MIPS: Tell R4k SC and MC variations apart
[linux-2.6/btrfs-unstable.git] / fs / xfs / xfs_mount.c
blob5dcc68019d1bc8c49a799695436045d69d49167f
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_mount.h"
29 #include "xfs_da_btree.h"
30 #include "xfs_dir2_format.h"
31 #include "xfs_dir2.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_alloc.h"
40 #include "xfs_rtalloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_error.h"
43 #include "xfs_quota.h"
44 #include "xfs_fsops.h"
45 #include "xfs_trace.h"
46 #include "xfs_icache.h"
47 #include "xfs_cksum.h"
48 #include "xfs_buf_item.h"
51 #ifdef HAVE_PERCPU_SB
52 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
53 int);
54 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
55 int);
56 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
57 #else
59 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
60 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
61 #endif
63 static DEFINE_MUTEX(xfs_uuid_table_mutex);
64 static int xfs_uuid_table_size;
65 static uuid_t *xfs_uuid_table;
68 * See if the UUID is unique among mounted XFS filesystems.
69 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
71 STATIC int
72 xfs_uuid_mount(
73 struct xfs_mount *mp)
75 uuid_t *uuid = &mp->m_sb.sb_uuid;
76 int hole, i;
78 if (mp->m_flags & XFS_MOUNT_NOUUID)
79 return 0;
81 if (uuid_is_nil(uuid)) {
82 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
83 return XFS_ERROR(EINVAL);
86 mutex_lock(&xfs_uuid_table_mutex);
87 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
88 if (uuid_is_nil(&xfs_uuid_table[i])) {
89 hole = i;
90 continue;
92 if (uuid_equal(uuid, &xfs_uuid_table[i]))
93 goto out_duplicate;
96 if (hole < 0) {
97 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
98 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
99 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
100 KM_SLEEP);
101 hole = xfs_uuid_table_size++;
103 xfs_uuid_table[hole] = *uuid;
104 mutex_unlock(&xfs_uuid_table_mutex);
106 return 0;
108 out_duplicate:
109 mutex_unlock(&xfs_uuid_table_mutex);
110 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
111 return XFS_ERROR(EINVAL);
114 STATIC void
115 xfs_uuid_unmount(
116 struct xfs_mount *mp)
118 uuid_t *uuid = &mp->m_sb.sb_uuid;
119 int i;
121 if (mp->m_flags & XFS_MOUNT_NOUUID)
122 return;
124 mutex_lock(&xfs_uuid_table_mutex);
125 for (i = 0; i < xfs_uuid_table_size; i++) {
126 if (uuid_is_nil(&xfs_uuid_table[i]))
127 continue;
128 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
129 continue;
130 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
131 break;
133 ASSERT(i < xfs_uuid_table_size);
134 mutex_unlock(&xfs_uuid_table_mutex);
138 STATIC void
139 __xfs_free_perag(
140 struct rcu_head *head)
142 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
144 ASSERT(atomic_read(&pag->pag_ref) == 0);
145 kmem_free(pag);
149 * Free up the per-ag resources associated with the mount structure.
151 STATIC void
152 xfs_free_perag(
153 xfs_mount_t *mp)
155 xfs_agnumber_t agno;
156 struct xfs_perag *pag;
158 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
159 spin_lock(&mp->m_perag_lock);
160 pag = radix_tree_delete(&mp->m_perag_tree, agno);
161 spin_unlock(&mp->m_perag_lock);
162 ASSERT(pag);
163 ASSERT(atomic_read(&pag->pag_ref) == 0);
164 call_rcu(&pag->rcu_head, __xfs_free_perag);
169 * Check size of device based on the (data/realtime) block count.
170 * Note: this check is used by the growfs code as well as mount.
173 xfs_sb_validate_fsb_count(
174 xfs_sb_t *sbp,
175 __uint64_t nblocks)
177 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
178 ASSERT(sbp->sb_blocklog >= BBSHIFT);
180 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
181 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
182 return EFBIG;
183 #else /* Limited by UINT_MAX of sectors */
184 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
185 return EFBIG;
186 #endif
187 return 0;
191 xfs_initialize_perag(
192 xfs_mount_t *mp,
193 xfs_agnumber_t agcount,
194 xfs_agnumber_t *maxagi)
196 xfs_agnumber_t index;
197 xfs_agnumber_t first_initialised = 0;
198 xfs_perag_t *pag;
199 xfs_agino_t agino;
200 xfs_ino_t ino;
201 xfs_sb_t *sbp = &mp->m_sb;
202 int error = -ENOMEM;
205 * Walk the current per-ag tree so we don't try to initialise AGs
206 * that already exist (growfs case). Allocate and insert all the
207 * AGs we don't find ready for initialisation.
209 for (index = 0; index < agcount; index++) {
210 pag = xfs_perag_get(mp, index);
211 if (pag) {
212 xfs_perag_put(pag);
213 continue;
215 if (!first_initialised)
216 first_initialised = index;
218 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
219 if (!pag)
220 goto out_unwind;
221 pag->pag_agno = index;
222 pag->pag_mount = mp;
223 spin_lock_init(&pag->pag_ici_lock);
224 mutex_init(&pag->pag_ici_reclaim_lock);
225 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
226 spin_lock_init(&pag->pag_buf_lock);
227 pag->pag_buf_tree = RB_ROOT;
229 if (radix_tree_preload(GFP_NOFS))
230 goto out_unwind;
232 spin_lock(&mp->m_perag_lock);
233 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
234 BUG();
235 spin_unlock(&mp->m_perag_lock);
236 radix_tree_preload_end();
237 error = -EEXIST;
238 goto out_unwind;
240 spin_unlock(&mp->m_perag_lock);
241 radix_tree_preload_end();
245 * If we mount with the inode64 option, or no inode overflows
246 * the legacy 32-bit address space clear the inode32 option.
248 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
249 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
251 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
252 mp->m_flags |= XFS_MOUNT_32BITINODES;
253 else
254 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
256 if (mp->m_flags & XFS_MOUNT_32BITINODES)
257 index = xfs_set_inode32(mp);
258 else
259 index = xfs_set_inode64(mp);
261 if (maxagi)
262 *maxagi = index;
263 return 0;
265 out_unwind:
266 kmem_free(pag);
267 for (; index > first_initialised; index--) {
268 pag = radix_tree_delete(&mp->m_perag_tree, index);
269 kmem_free(pag);
271 return error;
275 * xfs_readsb
277 * Does the initial read of the superblock.
