perf tools: Account entry stats when it's added to the output tree
[linux-2.6/btrfs-unstable.git] / kernel / hrtimer.c
blob53d26829cd4d3dd00a6ce305f54d0a45fe7b7589
1 /*
2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
22 * Credits:
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/timer.h>
51 #include <linux/freezer.h>
53 #include <asm/uaccess.h>
55 #include <trace/events/timer.h>
58 * The timer bases:
60 * There are more clockids then hrtimer bases. Thus, we index
61 * into the timer bases by the hrtimer_base_type enum. When trying
62 * to reach a base using a clockid, hrtimer_clockid_to_base()
63 * is used to convert from clockid to the proper hrtimer_base_type.
65 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
69 .clock_base =
72 .index = HRTIMER_BASE_MONOTONIC,
73 .clockid = CLOCK_MONOTONIC,
74 .get_time = &ktime_get,
75 .resolution = KTIME_LOW_RES,
78 .index = HRTIMER_BASE_REALTIME,
79 .clockid = CLOCK_REALTIME,
80 .get_time = &ktime_get_real,
81 .resolution = KTIME_LOW_RES,
84 .index = HRTIMER_BASE_BOOTTIME,
85 .clockid = CLOCK_BOOTTIME,
86 .get_time = &ktime_get_boottime,
87 .resolution = KTIME_LOW_RES,
90 .index = HRTIMER_BASE_TAI,
91 .clockid = CLOCK_TAI,
92 .get_time = &ktime_get_clocktai,
93 .resolution = KTIME_LOW_RES,
98 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
99 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
100 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
101 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
102 [CLOCK_TAI] = HRTIMER_BASE_TAI,
105 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
107 return hrtimer_clock_to_base_table[clock_id];
112 * Get the coarse grained time at the softirq based on xtime and
113 * wall_to_monotonic.
115 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
117 ktime_t xtim, mono, boot;
118 struct timespec xts, tom, slp;
119 s32 tai_offset;
121 get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
122 tai_offset = timekeeping_get_tai_offset();
124 xtim = timespec_to_ktime(xts);
125 mono = ktime_add(xtim, timespec_to_ktime(tom));
126 boot = ktime_add(mono, timespec_to_ktime(slp));
127 base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
128 base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
129 base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
130 base->clock_base[HRTIMER_BASE_TAI].softirq_time =
131 ktime_add(xtim, ktime_set(tai_offset, 0));
135 * Functions and macros which are different for UP/SMP systems are kept in a
136 * single place
138 #ifdef CONFIG_SMP
141 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
142 * means that all timers which are tied to this base via timer->base are
143 * locked, and the base itself is locked too.
145 * So __run_timers/migrate_timers can safely modify all timers which could
146 * be found on the lists/queues.
148 * When the timer's base is locked, and the timer removed from list, it is
149 * possible to set timer->base = NULL and drop the lock: the timer remains
150 * locked.
152 static
153 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
154 unsigned long *flags)
156 struct hrtimer_clock_base *base;
158 for (;;) {
159 base = timer->base;
160 if (likely(base != NULL)) {
161 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
162 if (likely(base == timer->base))
163 return base;
164 /* The timer has migrated to another CPU: */
165 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
167 cpu_relax();
172 * With HIGHRES=y we do not migrate the timer when it is expiring
173 * before the next event on the target cpu because we cannot reprogram
174 * the target cpu hardware and we would cause it to fire late.
176 * Called with cpu_base->lock of target cpu held.
178 static int
179 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
181 #ifdef CONFIG_HIGH_RES_TIMERS
182 ktime_t expires;
184 if (!new_base->cpu_base->hres_active)
185 return 0;
187 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
188 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
189 #else
190 return 0;
191 #endif
195 * Switch the timer base to the current CPU when possible.
197 static inline struct hrtimer_clock_base *
198 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
199 int pinned)
201 struct hrtimer_clock_base *new_base;
202 struct hrtimer_cpu_base *new_cpu_base;
203 int this_cpu = smp_processor_id();
204 int cpu = get_nohz_timer_target(pinned);
205 int basenum = base->index;
207 again:
208 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
209 new_base = &new_cpu_base->clock_base[basenum];
211 if (base != new_base) {
213 * We are trying to move timer to new_base.
214 * However we can't change timer's base while it is running,
215 * so we keep it on the same CPU. No hassle vs. reprogramming
216 * the event source in the high resolution case. The softirq
217 * code will take care of this when the timer function has
218 * completed. There is no conflict as we hold the lock until
219 * the timer is enqueued.
