2 * kexec: kexec_file_load system call
4 * Copyright (C) 2014 Red Hat Inc.
6 * Vivek Goyal <vgoyal@redhat.com>
8 * This source code is licensed under the GNU General Public License,
9 * Version 2. See the file COPYING for more details.
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 #include <linux/capability.h>
16 #include <linux/file.h>
17 #include <linux/slab.h>
18 #include <linux/kexec.h>
19 #include <linux/mutex.h>
20 #include <linux/list.h>
22 #include <linux/ima.h>
23 #include <crypto/hash.h>
24 #include <crypto/sha.h>
25 #include <linux/syscalls.h>
26 #include <linux/vmalloc.h>
27 #include "kexec_internal.h"
29 static int kexec_calculate_store_digests(struct kimage
*image
);
31 /* Architectures can provide this probe function */
32 int __weak
arch_kexec_kernel_image_probe(struct kimage
*image
, void *buf
,
33 unsigned long buf_len
)
38 void * __weak
arch_kexec_kernel_image_load(struct kimage
*image
)
40 return ERR_PTR(-ENOEXEC
);
43 int __weak
arch_kimage_file_post_load_cleanup(struct kimage
*image
)
48 #ifdef CONFIG_KEXEC_VERIFY_SIG
49 int __weak
arch_kexec_kernel_verify_sig(struct kimage
*image
, void *buf
,
50 unsigned long buf_len
)
56 /* Apply relocations of type RELA */
58 arch_kexec_apply_relocations_add(const Elf_Ehdr
*ehdr
, Elf_Shdr
*sechdrs
,
61 pr_err("RELA relocation unsupported.\n");
65 /* Apply relocations of type REL */
67 arch_kexec_apply_relocations(const Elf_Ehdr
*ehdr
, Elf_Shdr
*sechdrs
,
70 pr_err("REL relocation unsupported.\n");
75 * Free up memory used by kernel, initrd, and command line. This is temporary
76 * memory allocation which is not needed any more after these buffers have
77 * been loaded into separate segments and have been copied elsewhere.
79 void kimage_file_post_load_cleanup(struct kimage
*image
)
81 struct purgatory_info
*pi
= &image
->purgatory_info
;
83 vfree(image
->kernel_buf
);
84 image
->kernel_buf
= NULL
;
86 vfree(image
->initrd_buf
);
87 image
->initrd_buf
= NULL
;
89 kfree(image
->cmdline_buf
);
90 image
->cmdline_buf
= NULL
;
92 vfree(pi
->purgatory_buf
);
93 pi
->purgatory_buf
= NULL
;
98 /* See if architecture has anything to cleanup post load */
99 arch_kimage_file_post_load_cleanup(image
);
102 * Above call should have called into bootloader to free up
103 * any data stored in kimage->image_loader_data. It should
104 * be ok now to free it up.
106 kfree(image
->image_loader_data
);
107 image
->image_loader_data
= NULL
;
111 * In file mode list of segments is prepared by kernel. Copy relevant
112 * data from user space, do error checking, prepare segment list
115 kimage_file_prepare_segments(struct kimage
*image
, int kernel_fd
, int initrd_fd
,
116 const char __user
*cmdline_ptr
,
117 unsigned long cmdline_len
, unsigned flags
)
123 ret
= kernel_read_file_from_fd(kernel_fd
, &image
->kernel_buf
,
124 &size
, INT_MAX
, READING_KEXEC_IMAGE
);
127 image
->kernel_buf_len
= size
;
129 /* IMA needs to pass the measurement list to the next kernel. */
130 ima_add_kexec_buffer(image
);
132 /* Call arch image probe handlers */
133 ret
= arch_kexec_kernel_image_probe(image
, image
->kernel_buf
,
134 image
->kernel_buf_len
);
138 #ifdef CONFIG_KEXEC_VERIFY_SIG
139 ret
= arch_kexec_kernel_verify_sig(image
