selftests/bpf: remove useless bpf_trace_printk
[linux-2.6/btrfs-unstable.git] / drivers / mtd / mtdcore.c
blobe7ea842ba3dbfc49f4e93d9c54b5f2b2cfc09f68
1 /*
2 * Core registration and callback routines for MTD
3 * drivers and users.
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/of.h>
36 #include <linux/proc_fs.h>
37 #include <linux/idr.h>
38 #include <linux/backing-dev.h>
39 #include <linux/gfp.h>
40 #include <linux/slab.h>
41 #include <linux/reboot.h>
42 #include <linux/leds.h>
43 #include <linux/debugfs.h>
45 #include <linux/mtd/mtd.h>
46 #include <linux/mtd/partitions.h>
48 #include "mtdcore.h"
50 struct backing_dev_info *mtd_bdi;
52 #ifdef CONFIG_PM_SLEEP
54 static int mtd_cls_suspend(struct device *dev)
56 struct mtd_info *mtd = dev_get_drvdata(dev);
58 return mtd ? mtd_suspend(mtd) : 0;
61 static int mtd_cls_resume(struct device *dev)
63 struct mtd_info *mtd = dev_get_drvdata(dev);
65 if (mtd)
66 mtd_resume(mtd);
67 return 0;
70 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
71 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
72 #else
73 #define MTD_CLS_PM_OPS NULL
74 #endif
76 static struct class mtd_class = {
77 .name = "mtd",
78 .owner = THIS_MODULE,
79 .pm = MTD_CLS_PM_OPS,
82 static DEFINE_IDR(mtd_idr);
84 /* These are exported solely for the purpose of mtd_blkdevs.c. You
85 should not use them for _anything_ else */
86 DEFINE_MUTEX(mtd_table_mutex);
87 EXPORT_SYMBOL_GPL(mtd_table_mutex);
89 struct mtd_info *__mtd_next_device(int i)
91 return idr_get_next(&mtd_idr, &i);
93 EXPORT_SYMBOL_GPL(__mtd_next_device);
95 static LIST_HEAD(mtd_notifiers);
98 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
100 /* REVISIT once MTD uses the driver model better, whoever allocates
101 * the mtd_info will probably want to use the release() hook...
103 static void mtd_release(struct device *dev)
105 struct mtd_info *mtd = dev_get_drvdata(dev);
106 dev_t index = MTD_DEVT(mtd->index);
108 /* remove /dev/mtdXro node */
109 device_destroy(&mtd_class, index + 1);
112 static ssize_t mtd_type_show(struct device *dev,
113 struct device_attribute *attr, char *buf)
115 struct mtd_info *mtd = dev_get_drvdata(dev);
116 char *type;
118 switch (mtd->type) {
119 case MTD_ABSENT:
120 type = "absent";
121 break;
122 case MTD_RAM:
123 type = "ram";
124 break;
125 case MTD_ROM:
126 type = "rom";
127 break;
128 case MTD_NORFLASH:
129 type = "nor";
130 break;
131 case MTD_NANDFLASH:
132 type = "nand";
133 break;
134 case MTD_DATAFLASH:
135 type = "dataflash";
136 break;
137 case MTD_UBIVOLUME:
138 type = "ubi";
139 break;
140 case MTD_MLCNANDFLASH:
141 type = "mlc-nand";
142 break;
143 default:
144 type = "unknown";
147 return snprintf(buf, PAGE_SIZE, "%s\n", type);
149 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
151 static ssize_t mtd_flags_show(struct device *dev,
152 struct device_attribute *attr, char *buf)
154 struct mtd_info *mtd = dev_get_drvdata(dev);
156 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
159 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
161 static ssize_t mtd_size_show(struct device *dev,
162 struct device_attribute *attr, char *buf)
164 struct mtd_info *mtd = dev_get_drvdata(dev);
166 return snprintf(buf, PAGE_SIZE, "%llu\n",
167 (unsigned long long)mtd->size);
170 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
172 static ssize_t mtd_erasesize_show(struct device *dev,
173 struct device_attribute *attr, char *buf)
175 struct mtd_info *mtd = dev_get_drvdata(dev);
177 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
180 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
182 static ssize_t mtd_writesize_show(struct device *dev,
183 struct device_attribute *attr, char *buf)
185 struct mtd_info *mtd = dev_get_drvdata(dev);
187 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
190 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
192 static ssize_t mtd_subpagesize_show(struct device *dev,
193 struct device_attribute *attr, char *buf)
195 struct mtd_info *mtd = dev_get_drvdata(dev);
196 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
198 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
201 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
203 static ssize_t mtd_oobsize_show(struct device *dev,
204 struct device_attribute *attr, char *buf)
206 struct mtd_info *mtd = dev_get_drvdata(dev);
208 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
211 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
213 static ssize_t mtd_numeraseregions_show(struct device *dev,
214 struct device_attribute *attr, char *buf)
216 struct mtd_info *mtd = dev_get_drvdata(dev);
218 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
221 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
222 NULL);
224 static ssize_t mtd_name_show(struct device *dev,
225 struct device_attribute *attr, char *buf)
227 struct mtd_info *mtd = dev_get_drvdata(dev);
229 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
232 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
234 static ssize_t mtd_ecc_strength_show(struct device *dev,
235 struct device_attribute *attr, char *buf)
237 struct mtd_info *mtd = dev_get_drvdata(dev);
239 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
241 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
243 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
244 struct device_attribute *attr,
245 char *buf)
247 struct mtd_info *mtd = dev_get_drvdata(dev);
249 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
252 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
253 struct device_attribute *attr,
254 const char *buf, size_t count)
256 struct mtd_info *mtd = dev_get_drvdata(dev);
257 unsigned int bitflip_threshold;
258 int retval;
260 retval = kstrtouint(buf, 0, &bitflip_threshold);
261 if (retval)
262 return retval;
264 mtd->bitflip_threshold = bitflip_threshold;
265 return count;
267 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
268 mtd_bitflip_threshold_show,
269 mtd_bitflip_threshold_store);
271 static ssize_t mtd_ecc_step_size_show(struct device *dev,
272 struct device_attribute *attr, char *buf)
274 struct mtd_info *mtd = dev_get_drvdata(dev);
276 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
279 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
281 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