280 xfs_readsb(
281 struct xfs_mount *mp,
282 int flags)
284 unsigned int sector_size;
285 struct xfs_buf *bp;
286 struct xfs_sb *sbp = &mp->m_sb;
287 int error;
288 int loud = !(flags & XFS_MFSI_QUIET);
290 ASSERT(mp->m_sb_bp == NULL);
291 ASSERT(mp->m_ddev_targp != NULL);
294 * Allocate a (locked) buffer to hold the superblock.
295 * This will be kept around at all times to optimize
296 * access to the superblock.
298 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
300 reread:
301 bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
302 BTOBB(sector_size), 0,
303 loud ? &xfs_sb_buf_ops
304 : &xfs_sb_quiet_buf_ops);
305 if (!bp) {
306 if (loud)
307 xfs_warn(mp, "SB buffer read failed");
308 return EIO;
310 if (bp->b_error) {
311 error = bp->b_error;
312 if (loud)
313 xfs_warn(mp, "SB validate failed with error %d.", error);
314 goto release_buf;
318 * Initialize the mount structure from the superblock.
320 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
321 xfs_sb_quota_from_disk(&mp->m_sb);
324 * We must be able to do sector-sized and sector-aligned IO.
326 if (sector_size > sbp->sb_sectsize) {
327 if (loud)
328 xfs_warn(mp, "device supports %u byte sectors (not %u)",
329 sector_size, sbp->sb_sectsize);
330 error = ENOSYS;
331 goto release_buf;
335 * If device sector size is smaller than the superblock size,
336 * re-read the superblock so the buffer is correctly sized.
338 if (sector_size < sbp->sb_sectsize) {
339 xfs_buf_relse(bp);
340 sector_size = sbp->sb_sectsize;
341 goto reread;
344 /* Initialize per-cpu counters */
345 xfs_icsb_reinit_counters(mp);
347 /* no need to be quiet anymore, so reset the buf ops */
348 bp->b_ops = &xfs_sb_buf_ops;
350 mp->m_sb_bp = bp;
351 xfs_buf_unlock(bp);
352 return 0;
354 release_buf:
355 xfs_buf_relse(bp);
356 return error;
360 * Update alignment values based on mount options and sb values
362 STATIC int
363 xfs_update_alignment(xfs_mount_t *mp)
365 xfs_sb_t *sbp = &(mp->m_sb);
367 if (mp->m_dalign) {
369 * If stripe unit and stripe width are not multiples
370 * of the fs blocksize turn off alignment.
372 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
373 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
374 xfs_warn(mp,
375 "alignment check failed: sunit/swidth vs. blocksize(%d)",
376 sbp->sb_blocksize);
377 return XFS_ERROR(EINVAL);
378 } else {
380 * Convert the stripe unit and width to FSBs.
382 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
383 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
384 xfs_warn(mp,
385 "alignment check failed: sunit/swidth vs. agsize(%d)",
386 sbp->sb_agblocks);
387 return XFS_ERROR(EINVAL);
388 } else if (mp->m_dalign) {
389 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
390 } else {
391 xfs_warn(mp,
392 "alignment check failed: sunit(%d) less than bsize(%d)",
393 mp->m_dalign, sbp->sb_blocksize);
394 return XFS_ERROR(EINVAL);
399 * Update superblock with new values
400 * and log changes
402 if (xfs_sb_version_hasdalign(sbp)) {
403 if (sbp->sb_unit != mp->m_dalign) {
404 sbp->sb_unit = mp->m_dalign;
405 mp->m_update_flags |= XFS_SB_UNIT;
407 if (sbp->sb_width != mp->m_swidth) {
408 sbp->sb_width = mp->m_swidth;
409 mp->m_update_flags |= XFS_SB_WIDTH;
411 } else {
412 xfs_warn(mp,
413 "cannot change alignment: superblock does not support data alignment");
414 return XFS_ERROR(EINVAL);
416 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
417 xfs_sb_version_hasdalign(&mp->m_sb)) {
418 mp->m_dalign = sbp->sb_unit;
419 mp->m_swidth = sbp->sb_width;
422 return 0;
426 * Set the maximum inode count for this filesystem
428 STATIC void
429 xfs_set_maxicount(xfs_mount_t *mp)
431 xfs_sb_t *sbp = &(mp->m_sb);
432 __uint64_t icount;
434 if (sbp->sb_imax_pct) {
436 * Make sure the maximum inode count is a multiple
437 * of the units we allocate inodes in.
439 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
440 do_div(icount, 100);
441 do_div(icount, mp->m_ialloc_blks);
442 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
443 sbp->sb_inopblog;
444 } else {
445 mp->m_maxicount = 0;
450 * Set the default minimum read and write sizes unless
451 * already specified in a mount option.
452 * We use smaller I/O sizes when the file system
453 * is being used for NFS service (wsync mount option).
455 STATIC void
456 xfs_set_rw_sizes(xfs_mount_t *mp)
458 xfs_sb_t *sbp = &(mp->m_sb);
459 int readio_log, writeio_log;
461 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
462 if (mp->m_flags & XFS_MOUNT_WSYNC) {
463 readio_log = XFS_WSYNC_READIO_LOG;
464 writeio_log = XFS_WSYNC_WRITEIO_LOG;
465 } else {
466 readio_log = XFS_READIO_LOG_LARGE;
467 writeio_log = XFS_WRITEIO_LOG_LARGE;
469 } else {
470 readio_log = mp->m_readio_log;
471 writeio_log = mp->m_writeio_log;
474 if (sbp->sb_blocklog > readio_log) {
475 mp->m_readio_log = sbp->sb_blocklog;
476 } else {
477 mp->m_readio_log = readio_log;
479 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
480 if (sbp->sb_blocklog > writeio_log) {
481 mp->m_writeio_log = sbp->sb_blocklog;
482 } else {
483 mp->m_writeio_log = writeio_log;
485 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
489 * precalculate the low space thresholds for dynamic speculative preallocation.
