memtest: use phys_addr_t for physical addresses
[linux-2.6/btrfs-unstable.git] / fs / aio.c
bloba793f7023755dc15cb2b8bebe5206bc610bb428c
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #define pr_fmt(fmt) "%s: " fmt, __func__
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
47 #include "internal.h"
49 #define AIO_RING_MAGIC 0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES 1
51 #define AIO_RING_INCOMPAT_FEATURES 0
52 struct aio_ring {
53 unsigned id; /* kernel internal index number */
54 unsigned nr; /* number of io_events */
55 unsigned head; /* Written to by userland or under ring_lock
56 * mutex by aio_read_events_ring(). */
57 unsigned tail;
59 unsigned magic;
60 unsigned compat_features;
61 unsigned incompat_features;
62 unsigned header_length; /* size of aio_ring */
65 struct io_event io_events[0];
66 }; /* 128 bytes + ring size */
68 #define AIO_RING_PAGES 8
70 struct kioctx_table {
71 struct rcu_head rcu;
72 unsigned nr;
73 struct kioctx *table[];
76 struct kioctx_cpu {
77 unsigned reqs_available;
80 struct kioctx {
81 struct percpu_ref users;
82 atomic_t dead;
84 struct percpu_ref reqs;
86 unsigned long user_id;
88 struct __percpu kioctx_cpu *cpu;
91 * For percpu reqs_available, number of slots we move to/from global
92 * counter at a time:
94 unsigned req_batch;
96 * This is what userspace passed to io_setup(), it's not used for
97 * anything but counting against the global max_reqs quota.
99 * The real limit is nr_events - 1, which will be larger (see
100 * aio_setup_ring())
102 unsigned max_reqs;
104 /* Size of ringbuffer, in units of struct io_event */
105 unsigned nr_events;
107 unsigned long mmap_base;
108 unsigned long mmap_size;
110 struct page **ring_pages;
111 long nr_pages;
113 struct work_struct free_work;
116 * signals when all in-flight requests are done
118 struct completion *requests_done;
120 struct {
122 * This counts the number of available slots in the ringbuffer,
123 * so we avoid overflowing it: it's decremented (if positive)
124 * when allocating a kiocb and incremented when the resulting
125 * io_event is pulled off the ringbuffer.
127 * We batch accesses to it with a percpu version.
129 atomic_t reqs_available;
130 } ____cacheline_aligned_in_smp;
132 struct {
133 spinlock_t ctx_lock;
134 struct list_head active_reqs; /* used for cancellation */
135 } ____cacheline_aligned_in_smp;
137 struct {
138 struct mutex ring_lock;
139 wait_queue_head_t wait;
140 } ____cacheline_aligned_in_smp;
142 struct {
143 unsigned tail;
144 unsigned completed_events;
145 spinlock_t completion_lock;
146 } ____cacheline_aligned_in_smp;
148 struct page *internal_pages[AIO_RING_PAGES];
149 struct file *aio_ring_file;
151 unsigned id;
154 /*------ sysctl variables----*/
155 static DEFINE_SPINLOCK(aio_nr_lock);
156 unsigned long aio_nr; /* current system wide number of aio requests */
157 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
158 /*----end sysctl variables---*/
160 static struct kmem_cache *kiocb_cachep;
161 static struct kmem_cache *kioctx_cachep;
163 static struct vfsmount *aio_mnt;
165 static const struct file_operations aio_ring_fops;
166 static const struct address_space_operations aio_ctx_aops;
168 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
170 struct qstr this = QSTR_INIT("[aio]", 5);
171 struct file *file;
172 struct path path;
173 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
174 if (IS_ERR(inode))
175 return ERR_CAST(inode);
177 inode->i_mapping->a_ops = &aio_ctx_aops;
178 inode->i_mapping->private_data = ctx;
179 inode->i_size = PAGE_SIZE * nr_pages;
181 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
182 if (!path.dentry) {
183 iput(inode);
184 return ERR_PTR(-ENOMEM);
186 path.mnt = mntget(aio_mnt);
188 d_instantiate(path.dentry, inode);
189 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
190 if (IS_ERR(file)) {
191 path_put(&path);
192 return file;
195 file->f_flags = O_RDWR;
196 return file;
199 static struct dentry *aio_mount(struct file_system_type *fs_type,
200 int flags, const char *dev_name, void *data)
202 static const struct dentry_operations ops = {
203 .d_dname = simple_dname,
205 return mount_pseudo(fs_type, "aio:", NULL, &ops, AIO_RING_MAGIC);
208 /* aio_setup
209 * Creates the slab caches used by the aio routines, panic on
210 * failure as this is done early during the boot sequence.
212 static int __init aio_setup(void)
214 static struct file_system_type aio_fs = {
215 .name = "aio",
216 .mount = aio_mount,
217 .kill_sb = kill_anon_super,
219 aio_mnt = kern_mount(&aio_fs);
220 if (IS_ERR(aio_mnt))
221 panic("Failed to create aio fs mount.");
223 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
224 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
226 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
228 return 0;
230 __initcall(aio_setup);
232 static void put_aio_ring_file(struct kioctx *ctx)
234 struct file *aio_ring_file = ctx->aio_ring_file;
235 if (aio_ring_file) {
236 truncate_setsize(aio_ring_file->f_inode, 0);
238 /* Prevent further access to the kioctx from migratepages */
239 spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
240 aio_ring_file->f_inode->i_mapping->private_data = NULL;
241 ctx->aio_ring_file = NULL;
242 spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
244 fput(aio_ring_file);
248 static void aio_free_ring(struct kioctx *ctx)
250 int i;
252 /* Disconnect the kiotx from the ring file. This prevents future
253 * accesses to the kioctx from page migration.