282 struct device_attribute *attr, char *buf)
284 struct mtd_info *mtd = dev_get_drvdata(dev);
285 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
287 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
289 static DEVICE_ATTR(corrected_bits, S_IRUGO,
290 mtd_ecc_stats_corrected_show, NULL);
292 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
293 struct device_attribute *attr, char *buf)
295 struct mtd_info *mtd = dev_get_drvdata(dev);
296 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
298 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
300 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
302 static ssize_t mtd_badblocks_show(struct device *dev,
303 struct device_attribute *attr, char *buf)
305 struct mtd_info *mtd = dev_get_drvdata(dev);
306 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
308 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
310 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
312 static ssize_t mtd_bbtblocks_show(struct device *dev,
313 struct device_attribute *attr, char *buf)
315 struct mtd_info *mtd = dev_get_drvdata(dev);
316 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
318 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
320 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
322 static struct attribute *mtd_attrs[] = {
323 &dev_attr_type.attr,
324 &dev_attr_flags.attr,
325 &dev_attr_size.attr,
326 &dev_attr_erasesize.attr,
327 &dev_attr_writesize.attr,
328 &dev_attr_subpagesize.attr,
329 &dev_attr_oobsize.attr,
330 &dev_attr_numeraseregions.attr,
331 &dev_attr_name.attr,
332 &dev_attr_ecc_strength.attr,
333 &dev_attr_ecc_step_size.attr,
334 &dev_attr_corrected_bits.attr,
335 &dev_attr_ecc_failures.attr,
336 &dev_attr_bad_blocks.attr,
337 &dev_attr_bbt_blocks.attr,
338 &dev_attr_bitflip_threshold.attr,
339 NULL,
341 ATTRIBUTE_GROUPS(mtd);
343 static const struct device_type mtd_devtype = {
344 .name = "mtd",
345 .groups = mtd_groups,
346 .release = mtd_release,
349 #ifndef CONFIG_MMU
350 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
352 switch (mtd->type) {
353 case MTD_RAM:
354 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
355 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
356 case MTD_ROM:
357 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
358 NOMMU_MAP_READ;
359 default:
360 return NOMMU_MAP_COPY;
363 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
364 #endif
366 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
367 void *cmd)
369 struct mtd_info *mtd;
371 mtd = container_of(n, struct mtd_info, reboot_notifier);
372 mtd->_reboot(mtd);
374 return NOTIFY_DONE;
378 * mtd_wunit_to_pairing_info - get pairing information of a wunit
379 * @mtd: pointer to new MTD device info structure
380 * @wunit: write unit we are interested in
381 * @info: returned pairing information
383 * Retrieve pairing information associated to the wunit.
384 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
385 * paired together, and where programming a page may influence the page it is
386 * paired with.
387 * The notion of page is replaced by the term wunit (write-unit) to stay
388 * consistent with the ->writesize field.
390 * The @wunit argument can be extracted from an absolute offset using
391 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
392 * to @wunit.
394 * From the pairing info the MTD user can find all the wunits paired with
395 * @wunit using the following loop:
397 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
398 * info.pair = i;
399 * mtd_pairing_info_to_wunit(mtd, &info);
400 * ...
403 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
404 struct mtd_pairing_info *info)
406 int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
408 if (wunit < 0 || wunit >= npairs)
409 return -EINVAL;
411 if (mtd->pairing && mtd->pairing->get_info)
412 return mtd->pairing->get_info(mtd, wunit, info);
414 info->group = 0;
415 info->pair = wunit;
417 return 0;
419 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
422 * mtd_wunit_to_pairing_info - get wunit from pairing information
423 * @mtd: pointer to new MTD device info structure
424 * @info: pairing information struct
426 * Returns a positive number representing the wunit associated to the info
427 * struct, or a negative error code.
429 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
430 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
431 * doc).
433 * It can also be used to only program the first page of each pair (i.e.
434 * page attached to group 0), which allows one to use an MLC NAND in
435 * software-emulated SLC mode:
437 * info.group = 0;
438 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
439 * for (info.pair = 0; info.pair < npairs; info.pair++) {
440 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
441 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
442 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
445 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
446 const struct mtd_pairing_info *info)
448 int ngroups = mtd_pairing_groups(mtd);
449 int npairs = mtd_wunit_per_eb(mtd) / ngroups;
451 if (!info || info->pair < 0 || info->pair >= npairs ||
452 info->group < 0 || info->group >= ngroups)
453 return -EINVAL;
455 if (mtd->pairing && mtd->pairing->get_wunit)
456 return mtd->pairing->get_wunit(mtd, info);
458 return info->pair;
460 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
463 * mtd_pairing_groups - get the number of pairing groups
464 * @mtd: pointer to new MTD device info structure
466 * Returns the number of pairing groups.
468 * This number is usually equal to the number of bits exposed by a single
469 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
470 * to iterate over all pages of a given pair.
472 int mtd_pairing_groups(struct mtd_info *mtd)
474 if (!mtd->pairing || !mtd->pairing->ngroups)
475 return 1;
477 return mtd->pairing->ngroups;
479 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
481 static struct dentry *dfs_dir_mtd;
484 * add_mtd_device - register an MTD device
485 * @mtd: pointer to new MTD device info structure
487 * Add a device to the list of MTD devices present in the system, and
488 * notify each currently active MTD 'user' of its arrival. Returns
489 * zero on success or non-zero on failure.
