request *rq)
797 if (rq->cmd_flags & REQ_ELVPRIV) {
798 elv_put_request(rl->q, rq);
799 if (rq->elv.icq)
800 put_io_context(rq->elv.icq->ioc);
803 mempool_free(rq, rl->rq_pool);
807 * ioc_batching returns true if the ioc is a valid batching request and
808 * should be given priority access to a request.
810 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
812 if (!ioc)
813 return 0;
816 * Make sure the process is able to allocate at least 1 request
817 * even if the batch times out, otherwise we could theoretically
818 * lose wakeups.
820 return ioc->nr_batch_requests == q->nr_batching ||
821 (ioc->nr_batch_requests > 0
822 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
826 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
827 * will cause the process to be a "batcher" on all queues in the system. This
828 * is the behaviour we want though - once it gets a wakeup it should be given
829 * a nice run.
831 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
833 if (!ioc || ioc_batching(q, ioc))
834 return;
836 ioc->nr_batch_requests = q->nr_batching;
837 ioc->last_waited = jiffies;
840 static void __freed_request(struct request_list *rl, int sync)
842 struct request_queue *q = rl->q;
845 * bdi isn't aware of blkcg yet. As all async IOs end up root
846 * blkcg anyway, just use root blkcg state.
848 if (rl == &q->root_rl &&
849 rl->count[sync] < queue_congestion_off_threshold(q))
850 blk_clear_queue_congested(q, sync);
852 if (rl->count[sync] + 1 <= q->nr_requests) {
853 if (waitqueue_active(&rl->wait[sync]))
854 wake_up(&rl->wait[sync]);
856 blk_clear_rl_full(rl, sync);
861 * A request has just been released. Account for it, update the full and
862 * congestion status, wake up any waiters. Called under q->queue_lock.
864 static void freed_request(struct request_list *rl, unsigned int flags)
866 struct request_queue *q = rl->q;
867 int sync = rw_is_sync(flags);
869 q->nr_rqs[sync]--;
870 rl->count[sync]--;
871 if (flags & REQ_ELVPRIV)
872 q->nr_rqs_elvpriv--;
874 __freed_request(rl, sync);
876 if (unlikely(rl->starved[sync ^ 1]))
877 __freed_request(rl, sync ^ 1);
880 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
882 struct request_list *rl;
884 spin_lock_irq(q->queue_lock);
885 q->nr_requests = nr;
886 blk_queue_congestion_threshold(q);
888 /* congestion isn't cgroup aware and follows root blkcg for now */
889 rl = &q->root_rl;
891 if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q))
892 blk_set_queue_congested(q, BLK_RW_SYNC);
893 else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q))
894 blk_clear_queue_congested(q, BLK_RW_SYNC);
896 if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q))
897 blk_set_queue_congested(q, BLK_RW_ASYNC);
898 else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q))
899 blk_clear_queue_congested(q, BLK_RW_ASYNC);
901 blk_queue_for_each_rl(rl, q) {
902 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
903 blk_set_rl_full(rl, BLK_RW_SYNC);
904 } else {
905 blk_clear_rl_full(rl, BLK_RW_SYNC);
906 wake_up(&rl->wait[BLK_RW_SYNC]);
909 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
910 blk_set_rl_full(rl, BLK_RW_ASYNC);
911 } else {
912 blk_clear_rl_full(rl, BLK_RW_ASYNC);
913 wake_up(&rl->wait[BLK_RW_ASYNC]);
917 spin_unlock_irq(q->queue_lock);
918 return 0;
922 * Determine if elevator data should be initialized when allocating the
923 * request associated with @bio.
925 static bool blk_rq_should_init_elevator(struct bio *bio)
927 if (!bio)
928 return true;
931 * Flush requests do not use the elevator so skip initialization.
932 * This allows a request to share the flush and elevator data.
934 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
935 return false;
937 return true;
941 * rq_ioc - determine io_context for request allocation
942 * @bio: request being allocated is for this bio (can be %NULL)
944 * Determine io_context to use for request allocation for @bio. May return
945 * %NULL if %current->io_context doesn't exist.
947 static struct io_context *rq_ioc(struct bio *bio)
949 #ifdef CONFIG_BLK_CGROUP
950 if (bio && bio->bi_ioc)
951 return bio->bi_ioc;
952 #endif
953 return current->io_context;
957 * __get_request - get a free request
958 * @rl: request list to allocate from
959 * @rw_flags: RW and SYNC flags
960 * @bio: bio to allocate request for (can be %NULL)
961 * @gfp_mask: allocation mask
963 * Get a free request from @q. This function may fail under memory
964 * pressure or if @q is dead.
966 * Must be called with @q->queue_lock held and,
967 * Returns ERR_PTR on failure, with @q->queue_lock held.
968 * Returns request pointer on success, with @q->queue_lock *not held*.
970 static struct request *__get_request(struct request_list *rl, int rw_flags,
971 struct bio *bio, gfp_t gfp_mask)
973 struct request_queue *q = rl->q;
974 struct request *rq;
975 struct elevator_type *et = q->elevator->type;
976 struct io_context *ioc = rq_ioc(bio);
977 struct io_cq *icq = NULL;
978 const bool is_sync = rw_is_sync(rw_flags) != 0;
979 int may_queue;
981 if (unlikely(blk_queue_dying(q)))
982 return ERR_PTR(-ENODEV);
984 may_queue = elv_may_queue(q, rw_flags);
985 if (may_queue == ELV_MQUEUE_NO)
986 goto rq_starved;
988 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
989 if (rl->count[is_sync]+1 >= q->nr_requests) {
991 * The queue will fill after this allocation, so set
992 * it as full, and mark this process as "batching".
993 * This process will be allowed to complete a batch of
994 * requests, others will be blocked.
996 if (!blk_rl_full(rl, is_sync)) {
997 ioc_set_batching(q, ioc);
998 blk_set_rl_full(rl, is_sync);
999 } else {
1000 if (may_queue != ELV_MQUEUE_MUST
1001 && !ioc_batching(q, ioc)) {
1003 * The queue is full and the allocating
1004 * process is not a "batcher", and not
1005 * exempted by the IO scheduler
1007 return ERR_PTR(-ENOMEM);
1012 * bdi isn't aware of blkcg yet. As all async IOs end up
1013 * root blkcg anyway, just use root blkcg state.
1015 if (rl == &q->root_rl)
1016 blk_set_queue_congested(q, is_sync);
1020 * Only allow batching queuers to allocate up to 50% over the defined
1021 * limit of requests, otherwise we could have thousands of requests
1022 * allocated with any setting of ->nr_requests
1024 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1025 return ERR_PTR(-ENOMEM);
1027 q->nr_rqs[is_sync]++;
1028 rl->count[is_sync]++;
1029 rl->starved[is_sync] = 0;
1032 * Decide whether the new request will be managed by elevator. If
1033 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1034 * prevent the current elevator from being destroyed until the new
1035 * request is freed. This guarantees icq's won't be destroyed and
1036 * makes creating new ones safe.
1038 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1039 * it will be created after releasing queue_lock.
1041 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1042 rw_flags |= REQ_ELVPRIV;
1043 q->nr_rqs_elvpriv++;
1044 if (et->icq_cache && ioc)
1045 icq = ioc_lookup_icq(ioc, q);
1048 if (blk_queue_io_stat(q))
1049 rw_flags |= REQ_IO_STAT;
1050 spin_unlock_irq(q->queue_lock);
1052 /* allocate and init request */
1053 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1054 if (!rq)
1055 goto fail_alloc;
1057 blk_rq_init(q, rq);
1058 blk_rq_set_rl(rq, rl);
1059 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1061 /* init elvpriv */
1062 if (rw_flags & REQ_ELVPRIV) {
1063 if (unlikely(et->icq_cache && !icq)) {
1064 if (ioc)
1065 icq = ioc_create_icq(ioc, q, gfp_mask);
1066 if (!icq)
1067 goto fail_elvpriv;
1070 rq->elv.icq = icq;
1071 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1072 goto fail_elvpriv;
1074 /* @rq->elv.icq holds io_context until @rq is freed */
1075 if (icq)
1076 get_io_context(icq->ioc);
1078 out:
1080 * ioc may be NULL here, and ioc_batching will be false. That's
1081 * OK, if the queue is under the request limit then requests need
1082 * not count toward the nr_batch_requests limit. There will always
1083 * be some limit enforced by BLK_BATCH_TIME.
1085 if (ioc_batching(q, ioc))
1086 ioc->nr_batch_requests--;
1088 trace_block_getrq(q, bio, rw_flags & 1);
1089 return rq;
1091 fail_elvpriv:
1093 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1094 * and may fail indefinitely under memory pressure and thus
1095 * shouldn't stall IO. Treat this request as !elvpriv. This will
1096 * disturb iosched and blkcg but weird is bettern than dead.