255 put_aio_ring_file(ctx);
257 for (i = 0; i < ctx->nr_pages; i++) {
258 struct page *page;
259 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
260 page_count(ctx->ring_pages[i]));
261 page = ctx->ring_pages[i];
262 if (!page)
263 continue;
264 ctx->ring_pages[i] = NULL;
265 put_page(page);
268 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
269 kfree(ctx->ring_pages);
270 ctx->ring_pages = NULL;
274 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
276 vma->vm_flags |= VM_DONTEXPAND;
277 vma->vm_ops = &generic_file_vm_ops;
278 return 0;
281 static int aio_ring_remap(struct file *file, struct vm_area_struct *vma)
283 struct mm_struct *mm = vma->vm_mm;
284 struct kioctx_table *table;
285 int i, res = -EINVAL;
287 spin_lock(&mm->ioctx_lock);
288 rcu_read_lock();
289 table = rcu_dereference(mm->ioctx_table);
290 for (i = 0; i < table->nr; i++) {
291 struct kioctx *ctx;
293 ctx = table->table[i];
294 if (ctx && ctx->aio_ring_file == file) {
295 if (!atomic_read(&ctx->dead)) {
296 ctx->user_id = ctx->mmap_base = vma->vm_start;
297 res = 0;
299 break;
303 rcu_read_unlock();
304 spin_unlock(&mm->ioctx_lock);
305 return res;
308 static const struct file_operations aio_ring_fops = {
309 .mmap = aio_ring_mmap,
310 .mremap = aio_ring_remap,
313 #if IS_ENABLED(CONFIG_MIGRATION)
314 static int aio_migratepage(struct address_space *mapping, struct page *new,
315 struct page *old, enum migrate_mode mode)
317 struct kioctx *ctx;
318 unsigned long flags;
319 pgoff_t idx;
320 int rc;
322 rc = 0;
324 /* mapping->private_lock here protects against the kioctx teardown. */
325 spin_lock(&mapping->private_lock);
326 ctx = mapping->private_data;
327 if (!ctx) {
328 rc = -EINVAL;
329 goto out;
332 /* The ring_lock mutex. The prevents aio_read_events() from writing
333 * to the ring's head, and prevents page migration from mucking in
334 * a partially initialized kiotx.
336 if (!mutex_trylock(&ctx->ring_lock)) {
337 rc = -EAGAIN;
338 goto out;
341 idx = old->index;
342 if (idx < (pgoff_t)ctx->nr_pages) {
343 /* Make sure the old page hasn't already been changed */
344 if (ctx->ring_pages[idx] != old)
345 rc = -EAGAIN;
346 } else
347 rc = -EINVAL;
349 if (rc != 0)
350 goto out_unlock;
352 /* Writeback must be complete */
353 BUG_ON(PageWriteback(old));
354 get_page(new);
356 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
357 if (rc != MIGRATEPAGE_SUCCESS) {
358 put_page(new);
359 goto out_unlock;
362 /* Take completion_lock to prevent other writes to the ring buffer
363 * while the old page is copied to the new. This prevents new
364 * events from being lost.
366 spin_lock_irqsave(&ctx->completion_lock, flags);
367 migrate_page_copy(new, old);
368 BUG_ON(ctx->ring_pages[idx] != old);
369 ctx->ring_pages[idx] = new;
370 spin_unlock_irqrestore(&ctx->completion_lock, flags);
372 /* The old page is no longer accessible. */
373 put_page(old);
375 out_unlock:
376 mutex_unlock(&ctx->ring_lock);
377 out:
378 spin_unlock(&mapping->private_lock);
379 return rc;
381 #endif
383 static const struct address_space_operations aio_ctx_aops = {
384 .set_page_dirty = __set_page_dirty_no_writeback,
385 #if IS_ENABLED(CONFIG_MIGRATION)
386 .migratepage = aio_migratepage,
387 #endif
390 static int aio_setup_ring(struct kioctx *ctx)
392 struct aio_ring *ring;
393 unsigned nr_events = ctx->max_reqs;
394 struct mm_struct *mm = current->mm;
395 unsigned long size, unused;
396 int nr_pages;
397 int i;
398 struct file *file;
400 /* Compensate for the ring buffer's head/tail overlap entry */
401 nr_events += 2; /* 1 is required, 2 for good luck */
403 size = sizeof(struct aio_ring);
404 size += sizeof(struct io_event) * nr_events;
406 nr_pages = PFN_UP(size);
407 if (nr_pages < 0)
408 return -EINVAL;
410 file = aio_private_file(ctx, nr_pages);
411 if (IS_ERR(file)) {
412 ctx->aio_ring_file = NULL;
413 return -ENOMEM;
416 ctx->aio_ring_file = file;
417 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
418 / sizeof(struct io_event);
420 ctx->ring_pages = ctx->internal_pages;
421 if (nr_pages > AIO_RING_PAGES) {
422 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
423 GFP_KERNEL);
424 if (!ctx->ring_pages) {
425 put_aio_ring_file(ctx);
426 return -ENOMEM;
430 for (i = 0; i < nr_pages; i++) {
431 struct page *page;
432 page = find_or_create_page(file->f_inode->i_mapping,
433 i, GFP_HIGHUSER | __GFP_ZERO);
434 if (!page)
435 break;
436 pr_debug("pid(%d) page[%d]->count=%d\n",
437 current->pid, i, page_count(page));
438 SetPageUptodate(page);
439 unlock_page(page);
441 ctx->ring_pages[i] = page;
443 ctx->nr_pages = i;
445 if (unlikely(i != nr_pages)) {
446 aio_free_ring(ctx);
447 return -ENOMEM;
450 ctx->mmap_size = nr_pages * PAGE_SIZE;
451 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
453 down_write(&mm->mmap_sem);
454 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