492 int add_mtd_device(struct mtd_info *mtd)
494 struct mtd_notifier *not;
495 int i, error;
498 * May occur, for instance, on buggy drivers which call
499 * mtd_device_parse_register() multiple times on the same master MTD,
500 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
502 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
503 return -EEXIST;
505 BUG_ON(mtd->writesize == 0);
506 mutex_lock(&mtd_table_mutex);
508 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
509 if (i < 0) {
510 error = i;
511 goto fail_locked;
514 mtd->index = i;
515 mtd->usecount = 0;
517 /* default value if not set by driver */
518 if (mtd->bitflip_threshold == 0)
519 mtd->bitflip_threshold = mtd->ecc_strength;
521 if (is_power_of_2(mtd->erasesize))
522 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
523 else
524 mtd->erasesize_shift = 0;
526 if (is_power_of_2(mtd->writesize))
527 mtd->writesize_shift = ffs(mtd->writesize) - 1;
528 else
529 mtd->writesize_shift = 0;
531 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
532 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
534 /* Some chips always power up locked. Unlock them now */
535 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
536 error = mtd_unlock(mtd, 0, mtd->size);
537 if (error && error != -EOPNOTSUPP)
538 printk(KERN_WARNING
539 "%s: unlock failed, writes may not work\n",
540 mtd->name);
541 /* Ignore unlock failures? */
542 error = 0;
545 /* Caller should have set dev.parent to match the
546 * physical device, if appropriate.
548 mtd->dev.type = &mtd_devtype;
549 mtd->dev.class = &mtd_class;
550 mtd->dev.devt = MTD_DEVT(i);
551 dev_set_name(&mtd->dev, "mtd%d", i);
552 dev_set_drvdata(&mtd->dev, mtd);
553 of_node_get(mtd_get_of_node(mtd));
554 error = device_register(&mtd->dev);
555 if (error)
556 goto fail_added;
558 if (!IS_ERR_OR_NULL(dfs_dir_mtd)) {
559 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(&mtd->dev), dfs_dir_mtd);
560 if (IS_ERR_OR_NULL(mtd->dbg.dfs_dir)) {
561 pr_debug("mtd device %s won't show data in debugfs\n",
562 dev_name(&mtd->dev));
566 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
567 "mtd%dro", i);
569 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
570 /* No need to get a refcount on the module containing
571 the notifier, since we hold the mtd_table_mutex */
572 list_for_each_entry(not, &mtd_notifiers, list)
573 not->add(mtd);
575 mutex_unlock(&mtd_table_mutex);
576 /* We _know_ we aren't being removed, because
577 our caller is still holding us here. So none
578 of this try_ nonsense, and no bitching about it
579 either. :) */
580 __module_get(THIS_MODULE);
581 return 0;
583 fail_added:
584 of_node_put(mtd_get_of_node(mtd));
585 idr_remove(&mtd_idr, i);
586 fail_locked:
587 mutex_unlock(&mtd_table_mutex);
588 return error;
592 * del_mtd_device - unregister an MTD device
593 * @mtd: pointer to MTD device info structure
595 * Remove a device from the list of MTD devices present in the system,
596 * and notify each currently active MTD 'user' of its departure.
597 * Returns zero on success or 1 on failure, which currently will happen
598 * if the requested device does not appear to be present in the list.
601 int del_mtd_device(struct mtd_info *mtd)
603 int ret;
604 struct mtd_notifier *not;
606 mutex_lock(&mtd_table_mutex);
608 debugfs_remove_recursive(mtd->dbg.dfs_dir);
610 if (idr_find(&mtd_idr, mtd->index) != mtd) {
611 ret = -ENODEV;
612 goto out_error;
615 /* No need to get a refcount on the module containing
616 the notifier, since we hold the mtd_table_mutex */
617 list_for_each_entry(not, &mtd_notifiers, list)
618 not->remove(mtd);
620 if (mtd->usecount) {
621 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
622 mtd->index, mtd->name, mtd->usecount);
623 ret = -EBUSY;
624 } else {
625 device_unregister(&mtd->dev);
627 idr_remove(&mtd_idr, mtd->index);
628 of_node_put(mtd_get_of_node(mtd));
630 module_put(THIS_MODULE);
631 ret = 0;
634 out_error:
635 mutex_unlock(&mtd_table_mutex);
636 return ret;
639 static int mtd_add_device_partitions(struct mtd_info *mtd,
640 struct mtd_partitions *parts)
642 const struct mtd_partition *real_parts = parts->parts;
643 int nbparts = parts->nr_parts;
644 int ret;
646 if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
647 ret = add_mtd_device(mtd);
648 if (ret)
649 return ret;
652 if (nbparts > 0) {
653 ret = add_mtd_partitions(mtd, real_parts, nbparts);
654 if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
655 del_mtd_device(mtd);
656 return ret;
659 return 0;
663 * Set a few defaults based on the parent devices, if not provided by the
664 * driver
666 static void mtd_set_dev_defaults(struct mtd_info *mtd)
668 if (mtd->dev.parent) {
669 if (!mtd->owner && mtd->dev.parent->driver)
670 mtd->owner = mtd->dev.parent->driver->owner;
671 if (!mtd->name)
672 mtd->name = dev_name(mtd->dev.parent);
673 } else {
674 pr_debug("mtd device won't show a device symlink in sysfs\n");
679 * mtd_device_parse_register - parse partitions and register an MTD device.
681 * @mtd: the MTD device to register
682 * @types: the list of MTD partition probes to try, see
683 * 'parse_mtd_partitions()' for more information
684 * @parser_data: MTD partition parser-specific data
685 * @parts: fallback partition information to register, if parsing fails;
686 * only valid if %nr_parts > %0
687 * @nr_parts: the number of partitions in parts, if zero then the full
688 * MTD device is registered if no partition info is found
690 * This function aggregates MTD partitions parsing (done by
691 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
692 * basically follows the most common pattern found in many MTD drivers:
694 * * It first tries to probe partitions on MTD device @mtd using parsers
695 * specified in @types (if @types is %NULL, then the default list of parsers
696 * is used, see 'parse_mtd_partitions()' for more information). If none are
697 * found this functions tries to fallback to information specified in
698 * @parts/@nr_parts.
699 * * If any partitioning info was found, this function registers the found
700 * partitions. If the MTD_PARTITIONED_MASTER option is set, then the device
701 * as a whole is registered first.
702 * * If no partitions were found this function just registers the MTD device
703 * @mtd and exits.
705 * Returns zero in case of success and a negative error code in case of failure.