1098 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1099 __func__, dev_name(q->backing_dev_info.dev));
1101 rq->cmd_flags &= ~REQ_ELVPRIV;
1102 rq->elv.icq = NULL;
1104 spin_lock_irq(q->queue_lock);
1105 q->nr_rqs_elvpriv--;
1106 spin_unlock_irq(q->queue_lock);
1107 goto out;
1109 fail_alloc:
1111 * Allocation failed presumably due to memory. Undo anything we
1112 * might have messed up.
1114 * Allocating task should really be put onto the front of the wait
1115 * queue, but this is pretty rare.
1117 spin_lock_irq(q->queue_lock);
1118 freed_request(rl, rw_flags);
1121 * in the very unlikely event that allocation failed and no
1122 * requests for this direction was pending, mark us starved so that
1123 * freeing of a request in the other direction will notice
1124 * us. another possible fix would be to split the rq mempool into
1125 * READ and WRITE
1127 rq_starved:
1128 if (unlikely(rl->count[is_sync] == 0))
1129 rl->starved[is_sync] = 1;
1130 return ERR_PTR(-ENOMEM);
1134 * get_request - get a free request
1135 * @q: request_queue to allocate request from
1136 * @rw_flags: RW and SYNC flags
1137 * @bio: bio to allocate request for (can be %NULL)
1138 * @gfp_mask: allocation mask
1140 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1141 * function keeps retrying under memory pressure and fails iff @q is dead.
1143 * Must be called with @q->queue_lock held and,
1144 * Returns ERR_PTR on failure, with @q->queue_lock held.
1145 * Returns request pointer on success, with @q->queue_lock *not held*.
1147 static struct request *get_request(struct request_queue *q, int rw_flags,
1148 struct bio *bio, gfp_t gfp_mask)
1150 const bool is_sync = rw_is_sync(rw_flags) != 0;
1151 DEFINE_WAIT(wait);
1152 struct request_list *rl;
1153 struct request *rq;
1155 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1156 retry:
1157 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1158 if (!IS_ERR(rq))
1159 return rq;
1161 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1162 blk_put_rl(rl);
1163 return rq;
1166 /* wait on @rl and retry */
1167 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1168 TASK_UNINTERRUPTIBLE);
1170 trace_block_sleeprq(q, bio, rw_flags & 1);
1172 spin_unlock_irq(q->queue_lock);
1173 io_schedule();
1176 * After sleeping, we become a "batching" process and will be able
1177 * to allocate at least one request, and up to a big batch of them
1178 * for a small period time. See ioc_batching, ioc_set_batching
1180 ioc_set_batching(q, current->io_context);
1182 spin_lock_irq(q->queue_lock);
1183 finish_wait(&rl->wait[is_sync], &wait);
1185 goto retry;
1188 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1189 gfp_t gfp_mask)
1191 struct request *rq;
1193 BUG_ON(rw != READ && rw != WRITE);
1195 /* create ioc upfront */
1196 create_io_context(gfp_mask, q->node);
1198 spin_lock_irq(q->queue_lock);
1199 rq = get_request(q, rw, NULL, gfp_mask);
1200 if (IS_ERR(rq))
1201 spin_unlock_irq(q->queue_lock);
1202 /* q->queue_lock is unlocked at this point */
1204 return rq;
1207 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1209 if (q->mq_ops)
1210 return blk_mq_alloc_request(q, rw, gfp_mask, false);
1211 else
1212 return blk_old_get_request(q, rw, gfp_mask);
1214 EXPORT_SYMBOL(blk_get_request);
1217 * blk_make_request - given a bio, allocate a corresponding struct request.
1218 * @q: target request queue
1219 * @bio: The bio describing the memory mappings that will be submitted for IO.
1220 * It may be a chained-bio properly constructed by block/bio layer.
1221 * @gfp_mask: gfp flags to be used for memory allocation
1223 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1224 * type commands. Where the struct request needs to be farther initialized by
1225 * the caller. It is passed a &struct bio, which describes the memory info of
1226 * the I/O transfer.
1228 * The caller of blk_make_request must make sure that bi_io_vec
1229 * are set to describe the memory buffers. That bio_data_dir() will return
1230 * the needed direction of the request. (And all bio's in the passed bio-chain
1231 * are properly set accordingly)
1233 * If called under none-sleepable conditions, mapped bio buffers must not
1234 * need bouncing, by calling the appropriate masked or flagged allocator,
1235 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1236 * BUG.
1238 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1239 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1240 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1241 * completion of a bio that hasn't been submitted yet, thus resulting in a
1242 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1243 * of bio_alloc(), as that avoids the mempool deadlock.
1244 * If possible a big IO should be split into smaller parts when allocation
1245 * fails. Partial allocation should not be an error, or you risk a live-lock.
1247 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1248 gfp_t gfp_mask)
1250 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1252 if (IS_ERR(rq))
1253 return rq;
1255 blk_rq_set_block_pc(rq);
1257 for_each_bio(bio) {
1258 struct bio *bounce_bio = bio;
1259 int ret;
1261 blk_queue_bounce(q, &bounce_bio);
1262 ret = blk_rq_append_bio(q, rq, bounce_bio);
1263 if (unlikely(ret)) {
1264 blk_put_request(rq);
1265 return ERR_PTR(ret);
1269 return rq;
1271 EXPORT_SYMBOL(blk_make_request);
1274 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1275 * @rq: request to be initialized
1278 void blk_rq_set_block_pc(struct request *rq)
1280 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1281 rq->__data_len = 0;
1282 rq->__sector = (sector_t) -1;
1283 rq->bio = rq->biotail = NULL;
1284 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1286 EXPORT_SYMBOL(blk_rq_set_block_pc);
1289 * blk_requeue_request - put a request back on queue
1290 * @q: request queue where request should be inserted
1291 * @rq: request to be inserted
1293 * Description:
1294 * Drivers often keep queueing requests until the hardware cannot accept
1295 * more, when that condition happens we need to put the request back
1296 * on the queue. Must be called with queue lock held.
1298 void blk_requeue_request(struct request_queue *q, struct request *rq)
1300 blk_delete_timer(rq);
1301 blk_clear_rq_complete(rq);
1302 trace_block_rq_requeue(q, rq);
1304 if (rq->cmd_flags & REQ_QUEUED)
1305 blk_queue_end_tag(q, rq);
1307 BUG_ON(blk_queued_rq(rq));
1309 elv_requeue_request(q, rq);
1311 EXPORT_SYMBOL(blk_requeue_request);
1313 static void add_acct_request(struct request_queue *q, struct request *rq,
1314 int where)
1316 blk_account_io_start(rq, true);
1317 __elv_add_request(q, rq, where);
1320 static void part_round_stats_single(int cpu, struct hd_struct *part,
1321 unsigned long now)
1323 int inflight;
1325 if (now == part->stamp)
1326 return;
1328 inflight = part_in_flight(part);
1329 if (inflight) {
1330 __part_stat_add(cpu, part, time_in_queue,
1331 inflight * (now - part->stamp));
1332 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1334 part->stamp = now;
1338 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1339 * @cpu: cpu number for stats access
1340 * @part: target partition
1342 * The average IO queue length and utilisation statistics are maintained
1343 * by observing the current state of the queue length and the amount of
1344 * time it has been in this state for.
1346 * Normally, that accounting is done on IO completion, but that can result
1347 * in more than a second's worth of IO being accounted for within any one
1348 * second, leading to >100% utilisation. To deal with that, we call this
1349 * function to do a round-off before returning the results when reading
1350 * /proc/diskstats. This accounts immediately for all queue usage up to
1351 * the current jiffies and restarts the counters again.
1353 void part_round_stats(int cpu, struct hd_struct *part)
1355 unsigned long now = jiffies;
1357 if (part->partno)
1358 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1359 part_round_stats_single(cpu, part, now);
1361 EXPORT_SYMBOL_GPL(part_round_stats);
1363 #ifdef CONFIG_PM
1364 static void blk_pm_put_request(struct request *rq)
1366 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1367 pm_runtime_mark_last_busy(rq->q->dev);
1369 #else
1370 static inline void blk_pm_put_request(struct request *rq) {}
1371 #endif
1374 * queue lock must be held
1376 void __blk_put_request(struct request_queue *q, struct request *req)
1378 if (unlikely(!q))
1379 return;
1381 if (q->mq_ops) {
1382 blk_mq_free_request(req);
1383 return;
1386 blk_pm_put_request(req);
1388 elv_completed_request(q, req);
1390 /* this is a bio leak */
1391 WARN_ON(req->bio != NULL);
1394 * Request may not have originated from ll_rw_blk. if not,
1395 * it didn't come out of our reserved rq pools
1397 if (req->cmd_flags & REQ_ALLOCED) {
1398 unsigned int flags = req->cmd_flags;
1399 struct request_list *rl = blk_rq_rl(req);
1401 BUG_ON(!list_empty(&req->queuelist));
1402 BUG_ON(ELV_ON_HASH(req));
1404 blk_free_request(rl, req);
1405 freed_request(rl, flags);
1406 blk_put_rl(rl);
1409 EXPORT_SYMBOL_GPL(__blk_put_request);
1411 void blk_put_request(struct request *req)
1413 struct request_queue *q = req->q;
1415 if (q->mq_ops)
1416 blk_mq_free_request(req);
1417 else {
1418 unsigned long flags;
1420 spin_lock_irqsave(q->queue_lock, flags);
1421 __blk_put_request(q, req);
1422 spin_unlock_irqrestore(q->queue_lock, flags);
1425 EXPORT_SYMBOL(blk_put_request);
1428 * blk_add_request_payload - add a payload to a request
1429 * @rq: request to update
1430 * @page: page backing the payload
1431 * @len: length of the payload.