455 PROT_READ | PROT_WRITE,
456 MAP_SHARED, 0, &unused);
457 up_write(&mm->mmap_sem);
458 if (IS_ERR((void *)ctx->mmap_base)) {
459 ctx->mmap_size = 0;
460 aio_free_ring(ctx);
461 return -ENOMEM;
464 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
466 ctx->user_id = ctx->mmap_base;
467 ctx->nr_events = nr_events; /* trusted copy */
469 ring = kmap_atomic(ctx->ring_pages[0]);
470 ring->nr = nr_events; /* user copy */
471 ring->id = ~0U;
472 ring->head = ring->tail = 0;
473 ring->magic = AIO_RING_MAGIC;
474 ring->compat_features = AIO_RING_COMPAT_FEATURES;
475 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
476 ring->header_length = sizeof(struct aio_ring);
477 kunmap_atomic(ring);
478 flush_dcache_page(ctx->ring_pages[0]);
480 return 0;
483 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
484 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
485 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
487 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
489 struct kioctx *ctx = req->ki_ctx;
490 unsigned long flags;
492 spin_lock_irqsave(&ctx->ctx_lock, flags);
494 if (!req->ki_list.next)
495 list_add(&req->ki_list, &ctx->active_reqs);
497 req->ki_cancel = cancel;
499 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
501 EXPORT_SYMBOL(kiocb_set_cancel_fn);
503 static int kiocb_cancel(struct kiocb *kiocb)
505 kiocb_cancel_fn *old, *cancel;
508 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
509 * actually has a cancel function, hence the cmpxchg()
512 cancel = ACCESS_ONCE(kiocb->ki_cancel);
513 do {
514 if (!cancel || cancel == KIOCB_CANCELLED)
515 return -EINVAL;
517 old = cancel;
518 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
519 } while (cancel != old);
521 return cancel(kiocb);
524 static void free_ioctx(struct work_struct *work)
526 struct kioctx *ctx = container_of(work, struct kioctx, free_work);
528 pr_debug("freeing %p\n", ctx);
530 aio_free_ring(ctx);
531 free_percpu(ctx->cpu);
532 percpu_ref_exit(&ctx->reqs);
533 percpu_ref_exit(&ctx->users);
534 kmem_cache_free(kioctx_cachep, ctx);
537 static void free_ioctx_reqs(struct percpu_ref *ref)
539 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
541 /* At this point we know that there are no any in-flight requests */
542 if (ctx->requests_done)
543 complete(ctx->requests_done);
545 INIT_WORK(&ctx->free_work, free_ioctx);
546 schedule_work(&ctx->free_work);
550 * When this function runs, the kioctx has been removed from the "hash table"
551 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
552 * now it's safe to cancel any that need to be.
554 static void free_ioctx_users(struct percpu_ref *ref)
556 struct kioctx *ctx = container_of(ref, struct kioctx, users);
557 struct kiocb *req;
559 spin_lock_irq(&ctx->ctx_lock);
561 while (!list_empty(&ctx->active_reqs)) {
562 req = list_first_entry(&ctx->active_reqs,
563 struct kiocb, ki_list);
565 list_del_init(&req->ki_list);
566 kiocb_cancel(req);
569 spin_unlock_irq(&ctx->ctx_lock);
571 percpu_ref_kill(&ctx->reqs);
572 percpu_ref_put(&ctx->reqs);
575 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
577 unsigned i, new_nr;
578 struct kioctx_table *table, *old;
579 struct aio_ring *ring;
581 spin_lock(&mm->ioctx_lock);
582 table = rcu_dereference_raw(mm->ioctx_table);
584 while (1) {
585 if (table)
586 for (i = 0; i < table->nr; i++)
587 if (!table->table[i]) {
588 ctx->id = i;
589 table->table[i] = ctx;
590 spin_unlock(&mm->ioctx_lock);
592 /* While kioctx setup is in progress,
593 * we are protected from page migration
594 * changes ring_pages by ->ring_lock.
596 ring = kmap_atomic(ctx->ring_pages[0]);
597 ring->id = ctx->id;
598 kunmap_atomic(ring);
599 return 0;
602 new_nr = (table ? table->nr : 1) * 4;
603 spin_unlock(&mm->ioctx_lock);
605 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
606 new_nr, GFP_KERNEL);
607 if (!table)
608 return -ENOMEM;
610 table->nr = new_nr;
612 spin_lock(&mm->ioctx_lock);
613 old = rcu_dereference_raw(mm->ioctx_table);
615 if (!old) {
616 rcu_assign_pointer(mm->ioctx_table, table);
617 } else if (table->nr > old->nr) {
618 memcpy(table->table, old->table,
619 old->nr * sizeof(struct kioctx *));
621 rcu_assign_pointer(mm->ioctx_table, table);
622 kfree_rcu(old, rcu);
623 } else {
624 kfree(table);
625 table = old;
630 static void aio_nr_sub(unsigned nr)
632 spin_lock(&aio_nr_lock);
633 if (WARN_ON(aio_nr - nr > aio_nr))
634 aio_nr = 0;
635 else
636 aio_nr -= nr;
637 spin_unlock(&aio_nr_lock);
640 /* ioctx_alloc
641 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
643 static struct kioctx *ioctx_alloc(unsigned nr_events)
645 struct mm_struct *mm = current->mm;
646 struct kioctx *ctx;
647 int err = -ENOMEM;
650 * We keep track of the number of available ringbuffer slots, to prevent
651 * overflow (reqs_available), and we also use percpu counters for this.