491 void
492 xfs_set_low_space_thresholds(
493 struct xfs_mount *mp)
495 int i;
497 for (i = 0; i < XFS_LOWSP_MAX; i++) {
498 __uint64_t space = mp->m_sb.sb_dblocks;
500 do_div(space, 100);
501 mp->m_low_space[i] = space * (i + 1);
507 * Set whether we're using inode alignment.
509 STATIC void
510 xfs_set_inoalignment(xfs_mount_t *mp)
512 if (xfs_sb_version_hasalign(&mp->m_sb) &&
513 mp->m_sb.sb_inoalignmt >=
514 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
515 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
516 else
517 mp->m_inoalign_mask = 0;
519 * If we are using stripe alignment, check whether
520 * the stripe unit is a multiple of the inode alignment
522 if (mp->m_dalign && mp->m_inoalign_mask &&
523 !(mp->m_dalign & mp->m_inoalign_mask))
524 mp->m_sinoalign = mp->m_dalign;
525 else
526 mp->m_sinoalign = 0;
530 * Check that the data (and log if separate) is an ok size.
532 STATIC int
533 xfs_check_sizes(xfs_mount_t *mp)
535 xfs_buf_t *bp;
536 xfs_daddr_t d;
538 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
539 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
540 xfs_warn(mp, "filesystem size mismatch detected");
541 return XFS_ERROR(EFBIG);
543 bp = xfs_buf_read_uncached(mp->m_ddev_targp,
544 d - XFS_FSS_TO_BB(mp, 1),
545 XFS_FSS_TO_BB(mp, 1), 0, NULL);
546 if (!bp) {
547 xfs_warn(mp, "last sector read failed");
548 return EIO;
550 xfs_buf_relse(bp);
552 if (mp->m_logdev_targp != mp->m_ddev_targp) {
553 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
554 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
555 xfs_warn(mp, "log size mismatch detected");
556 return XFS_ERROR(EFBIG);
558 bp = xfs_buf_read_uncached(mp->m_logdev_targp,
559 d - XFS_FSB_TO_BB(mp, 1),
560 XFS_FSB_TO_BB(mp, 1), 0, NULL);
561 if (!bp) {
562 xfs_warn(mp, "log device read failed");
563 return EIO;
565 xfs_buf_relse(bp);
567 return 0;
571 * Clear the quotaflags in memory and in the superblock.
574 xfs_mount_reset_sbqflags(
575 struct xfs_mount *mp)
577 int error;
578 struct xfs_trans *tp;
580 mp->m_qflags = 0;
583 * It is OK to look at sb_qflags here in mount path,
584 * without m_sb_lock.
586 if (mp->m_sb.sb_qflags == 0)
587 return 0;
588 spin_lock(&mp->m_sb_lock);
589 mp->m_sb.sb_qflags = 0;
590 spin_unlock(&mp->m_sb_lock);
593 * If the fs is readonly, let the incore superblock run
594 * with quotas off but don't flush the update out to disk
596 if (mp->m_flags & XFS_MOUNT_RDONLY)
597 return 0;
599 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
600 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_qm_sbchange, 0, 0);
601 if (error) {
602 xfs_trans_cancel(tp, 0);
603 xfs_alert(mp, "%s: Superblock update failed!", __func__);
604 return error;
607 xfs_mod_sb(tp, XFS_SB_QFLAGS);
608 return xfs_trans_commit(tp, 0);
611 __uint64_t
612 xfs_default_resblks(xfs_mount_t *mp)
614 __uint64_t resblks;
617 * We default to 5% or 8192 fsbs of space reserved, whichever is
618 * smaller. This is intended to cover concurrent allocation
619 * transactions when we initially hit enospc. These each require a 4
620 * block reservation. Hence by default we cover roughly 2000 concurrent
621 * allocation reservations.
623 resblks = mp->m_sb.sb_dblocks;
624 do_div(resblks, 20);
625 resblks = min_t(__uint64_t, resblks, 8192);
626 return resblks;
630 * This function does the following on an initial mount of a file system:
631 * - reads the superblock from disk and init the mount struct
632 * - if we're a 32-bit kernel, do a size check on the superblock
633 * so we don't mount terabyte filesystems
634 * - init mount struct realtime fields
635 * - allocate inode hash table for fs
636 * - init directory manager
637 * - perform recovery and init the log manager
640 xfs_mountfs(
641 xfs_mount_t *mp)
643 xfs_sb_t *sbp = &(mp->m_sb);
644 xfs_inode_t *rip;
645 __uint64_t resblks;
646 uint quotamount = 0;
647 uint quotaflags = 0;
648 int error = 0;
650 xfs_sb_mount_common(mp, sbp);
653 * Check for a mismatched features2 values. Older kernels
654 * read & wrote into the wrong sb offset for sb_features2
655 * on some platforms due to xfs_sb_t not being 64bit size aligned
656 * when sb_features2 was added, which made older superblock
657 * reading/writing routines swap it as a 64-bit value.
659 * For backwards compatibility, we make both slots equal.
661 * If we detect a mismatched field, we OR the set bits into the
662 * existing features2 field in case it has already been modified; we
663 * don't want to lose any features. We then update the bad location
664 * with the ORed value so that older kernels will see any features2
665 * flags, and mark the two fields as needing updates once the
666 * transaction subsystem is online.
668 if (xfs_sb_has_mismatched_features2(sbp)) {
669 xfs_warn(mp, "correcting sb_features alignment problem");
670 sbp->sb_features2 |= sbp->sb_bad_features2;
671 sbp->sb_bad_features2 = sbp->sb_features2;
672 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
675 * Re-check for ATTR2 in case it was found in bad_features2
676 * slot.
678 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
679 !(mp->m_flags & XFS_MOUNT_NOATTR2))
680 mp->m_flags |= XFS_MOUNT_ATTR2;
683 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
684 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
685 xfs_sb_version_removeattr2(&mp->m_sb);
686 mp->m_update_flags |= XFS_SB_FEATURES2;
688 /* update sb_versionnum for the clearing of the morebits */
689 if (!sbp->sb_features2)
690 mp->m_update_flags |= XFS_SB_VERSIONNUM;
694 * Check if sb_agblocks is aligned at stripe boundary
695 * If sb_agblocks is NOT aligned turn off m_dalign since
696 * allocator alignment is within an ag, therefore ag has
697 * to be aligned at stripe boundary.