707 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
708 struct mtd_part_parser_data *parser_data,
709 const struct mtd_partition *parts,
710 int nr_parts)
712 struct mtd_partitions parsed;
713 int ret;
715 mtd_set_dev_defaults(mtd);
717 memset(&parsed, 0, sizeof(parsed));
719 ret = parse_mtd_partitions(mtd, types, &parsed, parser_data);
720 if ((ret < 0 || parsed.nr_parts == 0) && parts && nr_parts) {
721 /* Fall back to driver-provided partitions */
722 parsed = (struct mtd_partitions){
723 .parts = parts,
724 .nr_parts = nr_parts,
726 } else if (ret < 0) {
727 /* Didn't come up with parsed OR fallback partitions */
728 pr_info("mtd: failed to find partitions; one or more parsers reports errors (%d)\n",
729 ret);
730 /* Don't abort on errors; we can still use unpartitioned MTD */
731 memset(&parsed, 0, sizeof(parsed));
734 ret = mtd_add_device_partitions(mtd, &parsed);
735 if (ret)
736 goto out;
739 * FIXME: some drivers unfortunately call this function more than once.
740 * So we have to check if we've already assigned the reboot notifier.
742 * Generally, we can make multiple calls work for most cases, but it
743 * does cause problems with parse_mtd_partitions() above (e.g.,
744 * cmdlineparts will register partitions more than once).
746 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
747 "MTD already registered\n");
748 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
749 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
750 register_reboot_notifier(&mtd->reboot_notifier);
753 out:
754 /* Cleanup any parsed partitions */
755 mtd_part_parser_cleanup(&parsed);
756 return ret;
758 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
761 * mtd_device_unregister - unregister an existing MTD device.
763 * @master: the MTD device to unregister. This will unregister both the master
764 * and any partitions if registered.
766 int mtd_device_unregister(struct mtd_info *master)
768 int err;
770 if (master->_reboot)
771 unregister_reboot_notifier(&master->reboot_notifier);
773 err = del_mtd_partitions(master);
774 if (err)
775 return err;
777 if (!device_is_registered(&master->dev))
778 return 0;
780 return del_mtd_device(master);
782 EXPORT_SYMBOL_GPL(mtd_device_unregister);
785 * register_mtd_user - register a 'user' of MTD devices.
786 * @new: pointer to notifier info structure
788 * Registers a pair of callbacks function to be called upon addition
789 * or removal of MTD devices. Causes the 'add' callback to be immediately
790 * invoked for each MTD device currently present in the system.
792 void register_mtd_user (struct mtd_notifier *new)
794 struct mtd_info *mtd;
796 mutex_lock(&mtd_table_mutex);
798 list_add(&new->list, &mtd_notifiers);
800 __module_get(THIS_MODULE);
802 mtd_for_each_device(mtd)
803 new->add(mtd);
805 mutex_unlock(&mtd_table_mutex);
807 EXPORT_SYMBOL_GPL(register_mtd_user);
810 * unregister_mtd_user - unregister a 'user' of MTD devices.
811 * @old: pointer to notifier info structure
813 * Removes a callback function pair from the list of 'users' to be
814 * notified upon addition or removal of MTD devices. Causes the
815 * 'remove' callback to be immediately invoked for each MTD device
816 * currently present in the system.
818 int unregister_mtd_user (struct mtd_notifier *old)
820 struct mtd_info *mtd;
822 mutex_lock(&mtd_table_mutex);
824 module_put(THIS_MODULE);
826 mtd_for_each_device(mtd)
827 old->remove(mtd);
829 list_del(&old->list);
830 mutex_unlock(&mtd_table_mutex);
831 return 0;
833 EXPORT_SYMBOL_GPL(unregister_mtd_user);
836 * get_mtd_device - obtain a validated handle for an MTD device
837 * @mtd: last known address of the required MTD device
838 * @num: internal device number of the required MTD device
840 * Given a number and NULL address, return the num'th entry in the device
841 * table, if any. Given an address and num == -1, search the device table
842 * for a device with that address and return if it's still present. Given
843 * both, return the num'th driver only if its address matches. Return
844 * error code if not.
846 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
848 struct mtd_info *ret = NULL, *other;
849 int err = -ENODEV;
851 mutex_lock(&mtd_table_mutex);
853 if (num == -1) {
854 mtd_for_each_device(other) {
855 if (other == mtd) {
856 ret = mtd;
857 break;
860 } else if (num >= 0) {
861 ret = idr_find(&mtd_idr, num);
862 if (mtd && mtd != ret)
863 ret = NULL;
866 if (!ret) {
867 ret = ERR_PTR(err);
868 goto out;
871 err = __get_mtd_device(ret);
872 if (err)
873 ret = ERR_PTR(err);
874 out:
875 mutex_unlock(&mtd_table_mutex);
876 return ret;
878 EXPORT_SYMBOL_GPL(get_mtd_device);
881 int __get_mtd_device(struct mtd_info *mtd)
883 int err;
885 if (!try_module_get(mtd->owner))
886 return -ENODEV;
888 if (mtd->_get_device) {
889 err = mtd->_get_device(mtd);
891 if (err) {
892 module_put(mtd->owner);
893 return err;
896 mtd->usecount++;
897 return 0;
899 EXPORT_SYMBOL_GPL(__get_mtd_device);
902 * get_mtd_device_nm - obtain a validated handle for an MTD device by
903 * device name
904 * @name: MTD device name to open
906 * This function returns MTD device description structure in case of
907 * success and an error code in case of failure.