653 * So since up to half the slots might be on other cpu's percpu counters
654 * and unavailable, double nr_events so userspace sees what they
655 * expected: additionally, we move req_batch slots to/from percpu
656 * counters at a time, so make sure that isn't 0:
658 nr_events = max(nr_events, num_possible_cpus() * 4);
659 nr_events *= 2;
661 /* Prevent overflows */
662 if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
663 (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
664 pr_debug("ENOMEM: nr_events too high\n");
665 return ERR_PTR(-EINVAL);
668 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
669 return ERR_PTR(-EAGAIN);
671 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
672 if (!ctx)
673 return ERR_PTR(-ENOMEM);
675 ctx->max_reqs = nr_events;
677 spin_lock_init(&ctx->ctx_lock);
678 spin_lock_init(&ctx->completion_lock);
679 mutex_init(&ctx->ring_lock);
680 /* Protect against page migration throughout kiotx setup by keeping
681 * the ring_lock mutex held until setup is complete. */
682 mutex_lock(&ctx->ring_lock);
683 init_waitqueue_head(&ctx->wait);
685 INIT_LIST_HEAD(&ctx->active_reqs);
687 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
688 goto err;
690 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
691 goto err;
693 ctx->cpu = alloc_percpu(struct kioctx_cpu);
694 if (!ctx->cpu)
695 goto err;
697 err = aio_setup_ring(ctx);
698 if (err < 0)
699 goto err;
701 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
702 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
703 if (ctx->req_batch < 1)
704 ctx->req_batch = 1;
706 /* limit the number of system wide aios */
707 spin_lock(&aio_nr_lock);
708 if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
709 aio_nr + nr_events < aio_nr) {
710 spin_unlock(&aio_nr_lock);
711 err = -EAGAIN;
712 goto err_ctx;
714 aio_nr += ctx->max_reqs;
715 spin_unlock(&aio_nr_lock);
717 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
718 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
720 err = ioctx_add_table(ctx, mm);
721 if (err)
722 goto err_cleanup;
724 /* Release the ring_lock mutex now that all setup is complete. */
725 mutex_unlock(&ctx->ring_lock);
727 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
728 ctx, ctx->user_id, mm, ctx->nr_events);
729 return ctx;
731 err_cleanup:
732 aio_nr_sub(ctx->max_reqs);
733 err_ctx:
734 atomic_set(&ctx->dead, 1);
735 if (ctx->mmap_size)
736 vm_munmap(ctx->mmap_base, ctx->mmap_size);
737 aio_free_ring(ctx);
738 err:
739 mutex_unlock(&ctx->ring_lock);
740 free_percpu(ctx->cpu);
741 percpu_ref_exit(&ctx->reqs);
742 percpu_ref_exit(&ctx->users);
743 kmem_cache_free(kioctx_cachep, ctx);
744 pr_debug("error allocating ioctx %d\n", err);
745 return ERR_PTR(err);
748 /* kill_ioctx
749 * Cancels all outstanding aio requests on an aio context. Used
750 * when the processes owning a context have all exited to encourage
751 * the rapid destruction of the kioctx.
753 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
754 struct completion *requests_done)
756 struct kioctx_table *table;
758 spin_lock(&mm->ioctx_lock);
759 if (atomic_xchg(&ctx->dead, 1)) {
760 spin_unlock(&mm->ioctx_lock);
761 return -EINVAL;
764 table = rcu_dereference_raw(mm->ioctx_table);
765 WARN_ON(ctx != table->table[ctx->id]);
766 table->table[ctx->id] = NULL;
767 spin_unlock(&mm->ioctx_lock);
769 /* percpu_ref_kill() will do the necessary call_rcu() */
770 wake_up_all(&ctx->wait);
773 * It'd be more correct to do this in free_ioctx(), after all
774 * the outstanding kiocbs have finished - but by then io_destroy
775 * has already returned, so io_setup() could potentially return
776 * -EAGAIN with no ioctxs actually in use (as far as userspace
777 * could tell).
779 aio_nr_sub(ctx->max_reqs);
781 if (ctx->mmap_size)
782 vm_munmap(ctx->mmap_base, ctx->mmap_size);
784 ctx->requests_done = requests_done;
785 percpu_ref_kill(&ctx->users);
786 return 0;
789 /* wait_on_sync_kiocb:
790 * Waits on the given sync kiocb to complete.
792 ssize_t wait_on_sync_kiocb(struct kiocb *req)
794 while (!req->ki_ctx) {
795 set_current_state(TASK_UNINTERRUPTIBLE);
796 if (req->ki_ctx)
797 break;
798 io_schedule();
800 __set_current_state(TASK_RUNNING);
801 return req->ki_user_data;
803 EXPORT_SYMBOL(wait_on_sync_kiocb);
806 * exit_aio: called when the last user of mm goes away. At this point, there is
807 * no way for any new requests to be submited or any of the io_* syscalls to be
808 * called on the context.
810 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
811 * them.
813 void exit_aio(struct mm_struct *mm)
815 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
816 int i;
818 if (!table)
819 return;
821 for (i = 0; i < table->nr; ++i) {
822 struct kioctx *ctx = table->table[i];
823 struct completion requests_done =
824 COMPLETION_INITIALIZER_ONSTACK(requests_done);
826 if (!ctx)
827 continue;
829 * We don't need to bother with munmap() here - exit_mmap(mm)
830 * is coming and it'll unmap everything. And we simply can't,
831 * this is not necessarily our ->mm.
832 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
833 * that it needs to unmap the area, just set it to 0.
835 ctx->mmap_size = 0;
836 kill_ioctx(mm, ctx, &requests_done);
838 /* Wait until all IO for the context are done. */
839 wait_for_completion(&requests_done);
842 RCU_INIT_POINTER(mm->ioctx_table, NULL);
843 kfree(table);
846 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
848 struct kioctx_cpu *kcpu;
849 unsigned long flags;
851 local_irq_save(flags);
852 kcpu = this_cpu_ptr(ctx->cpu);
853 kcpu->reqs_available += nr;
855 while (kcpu->reqs_available >= ctx->req_batch * 2) {
856 kcpu->reqs_available -= ctx->req_batch;
857 atomic_add(ctx->req_batch, &ctx->reqs_available);
860 local_irq_restore(flags);
863 static bool get_reqs_available(struct kioctx *ctx)
865 struct kioctx_cpu *kcpu;
866 bool ret = false;
867 unsigned long flags;
869 local_irq_save(flags);
870 kcpu = this_cpu_ptr(ctx->cpu);
871 if (!kcpu->reqs_available) {
872 int old, avail = atomic_read(&ctx->reqs_available);
874 do {
875 if (avail < ctx->req_batch)
876 goto out;
878 old = avail;
879 avail = atomic_cmpxchg(&ctx->reqs_available,
880 avail, avail - ctx->req_batch);
881 } while (avail != old);
883 kcpu->reqs_available += ctx->req_batch;
886 ret = true;
887 kcpu->reqs_available--;
888 out:
889 local_irq_restore(flags);
890 return ret;
893 /* refill_reqs_available
894 * Updates the reqs_available reference counts used for tracking the
895 * number of free slots in the completion ring. This can be called
896 * from aio_complete() (to optimistically update reqs_available) or
897 * from aio_get_req() (the we're out of events case). It must be
898 * called holding ctx->completion_lock.