699 error = xfs_update_alignment(mp);
700 if (error)
701 goto out;
703 xfs_alloc_compute_maxlevels(mp);
704 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
705 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
706 xfs_ialloc_compute_maxlevels(mp);
708 xfs_set_maxicount(mp);
710 error = xfs_uuid_mount(mp);
711 if (error)
712 goto out;
715 * Set the minimum read and write sizes
717 xfs_set_rw_sizes(mp);
719 /* set the low space thresholds for dynamic preallocation */
720 xfs_set_low_space_thresholds(mp);
723 * Set the inode cluster size.
724 * This may still be overridden by the file system
725 * block size if it is larger than the chosen cluster size.
727 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
730 * Set inode alignment fields
732 xfs_set_inoalignment(mp);
735 * Check that the data (and log if separate) is an ok size.
737 error = xfs_check_sizes(mp);
738 if (error)
739 goto out_remove_uuid;
742 * Initialize realtime fields in the mount structure
744 error = xfs_rtmount_init(mp);
745 if (error) {
746 xfs_warn(mp, "RT mount failed");
747 goto out_remove_uuid;
751 * Copies the low order bits of the timestamp and the randomly
752 * set "sequence" number out of a UUID.
754 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
756 mp->m_dmevmask = 0; /* not persistent; set after each mount */
758 xfs_dir_mount(mp);
761 * Initialize the attribute manager's entries.
763 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
766 * Initialize the precomputed transaction reservations values.
768 xfs_trans_init(mp);
771 * Allocate and initialize the per-ag data.
773 spin_lock_init(&mp->m_perag_lock);
774 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
775 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
776 if (error) {
777 xfs_warn(mp, "Failed per-ag init: %d", error);
778 goto out_remove_uuid;
781 if (!sbp->sb_logblocks) {
782 xfs_warn(mp, "no log defined");
783 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
784 error = XFS_ERROR(EFSCORRUPTED);
785 goto out_free_perag;
789 * log's mount-time initialization. Perform 1st part recovery if needed
791 error = xfs_log_mount(mp, mp->m_logdev_targp,
792 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
793 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
794 if (error) {
795 xfs_warn(mp, "log mount failed");
796 goto out_fail_wait;
800 * Now the log is mounted, we know if it was an unclean shutdown or
801 * not. If it was, with the first phase of recovery has completed, we
802 * have consistent AG blocks on disk. We have not recovered EFIs yet,
803 * but they are recovered transactionally in the second recovery phase
804 * later.
806 * Hence we can safely re-initialise incore superblock counters from
807 * the per-ag data. These may not be correct if the filesystem was not
808 * cleanly unmounted, so we need to wait for recovery to finish before
809 * doing this.
811 * If the filesystem was cleanly unmounted, then we can trust the
812 * values in the superblock to be correct and we don't need to do
813 * anything here.
815 * If we are currently making the filesystem, the initialisation will
816 * fail as the perag data is in an undefined state.
818 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
819 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
820 !mp->m_sb.sb_inprogress) {
821 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
822 if (error)
823 goto out_fail_wait;
827 * Get and sanity-check the root inode.
828 * Save the pointer to it in the mount structure.
830 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
831 if (error) {
832 xfs_warn(mp, "failed to read root inode");
833 goto out_log_dealloc;
836 ASSERT(rip != NULL);
838 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
839 xfs_warn(mp, "corrupted root inode %llu: not a directory",
840 (unsigned long long)rip->i_ino);
841 xfs_iunlock(rip, XFS_ILOCK_EXCL);
842 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
843 mp);
844 error = XFS_ERROR(EFSCORRUPTED);
845 goto out_rele_rip;
847 mp->m_rootip = rip; /* save it */
849 xfs_iunlock(rip, XFS_ILOCK_EXCL);
852 * Initialize realtime inode pointers in the mount structure
854 error = xfs_rtmount_inodes(mp);
855 if (error) {
857 * Free up the root inode.
859 xfs_warn(mp, "failed to read RT inodes");
860 goto out_rele_rip;
864 * If this is a read-only mount defer the superblock updates until
865 * the next remount into writeable mode. Otherwise we would never
866 * perform the update e.g. for the root filesystem.
868 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
869 error = xfs_mount_log_sb(mp, mp->m_update_flags);
870 if (error) {
871 xfs_warn(mp, "failed to write sb changes");
872 goto out_rtunmount;
877 * Initialise the XFS quota management subsystem for this mount
879 if (XFS_IS_QUOTA_RUNNING(mp)) {
880 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
881 if (error)
882 goto out_rtunmount;
883 } else {
884 ASSERT(!XFS_IS_QUOTA_ON(mp));
887 * If a file system had quotas running earlier, but decided to
888 * mount without -o uquota/pquota/gquota options, revoke the
889 * quotachecked license.
891 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
892 xfs_notice(mp, "resetting quota flags");
893 error = xfs_mount_reset_sbqflags(mp);
894 if (error)
895 return error;
900 * Finish recovering the file system. This part needed to be
901 * delayed until after the root and real-time bitmap inodes
902 * were consistently read in.
904 error = xfs_log_mount_finish(mp);
905 if (error) {
906 xfs_warn(mp, "log mount finish failed");
907 goto out_rtunmount;
911 * Complete the quota initialisation, post-log-replay component.
913 if (quotamount) {
914 ASSERT(mp->m_qflags == 0);
915 mp->m_qflags = quotaflags;
917 xfs_qm_mount_quotas(mp);
921 * Now we are mounted, reserve a small amount of unused space for
922 * privileged transactions. This is needed so that transaction
923 * space required for critical operations can dip into this pool
924 * when at ENOSPC. This is needed for operations like create with
925 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
926 * are not allowed to use this reserved space.
928 * This may drive us straight to ENOSPC on mount, but that implies
929 * we were already there on the last unmount. Warn if this occurs.