221 if (unlikely(hrtimer_callback_running(timer)))
222 return base;
224 /* See the comment in lock_timer_base() */
225 timer->base = NULL;
226 raw_spin_unlock(&base->cpu_base->lock);
227 raw_spin_lock(&new_base->cpu_base->lock);
229 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
230 cpu = this_cpu;
231 raw_spin_unlock(&new_base->cpu_base->lock);
232 raw_spin_lock(&base->cpu_base->lock);
233 timer->base = base;
234 goto again;
236 timer->base = new_base;
238 return new_base;
241 #else /* CONFIG_SMP */
243 static inline struct hrtimer_clock_base *
244 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
246 struct hrtimer_clock_base *base = timer->base;
248 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
250 return base;
253 # define switch_hrtimer_base(t, b, p) (b)
255 #endif /* !CONFIG_SMP */
258 * Functions for the union type storage format of ktime_t which are
259 * too large for inlining:
261 #if BITS_PER_LONG < 64
262 # ifndef CONFIG_KTIME_SCALAR
264 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
265 * @kt: addend
266 * @nsec: the scalar nsec value to add
268 * Returns the sum of kt and nsec in ktime_t format
270 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
272 ktime_t tmp;
274 if (likely(nsec < NSEC_PER_SEC)) {
275 tmp.tv64 = nsec;
276 } else {
277 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
279 /* Make sure nsec fits into long */
280 if (unlikely(nsec > KTIME_SEC_MAX))
281 return (ktime_t){ .tv64 = KTIME_MAX };
283 tmp = ktime_set((long)nsec, rem);
286 return ktime_add(kt, tmp);
289 EXPORT_SYMBOL_GPL(ktime_add_ns);
292 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
293 * @kt: minuend
294 * @nsec: the scalar nsec value to subtract
296 * Returns the subtraction of @nsec from @kt in ktime_t format
298 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
300 ktime_t tmp;
302 if (likely(nsec < NSEC_PER_SEC)) {
303 tmp.tv64 = nsec;
304 } else {
305 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
307 tmp = ktime_set((long)nsec, rem);
310 return ktime_sub(kt, tmp);
313 EXPORT_SYMBOL_GPL(ktime_sub_ns);
314 # endif /* !CONFIG_KTIME_SCALAR */
317 * Divide a ktime value by a nanosecond value
319 u64 ktime_divns(const ktime_t kt, s64 div)
321 u64 dclc;
322 int sft = 0;
324 dclc = ktime_to_ns(kt);
325 /* Make sure the divisor is less than 2^32: */
326 while (div >> 32) {
327 sft++;
328 div >>= 1;
330 dclc >>= sft;
331 do_div(dclc, (unsigned long) div);
333 return dclc;
335 #endif /* BITS_PER_LONG >= 64 */
338 * Add two ktime values and do a safety check for overflow:
340 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
342 ktime_t res = ktime_add(lhs, rhs);
345 * We use KTIME_SEC_MAX here, the maximum timeout which we can
346 * return to user space in a timespec:
348 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
349 res = ktime_set(KTIME_SEC_MAX, 0);
351 return res;
354 EXPORT_SYMBOL_GPL(ktime_add_safe);
356 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
358 static struct debug_obj_descr hrtimer_debug_descr;
360 static void *hrtimer_debug_hint(void *addr)
362 return ((struct hrtimer *) addr)->function;
366 * fixup_init is called when:
367 * - an active object is initialized
369 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
371 struct hrtimer *timer = addr;
373 switch (state) {
374 case ODEBUG_STATE_ACTIVE:
375 hrtimer_cancel(timer);
376 debug_object_init(timer, &hrtimer_debug_descr);
377 return 1;
378 default:
379 return 0;
384 * fixup_activate is called when:
385 * - an active object is activated
386 * - an unknown object is activated (might be a statically initialized object)
388 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
390 switch (state) {
392 case ODEBUG_STATE_NOTAVAILABLE:
393 WARN_ON_ONCE(1);
394 return 0;
396 case ODEBUG_STATE_ACTIVE:
397 WARN_ON(1);
399 default:
400 return 0;
405 * fixup_free is called when:
406 * - an active object is freed
408 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
410 struct hrtimer *timer = addr;
412 switch (state) {
413 case ODEBUG_STATE_ACTIVE:
414 hrtimer_cancel(timer);
415 debug_object_free(timer, &hrtimer_debug_descr);
416 return 1;
417 default:
418 return 0;
422 static struct debug_obj_descr hrtimer_debug_descr = {
423 .name = "hrtimer",
424 .debug_hint = hrtimer_debug_hint,
425 .fixup_init = hrtimer_fixup_init,
426 .fixup_activate = hrtimer_fixup_activate,
427 .fixup_free = hrtimer_fixup_free,
430 static inline void debug_hrtimer_init(struct hrtimer *timer)
432 debug_object_init(timer, &hrtimer_debug_descr);
435 static inline void debug_hrtimer_activate(struct hrtimer *timer)
437 debug_object_activate(timer, &hrtimer_debug_descr);
440 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
442 debug_object_deactivate(timer, &hrtimer_debug_descr);
445 static inline void debug_hrtimer_free(struct hrtimer *timer)
447 debug_object_free(timer, &hrtimer_debug_descr);
450 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
451 enum hrtimer_mode mode);
453 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
454 enum hrtimer_mode mode)
456 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
457 __hrtimer_init(timer, clock_id, mode);
459 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
461 void destroy_hrtimer_on_stack(struct hrtimer *timer)
463 debug_object_free(timer, &hrtimer_debug_descr);
466 #else
467 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
468 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
469 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
470 #endif
472 static inline void
473 debug_init(struct hrtimer *timer, clockid_t clockid,
474 enum hrtimer_mode mode)
476 debug_hrtimer_init(timer);
477 trace_hrtimer_init(timer, clockid, mode);
480 static inline void debug_activate(struct hrtimer *timer)
482 debug_hrtimer_activate(timer);
483 trace_hrtimer_start(timer);
486 static inline void debug_deactivate(struct hrtimer *timer)
488 debug_hrtimer_deactivate(timer);
489 trace_hrtimer_cancel(timer);
492 /* High resolution timer related functions */
493 #ifdef CONFIG_HIGH_RES_TIMERS
496 * High resolution timer enabled ?
498 static int hrtimer_hres_enabled __read_mostly = 1;
501 * Enable / Disable high resolution mode
503 static int __init setup_hrtimer_hres(char *str)
505 if (!strcmp(str, "off"))
506 hrtimer_hres_enabled = 0;
507 else if (!strcmp(str, "on"))
508 hrtimer_hres_enabled = 1;
509 else
510 return 0;
511 return 1;
514 __setup("highres=", setup_hrtimer_hres);
517 * hrtimer_high_res_enabled - query, if the highres mode is enabled
519 static inline int hrtimer_is_hres_enabled(void)
521 return hrtimer_hres_enabled;
525 * Is the high resolution mode active ?