1433 * This allows to later add a payload to an already submitted request by
1434 * a block driver. The driver needs to take care of freeing the payload
1435 * itself.
1437 * Note that this is a quite horrible hack and nothing but handling of
1438 * discard requests should ever use it.
1440 void blk_add_request_payload(struct request *rq, struct page *page,
1441 unsigned int len)
1443 struct bio *bio = rq->bio;
1445 bio->bi_io_vec->bv_page = page;
1446 bio->bi_io_vec->bv_offset = 0;
1447 bio->bi_io_vec->bv_len = len;
1449 bio->bi_iter.bi_size = len;
1450 bio->bi_vcnt = 1;
1451 bio->bi_phys_segments = 1;
1453 rq->__data_len = rq->resid_len = len;
1454 rq->nr_phys_segments = 1;
1456 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1458 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1459 struct bio *bio)
1461 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1463 if (!ll_back_merge_fn(q, req, bio))
1464 return false;
1466 trace_block_bio_backmerge(q, req, bio);
1468 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1469 blk_rq_set_mixed_merge(req);
1471 req->biotail->bi_next = bio;
1472 req->biotail = bio;
1473 req->__data_len += bio->bi_iter.bi_size;
1474 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1476 blk_account_io_start(req, false);
1477 return true;
1480 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1481 struct bio *bio)
1483 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1485 if (!ll_front_merge_fn(q, req, bio))
1486 return false;
1488 trace_block_bio_frontmerge(q, req, bio);
1490 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1491 blk_rq_set_mixed_merge(req);
1493 bio->bi_next = req->bio;
1494 req->bio = bio;
1496 req->__sector = bio->bi_iter.bi_sector;
1497 req->__data_len += bio->bi_iter.bi_size;
1498 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1500 blk_account_io_start(req, false);
1501 return true;
1505 * blk_attempt_plug_merge - try to merge with %current's plugged list
1506 * @q: request_queue new bio is being queued at
1507 * @bio: new bio being queued
1508 * @request_count: out parameter for number of traversed plugged requests
1510 * Determine whether @bio being queued on @q can be merged with a request
1511 * on %current's plugged list. Returns %true if merge was successful,
1512 * otherwise %false.
1514 * Plugging coalesces IOs from the same issuer for the same purpose without
1515 * going through @q->queue_lock. As such it's more of an issuing mechanism
1516 * than scheduling, and the request, while may have elvpriv data, is not
1517 * added on the elevator at this point. In addition, we don't have
1518 * reliable access to the elevator outside queue lock. Only check basic
1519 * merging parameters without querying the elevator.
1521 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1523 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1524 unsigned int *request_count)
1526 struct blk_plug *plug;
1527 struct request *rq;
1528 bool ret = false;
1529 struct list_head *plug_list;
1531 plug = current->plug;
1532 if (!plug)
1533 goto out;
1534 *request_count = 0;
1536 if (q->mq_ops)
1537 plug_list = &plug->mq_list;
1538 else
1539 plug_list = &plug->list;
1541 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1542 int el_ret;
1544 if (rq->q == q)
1545 (*request_count)++;
1547 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1548 continue;
1550 el_ret = blk_try_merge(rq, bio);
1551 if (el_ret == ELEVATOR_BACK_MERGE) {
1552 ret = bio_attempt_back_merge(q, rq, bio);
1553 if (ret)
1554 break;
1555 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1556 ret = bio_attempt_front_merge(q, rq, bio);
1557 if (ret)
1558 break;
1561 out:
1562 return ret;
1565 void init_request_from_bio(struct request *req, struct bio *bio)
1567 req->cmd_type = REQ_TYPE_FS;
1569 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1570 if (bio->bi_rw & REQ_RAHEAD)
1571 req->cmd_flags |= REQ_FAILFAST_MASK;
1573 req->errors = 0;
1574 req->__sector = bio->bi_iter.bi_sector;
1575 req->ioprio = bio_prio(bio);
1576 blk_rq_bio_prep(req->q, req, bio);
1579 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1581 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1582 struct blk_plug *plug;
1583 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1584 struct request *req;
1585 unsigned int request_count = 0;
1588 * low level driver can indicate that it wants pages above a
1589 * certain limit bounced to low memory (ie for highmem, or even
1590 * ISA dma in theory)
1592 blk_queue_bounce(q, &bio);
1594 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1595 bio_endio(bio, -EIO);
1596 return;
1599 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1600 spin_lock_irq(q->queue_lock);
1601 where = ELEVATOR_INSERT_FLUSH;
1602 goto get_rq;
1606 * Check if we can merge with the plugged list before grabbing
1607 * any locks.
1609 if (!blk_queue_nomerges(q) &&
1610 blk_attempt_plug_merge(q, bio, &request_count))
1611 return;
1613 spin_lock_irq(q->queue_lock);
1615 el_ret = elv_merge(q, &req, bio);
1616 if (el_ret == ELEVATOR_BACK_MERGE) {
1617 if (bio_attempt_back_merge(q, req, bio)) {
1618 elv_bio_merged(q, req, bio);
1619 if (!attempt_back_merge(q, req))
1620 elv_merged_request(q, req, el_ret);
1621 goto out_unlock;
1623 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1624 if (bio_attempt_front_merge(q, req, bio)) {
1625 elv_bio_merged(q, req, bio);
1626 if (!attempt_front_merge(q, req))
1627 elv_merged_request(q, req, el_ret);
1628 goto out_unlock;
1632 get_rq:
1634 * This sync check and mask will be re-done in init_request_from_bio(),
1635 * but we need to set it earlier to expose the sync flag to the
1636 * rq allocator and io schedulers.
1638 rw_flags = bio_data_dir(bio);
1639 if (sync)
1640 rw_flags |= REQ_SYNC;
1643 * Grab a free request. This is might sleep but can not fail.
1644 * Returns with the queue unlocked.
1646 req = get_request(q, rw_flags, bio, GFP_NOIO);
1647 if (IS_ERR(req)) {
1648 bio_endio(bio, PTR_ERR(req)); /* @q is dead */
1649 goto out_unlock;
1653 * After dropping the lock and possibly sleeping here, our request
1654 * may now be mergeable after it had proven unmergeable (above).
1655 * We don't worry about that case for efficiency. It won't happen
1656 * often, and the elevators are able to handle it.
1658 init_request_from_bio(req, bio);
1660 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1661 req->cpu = raw_smp_processor_id();
1663 plug = current->plug;
1664 if (plug) {
1666 * If this is the first request added after a plug, fire
1667 * of a plug trace.
1669 if (!request_count)
1670 trace_block_plug(q);
1671 else {
1672 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1673 blk_flush_plug_list(plug, false);
1674 trace_block_plug(q);
1677 list_add_tail(&req->queuelist, &plug->list);
1678 blk_account_io_start(req, true);
1679 } else {
1680 spin_lock_irq(q->queue_lock);
1681 add_acct_request(q, req, where);
1682 __blk_run_queue(q);
1683 out_unlock:
1684 spin_unlock_irq(q->queue_lock);
1687 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1690 * If bio->bi_dev is a partition, remap the location
1692 static inline void blk_partition_remap(struct bio *bio)
1694 struct block_device *bdev = bio->bi_bdev;
1696 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1697 struct hd_struct *p = bdev->bd_part;
1699 bio->bi_iter.bi_sector += p->start_sect;
1700 bio->bi_bdev = bdev->bd_contains;
1702 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1703 bdev->bd_dev,
1704 bio->bi_iter.bi_sector - p->start_sect);
1708 static void handle_bad_sector(struct bio *bio)
1710 char b[BDEVNAME_SIZE];
1712 printk(KERN_INFO "attempt to access beyond end of device\n");
1713 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1714 bdevname(bio->bi_bdev, b),
1715 bio->bi_rw,
1716 (unsigned long long)bio_end_sector(bio),
1717 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1719 set_bit(BIO_EOF, &bio->bi_flags);
1722 #ifdef CONFIG_FAIL_MAKE_REQUEST
1724 static DECLARE_FAULT_ATTR(fail_make_request);
1726 static int __init setup_fail_make_request(char *str)
1728 return setup_fault_attr(&fail_make_request, str);
1730 __setup("fail_make_request=", setup_fail_make_request);
1732 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1734 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1737 static int __init fail_make_request_debugfs(void)
1739 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1740 NULL, &fail_make_request);
1742 return PTR_ERR_OR_ZERO(dir);
1745 late_initcall(fail_make_request_debugfs);
1747 #else /* CONFIG_FAIL_MAKE_REQUEST */
1749 static inline bool should_fail_request(struct hd_struct *part,
1750 unsigned int bytes)
1752 return false;
1755 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1758 * Check whether this bio extends beyond the end of the device.