909 struct mtd_info *get_mtd_device_nm(const char *name)
911 int err = -ENODEV;
912 struct mtd_info *mtd = NULL, *other;
914 mutex_lock(&mtd_table_mutex);
916 mtd_for_each_device(other) {
917 if (!strcmp(name, other->name)) {
918 mtd = other;
919 break;
923 if (!mtd)
924 goto out_unlock;
926 err = __get_mtd_device(mtd);
927 if (err)
928 goto out_unlock;
930 mutex_unlock(&mtd_table_mutex);
931 return mtd;
933 out_unlock:
934 mutex_unlock(&mtd_table_mutex);
935 return ERR_PTR(err);
937 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
939 void put_mtd_device(struct mtd_info *mtd)
941 mutex_lock(&mtd_table_mutex);
942 __put_mtd_device(mtd);
943 mutex_unlock(&mtd_table_mutex);
946 EXPORT_SYMBOL_GPL(put_mtd_device);
948 void __put_mtd_device(struct mtd_info *mtd)
950 --mtd->usecount;
951 BUG_ON(mtd->usecount < 0);
953 if (mtd->_put_device)
954 mtd->_put_device(mtd);
956 module_put(mtd->owner);
958 EXPORT_SYMBOL_GPL(__put_mtd_device);
961 * Erase is an asynchronous operation. Device drivers are supposed
962 * to call instr->callback() whenever the operation completes, even
963 * if it completes with a failure.
964 * Callers are supposed to pass a callback function and wait for it
965 * to be called before writing to the block.
967 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
969 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
970 return -EINVAL;
971 if (!(mtd->flags & MTD_WRITEABLE))
972 return -EROFS;
973 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
974 if (!instr->len) {
975 instr->state = MTD_ERASE_DONE;
976 mtd_erase_callback(instr);
977 return 0;
979 ledtrig_mtd_activity();
980 return mtd->_erase(mtd, instr);
982 EXPORT_SYMBOL_GPL(mtd_erase);
985 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
987 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
988 void **virt, resource_size_t *phys)
990 *retlen = 0;
991 *virt = NULL;
992 if (phys)
993 *phys = 0;
994 if (!mtd->_point)
995 return -EOPNOTSUPP;
996 if (from < 0 || from >= mtd->size || len > mtd->size - from)
997 return -EINVAL;
998 if (!len)
999 return 0;
1000 return mtd->_point(mtd, from, len, retlen, virt, phys);
1002 EXPORT_SYMBOL_GPL(mtd_point);
1004 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1005 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1007 if (!mtd->_unpoint)
1008 return -EOPNOTSUPP;
1009 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1010 return -EINVAL;
1011 if (!len)
1012 return 0;
1013 return mtd->_unpoint(mtd, from, len);
1015 EXPORT_SYMBOL_GPL(mtd_unpoint);
1018 * Allow NOMMU mmap() to directly map the device (if not NULL)
1019 * - return the address to which the offset maps
1020 * - return -ENOSYS to indicate refusal to do the mapping
1022 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1023 unsigned long offset, unsigned long flags)
1025 if (!mtd->_get_unmapped_area)
1026 return -EOPNOTSUPP;
1027 if (offset >= mtd->size || len > mtd->size - offset)
1028 return -EINVAL;
1029 return mtd->_get_unmapped_area(mtd, len, offset, flags);
1031 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1033 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1034 u_char *buf)
1036 int ret_code;
1037 *retlen = 0;
1038 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1039 return -EINVAL;
1040 if (!len)
1041 return 0;
1043 ledtrig_mtd_activity();
1045 * In the absence of an error, drivers return a non-negative integer
1046 * representing the maximum number of bitflips that were corrected on
1047 * any one ecc region (if applicable; zero otherwise).
1049 ret_code = mtd->_read(mtd, from, len, retlen, buf);
1050 if (unlikely(ret_code < 0))
1051 return ret_code;
1052 if (mtd->ecc_strength == 0)
1053 return 0; /* device lacks ecc */
1054 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1056 EXPORT_SYMBOL_GPL(mtd_read);
1058 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1059 const u_char *buf)
1061 *retlen = 0;
1062 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1063 return -EINVAL;
1064 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
1065 return -EROFS;
1066 if (!len)
1067 return 0;
1068 ledtrig_mtd_activity();
1069 return mtd->_write(mtd, to, len, retlen, buf);
1071 EXPORT_SYMBOL_GPL(mtd_write);
1074 * In blackbox flight recorder like scenarios we want to make successful writes
1075 * in interrupt context. panic_write() is only intended to be called when its
1076 * known the kernel is about to panic and we need the write to succeed. Since
1077 * the kernel is not going to be running for much longer, this function can
1078 * break locks and delay to ensure the write succeeds (but not sleep).
1080 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1081 const u_char *buf)
1083 *retlen = 0;
1084 if (!mtd->_panic_write)
1085 return -EOPNOTSUPP;
1086 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1087 return -EINVAL;
1088 if (!(mtd->flags & MTD_WRITEABLE))
1089 return -EROFS;
1090 if (!len)
1091 return 0;
1092 return mtd->_panic_write(mtd, to, len, retlen, buf);
1094 EXPORT_SYMBOL_GPL(mtd_panic_write);
1096 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1098 int ret_code;
1099 ops->retlen = ops->oobretlen = 0;
1100 if (!mtd->_read_oob)
1101 return -EOPNOTSUPP;
1103 ledtrig_mtd_activity();
1105 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1106 * similar to mtd->_read(), returning a non-negative integer
1107 * representing max bitflips. In other cases, mtd->_read_oob() may
1108 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1110 ret_code = mtd->_read_oob(mtd, from, ops);
1111 if (unlikely(ret_code < 0))
1112 return ret_code;
1113 if (mtd->ecc_strength == 0)
1114 return 0; /* device lacks ecc */
1115 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1117 EXPORT_SYMBOL_GPL(mtd_read_oob);
1119 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1120 struct mtd_oob_ops *ops)
1122 ops->retlen = ops->oobretlen = 0;
1123 if (!mtd->_write_oob)
1124 return -EOPNOTSUPP;
1125 if (!(mtd->flags & MTD_WRITEABLE))
1126 return -EROFS;
1127 ledtrig_mtd_activity();
1128 return mtd->_write_oob(mtd, to, ops);
1130 EXPORT_SYMBOL_GPL(mtd_write_oob);
1133 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1134 * @mtd: MTD device structure
1135 * @section: ECC section. Depending on the layout you may have all the ECC
1136 * bytes stored in a single contiguous section, or one section
1137 * per ECC chunk (and sometime several sections for a single ECC
1138 * ECC chunk)
1139 * @oobecc: OOB region struct filled with the appropriate ECC position
1140 * information
1142 * This function returns ECC section information in the OOB area. If you want
1143 * to get all the ECC bytes information, then you should call
1144 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1146 * Returns zero on success, a negative error code otherwise.