900 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
901 unsigned tail)
903 unsigned events_in_ring, completed;
905 /* Clamp head since userland can write to it. */
906 head %= ctx->nr_events;
907 if (head <= tail)
908 events_in_ring = tail - head;
909 else
910 events_in_ring = ctx->nr_events - (head - tail);
912 completed = ctx->completed_events;
913 if (events_in_ring < completed)
914 completed -= events_in_ring;
915 else
916 completed = 0;
918 if (!completed)
919 return;
921 ctx->completed_events -= completed;
922 put_reqs_available(ctx, completed);
925 /* user_refill_reqs_available
926 * Called to refill reqs_available when aio_get_req() encounters an
927 * out of space in the completion ring.
929 static void user_refill_reqs_available(struct kioctx *ctx)
931 spin_lock_irq(&ctx->completion_lock);
932 if (ctx->completed_events) {
933 struct aio_ring *ring;
934 unsigned head;
936 /* Access of ring->head may race with aio_read_events_ring()
937 * here, but that's okay since whether we read the old version
938 * or the new version, and either will be valid. The important
939 * part is that head cannot pass tail since we prevent
940 * aio_complete() from updating tail by holding
941 * ctx->completion_lock. Even if head is invalid, the check
942 * against ctx->completed_events below will make sure we do the
943 * safe/right thing.
945 ring = kmap_atomic(ctx->ring_pages[0]);
946 head = ring->head;
947 kunmap_atomic(ring);
949 refill_reqs_available(ctx, head, ctx->tail);
952 spin_unlock_irq(&ctx->completion_lock);
955 /* aio_get_req
956 * Allocate a slot for an aio request.
957 * Returns NULL if no requests are free.
959 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
961 struct kiocb *req;
963 if (!get_reqs_available(ctx)) {
964 user_refill_reqs_available(ctx);
965 if (!get_reqs_available(ctx))
966 return NULL;
969 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
970 if (unlikely(!req))
971 goto out_put;
973 percpu_ref_get(&ctx->reqs);
975 req->ki_ctx = ctx;
976 return req;
977 out_put:
978 put_reqs_available(ctx, 1);
979 return NULL;
982 static void kiocb_free(struct kiocb *req)
984 if (req->ki_filp)
985 fput(req->ki_filp);
986 if (req->ki_eventfd != NULL)
987 eventfd_ctx_put(req->ki_eventfd);
988 kmem_cache_free(kiocb_cachep, req);
991 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
993 struct aio_ring __user *ring = (void __user *)ctx_id;
994 struct mm_struct *mm = current->mm;
995 struct kioctx *ctx, *ret = NULL;
996 struct kioctx_table *table;
997 unsigned id;
999 if (get_user(id, &ring->id))
1000 return NULL;
1002 rcu_read_lock();
1003 table = rcu_dereference(mm->ioctx_table);
1005 if (!table || id >= table->nr)
1006 goto out;
1008 ctx = table->table[id];
1009 if (ctx && ctx->user_id == ctx_id) {
1010 percpu_ref_get(&ctx->users);
1011 ret = ctx;
1013 out:
1014 rcu_read_unlock();
1015 return ret;
1018 /* aio_complete
1019 * Called when the io request on the given iocb is complete.
1021 void aio_complete(struct kiocb *iocb, long res, long res2)
1023 struct kioctx *ctx = iocb->ki_ctx;
1024 struct aio_ring *ring;
1025 struct io_event *ev_page, *event;
1026 unsigned tail, pos, head;
1027 unsigned long flags;
1030 * Special case handling for sync iocbs:
1031 * - events go directly into the iocb for fast handling
1032 * - the sync task with the iocb in its stack holds the single iocb
1033 * ref, no other paths have a way to get another ref
1034 * - the sync task helpfully left a reference to itself in the iocb
1036 if (is_sync_kiocb(iocb)) {
1037 iocb->ki_user_data = res;
1038 smp_wmb();
1039 iocb->ki_ctx = ERR_PTR(-EXDEV);
1040 wake_up_process(iocb->ki_obj.tsk);
1041 return;
1044 if (iocb->ki_list.next) {
1045 unsigned long flags;
1047 spin_lock_irqsave(&ctx->ctx_lock, flags);
1048 list_del(&iocb->ki_list);
1049 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1053 * Add a completion event to the ring buffer. Must be done holding
1054 * ctx->completion_lock to prevent other code from messing with the tail
1055 * pointer since we might be called from irq context.
1057 spin_lock_irqsave(&ctx->completion_lock, flags);
1059 tail = ctx->tail;
1060 pos = tail + AIO_EVENTS_OFFSET;
1062 if (++tail >= ctx->nr_events)
1063 tail = 0;
1065 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1066 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1068 event->obj = (u64)(unsigned long)iocb->ki_obj.user;
1069 event->data = iocb->ki_user_data;
1070 event->res = res;
1071 event->res2 = res2;
1073 kunmap_atomic(ev_page);
1074 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1076 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1077 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
1078 res, res2);
1080 /* after flagging the request as done, we
1081 * must never even look at it again
1083 smp_wmb(); /* make event visible before updating tail */
1085 ctx->tail = tail;
1087 ring = kmap_atomic(ctx->ring_pages[0]);
1088 head = ring->head;
1089 ring->tail = tail;
1090 kunmap_atomic(ring);
1091 flush_dcache_page(ctx->ring_pages[0]);
1093 ctx->completed_events++;
1094 if (ctx->completed_events > 1)
1095 refill_reqs_available(ctx, head, tail);
1096 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1098 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1101 * Check if the user asked us to deliver the result through an
1102 * eventfd. The eventfd_signal() function is safe to be called
1103 * from IRQ context.
1105 if (iocb->ki_eventfd != NULL)
1106 eventfd_signal(iocb->ki_eventfd, 1);
1108 /* everything turned out well, dispose of the aiocb. */
1109 kiocb_free(iocb);
1112 * We have to order our ring_info tail store above and test
1113 * of the wait list below outside the wait lock. This is
1114 * like in wake_up_bit() where clearing a bit has to be
1115 * ordered with the unlocked test.