931 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
932 resblks = xfs_default_resblks(mp);
933 error = xfs_reserve_blocks(mp, &resblks, NULL);
934 if (error)
935 xfs_warn(mp,
936 "Unable to allocate reserve blocks. Continuing without reserve pool.");
939 return 0;
941 out_rtunmount:
942 xfs_rtunmount_inodes(mp);
943 out_rele_rip:
944 IRELE(rip);
945 out_log_dealloc:
946 xfs_log_unmount(mp);
947 out_fail_wait:
948 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
949 xfs_wait_buftarg(mp->m_logdev_targp);
950 xfs_wait_buftarg(mp->m_ddev_targp);
951 out_free_perag:
952 xfs_free_perag(mp);
953 out_remove_uuid:
954 xfs_uuid_unmount(mp);
955 out:
956 return error;
960 * This flushes out the inodes,dquots and the superblock, unmounts the
961 * log and makes sure that incore structures are freed.
963 void
964 xfs_unmountfs(
965 struct xfs_mount *mp)
967 __uint64_t resblks;
968 int error;
970 cancel_delayed_work_sync(&mp->m_eofblocks_work);
972 xfs_qm_unmount_quotas(mp);
973 xfs_rtunmount_inodes(mp);
974 IRELE(mp->m_rootip);
977 * We can potentially deadlock here if we have an inode cluster
978 * that has been freed has its buffer still pinned in memory because
979 * the transaction is still sitting in a iclog. The stale inodes
980 * on that buffer will have their flush locks held until the
981 * transaction hits the disk and the callbacks run. the inode
982 * flush takes the flush lock unconditionally and with nothing to
983 * push out the iclog we will never get that unlocked. hence we
984 * need to force the log first.
986 xfs_log_force(mp, XFS_LOG_SYNC);
989 * Flush all pending changes from the AIL.
991 xfs_ail_push_all_sync(mp->m_ail);
994 * And reclaim all inodes. At this point there should be no dirty
995 * inodes and none should be pinned or locked, but use synchronous
996 * reclaim just to be sure. We can stop background inode reclaim
997 * here as well if it is still running.
999 cancel_delayed_work_sync(&mp->m_reclaim_work);
1000 xfs_reclaim_inodes(mp, SYNC_WAIT);
1002 xfs_qm_unmount(mp);
1005 * Unreserve any blocks we have so that when we unmount we don't account
1006 * the reserved free space as used. This is really only necessary for
1007 * lazy superblock counting because it trusts the incore superblock
1008 * counters to be absolutely correct on clean unmount.
1010 * We don't bother correcting this elsewhere for lazy superblock
1011 * counting because on mount of an unclean filesystem we reconstruct the
1012 * correct counter value and this is irrelevant.
1014 * For non-lazy counter filesystems, this doesn't matter at all because
1015 * we only every apply deltas to the superblock and hence the incore
1016 * value does not matter....
1018 resblks = 0;
1019 error = xfs_reserve_blocks(mp, &resblks, NULL);
1020 if (error)
1021 xfs_warn(mp, "Unable to free reserved block pool. "
1022 "Freespace may not be correct on next mount.");
1024 error = xfs_log_sbcount(mp);
1025 if (error)
1026 xfs_warn(mp, "Unable to update superblock counters. "
1027 "Freespace may not be correct on next mount.");
1029 xfs_log_unmount(mp);
1030 xfs_uuid_unmount(mp);
1032 #if defined(DEBUG)
1033 xfs_errortag_clearall(mp, 0);
1034 #endif
1035 xfs_free_perag(mp);
1039 xfs_fs_writable(xfs_mount_t *mp)
1041 return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
1042 (mp->m_flags & XFS_MOUNT_RDONLY));
1046 * xfs_log_sbcount
1048 * Sync the superblock counters to disk.
1050 * Note this code can be called during the process of freezing, so
1051 * we may need to use the transaction allocator which does not
1052 * block when the transaction subsystem is in its frozen state.
1055 xfs_log_sbcount(xfs_mount_t *mp)
1057 xfs_trans_t *tp;
1058 int error;
1060 if (!xfs_fs_writable(mp))
1061 return 0;
1063 xfs_icsb_sync_counters(mp, 0);
1066 * we don't need to do this if we are updating the superblock
1067 * counters on every modification.
1069 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1070 return 0;
1072 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1073 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1074 if (error) {
1075 xfs_trans_cancel(tp, 0);
1076 return error;
1079 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1080 xfs_trans_set_sync(tp);
1081 error = xfs_trans_commit(tp, 0);
1082 return error;
1086 * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply
1087 * a delta to a specified field in the in-core superblock. Simply
1088 * switch on the field indicated and apply the delta to that field.
1089 * Fields are not allowed to dip below zero, so if the delta would
1090 * do this do not apply it and return EINVAL.
1092 * The m_sb_lock must be held when this routine is called.
1094 STATIC int
1095 xfs_mod_incore_sb_unlocked(
1096 xfs_mount_t *mp,
1097 xfs_sb_field_t field,
1098 int64_t delta,
1099 int rsvd)
1101 int scounter; /* short counter for 32 bit fields */
1102 long long lcounter; /* long counter for 64 bit fields */
1103 long long res_used, rem;
1106 * With the in-core superblock spin lock held, switch
1107 * on the indicated field. Apply the delta to the
1108 * proper field. If the fields value would dip below
1109 * 0, then do not apply the delta and return EINVAL.
1111 switch (field) {
1112 case XFS_SBS_ICOUNT:
1113 lcounter = (long long)mp->m_sb.sb_icount;
1114 lcounter += delta;
1115 if (lcounter < 0) {
1116 ASSERT(0);
1117 return XFS_ERROR(EINVAL);
1119 mp->m_sb.sb_icount = lcounter;
1120 return 0;
1121 case XFS_SBS_IFREE:
1122 lcounter = (long long)mp->m_sb.sb_ifree;
1123 lcounter += delta;
1124 if (lcounter < 0) {
1125 ASSERT(0);
1126 return XFS_ERROR(EINVAL);
1128 mp->m_sb.sb_ifree = lcounter;
1129 return 0;
1130 case XFS_SBS_FDBLOCKS:
1131 lcounter = (long long)
1132 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1133 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1135 if (delta > 0) { /* Putting blocks back */
1136 if (res_used > delta) {
1137 mp->m_resblks_avail += delta;
1138 } else {
1139 rem = delta - res_used;
1140 mp->m_resblks_avail = mp->m_resblks;
1141 lcounter += rem;
1143 } else { /* Taking blocks away */
1144 lcounter += delta;
1145 if (lcounter >= 0) {
1146 mp->m_sb.sb_fdblocks = lcounter +
1147 XFS_ALLOC_SET_ASIDE(mp);
1148 return 0;
1152 * We are out of blocks, use any available reserved
1153 * blocks if were allowed to.