1148 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1149 struct mtd_oob_region *oobecc)
1151 memset(oobecc, 0, sizeof(*oobecc));
1153 if (!mtd || section < 0)
1154 return -EINVAL;
1156 if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1157 return -ENOTSUPP;
1159 return mtd->ooblayout->ecc(mtd, section, oobecc);
1161 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1164 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1165 * section
1166 * @mtd: MTD device structure
1167 * @section: Free section you are interested in. Depending on the layout
1168 * you may have all the free bytes stored in a single contiguous
1169 * section, or one section per ECC chunk plus an extra section
1170 * for the remaining bytes (or other funky layout).
1171 * @oobfree: OOB region struct filled with the appropriate free position
1172 * information
1174 * This function returns free bytes position in the OOB area. If you want
1175 * to get all the free bytes information, then you should call
1176 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1178 * Returns zero on success, a negative error code otherwise.
1180 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1181 struct mtd_oob_region *oobfree)
1183 memset(oobfree, 0, sizeof(*oobfree));
1185 if (!mtd || section < 0)
1186 return -EINVAL;
1188 if (!mtd->ooblayout || !mtd->ooblayout->free)
1189 return -ENOTSUPP;
1191 return mtd->ooblayout->free(mtd, section, oobfree);
1193 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1196 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1197 * @mtd: mtd info structure
1198 * @byte: the byte we are searching for
1199 * @sectionp: pointer where the section id will be stored
1200 * @oobregion: used to retrieve the ECC position
1201 * @iter: iterator function. Should be either mtd_ooblayout_free or
1202 * mtd_ooblayout_ecc depending on the region type you're searching for
1204 * This function returns the section id and oobregion information of a
1205 * specific byte. For example, say you want to know where the 4th ECC byte is
1206 * stored, you'll use:
1208 * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1210 * Returns zero on success, a negative error code otherwise.
1212 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1213 int *sectionp, struct mtd_oob_region *oobregion,
1214 int (*iter)(struct mtd_info *,
1215 int section,
1216 struct mtd_oob_region *oobregion))
1218 int pos = 0, ret, section = 0;
1220 memset(oobregion, 0, sizeof(*oobregion));
1222 while (1) {
1223 ret = iter(mtd, section, oobregion);
1224 if (ret)
1225 return ret;
1227 if (pos + oobregion->length > byte)
1228 break;
1230 pos += oobregion->length;
1231 section++;
1235 * Adjust region info to make it start at the beginning at the
1236 * 'start' ECC byte.
1238 oobregion->offset += byte - pos;
1239 oobregion->length -= byte - pos;
1240 *sectionp = section;
1242 return 0;
1246 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1247 * ECC byte
1248 * @mtd: mtd info structure
1249 * @eccbyte: the byte we are searching for
1250 * @sectionp: pointer where the section id will be stored
1251 * @oobregion: OOB region information
1253 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1254 * byte.
1256 * Returns zero on success, a negative error code otherwise.
1258 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1259 int *section,
1260 struct mtd_oob_region *oobregion)
1262 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1263 mtd_ooblayout_ecc);
1265 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1268 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1269 * @mtd: mtd info structure
1270 * @buf: destination buffer to store OOB bytes
1271 * @oobbuf: OOB buffer
1272 * @start: first byte to retrieve
1273 * @nbytes: number of bytes to retrieve
1274 * @iter: section iterator
1276 * Extract bytes attached to a specific category (ECC or free)
1277 * from the OOB buffer and copy them into buf.
1279 * Returns zero on success, a negative error code otherwise.
1281 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1282 const u8 *oobbuf, int start, int nbytes,
1283 int (*iter)(struct mtd_info *,
1284 int section,
1285 struct mtd_oob_region *oobregion))
1287 struct mtd_oob_region oobregion;
1288 int section, ret;
1290 ret = mtd_ooblayout_find_region(mtd, start, &section,
1291 &oobregion, iter);
1293 while (!ret) {
1294 int cnt;
1296 cnt = min_t(int, nbytes, oobregion.length);
1297 memcpy(buf, oobbuf + oobregion.offset, cnt);
1298 buf += cnt;
1299 nbytes -= cnt;
1301 if (!nbytes)
1302 break;
1304 ret = iter(mtd, ++section, &oobregion);
1307 return ret;
1311 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1312 * @mtd: mtd info structure
1313 * @buf: source buffer to get OOB bytes from
1314 * @oobbuf: OOB buffer
1315 * @start: first OOB byte to set
1316 * @nbytes: number of OOB bytes to set
1317 * @iter: section iterator
1319 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1320 * is selected by passing the appropriate iterator.
1322 * Returns zero on success, a negative error code otherwise.
1324 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1325 u8 *oobbuf, int start, int nbytes,
1326 int (*iter)(struct mtd_info *,
1327 int section,
1328 struct mtd_oob_region *oobregion))
1330 struct mtd_oob_region oobregion;
1331 int section, ret;
1333 ret = mtd_ooblayout_find_region(mtd, start, &section,
1334 &oobregion, iter);
1336 while (!ret) {
1337 int cnt;
1339 cnt = min_t(int, nbytes, oobregion.length);
1340 memcpy(oobbuf + oobregion.offset, buf, cnt);
1341 buf += cnt;
1342 nbytes -= cnt;
1344 if (!nbytes)
1345 break;
1347 ret = iter(mtd, ++section, &oobregion);
1350 return ret;
1354 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1355 * @mtd: mtd info structure
1356 * @iter: category iterator
1358 * Count the number of bytes in a given category.
1360 * Returns a positive value on success, a negative error code otherwise.