527 static inline int hrtimer_hres_active(void)
529 return __this_cpu_read(hrtimer_bases.hres_active);
533 * Reprogram the event source with checking both queues for the
534 * next event
535 * Called with interrupts disabled and base->lock held
537 static void
538 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
540 int i;
541 struct hrtimer_clock_base *base = cpu_base->clock_base;
542 ktime_t expires, expires_next;
544 expires_next.tv64 = KTIME_MAX;
546 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
547 struct hrtimer *timer;
548 struct timerqueue_node *next;
550 next = timerqueue_getnext(&base->active);
551 if (!next)
552 continue;
553 timer = container_of(next, struct hrtimer, node);
555 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
557 * clock_was_set() has changed base->offset so the
558 * result might be negative. Fix it up to prevent a
559 * false positive in clockevents_program_event()
561 if (expires.tv64 < 0)
562 expires.tv64 = 0;
563 if (expires.tv64 < expires_next.tv64)
564 expires_next = expires;
567 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
568 return;
570 cpu_base->expires_next.tv64 = expires_next.tv64;
572 if (cpu_base->expires_next.tv64 != KTIME_MAX)
573 tick_program_event(cpu_base->expires_next, 1);
577 * Shared reprogramming for clock_realtime and clock_monotonic
579 * When a timer is enqueued and expires earlier than the already enqueued
580 * timers, we have to check, whether it expires earlier than the timer for
581 * which the clock event device was armed.
583 * Called with interrupts disabled and base->cpu_base.lock held
585 static int hrtimer_reprogram(struct hrtimer *timer,
586 struct hrtimer_clock_base *base)
588 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
589 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
590 int res;
592 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
595 * When the callback is running, we do not reprogram the clock event
596 * device. The timer callback is either running on a different CPU or
597 * the callback is executed in the hrtimer_interrupt context. The
598 * reprogramming is handled either by the softirq, which called the
599 * callback or at the end of the hrtimer_interrupt.
601 if (hrtimer_callback_running(timer))
602 return 0;
605 * CLOCK_REALTIME timer might be requested with an absolute
606 * expiry time which is less than base->offset. Nothing wrong
607 * about that, just avoid to call into the tick code, which
608 * has now objections against negative expiry values.
610 if (expires.tv64 < 0)
611 return -ETIME;
613 if (expires.tv64 >= cpu_base->expires_next.tv64)
614 return 0;
617 * If a hang was detected in the last timer interrupt then we
618 * do not schedule a timer which is earlier than the expiry
619 * which we enforced in the hang detection. We want the system
620 * to make progress.
622 if (cpu_base->hang_detected)
623 return 0;
626 * Clockevents returns -ETIME, when the event was in the past.
628 res = tick_program_event(expires, 0);
629 if (!IS_ERR_VALUE(res))
630 cpu_base->expires_next = expires;
631 return res;
635 * Initialize the high resolution related parts of cpu_base
637 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
639 base->expires_next.tv64 = KTIME_MAX;
640 base->hres_active = 0;
644 * When High resolution timers are active, try to reprogram. Note, that in case
645 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
646 * check happens. The timer gets enqueued into the rbtree. The reprogramming
647 * and expiry check is done in the hrtimer_interrupt or in the softirq.
649 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
650 struct hrtimer_clock_base *base)
652 return base->cpu_base->hres_active && hrtimer_reprogram(timer, base);
655 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
657 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
658 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
659 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
661 return ktime_get_update_offsets(offs_real, offs_boot, offs_tai);
665 * Retrigger next event is called after clock was set
667 * Called with interrupts disabled via on_each_cpu()
669 static void retrigger_next_event(void *arg)
671 struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
673 if (!hrtimer_hres_active())
674 return;
676 raw_spin_lock(&base->lock);
677 hrtimer_update_base(base);
678 hrtimer_force_reprogram(base, 0);
679 raw_spin_unlock(&base->lock);
683 * Switch to high resolution mode
685 static int hrtimer_switch_to_hres(void)
687 int i, cpu = smp_processor_id();
688 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
689 unsigned long flags;
691 if (base->hres_active)
692 return 1;
694 local_irq_save(flags);
696 if (tick_init_highres()) {
697 local_irq_restore(flags);
698 printk(KERN_WARNING "Could not switch to high resolution "
699 "mode on CPU %d\n", cpu);
700 return 0;
702 base->hres_active = 1;
703 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
704 base->clock_base[i].resolution = KTIME_HIGH_RES;
706 tick_setup_sched_timer();
707 /* "Retrigger" the interrupt to get things going */
708 retrigger_next_event(NULL);
709 local_irq_restore(flags);
710 return 1;
713 static void clock_was_set_work(struct work_struct *work)
715 clock_was_set();
718 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
721 * Called from timekeeping and resume code to reprogramm the hrtimer
722 * interrupt device on all cpus.
724 void clock_was_set_delayed(void)
726 schedule_work(&hrtimer_work);
729 #else
731 static inline int hrtimer_hres_active(void) { return 0; }
732 static inline int hrtimer_is_hres_enabled(void) { return 0; }
733 static inline int hrtimer_switch_to_hres(void) { return 0; }
734 static inline void
735 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
736 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
737 struct hrtimer_clock_base *base)
739 return 0;
741 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
742 static inline void retrigger_next_event(void *arg) { }
744 #endif /* CONFIG_HIGH_RES_TIMERS */
747 * Clock realtime was set
749 * Change the offset of the realtime clock vs. the monotonic
750 * clock.
752 * We might have to reprogram the high resolution timer interrupt. On
753 * SMP we call the architecture specific code to retrigger _all_ high
754 * resolution timer interrupts. On UP we just disable interrupts and
755 * call the high resolution interrupt code.
757 void clock_was_set(void)
759 #ifdef CONFIG_HIGH_RES_TIMERS
760 /* Retrigger the CPU local events everywhere */
761 on_each_cpu(retrigger_next_event, NULL, 1);
762 #endif
763 timerfd_clock_was_set();
767 * During resume we might have to reprogram the high resolution timer
768 * interrupt on all online CPUs. However, all other CPUs will be
769 * stopped with IRQs interrupts disabled so the clock_was_set() call
770 * must be deferred.