1760 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1762 sector_t maxsector;
1764 if (!nr_sectors)
1765 return 0;
1767 /* Test device or partition size, when known. */
1768 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1769 if (maxsector) {
1770 sector_t sector = bio->bi_iter.bi_sector;
1772 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1774 * This may well happen - the kernel calls bread()
1775 * without checking the size of the device, e.g., when
1776 * mounting a device.
1778 handle_bad_sector(bio);
1779 return 1;
1783 return 0;
1786 static noinline_for_stack bool
1787 generic_make_request_checks(struct bio *bio)
1789 struct request_queue *q;
1790 int nr_sectors = bio_sectors(bio);
1791 int err = -EIO;
1792 char b[BDEVNAME_SIZE];
1793 struct hd_struct *part;
1795 might_sleep();
1797 if (bio_check_eod(bio, nr_sectors))
1798 goto end_io;
1800 q = bdev_get_queue(bio->bi_bdev);
1801 if (unlikely(!q)) {
1802 printk(KERN_ERR
1803 "generic_make_request: Trying to access "
1804 "nonexistent block-device %s (%Lu)\n",
1805 bdevname(bio->bi_bdev, b),
1806 (long long) bio->bi_iter.bi_sector);
1807 goto end_io;
1810 if (likely(bio_is_rw(bio) &&
1811 nr_sectors > queue_max_hw_sectors(q))) {
1812 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1813 bdevname(bio->bi_bdev, b),
1814 bio_sectors(bio),
1815 queue_max_hw_sectors(q));
1816 goto end_io;
1819 part = bio->bi_bdev->bd_part;
1820 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1821 should_fail_request(&part_to_disk(part)->part0,
1822 bio->bi_iter.bi_size))
1823 goto end_io;
1826 * If this device has partitions, remap block n
1827 * of partition p to block n+start(p) of the disk.
1829 blk_partition_remap(bio);
1831 if (bio_check_eod(bio, nr_sectors))
1832 goto end_io;
1835 * Filter flush bio's early so that make_request based
1836 * drivers without flush support don't have to worry
1837 * about them.
1839 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1840 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1841 if (!nr_sectors) {
1842 err = 0;
1843 goto end_io;
1847 if ((bio->bi_rw & REQ_DISCARD) &&
1848 (!blk_queue_discard(q) ||
1849 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1850 err = -EOPNOTSUPP;
1851 goto end_io;
1854 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1855 err = -EOPNOTSUPP;
1856 goto end_io;
1860 * Various block parts want %current->io_context and lazy ioc
1861 * allocation ends up trading a lot of pain for a small amount of
1862 * memory. Just allocate it upfront. This may fail and block
1863 * layer knows how to live with it.
1865 create_io_context(GFP_ATOMIC, q->node);
1867 if (blk_throtl_bio(q, bio))
1868 return false; /* throttled, will be resubmitted later */
1870 trace_block_bio_queue(q, bio);
1871 return true;
1873 end_io:
1874 bio_endio(bio, err);
1875 return false;
1879 * generic_make_request - hand a buffer to its device driver for I/O
1880 * @bio: The bio describing the location in memory and on the device.
1882 * generic_make_request() is used to make I/O requests of block
1883 * devices. It is passed a &struct bio, which describes the I/O that needs
1884 * to be done.
1886 * generic_make_request() does not return any status. The
1887 * success/failure status of the request, along with notification of
1888 * completion, is delivered asynchronously through the bio->bi_end_io
1889 * function described (one day) else where.
1891 * The caller of generic_make_request must make sure that bi_io_vec
1892 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1893 * set to describe the device address, and the
1894 * bi_end_io and optionally bi_private are set to describe how
1895 * completion notification should be signaled.
1897 * generic_make_request and the drivers it calls may use bi_next if this
1898 * bio happens to be merged with someone else, and may resubmit the bio to
1899 * a lower device by calling into generic_make_request recursively, which
1900 * means the bio should NOT be touched after the call to ->make_request_fn.
1902 void generic_make_request(struct bio *bio)
1904 struct bio_list bio_list_on_stack;
1906 if (!generic_make_request_checks(bio))
1907 return;
1910 * We only want one ->make_request_fn to be active at a time, else
1911 * stack usage with stacked devices could be a problem. So use
1912 * current->bio_list to keep a list of requests submited by a
1913 * make_request_fn function. current->bio_list is also used as a
1914 * flag to say if generic_make_request is currently active in this
1915 * task or not. If it is NULL, then no make_request is active. If
1916 * it is non-NULL, then a make_request is active, and new requests
1917 * should be added at the tail
1919 if (current->bio_list) {
1920 bio_list_add(current->bio_list, bio);
1921 return;
1924 /* following loop may be a bit non-obvious, and so deserves some
1925 * explanation.
1926 * Before entering the loop, bio->bi_next is NULL (as all callers
1927 * ensure that) so we have a list with a single bio.
1928 * We pretend that we have just taken it off a longer list, so
1929 * we assign bio_list to a pointer to the bio_list_on_stack,
1930 * thus initialising the bio_list of new bios to be
1931 * added. ->make_request() may indeed add some more bios
1932 * through a recursive call to generic_make_request. If it
1933 * did, we find a non-NULL value in bio_list and re-enter the loop
1934 * from the top. In this case we really did just take the bio
1935 * of the top of the list (no pretending) and so remove it from
1936 * bio_list, and call into ->make_request() again.
1938 BUG_ON(bio->bi_next);
1939 bio_list_init(&bio_list_on_stack);
1940 current->bio_list = &bio_list_on_stack;
1941 do {
1942 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1944 q->make_request_fn(q, bio);
1946 bio = bio_list_pop(current->bio_list);
1947 } while (bio);
1948 current->bio_list = NULL; /* deactivate */
1950 EXPORT_SYMBOL(generic_make_request);
1953 * submit_bio - submit a bio to the block device layer for I/O
1954 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1955 * @bio: The &struct bio which describes the I/O
1957 * submit_bio() is very similar in purpose to generic_make_request(), and
1958 * uses that function to do most of the work. Both are fairly rough
1959 * interfaces; @bio must be presetup and ready for I/O.
1962 void submit_bio(int rw, struct bio *bio)
1964 bio->bi_rw |= rw;
1967 * If it's a regular read/write or a barrier with data attached,
1968 * go through the normal accounting stuff before submission.
1970 if (bio_has_data(bio)) {
1971 unsigned int count;
1973 if (unlikely(rw & REQ_WRITE_SAME))
1974 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1975 else
1976 count = bio_sectors(bio);
1978 if (rw & WRITE) {
1979 count_vm_events(PGPGOUT, count);
1980 } else {
1981 task_io_account_read(bio->bi_iter.bi_size);
1982 count_vm_events(PGPGIN, count);
1985 if (unlikely(block_dump)) {
1986 char b[BDEVNAME_SIZE];
1987 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1988 current->comm, task_pid_nr(current),
1989 (rw & WRITE) ? "WRITE" : "READ",
1990 (unsigned long long)bio->bi_iter.bi_sector,
1991 bdevname(bio->bi_bdev, b),
1992 count);
1996 generic_make_request(bio);
1998 EXPORT_SYMBOL(submit_bio);
2001 * blk_rq_check_limits - Helper function to check a request for the queue limit
2002 * @q: the queue
2003 * @rq: the request being checked
2005 * Description:
2006 * @rq may have been made based on weaker limitations of upper-level queues
2007 * in request stacking drivers, and it may violate the limitation of @q.
2008 * Since the block layer and the underlying device driver trust @rq
2009 * after it is inserted to @q, it should be checked against @q before
2010 * the insertion using this generic function.
2012 * This function should also be useful for request stacking drivers
2013 * in some cases below, so export this function.
2014 * Request stacking drivers like request-based dm may change the queue
2015 * limits while requests are in the queue (e.g. dm's table swapping).
2016 * Such request stacking drivers should check those requests against
2017 * the new queue limits again when they dispatch those requests,
2018 * although such checkings are also done against the old queue limits
2019 * when submitting requests.
2021 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
2023 if (!rq_mergeable(rq))
2024 return 0;
2026 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
2027 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2028 return -EIO;
2032 * queue's settings related to segment counting like q->bounce_pfn
2033 * may differ from that of other stacking queues.
2034 * Recalculate it to check the request correctly on this queue's
2035 * limitation.