1155 if (!rsvd)
1156 return XFS_ERROR(ENOSPC);
1158 lcounter = (long long)mp->m_resblks_avail + delta;
1159 if (lcounter >= 0) {
1160 mp->m_resblks_avail = lcounter;
1161 return 0;
1163 printk_once(KERN_WARNING
1164 "Filesystem \"%s\": reserve blocks depleted! "
1165 "Consider increasing reserve pool size.",
1166 mp->m_fsname);
1167 return XFS_ERROR(ENOSPC);
1170 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1171 return 0;
1172 case XFS_SBS_FREXTENTS:
1173 lcounter = (long long)mp->m_sb.sb_frextents;
1174 lcounter += delta;
1175 if (lcounter < 0) {
1176 return XFS_ERROR(ENOSPC);
1178 mp->m_sb.sb_frextents = lcounter;
1179 return 0;
1180 case XFS_SBS_DBLOCKS:
1181 lcounter = (long long)mp->m_sb.sb_dblocks;
1182 lcounter += delta;
1183 if (lcounter < 0) {
1184 ASSERT(0);
1185 return XFS_ERROR(EINVAL);
1187 mp->m_sb.sb_dblocks = lcounter;
1188 return 0;
1189 case XFS_SBS_AGCOUNT:
1190 scounter = mp->m_sb.sb_agcount;
1191 scounter += delta;
1192 if (scounter < 0) {
1193 ASSERT(0);
1194 return XFS_ERROR(EINVAL);
1196 mp->m_sb.sb_agcount = scounter;
1197 return 0;
1198 case XFS_SBS_IMAX_PCT:
1199 scounter = mp->m_sb.sb_imax_pct;
1200 scounter += delta;
1201 if (scounter < 0) {
1202 ASSERT(0);
1203 return XFS_ERROR(EINVAL);
1205 mp->m_sb.sb_imax_pct = scounter;
1206 return 0;
1207 case XFS_SBS_REXTSIZE:
1208 scounter = mp->m_sb.sb_rextsize;
1209 scounter += delta;
1210 if (scounter < 0) {
1211 ASSERT(0);
1212 return XFS_ERROR(EINVAL);
1214 mp->m_sb.sb_rextsize = scounter;
1215 return 0;
1216 case XFS_SBS_RBMBLOCKS:
1217 scounter = mp->m_sb.sb_rbmblocks;
1218 scounter += delta;
1219 if (scounter < 0) {
1220 ASSERT(0);
1221 return XFS_ERROR(EINVAL);
1223 mp->m_sb.sb_rbmblocks = scounter;
1224 return 0;
1225 case XFS_SBS_RBLOCKS:
1226 lcounter = (long long)mp->m_sb.sb_rblocks;
1227 lcounter += delta;
1228 if (lcounter < 0) {
1229 ASSERT(0);
1230 return XFS_ERROR(EINVAL);
1232 mp->m_sb.sb_rblocks = lcounter;
1233 return 0;
1234 case XFS_SBS_REXTENTS:
1235 lcounter = (long long)mp->m_sb.sb_rextents;
1236 lcounter += delta;
1237 if (lcounter < 0) {
1238 ASSERT(0);
1239 return XFS_ERROR(EINVAL);
1241 mp->m_sb.sb_rextents = lcounter;
1242 return 0;
1243 case XFS_SBS_REXTSLOG:
1244 scounter = mp->m_sb.sb_rextslog;
1245 scounter += delta;
1246 if (scounter < 0) {
1247 ASSERT(0);
1248 return XFS_ERROR(EINVAL);
1250 mp->m_sb.sb_rextslog = scounter;
1251 return 0;
1252 default:
1253 ASSERT(0);
1254 return XFS_ERROR(EINVAL);
1259 * xfs_mod_incore_sb() is used to change a field in the in-core
1260 * superblock structure by the specified delta. This modification
1261 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1262 * routine to do the work.
1265 xfs_mod_incore_sb(
1266 struct xfs_mount *mp,
1267 xfs_sb_field_t field,
1268 int64_t delta,
1269 int rsvd)
1271 int status;
1273 #ifdef HAVE_PERCPU_SB
1274 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1275 #endif
1276 spin_lock(&mp->m_sb_lock);
1277 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1278 spin_unlock(&mp->m_sb_lock);
1280 return status;
1284 * Change more than one field in the in-core superblock structure at a time.
1286 * The fields and changes to those fields are specified in the array of
1287 * xfs_mod_sb structures passed in. Either all of the specified deltas
1288 * will be applied or none of them will. If any modified field dips below 0,
1289 * then all modifications will be backed out and EINVAL will be returned.
1291 * Note that this function may not be used for the superblock values that
1292 * are tracked with the in-memory per-cpu counters - a direct call to
1293 * xfs_icsb_modify_counters is required for these.
1296 xfs_mod_incore_sb_batch(
1297 struct xfs_mount *mp,
1298 xfs_mod_sb_t *msb,
1299 uint nmsb,
1300 int rsvd)
1302 xfs_mod_sb_t *msbp;
1303 int error = 0;
1306 * Loop through the array of mod structures and apply each individually.
1307 * If any fail, then back out all those which have already been applied.
1308 * Do all of this within the scope of the m_sb_lock so that all of the
1309 * changes will be atomic.
1311 spin_lock(&mp->m_sb_lock);
1312 for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1313 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1314 msbp->msb_field > XFS_SBS_FDBLOCKS);
1316 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1317 msbp->msb_delta, rsvd);
1318 if (error)
1319 goto unwind;
1321 spin_unlock(&mp->m_sb_lock);
1322 return 0;
1324 unwind:
1325 while (--msbp >= msb) {
1326 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1327 -msbp->msb_delta, rsvd);
1328 ASSERT(error == 0);
1330 spin_unlock(&mp->m_sb_lock);
1331 return error;
1335 * xfs_getsb() is called to obtain the buffer for the superblock.