, image
->kernel_buf
,
140 image
->kernel_buf_len
);
142 pr_debug("kernel signature verification failed.\n");
145 pr_debug("kernel signature verification successful.\n");
147 /* It is possible that there no initramfs is being loaded */
148 if (!(flags
& KEXEC_FILE_NO_INITRAMFS
)) {
149 ret
= kernel_read_file_from_fd(initrd_fd
, &image
->initrd_buf
,
151 READING_KEXEC_INITRAMFS
);
154 image
->initrd_buf_len
= size
;
158 image
->cmdline_buf
= memdup_user(cmdline_ptr
, cmdline_len
);
159 if (IS_ERR(image
->cmdline_buf
)) {
160 ret
= PTR_ERR(image
->cmdline_buf
);
161 image
->cmdline_buf
= NULL
;
165 image
->cmdline_buf_len
= cmdline_len
;
167 /* command line should be a string with last byte null */
168 if (image
->cmdline_buf
[cmdline_len
- 1] != '\0') {
174 /* Call arch image load handlers */
175 ldata
= arch_kexec_kernel_image_load(image
);
178 ret
= PTR_ERR(ldata
);
182 image
->image_loader_data
= ldata
;
184 /* In case of error, free up all allocated memory in this function */
186 kimage_file_post_load_cleanup(image
);
191 kimage_file_alloc_init(struct kimage
**rimage
, int kernel_fd
,
192 int initrd_fd
, const char __user
*cmdline_ptr
,
193 unsigned long cmdline_len
, unsigned long flags
)
196 struct kimage
*image
;
197 bool kexec_on_panic
= flags
& KEXEC_FILE_ON_CRASH
;
199 image
= do_kimage_alloc_init();
203 image
->file_mode
= 1;
205 if (kexec_on_panic
) {
206 /* Enable special crash kernel control page alloc policy. */
207 image
->control_page
= crashk_res
.start
;
208 image
->type
= KEXEC_TYPE_CRASH
;
211 ret
= kimage_file_prepare_segments(image
, kernel_fd
, initrd_fd
,
212 cmdline_ptr
, cmdline_len
, flags
);
216 ret
= sanity_check_segment_list(image
);
218 goto out_free_post_load_bufs
;
221 image
->control_code_page
= kimage_alloc_control_pages(image
,
222 get_order(KEXEC_CONTROL_PAGE_SIZE
));
223 if (!image
->control_code_page
) {
224 pr_err("Could not allocate control_code_buffer\n");
225 goto out_free_post_load_bufs
;
228 if (!kexec_on_panic
) {
229 image
->swap_page
= kimage_alloc_control_pages(image
, 0);
230 if (!image
->swap_page
) {
231 pr_err("Could not allocate swap buffer\n");
232 goto out_free_control_pages
;
238 out_free_control_pages
:
239 kimage_free_page_list(&image
->control_pages
);
240 out_free_post_load_bufs
:
241 kimage_file_post_load_cleanup(image
);
247 SYSCALL_DEFINE5(kexec_file_load
, int, kernel_fd
, int, initrd_fd
,
248 unsigned long, cmdline_len
, const char __user
*, cmdline_ptr
,
249 unsigned long, flags
)
252 struct kimage
**dest_image
, *image
;
254 /* We only trust the superuser with rebooting the system. */
255 if (!capable(CAP_SYS_BOOT
) || kexec_load_disabled
)
258 /* Make sure we have a legal set of flags */
259 if (flags
!= (flags
& KEXEC_FILE_FLAGS
))
264 if (!mutex_trylock(&kexec_mutex
))
267 dest_image
= &kexec_image
;
268 if (flags
& KEXEC_FILE_ON_CRASH
) {
269 dest_image
= &kexec_crash_image
;
270 if (kexec_crash_image
)
271 arch_kexec_unprotect_crashkres();
274 if (flags
& KEXEC_FILE_UNLOAD
)
278 * In case of crash, new kernel gets loaded in reserved region. It is
279 * same memory where old crash kernel might be loaded. Free any
280 * current crash dump kernel before we corrupt it.