2037 blk_recalc_rq_segments(rq);
2038 if (rq->nr_phys_segments > queue_max_segments(q)) {
2039 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2040 return -EIO;
2043 return 0;
2045 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
2048 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2049 * @q: the queue to submit the request
2050 * @rq: the request being queued
2052 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2054 unsigned long flags;
2055 int where = ELEVATOR_INSERT_BACK;
2057 if (blk_rq_check_limits(q, rq))
2058 return -EIO;
2060 if (rq->rq_disk &&
2061 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2062 return -EIO;
2064 if (q->mq_ops) {
2065 if (blk_queue_io_stat(q))
2066 blk_account_io_start(rq, true);
2067 blk_mq_insert_request(rq, false, true, true);
2068 return 0;
2071 spin_lock_irqsave(q->queue_lock, flags);
2072 if (unlikely(blk_queue_dying(q))) {
2073 spin_unlock_irqrestore(q->queue_lock, flags);
2074 return -ENODEV;
2078 * Submitting request must be dequeued before calling this function
2079 * because it will be linked to another request_queue
2081 BUG_ON(blk_queued_rq(rq));
2083 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2084 where = ELEVATOR_INSERT_FLUSH;
2086 add_acct_request(q, rq, where);
2087 if (where == ELEVATOR_INSERT_FLUSH)
2088 __blk_run_queue(q);
2089 spin_unlock_irqrestore(q->queue_lock, flags);
2091 return 0;
2093 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2096 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2097 * @rq: request to examine
2099 * Description:
2100 * A request could be merge of IOs which require different failure
2101 * handling. This function determines the number of bytes which
2102 * can be failed from the beginning of the request without
2103 * crossing into area which need to be retried further.
2105 * Return:
2106 * The number of bytes to fail.
2108 * Context:
2109 * queue_lock must be held.
2111 unsigned int blk_rq_err_bytes(const struct request *rq)
2113 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2114 unsigned int bytes = 0;
2115 struct bio *bio;
2117 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2118 return blk_rq_bytes(rq);
2121 * Currently the only 'mixing' which can happen is between
2122 * different fastfail types. We can safely fail portions
2123 * which have all the failfast bits that the first one has -
2124 * the ones which are at least as eager to fail as the first
2125 * one.
2127 for (bio = rq->bio; bio; bio = bio->bi_next) {
2128 if ((bio->bi_rw & ff) != ff)
2129 break;
2130 bytes += bio->bi_iter.bi_size;
2133 /* this could lead to infinite loop */
2134 BUG_ON(blk_rq_bytes(rq) && !bytes);
2135 return bytes;
2137 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2139 void blk_account_io_completion(struct request *req, unsigned int bytes)
2141 if (blk_do_io_stat(req)) {
2142 const int rw = rq_data_dir(req);
2143 struct hd_struct *part;
2144 int cpu;
2146 cpu = part_stat_lock();
2147 part = req->part;
2148 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2149 part_stat_unlock();
2153 void blk_account_io_done(struct request *req)
2156 * Account IO completion. flush_rq isn't accounted as a
2157 * normal IO on queueing nor completion. Accounting the
2158 * containing request is enough.
2160 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2161 unsigned long duration = jiffies - req->start_time;
2162 const int rw = rq_data_dir(req);
2163 struct hd_struct *part;
2164 int cpu;
2166 cpu = part_stat_lock();
2167 part = req->part;
2169 part_stat_inc(cpu, part, ios[rw]);
2170 part_stat_add(cpu, part, ticks[rw], duration);
2171 part_round_stats(cpu, part);
2172 part_dec_in_flight(part, rw);
2174 hd_struct_put(part);
2175 part_stat_unlock();
2179 #ifdef CONFIG_PM
2181 * Don't process normal requests when queue is suspended
2182 * or in the process of suspending/resuming
2184 static struct request *blk_pm_peek_request(struct request_queue *q,
2185 struct request *rq)
2187 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2188 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2189 return NULL;
2190 else
2191 return rq;
2193 #else
2194 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2195 struct request *rq)
2197 return rq;
2199 #endif
2201 void blk_account_io_start(struct request *rq, bool new_io)
2203 struct hd_struct *part;
2204 int rw = rq_data_dir(rq);
2205 int cpu;
2207 if (!blk_do_io_stat(rq))
2208 return;
2210 cpu = part_stat_lock();
2212 if (!new_io) {
2213 part = rq->part;
2214 part_stat_inc(cpu, part, merges[rw]);
2215 } else {
2216 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2217 if (!hd_struct_try_get(part)) {
2219 * The partition is already being removed,
2220 * the request will be accounted on the disk only
2222 * We take a reference on disk->part0 although that
2223 * partition will never be deleted, so we can treat
2224 * it as any other partition.
2226 part = &rq->rq_disk->part0;
2227 hd_struct_get(part);
2229 part_round_stats(cpu, part);
2230 part_inc_in_flight(part, rw);
2231 rq->part = part;
2234 part_stat_unlock();
2238 * blk_peek_request - peek at the top of a request queue
2239 * @q: request queue to peek at
2241 * Description:
2242 * Return the request at the top of @q. The returned request
2243 * should be started using blk_start_request() before LLD starts
2244 * processing it.
2246 * Return:
2247 * Pointer to the request at the top of @q if available. Null
2248 * otherwise.
2250 * Context:
2251 * queue_lock must be held.
2253 struct request *blk_peek_request(struct request_queue *q)
2255 struct request *rq;
2256 int ret;
2258 while ((rq = __elv_next_request(q)) != NULL) {
2260 rq = blk_pm_peek_request(q, rq);
2261 if (!rq)
2262 break;
2264 if (!(rq->cmd_flags & REQ_STARTED)) {
2266 * This is the first time the device driver
2267 * sees this request (possibly after
2268 * requeueing). Notify IO scheduler.
2270 if (rq->cmd_flags & REQ_SORTED)
2271 elv_activate_rq(q, rq);
2274 * just mark as started even if we don't start
2275 * it, a request that has been delayed should
2276 * not be passed by new incoming requests
2278 rq->cmd_flags |= REQ_STARTED;
2279 trace_block_rq_issue(q, rq);
2282 if (!q->boundary_rq || q->boundary_rq == rq) {
2283 q->end_sector = rq_end_sector(rq);
2284 q->boundary_rq = NULL;
2287 if (rq->cmd_flags & REQ_DONTPREP)
2288 break;
2290 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2292 * make sure space for the drain appears we
2293 * know we can do this because max_hw_segments
2294 * has been adjusted to be one fewer than the
2295 * device can handle
2297 rq->nr_phys_segments++;
2300 if (!q->prep_rq_fn)
2301 break;
2303 ret = q->prep_rq_fn(q, rq);
2304 if (ret == BLKPREP_OK) {
2305 break;
2306 } else if (ret == BLKPREP_DEFER) {
2308 * the request may have been (partially) prepped.
2309 * we need to keep this request in the front to
2310 * avoid resource deadlock. REQ_STARTED will
2311 * prevent other fs requests from passing this one.
2313 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2314 !(rq->cmd_flags & REQ_DONTPREP)) {
2316 * remove the space for the drain we added
2317 * so that we don't add it again
2319 --rq->nr_phys_segments;
2322 rq = NULL;
2323 break;
2324 } else if (ret == BLKPREP_KILL) {
2325 rq->cmd_flags |= REQ_QUIET;
2327 * Mark this request as started so we don't trigger
2328 * any debug logic in the end I/O path.
2330 blk_start_request(rq);
2331 __blk_end_request_all(rq, -EIO);
2332 } else {
2333 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2334 break;
2338 return rq;
2340 EXPORT_SYMBOL(blk_peek_request);
2342 void blk_dequeue_request(struct request *rq)
2344 struct request_queue *q = rq->q;
2346 BUG_ON(list_empty(&rq->queuelist));
2347 BUG_ON(ELV_ON_HASH(rq));
2349 list_del_init(&rq->queuelist);
2352 * the time frame between a request being removed from the lists
2353 * and to it is freed is accounted as io that is in progress at
2354 * the driver side.
2356 if (blk_account_rq(rq)) {
2357 q->in_flight[rq_is_sync(rq)]++;
2358 set_io_start_time_ns(rq);
2363 * blk_start_request - start request processing on the driver
2364 * @req: request to dequeue
2366 * Description:
2367 * Dequeue @req and start timeout timer on it. This hands off the
2368 * request to the driver.
2370 * Block internal functions which don't want to start timer should
2371 * call blk_dequeue_request().
2373 * Context:
2374 * queue_lock must be held.
2376 void blk_start_request(struct request *req)
2378 blk_dequeue_request(req);
2381 * We are now handing the request to the hardware, initialize
2382 * resid_len to full count and add the timeout handler.
2384 req->resid_len = blk_rq_bytes(req);
2385 if (unlikely(blk_bidi_rq(req)))
2386 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2388 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2389 blk_add_timer(req);
2391 EXPORT_SYMBOL(blk_start_request);
2394 * blk_fetch_request - fetch a request from a request queue
2395 * @q: request queue to fetch a request from
2397 * Description:
2398 * Return the request at the top of @q. The request is started on
2399 * return and LLD can start processing it immediately.