1117 smp_mb();
1119 if (waitqueue_active(&ctx->wait))
1120 wake_up(&ctx->wait);
1122 percpu_ref_put(&ctx->reqs);
1124 EXPORT_SYMBOL(aio_complete);
1126 /* aio_read_events_ring
1127 * Pull an event off of the ioctx's event ring. Returns the number of
1128 * events fetched
1130 static long aio_read_events_ring(struct kioctx *ctx,
1131 struct io_event __user *event, long nr)
1133 struct aio_ring *ring;
1134 unsigned head, tail, pos;
1135 long ret = 0;
1136 int copy_ret;
1139 * The mutex can block and wake us up and that will cause
1140 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1141 * and repeat. This should be rare enough that it doesn't cause
1142 * peformance issues. See the comment in read_events() for more detail.
1144 sched_annotate_sleep();
1145 mutex_lock(&ctx->ring_lock);
1147 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1148 ring = kmap_atomic(ctx->ring_pages[0]);
1149 head = ring->head;
1150 tail = ring->tail;
1151 kunmap_atomic(ring);
1154 * Ensure that once we've read the current tail pointer, that
1155 * we also see the events that were stored up to the tail.
1157 smp_rmb();
1159 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1161 if (head == tail)
1162 goto out;
1164 head %= ctx->nr_events;
1165 tail %= ctx->nr_events;
1167 while (ret < nr) {
1168 long avail;
1169 struct io_event *ev;
1170 struct page *page;
1172 avail = (head <= tail ? tail : ctx->nr_events) - head;
1173 if (head == tail)
1174 break;
1176 avail = min(avail, nr - ret);
1177 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1178 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1180 pos = head + AIO_EVENTS_OFFSET;
1181 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1182 pos %= AIO_EVENTS_PER_PAGE;
1184 ev = kmap(page);
1185 copy_ret = copy_to_user(event + ret, ev + pos,
1186 sizeof(*ev) * avail);
1187 kunmap(page);
1189 if (unlikely(copy_ret)) {
1190 ret = -EFAULT;
1191 goto out;
1194 ret += avail;
1195 head += avail;
1196 head %= ctx->nr_events;
1199 ring = kmap_atomic(ctx->ring_pages[0]);
1200 ring->head = head;
1201 kunmap_atomic(ring);
1202 flush_dcache_page(ctx->ring_pages[0]);
1204 pr_debug("%li h%u t%u\n", ret, head, tail);
1205 out:
1206 mutex_unlock(&ctx->ring_lock);
1208 return ret;
1211 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1212 struct io_event __user *event, long *i)
1214 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1216 if (ret > 0)
1217 *i += ret;
1219 if (unlikely(atomic_read(&ctx->dead)))
1220 ret = -EINVAL;
1222 if (!*i)
1223 *i = ret;
1225 return ret < 0 || *i >= min_nr;
1228 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1229 struct io_event __user *event,
1230 struct timespec __user *timeout)
1232 ktime_t until = { .tv64 = KTIME_MAX };
1233 long ret = 0;
1235 if (timeout) {
1236 struct timespec ts;
1238 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1239 return -EFAULT;
1241 until = timespec_to_ktime(ts);
1245 * Note that aio_read_events() is being called as the conditional - i.e.
1246 * we're calling it after prepare_to_wait() has set task state to
1247 * TASK_INTERRUPTIBLE.
1249 * But aio_read_events() can block, and if it blocks it's going to flip
1250 * the task state back to TASK_RUNNING.
1252 * This should be ok, provided it doesn't flip the state back to
1253 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1254 * will only happen if the mutex_lock() call blocks, and we then find
1255 * the ringbuffer empty. So in practice we should be ok, but it's
1256 * something to be aware of when touching this code.
1258 if (until.tv64 == 0)
1259 aio_read_events(ctx, min_nr, nr, event, &ret);
1260 else
1261 wait_event_interruptible_hrtimeout(ctx->wait,
1262 aio_read_events(ctx, min_nr, nr, event, &ret),
1263 until);
1265 if (!ret && signal_pending(current))
1266 ret = -EINTR;
1268 return ret;
1271 /* sys_io_setup:
1272 * Create an aio_context capable of receiving at least nr_events.
1273 * ctxp must not point to an aio_context that already exists, and
1274 * must be initialized to 0 prior to the call. On successful
1275 * creation of the aio_context, *ctxp is filled in with the resulting
1276 * handle. May fail with -EINVAL if *ctxp is not initialized,
1277 * if the specified nr_events exceeds internal limits. May fail
1278 * with -EAGAIN if the specified nr_events exceeds the user's limit
1279 * of available events. May fail with -ENOMEM if insufficient kernel
1280 * resources are available. May fail with -EFAULT if an invalid
1281 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1282 * implemented.
1284 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1286 struct kioctx *ioctx = NULL;
1287 unsigned long ctx;
1288 long ret;
1290 ret = get_user(ctx, ctxp);
1291 if (unlikely(ret))
1292 goto out;
1294 ret = -EINVAL;
1295 if (unlikely(ctx || nr_events == 0)) {
1296 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1297 ctx, nr_events);
1298 goto out;
1301 ioctx = ioctx_alloc(nr_events);
1302 ret = PTR_ERR(ioctx);
1303 if (!IS_ERR(ioctx)) {
1304 ret = put_user(ioctx->user_id, ctxp);
1305 if (ret)
1306 kill_ioctx(current->mm, ioctx, NULL);
1307 percpu_ref_put(&ioctx->users);
1310 out:
1311 return ret;
1314 /* sys_io_destroy:
1315 * Destroy the aio_context specified. May cancel any outstanding
1316 * AIOs and block on completion. Will fail with -ENOSYS if not
1317 * implemented. May fail with -EINVAL if the context pointed to
1318 * is invalid.
1320 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1322 struct kioctx *ioctx = lookup_ioctx(ctx);
1323 if (likely(NULL != ioctx)) {
1324 struct completion requests_done =
1325 COMPLETION_INITIALIZER_ONSTACK(requests_done);
1326 int ret;
1328 /* Pass requests_done to kill_ioctx() where it can be set
1329 * in a thread-safe way. If we try to set it here then we have
1330 * a race condition if two io_destroy() called simultaneously.