282 if (flags
& KEXEC_FILE_ON_CRASH
)
283 kimage_free(xchg(&kexec_crash_image
, NULL
));
285 ret
= kimage_file_alloc_init(&image
, kernel_fd
, initrd_fd
, cmdline_ptr
,
290 ret
= machine_kexec_prepare(image
);
295 * Some architecture(like S390) may touch the crash memory before
296 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
298 ret
= kimage_crash_copy_vmcoreinfo(image
);
302 ret
= kexec_calculate_store_digests(image
);
306 for (i
= 0; i
< image
->nr_segments
; i
++) {
307 struct kexec_segment
*ksegment
;
309 ksegment
= &image
->segment
[i
];
310 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
311 i
, ksegment
->buf
, ksegment
->bufsz
, ksegment
->mem
,
314 ret
= kimage_load_segment(image
, &image
->segment
[i
]);
319 kimage_terminate(image
);
322 * Free up any temporary buffers allocated which are not needed
323 * after image has been loaded
325 kimage_file_post_load_cleanup(image
);
327 image
= xchg(dest_image
, image
);
329 if ((flags
& KEXEC_FILE_ON_CRASH
) && kexec_crash_image
)
330 arch_kexec_protect_crashkres();
332 mutex_unlock(&kexec_mutex
);
337 static int locate_mem_hole_top_down(unsigned long start
, unsigned long end
,
338 struct kexec_buf
*kbuf
)
340 struct kimage
*image
= kbuf
->image
;
341 unsigned long temp_start
, temp_end
;
343 temp_end
= min(end
, kbuf
->buf_max
);
344 temp_start
= temp_end
- kbuf
->memsz
;
347 /* align down start */
348 temp_start
= temp_start
& (~(kbuf
->buf_align
- 1));
350 if (temp_start
< start
|| temp_start
< kbuf
->buf_min
)
353 temp_end
= temp_start
+ kbuf
->memsz
- 1;
356 * Make sure this does not conflict with any of existing
359 if (kimage_is_destination_range(image
, temp_start
, temp_end
)) {
360 temp_start
= temp_start
- PAGE_SIZE
;
364 /* We found a suitable memory range */
368 /* If we are here, we found a suitable memory range */
369 kbuf
->mem
= temp_start
;
371 /* Success, stop navigating through remaining System RAM ranges */
375 static int locate_mem_hole_bottom_up(unsigned long start
, unsigned long end
,
376 struct kexec_buf
*kbuf
)
378 struct kimage
*image
= kbuf
->image
;
379 unsigned long temp_start
, temp_end
;
381 temp_start
= max(start
, kbuf
->buf_min
);
384 temp_start
= ALIGN(temp_start
, kbuf
->buf_align
);
385 temp_end
= temp_start
+ kbuf
->memsz
- 1;
387 if (temp_end
> end
|| temp_end
> kbuf
->buf_max
)
390 * Make sure this does not conflict with any of existing
393 if (kimage_is_destination_range(image
, temp_start
, temp_end
)) {
394 temp_start
= temp_start
+ PAGE_SIZE
;
398 /* We found a suitable memory range */
402 /* If we are here, we found a suitable memory range */
403 kbuf
->mem
= temp_start
;
405 /* Success, stop navigating through remaining System RAM ranges */
409 static int locate_mem_hole_callback(u64 start
, u64 end
, void *arg
)
411 struct kexec_buf
*kbuf
= (struct kexec_buf
*)arg
;
412 unsigned long sz
= end
- start
+ 1;
414 /* Returning 0 will take to next memory range */
415 if (sz
< kbuf
->memsz
)
418 if (end
< kbuf
->buf_min
|| start
> kbuf
->buf_max
)
422 * Allocate memory top down with-in ram range. Otherwise bottom up
426 return locate_mem_hole_top_down(start
, end
, kbuf
);
427 return locate_mem_hole_bottom_up(start
, end
, kbuf
);
431 * arch_kexec_walk_mem - call func(data) on free memory regions
432 * @kbuf: Context info for the search. Also passed to @func.
433 * @func: Function to call for each memory region.
435 * Return: The memory walk will stop when func returns a non-zero value
436 * and that value will be returned. If all free regions are visited without
437 * func returning non-zero, then zero will be returned.
439 int __weak
arch_kexec_walk_mem(struct kexec_buf
*kbuf
,
440 int (*func
)(u64
, u64
, void *))
442 if (kbuf
->image
->type
== KEXEC_TYPE_CRASH
)
443 return walk_iomem_res_desc(crashk_res
.desc
,
444 IORESOURCE_SYSTEM_RAM
| IORESOURCE_BUSY
,
445 crashk_res
.start
, crashk_res
.end
,
448 return walk_system_ram_res(0, ULONG_MAX
, kbuf
, func
);
452 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
453 * @kbuf: Parameters for the memory search.
455 * On success, kbuf->mem will have the start address of the memory region found.
457 * Return: 0 on success, negative errno on error.