2401 * Return:
2402 * Pointer to the request at the top of @q if available. Null
2403 * otherwise.
2405 * Context:
2406 * queue_lock must be held.
2408 struct request *blk_fetch_request(struct request_queue *q)
2410 struct request *rq;
2412 rq = blk_peek_request(q);
2413 if (rq)
2414 blk_start_request(rq);
2415 return rq;
2417 EXPORT_SYMBOL(blk_fetch_request);
2420 * blk_update_request - Special helper function for request stacking drivers
2421 * @req: the request being processed
2422 * @error: %0 for success, < %0 for error
2423 * @nr_bytes: number of bytes to complete @req
2425 * Description:
2426 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2427 * the request structure even if @req doesn't have leftover.
2428 * If @req has leftover, sets it up for the next range of segments.
2430 * This special helper function is only for request stacking drivers
2431 * (e.g. request-based dm) so that they can handle partial completion.
2432 * Actual device drivers should use blk_end_request instead.
2434 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2435 * %false return from this function.
2437 * Return:
2438 * %false - this request doesn't have any more data
2439 * %true - this request has more data
2441 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2443 int total_bytes;
2445 trace_block_rq_complete(req->q, req, nr_bytes);
2447 if (!req->bio)
2448 return false;
2451 * For fs requests, rq is just carrier of independent bio's
2452 * and each partial completion should be handled separately.
2453 * Reset per-request error on each partial completion.
2455 * TODO: tj: This is too subtle. It would be better to let
2456 * low level drivers do what they see fit.
2458 if (req->cmd_type == REQ_TYPE_FS)
2459 req->errors = 0;
2461 if (error && req->cmd_type == REQ_TYPE_FS &&
2462 !(req->cmd_flags & REQ_QUIET)) {
2463 char *error_type;
2465 switch (error) {
2466 case -ENOLINK:
2467 error_type = "recoverable transport";
2468 break;
2469 case -EREMOTEIO:
2470 error_type = "critical target";
2471 break;
2472 case -EBADE:
2473 error_type = "critical nexus";
2474 break;
2475 case -ETIMEDOUT:
2476 error_type = "timeout";
2477 break;
2478 case -ENOSPC:
2479 error_type = "critical space allocation";
2480 break;
2481 case -ENODATA:
2482 error_type = "critical medium";
2483 break;
2484 case -EIO:
2485 default:
2486 error_type = "I/O";
2487 break;
2489 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2490 __func__, error_type, req->rq_disk ?
2491 req->rq_disk->disk_name : "?",
2492 (unsigned long long)blk_rq_pos(req));
2496 blk_account_io_completion(req, nr_bytes);
2498 total_bytes = 0;
2499 while (req->bio) {
2500 struct bio *bio = req->bio;
2501 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2503 if (bio_bytes == bio->bi_iter.bi_size)
2504 req->bio = bio->bi_next;
2506 req_bio_endio(req, bio, bio_bytes, error);
2508 total_bytes += bio_bytes;
2509 nr_bytes -= bio_bytes;
2511 if (!nr_bytes)
2512 break;
2516 * completely done
2518 if (!req->bio) {
2520 * Reset counters so that the request stacking driver
2521 * can find how many bytes remain in the request
2522 * later.
2524 req->__data_len = 0;
2525 return false;
2528 req->__data_len -= total_bytes;
2530 /* update sector only for requests with clear definition of sector */
2531 if (req->cmd_type == REQ_TYPE_FS)
2532 req->__sector += total_bytes >> 9;
2534 /* mixed attributes always follow the first bio */
2535 if (req->cmd_flags & REQ_MIXED_MERGE) {
2536 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2537 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2541 * If total number of sectors is less than the first segment
2542 * size, something has gone terribly wrong.
2544 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2545 blk_dump_rq_flags(req, "request botched");
2546 req->__data_len = blk_rq_cur_bytes(req);
2549 /* recalculate the number of segments */
2550 blk_recalc_rq_segments(req);
2552 return true;
2554 EXPORT_SYMBOL_GPL(blk_update_request);
2556 static bool blk_update_bidi_request(struct request *rq, int error,
2557 unsigned int nr_bytes,
2558 unsigned int bidi_bytes)
2560 if (blk_update_request(rq, error, nr_bytes))
2561 return true;
2563 /* Bidi request must be completed as a whole */
2564 if (unlikely(blk_bidi_rq(rq)) &&
2565 blk_update_request(rq->next_rq, error, bidi_bytes))
2566 return true;
2568 if (blk_queue_add_random(rq->q))
2569 add_disk_randomness(rq->rq_disk);
2571 return false;
2575 * blk_unprep_request - unprepare a request
2576 * @req: the request
2578 * This function makes a request ready for complete resubmission (or
2579 * completion). It happens only after all error handling is complete,
2580 * so represents the appropriate moment to deallocate any resources
2581 * that were allocated to the request in the prep_rq_fn. The queue
2582 * lock is held when calling this.
2584 void blk_unprep_request(struct request *req)
2586 struct request_queue *q = req->q;
2588 req->cmd_flags &= ~REQ_DONTPREP;
2589 if (q->unprep_rq_fn)
2590 q->unprep_rq_fn(q, req);
2592 EXPORT_SYMBOL_GPL(blk_unprep_request);
2595 * queue lock must be held
2597 void blk_finish_request(struct request *req, int error)
2599 if (req->cmd_flags & REQ_QUEUED)
2600 blk_queue_end_tag(req->q, req);
2602 BUG_ON(blk_queued_rq(req));
2604 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2605 laptop_io_completion(&req->q->backing_dev_info);
2607 blk_delete_timer(req);
2609 if (req->cmd_flags & REQ_DONTPREP)
2610 blk_unprep_request(req);
2612 blk_account_io_done(req);
2614 if (req->end_io)
2615 req->end_io(req, error);
2616 else {
2617 if (blk_bidi_rq(req))
2618 __blk_put_request(req->next_rq->q, req->next_rq);
2620 __blk_put_request(req->q, req);
2623 EXPORT_SYMBOL(blk_finish_request);
2626 * blk_end_bidi_request - Complete a bidi request
2627 * @rq: the request to complete
2628 * @error: %0 for success, < %0 for error
2629 * @nr_bytes: number of bytes to complete @rq
2630 * @bidi_bytes: number of bytes to complete @rq->next_rq
2632 * Description:
2633 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2634 * Drivers that supports bidi can safely call this member for any
2635 * type of request, bidi or uni. In the later case @bidi_bytes is
2636 * just ignored.
2638 * Return:
2639 * %false - we are done with this request
2640 * %true - still buffers pending for this request
2642 static bool blk_end_bidi_request(struct request *rq, int error,
2643 unsigned int nr_bytes, unsigned int bidi_bytes)
2645 struct request_queue *q = rq->q;
2646 unsigned long flags;
2648 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2649 return true;
2651 spin_lock_irqsave(q->queue_lock, flags);
2652 blk_finish_request(rq, error);
2653 spin_unlock_irqrestore(q->queue_lock, flags);
2655 return false;
2659 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2660 * @rq: the request to complete
2661 * @error: %0 for success, < %0 for error
2662 * @nr_bytes: number of bytes to complete @rq
2663 * @bidi_bytes: number of bytes to complete @rq->next_rq
2665 * Description:
2666 * Identical to blk_end_bidi_request() except that queue lock is
2667 * assumed to be locked on entry and remains so on return.
2669 * Return:
2670 * %false - we are done with this request
2671 * %true - still buffers pending for this request
2673 bool __blk_end_bidi_request(struct request *rq, int error,
2674 unsigned int nr_bytes, unsigned int bidi_bytes)
2676 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2677 return true;
2679 blk_finish_request(rq, error);
2681 return false;
2685 * blk_end_request - Helper function for drivers to complete the request.
2686 * @rq: the request being processed
2687 * @error: %0 for success, < %0 for error
2688 * @nr_bytes: number of bytes to complete
2690 * Description:
2691 * Ends I/O on a number of bytes attached to @rq.
2692 * If @rq has leftover, sets it up for the next range of segments.
2694 * Return:
2695 * %false - we are done with this request
2696 * %true - still buffers pending for this request
2698 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2700 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2702 EXPORT_SYMBOL(blk_end_request);
2705 * blk_end_request_all - Helper function for drives to finish the request.
2706 * @rq: the request to finish
2707 * @error: %0 for success, < %0 for error
2709 * Description:
2710 * Completely finish @rq.
2712 void blk_end_request_all(struct request *rq, int error)
2714 bool pending;
2715 unsigned int bidi_bytes = 0;
2717 if (unlikely(blk_bidi_rq(rq)))
2718 bidi_bytes = blk_rq_bytes(rq->next_rq);
2720 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2721 BUG_ON(pending);
2723 EXPORT_SYMBOL(blk_end_request_all);
2726 * blk_end_request_cur - Helper function to finish the current request chunk.