1336 * The buffer is returned locked and read in from disk.
1337 * The buffer should be released with a call to xfs_brelse().
1339 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1340 * the superblock buffer if it can be locked without sleeping.
1341 * If it can't then we'll return NULL.
1343 struct xfs_buf *
1344 xfs_getsb(
1345 struct xfs_mount *mp,
1346 int flags)
1348 struct xfs_buf *bp = mp->m_sb_bp;
1350 if (!xfs_buf_trylock(bp)) {
1351 if (flags & XBF_TRYLOCK)
1352 return NULL;
1353 xfs_buf_lock(bp);
1356 xfs_buf_hold(bp);
1357 ASSERT(XFS_BUF_ISDONE(bp));
1358 return bp;
1362 * Used to free the superblock along various error paths.
1364 void
1365 xfs_freesb(
1366 struct xfs_mount *mp)
1368 struct xfs_buf *bp = mp->m_sb_bp;
1370 xfs_buf_lock(bp);
1371 mp->m_sb_bp = NULL;
1372 xfs_buf_relse(bp);
1376 * Used to log changes to the superblock unit and width fields which could
1377 * be altered by the mount options, as well as any potential sb_features2
1378 * fixup. Only the first superblock is updated.
1381 xfs_mount_log_sb(
1382 xfs_mount_t *mp,
1383 __int64_t fields)
1385 xfs_trans_t *tp;
1386 int error;
1388 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1389 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1390 XFS_SB_VERSIONNUM));
1392 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1393 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1394 if (error) {
1395 xfs_trans_cancel(tp, 0);
1396 return error;
1398 xfs_mod_sb(tp, fields);
1399 error = xfs_trans_commit(tp, 0);
1400 return error;
1404 * If the underlying (data/log/rt) device is readonly, there are some
1405 * operations that cannot proceed.
1408 xfs_dev_is_read_only(
1409 struct xfs_mount *mp,
1410 char *message)
1412 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1413 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1414 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1415 xfs_notice(mp, "%s required on read-only device.", message);
1416 xfs_notice(mp, "write access unavailable, cannot proceed.");
1417 return EROFS;
1419 return 0;
1422 #ifdef HAVE_PERCPU_SB
1424 * Per-cpu incore superblock counters
1426 * Simple concept, difficult implementation
1428 * Basically, replace the incore superblock counters with a distributed per cpu
1429 * counter for contended fields (e.g. free block count).
1431 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1432 * hence needs to be accurately read when we are running low on space. Hence
1433 * there is a method to enable and disable the per-cpu counters based on how
1434 * much "stuff" is available in them.
1436 * Basically, a counter is enabled if there is enough free resource to justify
1437 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1438 * ENOSPC), then we disable the counters to synchronise all callers and
1439 * re-distribute the available resources.
1441 * If, once we redistributed the available resources, we still get a failure,
1442 * we disable the per-cpu counter and go through the slow path.
1444 * The slow path is the current xfs_mod_incore_sb() function. This means that
1445 * when we disable a per-cpu counter, we need to drain its resources back to
1446 * the global superblock. We do this after disabling the counter to prevent
1447 * more threads from queueing up on the counter.
1449 * Essentially, this means that we still need a lock in the fast path to enable
1450 * synchronisation between the global counters and the per-cpu counters. This
1451 * is not a problem because the lock will be local to a CPU almost all the time
1452 * and have little contention except when we get to ENOSPC conditions.
1454 * Basically, this lock becomes a barrier that enables us to lock out the fast
1455 * path while we do things like enabling and disabling counters and
1456 * synchronising the counters.
1458 * Locking rules:
1460 * 1. m_sb_lock before picking up per-cpu locks
1461 * 2. per-cpu locks always picked up via for_each_online_cpu() order
1462 * 3. accurate counter sync requires m_sb_lock + per cpu locks
1463 * 4. modifying per-cpu counters requires holding per-cpu lock
1464 * 5. modifying global counters requires holding m_sb_lock
1465 * 6. enabling or disabling a counter requires holding the m_sb_lock
1466 * and _none_ of the per-cpu locks.
1468 * Disabled counters are only ever re-enabled by a balance operation
1469 * that results in more free resources per CPU than a given threshold.
1470 * To ensure counters don't remain disabled, they are rebalanced when
1471 * the global resource goes above a higher threshold (i.e. some hysteresis
1472 * is present to prevent thrashing).
1475 #ifdef CONFIG_HOTPLUG_CPU
1477 * hot-plug CPU notifier support.
1479 * We need a notifier per filesystem as we need to be able to identify
1480 * the filesystem to balance the counters out. This is achieved by
1481 * having a notifier block embedded in the xfs_mount_t and doing pointer
1482 * magic to get the mount pointer from the notifier block address.