459 int kexec_locate_mem_hole(struct kexec_buf
*kbuf
)
463 ret
= arch_kexec_walk_mem(kbuf
, locate_mem_hole_callback
);
465 return ret
== 1 ? 0 : -EADDRNOTAVAIL
;
469 * kexec_add_buffer - place a buffer in a kexec segment
470 * @kbuf: Buffer contents and memory parameters.
472 * This function assumes that kexec_mutex is held.
473 * On successful return, @kbuf->mem will have the physical address of
474 * the buffer in memory.
476 * Return: 0 on success, negative errno on error.
478 int kexec_add_buffer(struct kexec_buf
*kbuf
)
481 struct kexec_segment
*ksegment
;
484 /* Currently adding segment this way is allowed only in file mode */
485 if (!kbuf
->image
->file_mode
)
488 if (kbuf
->image
->nr_segments
>= KEXEC_SEGMENT_MAX
)
492 * Make sure we are not trying to add buffer after allocating
493 * control pages. All segments need to be placed first before
494 * any control pages are allocated. As control page allocation
495 * logic goes through list of segments to make sure there are
496 * no destination overlaps.
498 if (!list_empty(&kbuf
->image
->control_pages
)) {
503 /* Ensure minimum alignment needed for segments. */
504 kbuf
->memsz
= ALIGN(kbuf
->memsz
, PAGE_SIZE
);
505 kbuf
->buf_align
= max(kbuf
->buf_align
, PAGE_SIZE
);
507 /* Walk the RAM ranges and allocate a suitable range for the buffer */
508 ret
= kexec_locate_mem_hole(kbuf
);
512 /* Found a suitable memory range */
513 ksegment
= &kbuf
->image
->segment
[kbuf
->image
->nr_segments
];
514 ksegment
->kbuf
= kbuf
->buffer
;
515 ksegment
->bufsz
= kbuf
->bufsz
;
516 ksegment
->mem
= kbuf
->mem
;
517 ksegment
->memsz
= kbuf
->memsz
;
518 kbuf
->image
->nr_segments
++;
522 /* Calculate and store the digest of segments */
523 static int kexec_calculate_store_digests(struct kimage
*image
)
525 struct crypto_shash
*tfm
;
526 struct shash_desc
*desc
;
527 int ret
= 0, i
, j
, zero_buf_sz
, sha_region_sz
;
528 size_t desc_size
, nullsz
;
531 struct kexec_sha_region
*sha_regions
;
532 struct purgatory_info
*pi
= &image
->purgatory_info
;
534 zero_buf
= __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT
);
535 zero_buf_sz
= PAGE_SIZE
;
537 tfm
= crypto_alloc_shash("sha256", 0, 0);
543 desc_size
= crypto_shash_descsize(tfm
) + sizeof(*desc
);
544 desc
= kzalloc(desc_size
, GFP_KERNEL
);
550 sha_region_sz
= KEXEC_SEGMENT_MAX
* sizeof(struct kexec_sha_region
);
551 sha_regions
= vzalloc(sha_region_sz
);
558 ret
= crypto_shash_init(desc
);
560 goto out_free_sha_regions
;
562 digest
= kzalloc(SHA256_DIGEST_SIZE
, GFP_KERNEL
);
565 goto out_free_sha_regions
;
568 for (j
= i
= 0; i
< image
->nr_segments
; i
++) {
569 struct kexec_segment
*ksegment
;
571 ksegment
= &image
->segment
[i
];
573 * Skip purgatory as it will be modified once we put digest
576 if (ksegment
->kbuf
== pi
->purgatory_buf
)
579 ret
= crypto_shash_update(desc
, ksegment
->kbuf
,
585 * Assume rest of the buffer is filled with zero and
586 * update digest accordingly.