772 void hrtimers_resume(void)
774 WARN_ONCE(!irqs_disabled(),
775 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
777 /* Retrigger on the local CPU */
778 retrigger_next_event(NULL);
779 /* And schedule a retrigger for all others */
780 clock_was_set_delayed();
783 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
785 #ifdef CONFIG_TIMER_STATS
786 if (timer->start_site)
787 return;
788 timer->start_site = __builtin_return_address(0);
789 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
790 timer->start_pid = current->pid;
791 #endif
794 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
796 #ifdef CONFIG_TIMER_STATS
797 timer->start_site = NULL;
798 #endif
801 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
803 #ifdef CONFIG_TIMER_STATS
804 if (likely(!timer_stats_active))
805 return;
806 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
807 timer->function, timer->start_comm, 0);
808 #endif
812 * Counterpart to lock_hrtimer_base above:
814 static inline
815 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
817 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
821 * hrtimer_forward - forward the timer expiry
822 * @timer: hrtimer to forward
823 * @now: forward past this time
824 * @interval: the interval to forward
826 * Forward the timer expiry so it will expire in the future.
827 * Returns the number of overruns.
829 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
831 u64 orun = 1;
832 ktime_t delta;
834 delta = ktime_sub(now, hrtimer_get_expires(timer));
836 if (delta.tv64 < 0)
837 return 0;
839 if (interval.tv64 < timer->base->resolution.tv64)
840 interval.tv64 = timer->base->resolution.tv64;
842 if (unlikely(delta.tv64 >= interval.tv64)) {
843 s64 incr = ktime_to_ns(interval);
845 orun = ktime_divns(delta, incr);
846 hrtimer_add_expires_ns(timer, incr * orun);
847 if (hrtimer_get_expires_tv64(timer) > now.tv64)
848 return orun;
850 * This (and the ktime_add() below) is the
851 * correction for exact:
853 orun++;
855 hrtimer_add_expires(timer, interval);
857 return orun;
859 EXPORT_SYMBOL_GPL(hrtimer_forward);
862 * enqueue_hrtimer - internal function to (re)start a timer
864 * The timer is inserted in expiry order. Insertion into the
865 * red black tree is O(log(n)). Must hold the base lock.
867 * Returns 1 when the new timer is the leftmost timer in the tree.
869 static int enqueue_hrtimer(struct hrtimer *timer,
870 struct hrtimer_clock_base *base)
872 debug_activate(timer);
874 timerqueue_add(&base->active, &timer->node);
875 base->cpu_base->active_bases |= 1 << base->index;
878 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
879 * state of a possibly running callback.
881 timer->state |= HRTIMER_STATE_ENQUEUED;
883 return (&timer->node == base->active.next);
887 * __remove_hrtimer - internal function to remove a timer
889 * Caller must hold the base lock.
891 * High resolution timer mode reprograms the clock event device when the
892 * timer is the one which expires next. The caller can disable this by setting
893 * reprogram to zero. This is useful, when the context does a reprogramming
894 * anyway (e.g. timer interrupt)
896 static void __remove_hrtimer(struct hrtimer *timer,
897 struct hrtimer_clock_base *base,
898 unsigned long newstate, int reprogram)
900 struct timerqueue_node *next_timer;
901 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
902 goto out;
904 next_timer = timerqueue_getnext(&base->active);
905 timerqueue_del(&base->active, &timer->node);
906 if (&timer->node == next_timer) {
907 #ifdef CONFIG_HIGH_RES_TIMERS
908 /* Reprogram the clock event device. if enabled */
909 if (reprogram && hrtimer_hres_active()) {
910 ktime_t expires;
912 expires = ktime_sub(hrtimer_get_expires(timer),
913 base->offset);
914 if (base->cpu_base->expires_next.tv64 == expires.tv64)
915 hrtimer_force_reprogram(base->cpu_base, 1);
917 #endif
919 if (!timerqueue_getnext(&base->active))
920 base->cpu_base->active_bases &= ~(1 << base->index);
921 out:
922 timer->state = newstate;
926 * remove hrtimer, called with base lock held
928 static inline int
929 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
931 if (hrtimer_is_queued(timer)) {
932 unsigned long state;
933 int reprogram;
936 * Remove the timer and force reprogramming when high
937 * resolution mode is active and the timer is on the current
938 * CPU. If we remove a timer on another CPU, reprogramming is
939 * skipped. The interrupt event on this CPU is fired and
940 * reprogramming happens in the interrupt handler. This is a
941 * rare case and less expensive than a smp call.
943 debug_deactivate(timer);
944 timer_stats_hrtimer_clear_start_info(timer);
945 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
947 * We must preserve the CALLBACK state flag here,
948 * otherwise we could move the timer base in
949 * switch_hrtimer_base.
951 state = timer->state & HRTIMER_STATE_CALLBACK;
952 __remove_hrtimer(timer, base, state, reprogram);
953 return 1;
955 return 0;
958 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
959 unsigned long delta_ns, const enum hrtimer_mode mode,
960 int wakeup)
962 struct hrtimer_clock_base *base, *new_base;
963 unsigned long flags;
964 int ret, leftmost;
966 base = lock_hrtimer_base(timer, &flags);
968 /* Remove an active timer from the queue: */
969 ret = remove_hrtimer(timer, base);
971 /* Switch the timer base, if necessary: */
972 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
974 if (mode & HRTIMER_MODE_REL) {
975 tim = ktime_add_safe(tim, new_base->get_time());
977 * CONFIG_TIME_LOW_RES is a temporary way for architectures
978 * to signal that they simply return xtime in
979 * do_gettimeoffset(). In this case we want to round up by
980 * resolution when starting a relative timer, to avoid short
981 * timeouts. This will go away with the GTOD framework.
983 #ifdef CONFIG_TIME_LOW_RES
984 tim = ktime_add_safe(tim, base->resolution);
985 #endif
988 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
990 timer_stats_hrtimer_set_start_info(timer);
992 leftmost = enqueue_hrtimer(timer, new_base);
995 * Only allow reprogramming if the new base is on this CPU.