2727 * @rq: the request to finish the current chunk for
2728 * @error: %0 for success, < %0 for error
2730 * Description:
2731 * Complete the current consecutively mapped chunk from @rq.
2733 * Return:
2734 * %false - we are done with this request
2735 * %true - still buffers pending for this request
2737 bool blk_end_request_cur(struct request *rq, int error)
2739 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2741 EXPORT_SYMBOL(blk_end_request_cur);
2744 * blk_end_request_err - Finish a request till the next failure boundary.
2745 * @rq: the request to finish till the next failure boundary for
2746 * @error: must be negative errno
2748 * Description:
2749 * Complete @rq till the next failure boundary.
2751 * Return:
2752 * %false - we are done with this request
2753 * %true - still buffers pending for this request
2755 bool blk_end_request_err(struct request *rq, int error)
2757 WARN_ON(error >= 0);
2758 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2760 EXPORT_SYMBOL_GPL(blk_end_request_err);
2763 * __blk_end_request - Helper function for drivers to complete the request.
2764 * @rq: the request being processed
2765 * @error: %0 for success, < %0 for error
2766 * @nr_bytes: number of bytes to complete
2768 * Description:
2769 * Must be called with queue lock held unlike blk_end_request().
2771 * Return:
2772 * %false - we are done with this request
2773 * %true - still buffers pending for this request
2775 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2777 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2779 EXPORT_SYMBOL(__blk_end_request);
2782 * __blk_end_request_all - Helper function for drives to finish the request.
2783 * @rq: the request to finish
2784 * @error: %0 for success, < %0 for error
2786 * Description:
2787 * Completely finish @rq. Must be called with queue lock held.
2789 void __blk_end_request_all(struct request *rq, int error)
2791 bool pending;
2792 unsigned int bidi_bytes = 0;
2794 if (unlikely(blk_bidi_rq(rq)))
2795 bidi_bytes = blk_rq_bytes(rq->next_rq);
2797 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2798 BUG_ON(pending);
2800 EXPORT_SYMBOL(__blk_end_request_all);
2803 * __blk_end_request_cur - Helper function to finish the current request chunk.
2804 * @rq: the request to finish the current chunk for
2805 * @error: %0 for success, < %0 for error
2807 * Description:
2808 * Complete the current consecutively mapped chunk from @rq. Must
2809 * be called with queue lock held.
2811 * Return:
2812 * %false - we are done with this request
2813 * %true - still buffers pending for this request
2815 bool __blk_end_request_cur(struct request *rq, int error)
2817 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2819 EXPORT_SYMBOL(__blk_end_request_cur);
2822 * __blk_end_request_err - Finish a request till the next failure boundary.
2823 * @rq: the request to finish till the next failure boundary for
2824 * @error: must be negative errno
2826 * Description:
2827 * Complete @rq till the next failure boundary. Must be called
2828 * with queue lock held.
2830 * Return:
2831 * %false - we are done with this request
2832 * %true - still buffers pending for this request
2834 bool __blk_end_request_err(struct request *rq, int error)
2836 WARN_ON(error >= 0);
2837 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2839 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2841 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2842 struct bio *bio)
2844 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2845 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2847 if (bio_has_data(bio))
2848 rq->nr_phys_segments = bio_phys_segments(q, bio);
2850 rq->__data_len = bio->bi_iter.bi_size;
2851 rq->bio = rq->biotail = bio;
2853 if (bio->bi_bdev)
2854 rq->rq_disk = bio->bi_bdev->bd_disk;
2857 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2859 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2860 * @rq: the request to be flushed
2862 * Description:
2863 * Flush all pages in @rq.
2865 void rq_flush_dcache_pages(struct request *rq)
2867 struct req_iterator iter;
2868 struct bio_vec bvec;
2870 rq_for_each_segment(bvec, rq, iter)
2871 flush_dcache_page(bvec.bv_page);
2873 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2874 #endif
2877 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2878 * @q : the queue of the device being checked
2880 * Description:
2881 * Check if underlying low-level drivers of a device are busy.
2882 * If the drivers want to export their busy state, they must set own
2883 * exporting function using blk_queue_lld_busy() first.
2885 * Basically, this function is used only by request stacking drivers
2886 * to stop dispatching requests to underlying devices when underlying
2887 * devices are busy. This behavior helps more I/O merging on the queue
2888 * of the request stacking driver and prevents I/O throughput regression
2889 * on burst I/O load.
2891 * Return:
2892 * 0 - Not busy (The request stacking driver should dispatch request)
2893 * 1 - Busy (The request stacking driver should stop dispatching request)
2895 int blk_lld_busy(struct request_queue *q)
2897 if (q->lld_busy_fn)
2898 return q->lld_busy_fn(q);
2900 return 0;
2902 EXPORT_SYMBOL_GPL(blk_lld_busy);
2905 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2906 * @rq: the clone request to be cleaned up
2908 * Description:
2909 * Free all bios in @rq for a cloned request.
2911 void blk_rq_unprep_clone(struct request *rq)
2913 struct bio *bio;
2915 while ((bio = rq->bio) != NULL) {
2916 rq->bio = bio->bi_next;
2918 bio_put(bio);
2921 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2924 * Copy attributes of the original request to the clone request.
2925 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2927 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2929 dst->cpu = src->cpu;
2930 dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2931 dst->cmd_type = src->cmd_type;
2932 dst->__sector = blk_rq_pos(src);
2933 dst->__data_len = blk_rq_bytes(src);
2934 dst->nr_phys_segments = src->nr_phys_segments;
2935 dst->ioprio = src->ioprio;
2936 dst->extra_len = src->extra_len;
2940 * blk_rq_prep_clone - Helper function to setup clone request
2941 * @rq: the request to be setup
2942 * @rq_src: original request to be cloned
2943 * @bs: bio_set that bios for clone are allocated from
2944 * @gfp_mask: memory allocation mask for bio
2945 * @bio_ctr: setup function to be called for each clone bio.
2946 * Returns %0 for success, non %0 for failure.
2947 * @data: private data to be passed to @bio_ctr
2949 * Description:
2950 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2951 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
2952 * are not copied, and copying such parts is the caller's responsibility.
2953 * Also, pages which the original bios are pointing to are not copied
2954 * and the cloned bios just point same pages.
2955 * So cloned bios must be completed before original bios, which means
2956 * the caller must complete @rq before @rq_src.
2958 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2959 struct bio_set *bs, gfp_t gfp_mask,
2960 int (*bio_ctr)(struct bio *, struct bio *, void *),
2961 void *data)
2963 struct bio *bio, *bio_src;
2965 if (!bs)
2966 bs = fs_bio_set;
2968 __rq_for_each_bio(bio_src, rq_src) {
2969 bio = bio_clone_fast(bio_src, gfp_mask, bs);
2970 if (!bio)
2971 goto free_and_out;
2973 if (bio_ctr && bio_ctr(bio, bio_src, data))
2974 goto free_and_out;
2976 if (rq->bio) {
2977 rq->biotail->bi_next = bio;
2978 rq->biotail = bio;
2979 } else
2980 rq->bio = rq->biotail = bio;
2983 __blk_rq_prep_clone(rq, rq_src);
2985 return 0;
2987 free_and_out:
2988 if (bio)
2989 bio_put(bio);
2990 blk_rq_unprep_clone(rq);
2992 return -ENOMEM;
2994 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2996 int kblockd_schedule_work(struct work_struct *work)
2998 return queue_work(kblockd_workqueue, work);
3000 EXPORT_SYMBOL(kblockd_schedule_work);
3002 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3003 unsigned long delay)
3005 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3007 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3009 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3010 unsigned long delay)
3012 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3014 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3017 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3018 * @plug: The &struct blk_plug that needs to be initialized
3020 * Description:
3021 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3022 * pending I/O should the task end up blocking between blk_start_plug() and
3023 * blk_finish_plug(). This is important from a performance perspective, but
3024 * also ensures that we don't deadlock. For instance, if the task is blocking
3025 * for a memory allocation, memory reclaim could end up wanting to free a
3026 * page belonging to that request that is currently residing in our private
3027 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3028 * this kind of deadlock.
3030 void blk_start_plug(struct blk_plug *plug)
3032 struct task_struct *tsk = current;
3034 INIT_LIST_HEAD(&plug->list);
3035 INIT_LIST_HEAD(&plug->mq_list);
3036 INIT_LIST_HEAD(&plug->cb_list);
3039 * If this is a nested plug, don't actually assign it. It will be
3040 * flushed on its own.