588 nullsz
= ksegment
->memsz
- ksegment
->bufsz
;
590 unsigned long bytes
= nullsz
;
592 if (bytes
> zero_buf_sz
)
594 ret
= crypto_shash_update(desc
, zero_buf
, bytes
);
603 sha_regions
[j
].start
= ksegment
->mem
;
604 sha_regions
[j
].len
= ksegment
->memsz
;
609 ret
= crypto_shash_final(desc
, digest
);
611 goto out_free_digest
;
612 ret
= kexec_purgatory_get_set_symbol(image
, "purgatory_sha_regions",
613 sha_regions
, sha_region_sz
, 0);
615 goto out_free_digest
;
617 ret
= kexec_purgatory_get_set_symbol(image
, "purgatory_sha256_digest",
618 digest
, SHA256_DIGEST_SIZE
, 0);
620 goto out_free_digest
;
625 out_free_sha_regions
:
635 /* Actually load purgatory. Lot of code taken from kexec-tools */
636 static int __kexec_load_purgatory(struct kimage
*image
, unsigned long min
,
637 unsigned long max
, int top_down
)
639 struct purgatory_info
*pi
= &image
->purgatory_info
;
640 unsigned long align
, bss_align
, bss_sz
, bss_pad
;
641 unsigned long entry
, load_addr
, curr_load_addr
, bss_addr
, offset
;
642 unsigned char *buf_addr
, *src
;
643 int i
, ret
= 0, entry_sidx
= -1;
644 const Elf_Shdr
*sechdrs_c
;
645 Elf_Shdr
*sechdrs
= NULL
;
646 struct kexec_buf kbuf
= { .image
= image
, .bufsz
= 0, .buf_align
= 1,
647 .buf_min
= min
, .buf_max
= max
,
648 .top_down
= top_down
};
651 * sechdrs_c points to section headers in purgatory and are read
652 * only. No modifications allowed.
654 sechdrs_c
= (void *)pi
->ehdr
+ pi
->ehdr
->e_shoff
;
657 * We can not modify sechdrs_c[] and its fields. It is read only.
658 * Copy it over to a local copy where one can store some temporary
659 * data and free it at the end. We need to modify ->sh_addr and
660 * ->sh_offset fields to keep track of permanent and temporary
661 * locations of sections.
663 sechdrs
= vzalloc(pi
->ehdr
->e_shnum
* sizeof(Elf_Shdr
));
667 memcpy(sechdrs
, sechdrs_c
, pi
->ehdr
->e_shnum
* sizeof(Elf_Shdr
));
670 * We seem to have multiple copies of sections. First copy is which
671 * is embedded in kernel in read only section. Some of these sections
672 * will be copied to a temporary buffer and relocated. And these
673 * sections will finally be copied to their final destination at
676 * Use ->sh_offset to reflect section address in memory. It will
677 * point to original read only copy if section is not allocatable.
678 * Otherwise it will point to temporary copy which will be relocated.
680 * Use ->sh_addr to contain final address of the section where it
681 * will go during execution time.
683 for (i
= 0; i
< pi
->ehdr
->e_shnum
; i
++) {
684 if (sechdrs
[i
].sh_type
== SHT_NOBITS
)
687 sechdrs
[i
].sh_offset
= (unsigned long)pi
->ehdr
+
688 sechdrs
[i
].sh_offset
;
692 * Identify entry point section and make entry relative to section
695 entry
= pi
->ehdr
->e_entry
;
696 for (i
= 0; i
< pi
->ehdr
->e_shnum
; i
++) {
697 if (!(sechdrs
[i
].sh_flags
& SHF_ALLOC
))
700 if (!(sechdrs
[i
].sh_flags
& SHF_EXECINSTR
))
703 /* Make entry section relative */
704 if (sechdrs
[i
].sh_addr
<= pi
->ehdr
->e_entry
&&
705 ((sechdrs
[i
].sh_addr
+ sechdrs
[i
].sh_size
) >
706 pi
->ehdr
->e_entry
)) {
708 entry
-= sechdrs
[i
].sh_addr
;
713 /* Determine how much memory is needed to load relocatable object. */
717 for (i
= 0; i
< pi
->ehdr
->e_shnum
; i
++) {
718 if (!(sechdrs
[i
].sh_flags
& SHF_ALLOC
))
721 align
= sechdrs