996 * (it might still be on another CPU if the timer was pending)
998 * XXX send_remote_softirq() ?
1000 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases)
1001 && hrtimer_enqueue_reprogram(timer, new_base)) {
1002 if (wakeup) {
1004 * We need to drop cpu_base->lock to avoid a
1005 * lock ordering issue vs. rq->lock.
1007 raw_spin_unlock(&new_base->cpu_base->lock);
1008 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1009 local_irq_restore(flags);
1010 return ret;
1011 } else {
1012 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1016 unlock_hrtimer_base(timer, &flags);
1018 return ret;
1020 EXPORT_SYMBOL_GPL(__hrtimer_start_range_ns);
1023 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1024 * @timer: the timer to be added
1025 * @tim: expiry time
1026 * @delta_ns: "slack" range for the timer
1027 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1028 * relative (HRTIMER_MODE_REL)
1030 * Returns:
1031 * 0 on success
1032 * 1 when the timer was active
1034 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1035 unsigned long delta_ns, const enum hrtimer_mode mode)
1037 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1039 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1042 * hrtimer_start - (re)start an hrtimer on the current CPU
1043 * @timer: the timer to be added
1044 * @tim: expiry time
1045 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1046 * relative (HRTIMER_MODE_REL)
1048 * Returns:
1049 * 0 on success
1050 * 1 when the timer was active
1053 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1055 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1057 EXPORT_SYMBOL_GPL(hrtimer_start);
1061 * hrtimer_try_to_cancel - try to deactivate a timer
1062 * @timer: hrtimer to stop
1064 * Returns:
1065 * 0 when the timer was not active
1066 * 1 when the timer was active
1067 * -1 when the timer is currently excuting the callback function and
1068 * cannot be stopped
1070 int hrtimer_try_to_cancel(struct hrtimer *timer)
1072 struct hrtimer_clock_base *base;
1073 unsigned long flags;
1074 int ret = -1;
1076 base = lock_hrtimer_base(timer, &flags);
1078 if (!hrtimer_callback_running(timer))
1079 ret = remove_hrtimer(timer, base);
1081 unlock_hrtimer_base(timer, &flags);
1083 return ret;
1086 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1089 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1090 * @timer: the timer to be cancelled
1092 * Returns:
1093 * 0 when the timer was not active
1094 * 1 when the timer was active
1096 int hrtimer_cancel(struct hrtimer *timer)
1098 for (;;) {
1099 int ret = hrtimer_try_to_cancel(timer);
1101 if (ret >= 0)
1102 return ret;
1103 cpu_relax();
1106 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1109 * hrtimer_get_remaining - get remaining time for the timer
1110 * @timer: the timer to read
1112 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1114 unsigned long flags;
1115 ktime_t rem;
1117 lock_hrtimer_base(timer, &flags);
1118 rem = hrtimer_expires_remaining(timer);
1119 unlock_hrtimer_base(timer, &flags);
1121 return rem;
1123 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1125 #ifdef CONFIG_NO_HZ_COMMON
1127 * hrtimer_get_next_event - get the time until next expiry event
1129 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1130 * is pending.
1132 ktime_t hrtimer_get_next_event(void)
1134 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1135 struct hrtimer_clock_base *base = cpu_base->clock_base;
1136 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1137 unsigned long flags;
1138 int i;
1140 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1142 if (!hrtimer_hres_active()) {
1143 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1144 struct hrtimer *timer;
1145 struct timerqueue_node *next;
1147 next = timerqueue_getnext(&base->active);
1148 if (!next)
1149 continue;
1151 timer = container_of(next, struct hrtimer, node);
1152 delta.tv64 = hrtimer_get_expires_tv64(timer);
1153 delta = ktime_sub(delta, base->get_time());
1154 if (delta.tv64 < mindelta.tv64)
1155 mindelta.tv64 = delta.tv64;
1159 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1161 if (mindelta.tv64 < 0)
1162 mindelta.tv64 = 0;
1163 return mindelta;
1165 #endif
1167 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1168 enum hrtimer_mode mode)
1170 struct hrtimer_cpu_base *cpu_base;
1171 int base;
1173 memset(timer, 0, sizeof(struct hrtimer));
1175 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1177 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1178 clock_id = CLOCK_MONOTONIC;
1180 base = hrtimer_clockid_to_base(clock_id);
1181 timer->base = &cpu_base->clock_base[base];
1182 timerqueue_init(&timer->node);
1184 #ifdef CONFIG_TIMER_STATS
1185 timer->start_site = NULL;
1186 timer->start_pid = -1;
1187 memset(timer->start_comm, 0, TASK_COMM_LEN);
1188 #endif
1192 * hrtimer_init - initialize a timer to the given clock
1193 * @timer: the timer to be initialized
1194 * @clock_id: the clock to be used
1195 * @mode: timer mode abs/rel
1197 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1198 enum hrtimer_mode mode)
1200 debug_init(timer, clock_id, mode);
1201 __hrtimer_init(timer, clock_id, mode);
1203 EXPORT_SYMBOL_GPL(hrtimer_init);
1206 * hrtimer_get_res - get the timer resolution for a clock
1207 * @which_clock: which clock to query
1208 * @tp: pointer to timespec variable to store the resolution
1210 * Store the resolution of the clock selected by @which_clock in the
1211 * variable pointed to by @tp.
1213 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1215 struct hrtimer_cpu_base *cpu_base;
1216 int base = hrtimer_clockid_to_base(which_clock);
1218 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1219 *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1221 return 0;
1223 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1225 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1227 struct hrtimer_clock_base *base = timer->base;
1228 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1229 enum hrtimer_restart (*fn)(struct hrtimer *);
1230 int restart;
1232 WARN_ON(!irqs_disabled());
1234 debug_deactivate(timer);
1235 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1236 timer_stats_account_hrtimer(timer);
1237 fn = timer->function;
1240 * Because we run timers from hardirq context, there is no chance
1241 * they get migrated to another cpu, therefore its safe to unlock
1242 * the timer base.