1362 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1363 int (*iter)(struct mtd_info *,
1364 int section,
1365 struct mtd_oob_region *oobregion))
1367 struct mtd_oob_region oobregion;
1368 int section = 0, ret, nbytes = 0;
1370 while (1) {
1371 ret = iter(mtd, section++, &oobregion);
1372 if (ret) {
1373 if (ret == -ERANGE)
1374 ret = nbytes;
1375 break;
1378 nbytes += oobregion.length;
1381 return ret;
1385 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1386 * @mtd: mtd info structure
1387 * @eccbuf: destination buffer to store ECC bytes
1388 * @oobbuf: OOB buffer
1389 * @start: first ECC byte to retrieve
1390 * @nbytes: number of ECC bytes to retrieve
1392 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1394 * Returns zero on success, a negative error code otherwise.
1396 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1397 const u8 *oobbuf, int start, int nbytes)
1399 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1400 mtd_ooblayout_ecc);
1402 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1405 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1406 * @mtd: mtd info structure
1407 * @eccbuf: source buffer to get ECC bytes from
1408 * @oobbuf: OOB buffer
1409 * @start: first ECC byte to set
1410 * @nbytes: number of ECC bytes to set
1412 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1414 * Returns zero on success, a negative error code otherwise.
1416 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1417 u8 *oobbuf, int start, int nbytes)
1419 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1420 mtd_ooblayout_ecc);
1422 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1425 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1426 * @mtd: mtd info structure
1427 * @databuf: destination buffer to store ECC bytes
1428 * @oobbuf: OOB buffer
1429 * @start: first ECC byte to retrieve
1430 * @nbytes: number of ECC bytes to retrieve
1432 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1434 * Returns zero on success, a negative error code otherwise.
1436 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1437 const u8 *oobbuf, int start, int nbytes)
1439 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1440 mtd_ooblayout_free);
1442 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1445 * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer
1446 * @mtd: mtd info structure
1447 * @eccbuf: source buffer to get data bytes from
1448 * @oobbuf: OOB buffer
1449 * @start: first ECC byte to set
1450 * @nbytes: number of ECC bytes to set
1452 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1454 * Returns zero on success, a negative error code otherwise.
1456 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1457 u8 *oobbuf, int start, int nbytes)
1459 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1460 mtd_ooblayout_free);
1462 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1465 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1466 * @mtd: mtd info structure
1468 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1470 * Returns zero on success, a negative error code otherwise.
1472 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1474 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1476 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1479 * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB
1480 * @mtd: mtd info structure
1482 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1484 * Returns zero on success, a negative error code otherwise.
1486 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1488 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1490 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1493 * Method to access the protection register area, present in some flash
1494 * devices. The user data is one time programmable but the factory data is read
1495 * only.
1497 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1498 struct otp_info *buf)
1500 if (!mtd->_get_fact_prot_info)
1501 return -EOPNOTSUPP;
1502 if (!len)
1503 return 0;
1504 return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1506 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1508 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1509 size_t *retlen, u_char *buf)
1511 *retlen = 0;
1512 if (!mtd->_read_fact_prot_reg)
1513 return -EOPNOTSUPP;
1514 if (!len)
1515 return 0;
1516 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1518 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1520 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1521 struct otp_info *buf)
1523 if (!mtd->_get_user_prot_info)
1524 return -EOPNOTSUPP;
1525 if (!len)
1526 return 0;
1527 return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1529 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1531 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1532 size_t *retlen, u_char *buf)
1534 *retlen = 0;
1535 if (!mtd->_read_user_prot_reg)
1536 return -EOPNOTSUPP;
1537 if (!len)
1538 return 0;
1539 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1541 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1543 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1544 size_t *retlen, u_char *buf)
1546 int ret;
1548 *retlen = 0;
1549 if (!mtd->_write_user_prot_reg)
1550 return -EOPNOTSUPP;
1551 if (!len)
1552 return 0;
1553 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1554 if (ret)
1555 return ret;
1558 * If no data could be written at all, we are out of memory and
1559 * must return -ENOSPC.
1561 return (*retlen) ? 0 : -ENOSPC;
1563 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1565 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1567 if (!mtd->_lock_user_prot_reg)
1568 return -EOPNOTSUPP;
1569 if (!len)
1570 return 0;
1571 return mtd->_lock_user_prot_reg(mtd, from, len);
1573 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1575 /* Chip-supported device locking */
1576 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1578 if (!mtd->_lock)
1579 return -EOPNOTSUPP;
1580 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1581 return -EINVAL;
1582 if (!len)
1583 return 0;
1584 return mtd->_lock(mtd, ofs, len);
1586 EXPORT_SYMBOL_GPL(mtd_lock);
1588 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1590 if (!mtd->_unlock)
1591 return -EOPNOTSUPP;
1592 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1593 return -EINVAL;
1594 if (!len)
1595 return 0;
1596 return mtd->_unlock(mtd, ofs, len);
1598 EXPORT_SYMBOL_GPL(mtd_unlock);
1600 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1602 if (!mtd->_is_locked)
1603 return -EOPNOTSUPP;
1604 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1605 return -EINVAL;
1606 if (!len)
1607 return 0;
1608 return mtd->_is_locked(mtd, ofs, len);
1610 EXPORT_SYMBOL_GPL(mtd_is_locked);
1612 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1614 if (ofs < 0 || ofs >= mtd->size)
1615 return -EINVAL;
1616 if (!mtd->_block_isreserved)
1617 return 0;
1618 return mtd->_block_isreserved(mtd, ofs);
1620 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1622 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1624 if (ofs < 0 || ofs >= mtd->size)
1625 return -EINVAL;
1626 if (!mtd->_block_isbad)
1627 return 0;
1628 return mtd->_block_isbad(mtd, ofs);
1630 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1632 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1634 if (!mtd->_block_markbad)
1635 return -EOPNOTSUPP;
1636 if (ofs < 0 || ofs >= mtd->size)
1637 return -EINVAL;
1638 if (!(mtd->flags & MTD_WRITEABLE))
1639 return -EROFS;
1640 return mtd->_block_markbad(mtd, ofs);
1642 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1645 * default_mtd_writev - the default writev method
1646 * @mtd: mtd device description object pointer
1647 * @vecs: the vectors to write
1648 * @count: count of vectors in @vecs
1649 * @to: the MTD device offset to write to
1650 * @retlen: on exit contains the count of bytes written to the MTD device.