[i
].sh_addralign
;
722 if (sechdrs
[i
].sh_type
!= SHT_NOBITS
) {
723 if (kbuf
.buf_align
< align
)
724 kbuf
.buf_align
= align
;
725 kbuf
.bufsz
= ALIGN(kbuf
.bufsz
, align
);
726 kbuf
.bufsz
+= sechdrs
[i
].sh_size
;
729 if (bss_align
< align
)
731 bss_sz
= ALIGN(bss_sz
, align
);
732 bss_sz
+= sechdrs
[i
].sh_size
;
736 /* Determine the bss padding required to align bss properly */
738 if (kbuf
.bufsz
& (bss_align
- 1))
739 bss_pad
= bss_align
- (kbuf
.bufsz
& (bss_align
- 1));
741 kbuf
.memsz
= kbuf
.bufsz
+ bss_pad
+ bss_sz
;
743 /* Allocate buffer for purgatory */
744 kbuf
.buffer
= vzalloc(kbuf
.bufsz
);
750 if (kbuf
.buf_align
< bss_align
)
751 kbuf
.buf_align
= bss_align
;
753 /* Add buffer to segment list */
754 ret
= kexec_add_buffer(&kbuf
);
757 pi
->purgatory_load_addr
= kbuf
.mem
;
759 /* Load SHF_ALLOC sections */
760 buf_addr
= kbuf
.buffer
;
761 load_addr
= curr_load_addr
= pi
->purgatory_load_addr
;
762 bss_addr
= load_addr
+ kbuf
.bufsz
+ bss_pad
;
764 for (i
= 0; i
< pi
->ehdr
->e_shnum
; i
++) {
765 if (!(sechdrs
[i
].sh_flags
& SHF_ALLOC
))
768 align
= sechdrs
[i
].sh_addralign
;
769 if (sechdrs
[i
].sh_type
!= SHT_NOBITS
) {
770 curr_load_addr
= ALIGN(curr_load_addr
, align
);
771 offset
= curr_load_addr
- load_addr
;
772 /* We already modifed ->sh_offset to keep src addr */
773 src
= (char *) sechdrs
[i
].sh_offset
;
774 memcpy(buf_addr
+ offset
, src
, sechdrs
[i
].sh_size
);
776 /* Store load address and source address of section */
777 sechdrs
[i
].sh_addr
= curr_load_addr
;
780 * This section got copied to temporary buffer. Update
781 * ->sh_offset accordingly.
783 sechdrs
[i
].sh_offset
= (unsigned long)(buf_addr
+ offset
);
785 /* Advance to the next address */
786 curr_load_addr
+= sechdrs
[i
].sh_size
;
788 bss_addr
= ALIGN(bss_addr
, align
);
789 sechdrs
[i
].sh_addr
= bss_addr
;
790 bss_addr
+= sechdrs
[i
].sh_size
;
794 /* Update entry point based on load address of text section */
796 entry
+= sechdrs
[entry_sidx
].sh_addr
;
798 /* Make kernel jump to purgatory after shutdown */
799 image
->start
= entry
;
801 /* Used later to get/set symbol values */
802 pi
->sechdrs
= sechdrs
;
805 * Used later to identify which section is purgatory and skip it
808 pi
->purgatory_buf
= kbuf
.buffer
;
816 static int kexec_apply_relocations(struct kimage
*image
)
819 struct purgatory_info
*pi
= &image
->purgatory_info
;
820 Elf_Shdr
*sechdrs
= pi
->sechdrs
;
822 /* Apply relocations */
823 for (i
= 0; i
< pi
->ehdr
->e_shnum
; i
++) {
824 Elf_Shdr
*section
, *symtab
;
826 if (sechdrs
[i
].sh_type
!= SHT_RELA
&&
827 sechdrs
[i
].sh_type
!= SHT_REL
)
831 * For section of type SHT_RELA/SHT_REL,
832 * ->sh_link contains section header index of associated
833 * symbol table. And ->sh_info contains section header
834 * index of section to which relocations apply.
836 if (sechdrs
[i
].sh_info
>= pi
->ehdr
->e_shnum
||
837 sechdrs
[i
].sh_link
>= pi
->ehdr
->e_shnum
)
840 section
= &sechdrs
[sechdrs
[i
].sh_info
];
841 symtab
= &sechdrs
[sechdrs
[i
].sh_link
];
843 if (!(section
->sh_flags
& SHF_ALLOC
))
847 * symtab->sh_link contain section header index of associated
850 if (symtab
->sh_link
>= pi
->ehdr
->e_shnum
)
851 /* Invalid section number? */
855 * Respective architecture needs to provide support for applying
856 * relocations of type SHT_RELA/SHT_REL.