1244 raw_spin_unlock(&cpu_base->lock);
1245 trace_hrtimer_expire_entry(timer, now);
1246 restart = fn(timer);
1247 trace_hrtimer_expire_exit(timer);
1248 raw_spin_lock(&cpu_base->lock);
1251 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1252 * we do not reprogramm the event hardware. Happens either in
1253 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1255 if (restart != HRTIMER_NORESTART) {
1256 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1257 enqueue_hrtimer(timer, base);
1260 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1262 timer->state &= ~HRTIMER_STATE_CALLBACK;
1265 #ifdef CONFIG_HIGH_RES_TIMERS
1268 * High resolution timer interrupt
1269 * Called with interrupts disabled
1271 void hrtimer_interrupt(struct clock_event_device *dev)
1273 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1274 ktime_t expires_next, now, entry_time, delta;
1275 int i, retries = 0;
1277 BUG_ON(!cpu_base->hres_active);
1278 cpu_base->nr_events++;
1279 dev->next_event.tv64 = KTIME_MAX;
1281 raw_spin_lock(&cpu_base->lock);
1282 entry_time = now = hrtimer_update_base(cpu_base);
1283 retry:
1284 expires_next.tv64 = KTIME_MAX;
1286 * We set expires_next to KTIME_MAX here with cpu_base->lock
1287 * held to prevent that a timer is enqueued in our queue via
1288 * the migration code. This does not affect enqueueing of
1289 * timers which run their callback and need to be requeued on
1290 * this CPU.
1292 cpu_base->expires_next.tv64 = KTIME_MAX;
1294 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1295 struct hrtimer_clock_base *base;
1296 struct timerqueue_node *node;
1297 ktime_t basenow;
1299 if (!(cpu_base->active_bases & (1 << i)))
1300 continue;
1302 base = cpu_base->clock_base + i;
1303 basenow = ktime_add(now, base->offset);
1305 while ((node = timerqueue_getnext(&base->active))) {
1306 struct hrtimer *timer;
1308 timer = container_of(node, struct hrtimer, node);
1311 * The immediate goal for using the softexpires is
1312 * minimizing wakeups, not running timers at the
1313 * earliest interrupt after their soft expiration.
1314 * This allows us to avoid using a Priority Search
1315 * Tree, which can answer a stabbing querry for
1316 * overlapping intervals and instead use the simple
1317 * BST we already have.
1318 * We don't add extra wakeups by delaying timers that
1319 * are right-of a not yet expired timer, because that
1320 * timer will have to trigger a wakeup anyway.
1323 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1324 ktime_t expires;
1326 expires = ktime_sub(hrtimer_get_expires(timer),
1327 base->offset);
1328 if (expires.tv64 < 0)
1329 expires.tv64 = KTIME_MAX;
1330 if (expires.tv64 < expires_next.tv64)
1331 expires_next = expires;
1332 break;
1335 __run_hrtimer(timer, &basenow);
1340 * Store the new expiry value so the migration code can verify
1341 * against it.
1343 cpu_base->expires_next = expires_next;
1344 raw_spin_unlock(&cpu_base->lock);
1346 /* Reprogramming necessary ? */
1347 if (expires_next.tv64 == KTIME_MAX ||
1348 !tick_program_event(expires_next, 0)) {
1349 cpu_base->hang_detected = 0;
1350 return;
1354 * The next timer was already expired due to:
1355 * - tracing
1356 * - long lasting callbacks
1357 * - being scheduled away when running in a VM
1359 * We need to prevent that we loop forever in the hrtimer
1360 * interrupt routine. We give it 3 attempts to avoid
1361 * overreacting on some spurious event.
1363 * Acquire base lock for updating the offsets and retrieving
1364 * the current time.
1366 raw_spin_lock(&cpu_base->lock);
1367 now = hrtimer_update_base(cpu_base);
1368 cpu_base->nr_retries++;
1369 if (++retries < 3)
1370 goto retry;
1372 * Give the system a chance to do something else than looping
1373 * here. We stored the entry time, so we know exactly how long
1374 * we spent here. We schedule the next event this amount of
1375 * time away.
1377 cpu_base->nr_hangs++;
1378 cpu_base->hang_detected = 1;
1379 raw_spin_unlock(&cpu_base->lock);
1380 delta = ktime_sub(now, entry_time);
1381 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1382 cpu_base->max_hang_time = delta;
1384 * Limit it to a sensible value as we enforce a longer
1385 * delay. Give the CPU at least 100ms to catch up.
1387 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1388 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1389 else
1390 expires_next = ktime_add(now, delta);
1391 tick_program_event(expires_next, 1);
1392 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1393 ktime_to_ns(delta));
1397 * local version of hrtimer_peek_ahead_timers() called with interrupts
1398 * disabled.
1400 static void __hrtimer_peek_ahead_timers(void)
1402 struct tick_device *td;
1404 if (!hrtimer_hres_active())
1405 return;
1407 td = &__get_cpu_var(tick_cpu_device);
1408 if (td && td->evtdev)
1409 hrtimer_interrupt(td->evtdev);
1413 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1415 * hrtimer_peek_ahead_timers will peek at the timer queue of
1416 * the current cpu and check if there are any timers for which
1417 * the soft expires time has passed. If any such timers exist,
1418 * they are run immediately and then removed from the timer queue.
1421 void hrtimer_peek_ahead_timers(void)
1423 unsigned long flags;
1425 local_irq_save(flags);
1426 __hrtimer_peek_ahead_timers();
1427 local_irq_restore(flags);
1430 static void run_hrtimer_softirq(struct softirq_action *h)
1432 hrtimer_peek_ahead_timers();
1435 #else /* CONFIG_HIGH_RES_TIMERS */
1437 static inline void __hrtimer_peek_ahead_timers(void) { }
1439 #endif /* !CONFIG_HIGH_RES_TIMERS */
1442 * Called from timer softirq every jiffy, expire hrtimers:
1444 * For HRT its the fall back code to run the softirq in the timer
1445 * softirq context in case the hrtimer initialization failed or has
1446 * not been done yet.