3042 if (!tsk->plug) {
3044 * Store ordering should not be needed here, since a potential
3045 * preempt will imply a full memory barrier
3047 tsk->plug = plug;
3050 EXPORT_SYMBOL(blk_start_plug);
3052 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3054 struct request *rqa = container_of(a, struct request, queuelist);
3055 struct request *rqb = container_of(b, struct request, queuelist);
3057 return !(rqa->q < rqb->q ||
3058 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3062 * If 'from_schedule' is true, then postpone the dispatch of requests
3063 * until a safe kblockd context. We due this to avoid accidental big
3064 * additional stack usage in driver dispatch, in places where the originally
3065 * plugger did not intend it.
3067 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3068 bool from_schedule)
3069 __releases(q->queue_lock)
3071 trace_block_unplug(q, depth, !from_schedule);
3073 if (from_schedule)
3074 blk_run_queue_async(q);
3075 else
3076 __blk_run_queue(q);
3077 spin_unlock(q->queue_lock);
3080 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3082 LIST_HEAD(callbacks);
3084 while (!list_empty(&plug->cb_list)) {
3085 list_splice_init(&plug->cb_list, &callbacks);
3087 while (!list_empty(&callbacks)) {
3088 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3089 struct blk_plug_cb,
3090 list);
3091 list_del(&cb->list);
3092 cb->callback(cb, from_schedule);
3097 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3098 int size)
3100 struct blk_plug *plug = current->plug;
3101 struct blk_plug_cb *cb;
3103 if (!plug)
3104 return NULL;
3106 list_for_each_entry(cb, &plug->cb_list, list)
3107 if (cb->callback == unplug && cb->data == data)
3108 return cb;
3110 /* Not currently on the callback list */
3111 BUG_ON(size < sizeof(*cb));
3112 cb = kzalloc(size, GFP_ATOMIC);
3113 if (cb) {
3114 cb->data = data;
3115 cb->callback = unplug;
3116 list_add(&cb->list, &plug->cb_list);
3118 return cb;
3120 EXPORT_SYMBOL(blk_check_plugged);
3122 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3124 struct request_queue *q;
3125 unsigned long flags;
3126 struct request *rq;
3127 LIST_HEAD(list);
3128 unsigned int depth;
3130 flush_plug_callbacks(plug, from_schedule);
3132 if (!list_empty(&plug->mq_list))
3133 blk_mq_flush_plug_list(plug, from_schedule);
3135 if (list_empty(&plug->list))
3136 return;
3138 list_splice_init(&plug->list, &list);
3140 list_sort(NULL, &list, plug_rq_cmp);
3142 q = NULL;
3143 depth = 0;
3146 * Save and disable interrupts here, to avoid doing it for every
3147 * queue lock we have to take.
3149 local_irq_save(flags);
3150 while (!list_empty(&list)) {
3151 rq = list_entry_rq(list.next);
3152 list_del_init(&rq->queuelist);
3153 BUG_ON(!rq->q);
3154 if (rq->q != q) {
3156 * This drops the queue lock
3158 if (q)
3159 queue_unplugged(q, depth, from_schedule);
3160 q = rq->q;
3161 depth = 0;
3162 spin_lock(q->queue_lock);
3166 * Short-circuit if @q is dead
3168 if (unlikely(blk_queue_dying(q))) {
3169 __blk_end_request_all(rq, -ENODEV);
3170 continue;
3174 * rq is already accounted, so use raw insert
3176 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3177 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3178 else
3179 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3181 depth++;
3185 * This drops the queue lock
3187 if (q)
3188 queue_unplugged(q, depth, from_schedule);
3190 local_irq_restore(flags);
3193 void blk_finish_plug(struct blk_plug *plug)
3195 blk_flush_plug_list(plug, false);
3197 if (plug == current->plug)
3198 current->plug = NULL;
3200 EXPORT_SYMBOL(blk_finish_plug);
3202 #ifdef CONFIG_PM
3204 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3205 * @q: the queue of the device
3206 * @dev: the device the queue belongs to
3208 * Description:
3209 * Initialize runtime-PM-related fields for @q and start auto suspend for
3210 * @dev. Drivers that want to take advantage of request-based runtime PM
3211 * should call this function after @dev has been initialized, and its
3212 * request queue @q has been allocated, and runtime PM for it can not happen
3213 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3214 * cases, driver should call this function before any I/O has taken place.
3216 * This function takes care of setting up using auto suspend for the device,
3217 * the autosuspend delay is set to -1 to make runtime suspend impossible
3218 * until an updated value is either set by user or by driver. Drivers do
3219 * not need to touch other autosuspend settings.
3221 * The block layer runtime PM is request based, so only works for drivers
3222 * that use request as their IO unit instead of those directly use bio's.
3224 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3226 q->dev = dev;
3227 q->rpm_status = RPM_ACTIVE;
3228 pm_runtime_set_autosuspend_delay(q->dev, -1);
3229 pm_runtime_use_autosuspend(q->dev);
3231 EXPORT_SYMBOL(blk_pm_runtime_init);
3234 * blk_pre_runtime_suspend - Pre runtime suspend check
3235 * @q: the queue of the device
3237 * Description:
3238 * This function will check if runtime suspend is allowed for the device
3239 * by examining if there are any requests pending in the queue. If there
3240 * are requests pending, the device can not be runtime suspended; otherwise,
3241 * the queue's status will be updated to SUSPENDING and the driver can
3242 * proceed to suspend the device.
3244 * For the not allowed case, we mark last busy for the device so that
3245 * runtime PM core will try to autosuspend it some time later.
3247 * This function should be called near the start of the device's
3248 * runtime_suspend callback.
3250 * Return:
3251 * 0 - OK to runtime suspend the device
3252 * -EBUSY - Device should not be runtime suspended
3254 int blk_pre_runtime_suspend(struct request_queue *q)
3256 int ret = 0;
3258 spin_lock_irq(q->queue_lock);
3259 if (q->nr_pending) {
3260 ret = -EBUSY;
3261 pm_runtime_mark_last_busy(q->dev);
3262 } else {
3263 q->rpm_status = RPM_SUSPENDING;
3265 spin_unlock_irq(q->queue_lock);
3266 return ret;
3268 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3271 * blk_post_runtime_suspend - Post runtime suspend processing
3272 * @q: the queue of the device
3273 * @err: return value of the device's runtime_suspend function
3275 * Description:
3276 * Update the queue's runtime status according to the return value of the
3277 * device's runtime suspend function and mark last busy for the device so
3278 * that PM core will try to auto suspend the device at a later time.
3280 * This function should be called near the end of the device's
3281 * runtime_suspend callback.
3283 void blk_post_runtime_suspend(struct request_queue *q, int err)
3285 spin_lock_irq(q->queue_lock);
3286 if (!err) {
3287 q->rpm_status = RPM_SUSPENDED;
3288 } else {
3289 q->rpm_status = RPM_ACTIVE;
3290 pm_runtime_mark_last_busy(q->dev);
3292 spin_unlock_irq(q->queue_lock);
3294 EXPORT_SYMBOL(blk_post_runtime_suspend);
3297 * blk_pre_runtime_resume - Pre runtime resume processing
3298 * @q: the queue of the device
3300 * Description:
3301 * Update the queue's runtime status to RESUMING in preparation for the
3302 * runtime resume of the device.
3304 * This function should be called near the start of the device's
3305 * runtime_resume callback.
3307 void blk_pre_runtime_resume(struct request_queue *q)
3309 spin_lock_irq(q->queue_lock);
3310 q->rpm_status = RPM_RESUMING;
3311 spin_unlock_irq(q->queue_lock);
3313 EXPORT_SYMBOL(blk_pre_runtime_resume);
3316 * blk_post_runtime_resume - Post runtime resume processing
3317 * @q: the queue of the device
3318 * @err: return value of the device's runtime_resume function
3320 * Description:
3321 * Update the queue's runtime status according to the return value of the
3322 * device's runtime_resume function. If it is successfully resumed, process
3323 * the requests that are queued into the device's queue when it is resuming
3324 * and then mark last busy and initiate autosuspend for it.
3326 * This function should be called near the end of the device's
3327 * runtime_resume callback.
3329 void blk_post_runtime_resume(struct request_queue *q, int err)
3331 spin_lock_irq(q->queue_lock);
3332 if (!err) {
3333 q->rpm_status = RPM_ACTIVE;
3334 __blk_run_queue(q);
3335 pm_runtime_mark_last_busy(q->dev);
3336 pm_request_autosuspend(q->dev);
3337 } else {
3338 q->rpm_status = RPM_SUSPENDED;
3340 spin_unlock_irq(q->queue_lock);
3342 EXPORT_SYMBOL(blk_post_runtime_resume);
3343 #endif
3345 int __init blk_dev_init(void)
3347 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3348 sizeof(((struct request *)0)->cmd_flags));
3350 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3351 kblockd_workqueue = alloc_workqueue("kblockd",
3352 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3353 if (!kblockd_workqueue)
3354 panic("Failed to create kblockd\n");
3356 request_cachep = kmem_cache_create("blkdev_requests",
3357 sizeof(struct request), 0, SLAB_PANIC, NULL);
3359 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3360 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3362 return 0;