858 if (sechdrs
[i
].sh_type
== SHT_RELA
)
859 ret
= arch_kexec_apply_relocations_add(pi
->ehdr
,
861 else if (sechdrs
[i
].sh_type
== SHT_REL
)
862 ret
= arch_kexec_apply_relocations(pi
->ehdr
,
871 /* Load relocatable purgatory object and relocate it appropriately */
872 int kexec_load_purgatory(struct kimage
*image
, unsigned long min
,
873 unsigned long max
, int top_down
,
874 unsigned long *load_addr
)
876 struct purgatory_info
*pi
= &image
->purgatory_info
;
879 if (kexec_purgatory_size
<= 0)
882 if (kexec_purgatory_size
< sizeof(Elf_Ehdr
))
885 pi
->ehdr
= (Elf_Ehdr
*)kexec_purgatory
;
887 if (memcmp(pi
->ehdr
->e_ident
, ELFMAG
, SELFMAG
) != 0
888 || pi
->ehdr
->e_type
!= ET_REL
889 || !elf_check_arch(pi
->ehdr
)
890 || pi
->ehdr
->e_shentsize
!= sizeof(Elf_Shdr
))
893 if (pi
->ehdr
->e_shoff
>= kexec_purgatory_size
894 || (pi
->ehdr
->e_shnum
* sizeof(Elf_Shdr
) >
895 kexec_purgatory_size
- pi
->ehdr
->e_shoff
))
898 ret
= __kexec_load_purgatory(image
, min
, max
, top_down
);
902 ret
= kexec_apply_relocations(image
);
906 *load_addr
= pi
->purgatory_load_addr
;
912 vfree(pi
->purgatory_buf
);
913 pi
->purgatory_buf
= NULL
;
917 static Elf_Sym
*kexec_purgatory_find_symbol(struct purgatory_info
*pi
,
926 if (!pi
->sechdrs
|| !pi
->ehdr
)
929 sechdrs
= pi
->sechdrs
;
932 for (i
= 0; i
< ehdr
->e_shnum
; i
++) {
933 if (sechdrs
[i
].sh_type
!= SHT_SYMTAB
)
936 if (sechdrs
[i
].sh_link
>= ehdr
->e_shnum
)
937 /* Invalid strtab section number */
939 strtab
= (char *)sechdrs
[sechdrs
[i
].sh_link
].sh_offset
;
940 syms
= (Elf_Sym
*)sechdrs
[i
].sh_offset
;
942 /* Go through symbols for a match */
943 for (k
= 0; k
< sechdrs
[i
].sh_size
/sizeof(Elf_Sym
); k
++) {
944 if (ELF_ST_BIND(syms
[k
].st_info
) != STB_GLOBAL
)
947 if (strcmp(strtab
+ syms
[k
].st_name
, name
) != 0)
950 if (syms
[k
].st_shndx
== SHN_UNDEF
||
951 syms
[k
].st_shndx
>= ehdr
->e_shnum
) {
952 pr_debug("Symbol: %s has bad section index %d.\n",
953 name
, syms
[k
].st_shndx
);
957 /* Found the symbol we are looking for */
965 void *kexec_purgatory_get_symbol_addr(struct kimage
*image
, const char *name
)
967 struct purgatory_info
*pi
= &image
->purgatory_info
;
971 sym
= kexec_purgatory_find_symbol(pi
, name
);
973 return ERR_PTR(-EINVAL
);
975 sechdr
= &pi
->sechdrs
[sym
->st_shndx
];
978 * Returns the address where symbol will finally be loaded after
979 * kexec_load_segment()
981 return (void *)(sechdr
->sh_addr
+ sym
->st_value
);
985 * Get or set value of a symbol. If "get_value" is true, symbol value is
986 * returned in buf otherwise symbol value is set based on value in buf.
988 int kexec_purgatory_get_set_symbol(struct kimage
*image
, const char *name
,
989 void *buf
, unsigned int size
, bool get_value
)
993 struct purgatory_info
*pi
= &image
->purgatory_info
;
996 sym
= kexec_purgatory_find_symbol(pi
, name
);
1000 if (sym
->st_size
!= size
) {
1001 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1002 name
, (unsigned long)sym
->st_size
, size
);
1006 sechdrs
= pi
->sechdrs
;
1008 if (sechdrs
[sym
->st_shndx
].sh_type
== SHT_NOBITS
) {
1009 pr_err("symbol %s is in a bss section. Cannot %s\n", name
,
1010 get_value
? "get" : "set");
1014 sym_buf
= (unsigned char *)sechdrs
[sym
->st_shndx
].sh_offset
+
1018 memcpy((void *)buf
, sym_buf
, size
);
1020 memcpy((void *)sym_buf
, buf
, size
);