1448 void hrtimer_run_pending(void)
1450 if (hrtimer_hres_active())
1451 return;
1454 * This _is_ ugly: We have to check in the softirq context,
1455 * whether we can switch to highres and / or nohz mode. The
1456 * clocksource switch happens in the timer interrupt with
1457 * xtime_lock held. Notification from there only sets the
1458 * check bit in the tick_oneshot code, otherwise we might
1459 * deadlock vs. xtime_lock.
1461 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1462 hrtimer_switch_to_hres();
1466 * Called from hardirq context every jiffy
1468 void hrtimer_run_queues(void)
1470 struct timerqueue_node *node;
1471 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1472 struct hrtimer_clock_base *base;
1473 int index, gettime = 1;
1475 if (hrtimer_hres_active())
1476 return;
1478 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1479 base = &cpu_base->clock_base[index];
1480 if (!timerqueue_getnext(&base->active))
1481 continue;
1483 if (gettime) {
1484 hrtimer_get_softirq_time(cpu_base);
1485 gettime = 0;
1488 raw_spin_lock(&cpu_base->lock);
1490 while ((node = timerqueue_getnext(&base->active))) {
1491 struct hrtimer *timer;
1493 timer = container_of(node, struct hrtimer, node);
1494 if (base->softirq_time.tv64 <=
1495 hrtimer_get_expires_tv64(timer))
1496 break;
1498 __run_hrtimer(timer, &base->softirq_time);
1500 raw_spin_unlock(&cpu_base->lock);
1505 * Sleep related functions:
1507 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1509 struct hrtimer_sleeper *t =
1510 container_of(timer, struct hrtimer_sleeper, timer);
1511 struct task_struct *task = t->task;
1513 t->task = NULL;
1514 if (task)
1515 wake_up_process(task);
1517 return HRTIMER_NORESTART;
1520 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1522 sl->timer.function = hrtimer_wakeup;
1523 sl->task = task;
1525 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1527 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1529 hrtimer_init_sleeper(t, current);
1531 do {
1532 set_current_state(TASK_INTERRUPTIBLE);
1533 hrtimer_start_expires(&t->timer, mode);
1534 if (!hrtimer_active(&t->timer))
1535 t->task = NULL;
1537 if (likely(t->task))
1538 freezable_schedule();
1540 hrtimer_cancel(&t->timer);
1541 mode = HRTIMER_MODE_ABS;
1543 } while (t->task && !signal_pending(current));
1545 __set_current_state(TASK_RUNNING);
1547 return t->task == NULL;
1550 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1552 struct timespec rmt;
1553 ktime_t rem;
1555 rem = hrtimer_expires_remaining(timer);
1556 if (rem.tv64 <= 0)
1557 return 0;
1558 rmt = ktime_to_timespec(rem);
1560 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1561 return -EFAULT;
1563 return 1;
1566 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1568 struct hrtimer_sleeper t;
1569 struct timespec __user *rmtp;
1570 int ret = 0;
1572 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1573 HRTIMER_MODE_ABS);
1574 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1576 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1577 goto out;
1579 rmtp = restart->nanosleep.rmtp;
1580 if (rmtp) {
1581 ret = update_rmtp(&t.timer, rmtp);
1582 if (ret <= 0)
1583 goto out;
1586 /* The other values in restart are already filled in */
1587 ret = -ERESTART_RESTARTBLOCK;
1588 out:
1589 destroy_hrtimer_on_stack(&t.timer);
1590 return ret;
1593 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1594 const enum hrtimer_mode mode, const clockid_t clockid)
1596 struct restart_block *restart;
1597 struct hrtimer_sleeper t;
1598 int ret = 0;
1599 unsigned long slack;
1601 slack = current->timer_slack_ns;
1602 if (dl_task(current) || rt_task(current))
1603 slack = 0;
1605 hrtimer_init_on_stack(&t.timer, clockid, mode);
1606 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1607 if (do_nanosleep(&t, mode))
1608 goto out;
1610 /* Absolute timers do not update the rmtp value and restart: */
1611 if (mode == HRTIMER_MODE_ABS) {
1612 ret = -ERESTARTNOHAND;
1613 goto out;
1616 if (rmtp) {
1617 ret = update_rmtp(&t.timer, rmtp);
1618 if (ret <= 0)
1619 goto out;
1622 restart = &current_thread_info()->restart_block;
1623 restart->fn = hrtimer_nanosleep_restart;
1624 restart->nanosleep.clockid = t.timer.base->clockid;
1625 restart->nanosleep.rmtp = rmtp;
1626 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1628 ret = -ERESTART_RESTARTBLOCK;
1629 out:
1630 destroy_hrtimer_on_stack(&t.timer);
1631 return ret;
1634 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1635 struct timespec __user *, rmtp)
1637 struct timespec tu;
1639 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1640 return -EFAULT;
1642 if (!timespec_valid(&tu))
1643 return -EINVAL;
1645 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1649 * Functions related to boot-time initialization:
1651 static void init_hrtimers_cpu(int cpu)
1653 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1654 int i;
1656 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1657 cpu_base->clock_base[i].cpu_base = cpu_base;
1658 timerqueue_init_head(&cpu_base->clock_base[i].active);
1661 hrtimer_init_hres(cpu_base);
1664 #ifdef CONFIG_HOTPLUG_CPU
1666 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1667 struct hrtimer_clock_base *new_base)
1669 struct hrtimer *timer;
1670 struct timerqueue_node *node;
1672 while ((node = timerqueue_getnext(&old_base->active))) {
1673 timer = container_of(node, struct hrtimer, node);
1674 BUG_ON(hrtimer_callback_running(timer));
1675 debug_deactivate(timer);
1678 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1679 * timer could be seen as !active and just vanish away
1680 * under us on another CPU
1682 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1683 timer->base = new_base;
1685 * Enqueue the timers on the new cpu. This does not
1686 * reprogram the event device in case the timer
1687 * expires before the earliest on this CPU, but we run
1688 * hrtimer_interrupt after we migrated everything to
1689 * sort out already expired timers and reprogram the
1690 * event device.