1652 * This function returns zero in case of success and a negative error code in
1653 * case of failure.
1655 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1656 unsigned long count, loff_t to, size_t *retlen)
1658 unsigned long i;
1659 size_t totlen = 0, thislen;
1660 int ret = 0;
1662 for (i = 0; i < count; i++) {
1663 if (!vecs[i].iov_len)
1664 continue;
1665 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1666 vecs[i].iov_base);
1667 totlen += thislen;
1668 if (ret || thislen != vecs[i].iov_len)
1669 break;
1670 to += vecs[i].iov_len;
1672 *retlen = totlen;
1673 return ret;
1677 * mtd_writev - the vector-based MTD write method
1678 * @mtd: mtd device description object pointer
1679 * @vecs: the vectors to write
1680 * @count: count of vectors in @vecs
1681 * @to: the MTD device offset to write to
1682 * @retlen: on exit contains the count of bytes written to the MTD device.
1684 * This function returns zero in case of success and a negative error code in
1685 * case of failure.
1687 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1688 unsigned long count, loff_t to, size_t *retlen)
1690 *retlen = 0;
1691 if (!(mtd->flags & MTD_WRITEABLE))
1692 return -EROFS;
1693 if (!mtd->_writev)
1694 return default_mtd_writev(mtd, vecs, count, to, retlen);
1695 return mtd->_writev(mtd, vecs, count, to, retlen);
1697 EXPORT_SYMBOL_GPL(mtd_writev);
1700 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1701 * @mtd: mtd device description object pointer
1702 * @size: a pointer to the ideal or maximum size of the allocation, points
1703 * to the actual allocation size on success.
1705 * This routine attempts to allocate a contiguous kernel buffer up to
1706 * the specified size, backing off the size of the request exponentially
1707 * until the request succeeds or until the allocation size falls below
1708 * the system page size. This attempts to make sure it does not adversely
1709 * impact system performance, so when allocating more than one page, we
1710 * ask the memory allocator to avoid re-trying, swapping, writing back
1711 * or performing I/O.
1713 * Note, this function also makes sure that the allocated buffer is aligned to
1714 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1716 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1717 * to handle smaller (i.e. degraded) buffer allocations under low- or
1718 * fragmented-memory situations where such reduced allocations, from a
1719 * requested ideal, are allowed.
1721 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1723 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1725 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1726 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1727 void *kbuf;
1729 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1731 while (*size > min_alloc) {
1732 kbuf = kmalloc(*size, flags);
1733 if (kbuf)
1734 return kbuf;
1736 *size >>= 1;
1737 *size = ALIGN(*size, mtd->writesize);
1741 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1742 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1744 return kmalloc(*size, GFP_KERNEL);
1746 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1748 #ifdef CONFIG_PROC_FS
1750 /*====================================================================*/
1751 /* Support for /proc/mtd */
1753 static int mtd_proc_show(struct seq_file *m, void *v)
1755 struct mtd_info *mtd;
1757 seq_puts(m, "dev: size erasesize name\n");
1758 mutex_lock(&mtd_table_mutex);
1759 mtd_for_each_device(mtd) {
1760 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1761 mtd->index, (unsigned long long)mtd->size,
1762 mtd->erasesize, mtd->name);
1764 mutex_unlock(&mtd_table_mutex);
1765 return 0;
1768 static int mtd_proc_open(struct inode *inode, struct file *file)
1770 return single_open(file, mtd_proc_show, NULL);
1773 static const struct file_operations mtd_proc_ops = {
1774 .open = mtd_proc_open,
1775 .read = seq_read,
1776 .llseek = seq_lseek,
1777 .release = single_release,
1779 #endif /* CONFIG_PROC_FS */
1781 /*====================================================================*/
1782 /* Init code */
1784 static struct backing_dev_info * __init mtd_bdi_init(char *name)
1786 struct backing_dev_info *bdi;
1787 int ret;
1789 bdi = bdi_alloc(GFP_KERNEL);
1790 if (!bdi)
1791 return ERR_PTR(-ENOMEM);
1793 bdi->name = name;
1795 * We put '-0' suffix to the name to get the same name format as we
1796 * used to get. Since this is called only once, we get a unique name.
1798 ret = bdi_register(bdi, "%.28s-0", name);
1799 if (ret)
1800 bdi_put(bdi);
1802 return ret ? ERR_PTR(ret) : bdi;
1805 static struct proc_dir_entry *proc_mtd;
1807 static int __init init_mtd(void)
1809 int ret;
1811 ret = class_register(&mtd_class);
1812 if (ret)
1813 goto err_reg;
1815 mtd_bdi = mtd_bdi_init("mtd");
1816 if (IS_ERR(mtd_bdi)) {
1817 ret = PTR_ERR(mtd_bdi);
1818 goto err_bdi;
1821 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1823 ret = init_mtdchar();
1824 if (ret)
1825 goto out_procfs;
1827 dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
1829 return 0;
1831 out_procfs:
1832 if (proc_mtd)
1833 remove_proc_entry("mtd", NULL);
1834 bdi_put(mtd_bdi);
1835 err_bdi:
1836 class_unregister(&mtd_class);
1837 err_reg:
1838 pr_err("Error registering mtd class or bdi: %d\n", ret);
1839 return ret;
1842 static void __exit cleanup_mtd(void)
1844 debugfs_remove_recursive(dfs_dir_mtd);
1845 cleanup_mtdchar();
1846 if (proc_mtd)
1847 remove_proc_entry("mtd", NULL);
1848 class_unregister(&mtd_class);
1849 bdi_put(mtd_bdi);
1850 idr_destroy(&mtd_idr);
1853 module_init(init_mtd);
1854 module_exit(cleanup_mtd);
1856 MODULE_LICENSE("GPL");
1857 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1858 MODULE_DESCRIPTION("Core MTD registration and access routines");