1332 ret = kill_ioctx(current->mm, ioctx, &requests_done);
1333 percpu_ref_put(&ioctx->users);
1335 /* Wait until all IO for the context are done. Otherwise kernel
1336 * keep using user-space buffers even if user thinks the context
1337 * is destroyed.
1339 if (!ret)
1340 wait_for_completion(&requests_done);
1342 return ret;
1344 pr_debug("EINVAL: invalid context id\n");
1345 return -EINVAL;
1348 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
1349 unsigned long, loff_t);
1350 typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *);
1352 static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb,
1353 int rw, char __user *buf,
1354 unsigned long *nr_segs,
1355 struct iovec **iovec,
1356 bool compat)
1358 ssize_t ret;
1360 *nr_segs = kiocb->ki_nbytes;
1362 #ifdef CONFIG_COMPAT
1363 if (compat)
1364 ret = compat_rw_copy_check_uvector(rw,
1365 (struct compat_iovec __user *)buf,
1366 *nr_segs, UIO_FASTIOV, *iovec, iovec);
1367 else
1368 #endif
1369 ret = rw_copy_check_uvector(rw,
1370 (struct iovec __user *)buf,
1371 *nr_segs, UIO_FASTIOV, *iovec, iovec);
1372 if (ret < 0)
1373 return ret;
1375 /* ki_nbytes now reflect bytes instead of segs */
1376 kiocb->ki_nbytes = ret;
1377 return 0;
1380 static ssize_t aio_setup_single_vector(struct kiocb *kiocb,
1381 int rw, char __user *buf,
1382 unsigned long *nr_segs,
1383 struct iovec *iovec)
1385 if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes)))
1386 return -EFAULT;
1388 iovec->iov_base = buf;
1389 iovec->iov_len = kiocb->ki_nbytes;
1390 *nr_segs = 1;
1391 return 0;
1395 * aio_run_iocb:
1396 * Performs the initial checks and io submission.
1398 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1399 char __user *buf, bool compat)
1401 struct file *file = req->ki_filp;
1402 ssize_t ret;
1403 unsigned long nr_segs;
1404 int rw;
1405 fmode_t mode;
1406 aio_rw_op *rw_op;
1407 rw_iter_op *iter_op;
1408 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1409 struct iov_iter iter;
1411 switch (opcode) {
1412 case IOCB_CMD_PREAD:
1413 case IOCB_CMD_PREADV:
1414 mode = FMODE_READ;
1415 rw = READ;
1416 rw_op = file->f_op->aio_read;
1417 iter_op = file->f_op->read_iter;
1418 goto rw_common;
1420 case IOCB_CMD_PWRITE:
1421 case IOCB_CMD_PWRITEV:
1422 mode = FMODE_WRITE;
1423 rw = WRITE;
1424 rw_op = file->f_op->aio_write;
1425 iter_op = file->f_op->write_iter;
1426 goto rw_common;
1427 rw_common:
1428 if (unlikely(!(file->f_mode & mode)))
1429 return -EBADF;
1431 if (!rw_op && !iter_op)
1432 return -EINVAL;
1434 ret = (opcode == IOCB_CMD_PREADV ||
1435 opcode == IOCB_CMD_PWRITEV)
1436 ? aio_setup_vectored_rw(req, rw, buf, &nr_segs,
1437 &iovec, compat)
1438 : aio_setup_single_vector(req, rw, buf, &nr_segs,
1439 iovec);
1440 if (!ret)
1441 ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
1442 if (ret < 0) {
1443 if (iovec != inline_vecs)
1444 kfree(iovec);
1445 return ret;
1448 req->ki_nbytes = ret;
1450 /* XXX: move/kill - rw_verify_area()? */
1451 /* This matches the pread()/pwrite() logic */
1452 if (req->ki_pos < 0) {
1453 ret = -EINVAL;
1454 break;
1457 if (rw == WRITE)
1458 file_start_write(file);
1460 if (iter_op) {
1461 iov_iter_init(&iter, rw, iovec, nr_segs, req->ki_nbytes);
1462 ret = iter_op(req, &iter);
1463 } else {
1464 ret = rw_op(req, iovec, nr_segs, req->ki_pos);
1467 if (rw == WRITE)
1468 file_end_write(file);
1469 break;
1471 case IOCB_CMD_FDSYNC:
1472 if (!file->f_op->aio_fsync)
1473 return -EINVAL;
1475 ret = file->f_op->aio_fsync(req, 1);
1476 break;
1478 case IOCB_CMD_FSYNC:
1479 if (!file->f_op->aio_fsync)
1480 return -EINVAL;
1482 ret = file->f_op->aio_fsync(req, 0);
1483 break;
1485 default:
1486 pr_debug("EINVAL: no operation provided\n");
1487 return -EINVAL;
1490 if (iovec != inline_vecs)
1491 kfree(iovec);
1493 if (ret != -EIOCBQUEUED) {
1495 * There's no easy way to restart the syscall since other AIO's
1496 * may be already running. Just fail this IO with EINTR.
1498 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1499 ret == -ERESTARTNOHAND ||
1500 ret == -ERESTART_RESTARTBLOCK))
1501 ret = -EINTR;
1502 aio_complete(req, ret, 0);
1505 return 0;
1508 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1509 struct iocb *iocb, bool compat)
1511 struct kiocb *req;
1512 ssize_t ret;
1514 /* enforce forwards compatibility on users */
1515 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1516 pr_debug("EINVAL: reserve field set\n");
1517 return -EINVAL;
1520 /* prevent overflows */
1521 if (unlikely(
1522 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1523 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1524 ((ssize_t)iocb->aio_nbytes < 0)
1525 )) {
1526 pr_debug("EINVAL: overflow check\n");
1527 return -EINVAL;
1530 req = aio_get_req(ctx);
1531 if (unlikely(!req))
1532 return -EAGAIN;
1534 req->ki_filp = fget(iocb->aio_fildes);
1535 if (unlikely(!req->ki_filp)) {
1536 ret = -EBADF;
1537 goto out_put_req;
1540 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1542 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1543 * instance of the file* now. The file descriptor must be
1544 * an eventfd() fd, and will be signaled for each completed
1545 * event using the eventfd_signal() function.