1692 enqueue_hrtimer(timer, new_base);
1694 /* Clear the migration state bit */
1695 timer->state &= ~HRTIMER_STATE_MIGRATE;
1699 static void migrate_hrtimers(int scpu)
1701 struct hrtimer_cpu_base *old_base, *new_base;
1702 int i;
1704 BUG_ON(cpu_online(scpu));
1705 tick_cancel_sched_timer(scpu);
1707 local_irq_disable();
1708 old_base = &per_cpu(hrtimer_bases, scpu);
1709 new_base = &__get_cpu_var(hrtimer_bases);
1711 * The caller is globally serialized and nobody else
1712 * takes two locks at once, deadlock is not possible.
1714 raw_spin_lock(&new_base->lock);
1715 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1717 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1718 migrate_hrtimer_list(&old_base->clock_base[i],
1719 &new_base->clock_base[i]);
1722 raw_spin_unlock(&old_base->lock);
1723 raw_spin_unlock(&new_base->lock);
1725 /* Check, if we got expired work to do */
1726 __hrtimer_peek_ahead_timers();
1727 local_irq_enable();
1730 #endif /* CONFIG_HOTPLUG_CPU */
1732 static int hrtimer_cpu_notify(struct notifier_block *self,
1733 unsigned long action, void *hcpu)
1735 int scpu = (long)hcpu;
1737 switch (action) {
1739 case CPU_UP_PREPARE:
1740 case CPU_UP_PREPARE_FROZEN:
1741 init_hrtimers_cpu(scpu);
1742 break;
1744 #ifdef CONFIG_HOTPLUG_CPU
1745 case CPU_DYING:
1746 case CPU_DYING_FROZEN:
1747 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1748 break;
1749 case CPU_DEAD:
1750 case CPU_DEAD_FROZEN:
1752 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1753 migrate_hrtimers(scpu);
1754 break;
1756 #endif
1758 default:
1759 break;
1762 return NOTIFY_OK;
1765 static struct notifier_block hrtimers_nb = {
1766 .notifier_call = hrtimer_cpu_notify,
1769 void __init hrtimers_init(void)
1771 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1772 (void *)(long)smp_processor_id());
1773 register_cpu_notifier(&hrtimers_nb);
1774 #ifdef CONFIG_HIGH_RES_TIMERS
1775 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1776 #endif
1780 * schedule_hrtimeout_range_clock - sleep until timeout
1781 * @expires: timeout value (ktime_t)
1782 * @delta: slack in expires timeout (ktime_t)
1783 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1784 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1786 int __sched
1787 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1788 const enum hrtimer_mode mode, int clock)
1790 struct hrtimer_sleeper t;
1793 * Optimize when a zero timeout value is given. It does not
1794 * matter whether this is an absolute or a relative time.
1796 if (expires && !expires->tv64) {
1797 __set_current_state(TASK_RUNNING);
1798 return 0;
1802 * A NULL parameter means "infinite"
1804 if (!expires) {
1805 schedule();
1806 __set_current_state(TASK_RUNNING);
1807 return -EINTR;
1810 hrtimer_init_on_stack(&t.timer, clock, mode);
1811 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1813 hrtimer_init_sleeper(&t, current);
1815 hrtimer_start_expires(&t.timer, mode);
1816 if (!hrtimer_active(&t.timer))
1817 t.task = NULL;
1819 if (likely(t.task))
1820 schedule();
1822 hrtimer_cancel(&t.timer);
1823 destroy_hrtimer_on_stack(&t.timer);
1825 __set_current_state(TASK_RUNNING);
1827 return !t.task ? 0 : -EINTR;
1831 * schedule_hrtimeout_range - sleep until timeout
1832 * @expires: timeout value (ktime_t)
1833 * @delta: slack in expires timeout (ktime_t)
1834 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1836 * Make the current task sleep until the given expiry time has
1837 * elapsed. The routine will return immediately unless
1838 * the current task state has been set (see set_current_state()).
1840 * The @delta argument gives the kernel the freedom to schedule the
1841 * actual wakeup to a time that is both power and performance friendly.
1842 * The kernel give the normal best effort behavior for "@expires+@delta",
1843 * but may decide to fire the timer earlier, but no earlier than @expires.
1845 * You can set the task state as follows -
1847 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1848 * pass before the routine returns.
1850 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1851 * delivered to the current task.
1853 * The current task state is guaranteed to be TASK_RUNNING when this
1854 * routine returns.
1856 * Returns 0 when the timer has expired otherwise -EINTR
1858 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1859 const enum hrtimer_mode mode)
1861 return schedule_hrtimeout_range_clock(expires, delta, mode,
1862 CLOCK_MONOTONIC);
1864 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1867 * schedule_hrtimeout - sleep until timeout
1868 * @expires: timeout value (ktime_t)
1869 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1871 * Make the current task sleep until the given expiry time has
1872 * elapsed. The routine will return immediately unless
1873 * the current task state has been set (see set_current_state()).
1875 * You can set the task state as follows -
1877 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1878 * pass before the routine returns.
1880 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1881 * delivered to the current task.
1883 * The current task state is guaranteed to be TASK_RUNNING when this
1884 * routine returns.
1886 * Returns 0 when the timer has expired otherwise -EINTR
1888 int __sched schedule_hrtimeout(ktime_t *expires,
1889 const enum hrtimer_mode mode)
1891 return schedule_hrtimeout_range(expires, 0, mode);
1893 EXPORT_SYMBOL_GPL(schedule_hrtimeout);