1547 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1548 if (IS_ERR(req->ki_eventfd)) {
1549 ret = PTR_ERR(req->ki_eventfd);
1550 req->ki_eventfd = NULL;
1551 goto out_put_req;
1555 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1556 if (unlikely(ret)) {
1557 pr_debug("EFAULT: aio_key\n");
1558 goto out_put_req;
1561 req->ki_obj.user = user_iocb;
1562 req->ki_user_data = iocb->aio_data;
1563 req->ki_pos = iocb->aio_offset;
1564 req->ki_nbytes = iocb->aio_nbytes;
1566 ret = aio_run_iocb(req, iocb->aio_lio_opcode,
1567 (char __user *)(unsigned long)iocb->aio_buf,
1568 compat);
1569 if (ret)
1570 goto out_put_req;
1572 return 0;
1573 out_put_req:
1574 put_reqs_available(ctx, 1);
1575 percpu_ref_put(&ctx->reqs);
1576 kiocb_free(req);
1577 return ret;
1580 long do_io_submit(aio_context_t ctx_id, long nr,
1581 struct iocb __user *__user *iocbpp, bool compat)
1583 struct kioctx *ctx;
1584 long ret = 0;
1585 int i = 0;
1586 struct blk_plug plug;
1588 if (unlikely(nr < 0))
1589 return -EINVAL;
1591 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1592 nr = LONG_MAX/sizeof(*iocbpp);
1594 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1595 return -EFAULT;
1597 ctx = lookup_ioctx(ctx_id);
1598 if (unlikely(!ctx)) {
1599 pr_debug("EINVAL: invalid context id\n");
1600 return -EINVAL;
1603 blk_start_plug(&plug);
1606 * AKPM: should this return a partial result if some of the IOs were
1607 * successfully submitted?
1609 for (i=0; i<nr; i++) {
1610 struct iocb __user *user_iocb;
1611 struct iocb tmp;
1613 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1614 ret = -EFAULT;
1615 break;
1618 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1619 ret = -EFAULT;
1620 break;
1623 ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1624 if (ret)
1625 break;
1627 blk_finish_plug(&plug);
1629 percpu_ref_put(&ctx->users);
1630 return i ? i : ret;
1633 /* sys_io_submit:
1634 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1635 * the number of iocbs queued. May return -EINVAL if the aio_context
1636 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1637 * *iocbpp[0] is not properly initialized, if the operation specified
1638 * is invalid for the file descriptor in the iocb. May fail with
1639 * -EFAULT if any of the data structures point to invalid data. May
1640 * fail with -EBADF if the file descriptor specified in the first
1641 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1642 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1643 * fail with -ENOSYS if not implemented.
1645 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1646 struct iocb __user * __user *, iocbpp)
1648 return do_io_submit(ctx_id, nr, iocbpp, 0);
1651 /* lookup_kiocb
1652 * Finds a given iocb for cancellation.
1654 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1655 u32 key)
1657 struct list_head *pos;
1659 assert_spin_locked(&ctx->ctx_lock);
1661 if (key != KIOCB_KEY)
1662 return NULL;
1664 /* TODO: use a hash or array, this sucks. */
1665 list_for_each(pos, &ctx->active_reqs) {
1666 struct kiocb *kiocb = list_kiocb(pos);
1667 if (kiocb->ki_obj.user == iocb)
1668 return kiocb;
1670 return NULL;
1673 /* sys_io_cancel:
1674 * Attempts to cancel an iocb previously passed to io_submit. If
1675 * the operation is successfully cancelled, the resulting event is
1676 * copied into the memory pointed to by result without being placed
1677 * into the completion queue and 0 is returned. May fail with
1678 * -EFAULT if any of the data structures pointed to are invalid.
1679 * May fail with -EINVAL if aio_context specified by ctx_id is
1680 * invalid. May fail with -EAGAIN if the iocb specified was not
1681 * cancelled. Will fail with -ENOSYS if not implemented.
1683 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1684 struct io_event __user *, result)
1686 struct kioctx *ctx;
1687 struct kiocb *kiocb;
1688 u32 key;
1689 int ret;
1691 ret = get_user(key, &iocb->aio_key);
1692 if (unlikely(ret))
1693 return -EFAULT;
1695 ctx = lookup_ioctx(ctx_id);
1696 if (unlikely(!ctx))
1697 return -EINVAL;
1699 spin_lock_irq(&ctx->ctx_lock);
1701 kiocb = lookup_kiocb(ctx, iocb, key);
1702 if (kiocb)
1703 ret = kiocb_cancel(kiocb);
1704 else
1705 ret = -EINVAL;
1707 spin_unlock_irq(&ctx->ctx_lock);
1709 if (!ret) {
1711 * The result argument is no longer used - the io_event is
1712 * always delivered via the ring buffer. -EINPROGRESS indicates
1713 * cancellation is progress:
1715 ret = -EINPROGRESS;
1718 percpu_ref_put(&ctx->users);
1720 return ret;
1723 /* io_getevents:
1724 * Attempts to read at least min_nr events and up to nr events from
1725 * the completion queue for the aio_context specified by ctx_id. If
1726 * it succeeds, the number of read events is returned. May fail with
1727 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1728 * out of range, if timeout is out of range. May fail with -EFAULT
1729 * if any of the memory specified is invalid. May return 0 or
1730 * < min_nr if the timeout specified by timeout has elapsed
1731 * before sufficient events are available, where timeout == NULL
1732 * specifies an infinite timeout. Note that the timeout pointed to by
1733 * timeout is relative. Will fail with -ENOSYS if not implemented.
1735 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1736 long, min_nr,
1737 long, nr,
1738 struct io_event __user *, events,
1739 struct timespec __user *, timeout)
1741 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1742 long ret = -EINVAL;
1744 if (likely(ioctx)) {
1745 if (likely(min_nr <= nr && min_nr >= 0))
1746 ret = read_events(ioctx, min_nr, nr, events, timeout);
1747 percpu_ref_put(&ioctx->users);
1749 return ret;