1484 STATIC int
1485 xfs_icsb_cpu_notify(
1486 struct notifier_block *nfb,
1487 unsigned long action,
1488 void *hcpu)
1490 xfs_icsb_cnts_t *cntp;
1491 xfs_mount_t *mp;
1493 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1494 cntp = (xfs_icsb_cnts_t *)
1495 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1496 switch (action) {
1497 case CPU_UP_PREPARE:
1498 case CPU_UP_PREPARE_FROZEN:
1499 /* Easy Case - initialize the area and locks, and
1500 * then rebalance when online does everything else for us. */
1501 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1502 break;
1503 case CPU_ONLINE:
1504 case CPU_ONLINE_FROZEN:
1505 xfs_icsb_lock(mp);
1506 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1507 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1508 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1509 xfs_icsb_unlock(mp);
1510 break;
1511 case CPU_DEAD:
1512 case CPU_DEAD_FROZEN:
1513 /* Disable all the counters, then fold the dead cpu's
1514 * count into the total on the global superblock and
1515 * re-enable the counters. */
1516 xfs_icsb_lock(mp);
1517 spin_lock(&mp->m_sb_lock);
1518 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
1519 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
1520 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
1522 mp->m_sb.sb_icount += cntp->icsb_icount;
1523 mp->m_sb.sb_ifree += cntp->icsb_ifree;
1524 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
1526 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1528 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
1529 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
1530 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
1531 spin_unlock(&mp->m_sb_lock);
1532 xfs_icsb_unlock(mp);
1533 break;
1536 return NOTIFY_OK;
1538 #endif /* CONFIG_HOTPLUG_CPU */
1541 xfs_icsb_init_counters(
1542 xfs_mount_t *mp)
1544 xfs_icsb_cnts_t *cntp;
1545 int i;
1547 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
1548 if (mp->m_sb_cnts == NULL)
1549 return -ENOMEM;
1551 for_each_online_cpu(i) {
1552 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1553 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1556 mutex_init(&mp->m_icsb_mutex);
1559 * start with all counters disabled so that the
1560 * initial balance kicks us off correctly
1562 mp->m_icsb_counters = -1;
1564 #ifdef CONFIG_HOTPLUG_CPU
1565 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
1566 mp->m_icsb_notifier.priority = 0;
1567 register_hotcpu_notifier(&mp->m_icsb_notifier);
1568 #endif /* CONFIG_HOTPLUG_CPU */
1570 return 0;
1573 void
1574 xfs_icsb_reinit_counters(
1575 xfs_mount_t *mp)
1577 xfs_icsb_lock(mp);
1579 * start with all counters disabled so that the
1580 * initial balance kicks us off correctly
1582 mp->m_icsb_counters = -1;
1583 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1584 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1585 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1586 xfs_icsb_unlock(mp);
1589 void
1590 xfs_icsb_destroy_counters(
1591 xfs_mount_t *mp)
1593 if (mp->m_sb_cnts) {
1594 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
1595 free_percpu(mp->m_sb_cnts);
1597 mutex_destroy(&mp->m_icsb_mutex);
1600 STATIC void
1601 xfs_icsb_lock_cntr(
1602 xfs_icsb_cnts_t *icsbp)
1604 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
1605 ndelay(1000);
1609 STATIC void
1610 xfs_icsb_unlock_cntr(
1611 xfs_icsb_cnts_t *icsbp)
1613 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
1617 STATIC void
1618 xfs_icsb_lock_all_counters(
1619 xfs_mount_t *mp)
1621 xfs_icsb_cnts_t *cntp;
1622 int i;
1624 for_each_online_cpu(i) {
1625 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1626 xfs_icsb_lock_cntr(cntp);
1630 STATIC void
1631 xfs_icsb_unlock_all_counters(
1632 xfs_mount_t *mp)
1634 xfs_icsb_cnts_t *cntp;
1635 int i;
1637 for_each_online_cpu(i) {
1638 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1639 xfs_icsb_unlock_cntr(cntp);
1643 STATIC void
1644 xfs_icsb_count(
1645 xfs_mount_t *mp,
1646 xfs_icsb_cnts_t *cnt,
1647 int flags)
1649 xfs_icsb_cnts_t *cntp;
1650 int i;
1652 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
1654 if (!(flags & XFS_ICSB_LAZY_COUNT))
1655 xfs_icsb_lock_all_counters(mp);
1657 for_each_online_cpu(i) {
1658 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1659 cnt->icsb_icount += cntp->icsb_icount;
1660 cnt->icsb_ifree += cntp->icsb_ifree;
1661 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
1664 if (!(flags & XFS_ICSB_LAZY_COUNT))
1665 xfs_icsb_unlock_all_counters(mp);
1668 STATIC int
1669 xfs_icsb_counter_disabled(
1670 xfs_mount_t *mp,
1671 xfs_sb_field_t field)
1673 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1674 return test_bit(field, &mp->m_icsb_counters);
1677 STATIC void
1678 xfs_icsb_disable_counter(
1679 xfs_mount_t *mp,
1680 xfs_sb_field_t field)
1682 xfs_icsb_cnts_t cnt;
1684 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1687 * If we are already disabled, then there is nothing to do
1688 * here. We check before locking all the counters to avoid
1689 * the expensive lock operation when being called in the
1690 * slow path and the counter is already disabled. This is
1691 * safe because the only time we set or clear this state is under
1692 * the m_icsb_mutex.
1694 if (xfs_icsb_counter_disabled(mp, field))
1695 return;
1697 xfs_icsb_lock_all_counters(mp);
1698 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
1699 /* drain back to superblock */
1701 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
1702 switch(field) {
1703 case XFS_SBS_ICOUNT:
1704 mp->m_sb.sb_icount = cnt.icsb_icount;
1705 break;
1706 case XFS_SBS_IFREE:
1707 mp->m_sb.sb_ifree = cnt.icsb_ifree;
1708 break;
1709 case XFS_SBS_FDBLOCKS:
1710 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1711 break;
1712 default:
1713 BUG();
1717 xfs_icsb_unlock_all_counters(mp);
1720 STATIC void
1721 xfs_icsb_enable_counter(
1722 xfs_mount_t *mp,
1723 xfs_sb_field_t field,
1724 uint64_t count,
1725 uint64_t resid)
1727 xfs_icsb_cnts_t *cntp;
1728 int i;
1730 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1732 xfs_icsb_lock_all_counters(mp);
1733 for_each_online_cpu(i) {
1734 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
1735 switch (field) {
1736 case XFS_SBS_ICOUNT:
1737 cntp->icsb_icount = count + resid;
1738 break;
1739 case XFS_SBS_IFREE:
1740 cntp->icsb_ifree = count + resid;
1741 break;
1742 case XFS_SBS_FDBLOCKS:
1743 cntp->icsb_fdblocks = count + resid;
1744 break;
1745 default:
1746 BUG();
1747 break;
1749 resid = 0;
1751 clear_bit(field, &mp->m_icsb_counters);
1752 xfs_icsb_unlock_all_counters(mp);
1755 void
1756 xfs_icsb_sync_counters_locked(
1757 xfs_mount_t *mp,
1758 int flags)
1760 xfs_icsb_cnts_t cnt;
1762 xfs_icsb_count(mp, &cnt, flags);
1764 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
1765 mp->m_sb.sb_icount = cnt.icsb_icount;
1766 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
1767 mp->m_sb.sb_ifree = cnt.icsb_ifree;
1768 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
1769 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1773 * Accurate update of per-cpu counters to incore superblock
1775 void
1776 xfs_icsb_sync_counters(
1777 xfs_mount_t *mp,
1778 int flags)
1780 spin_lock(&mp->m_sb_lock);
1781 xfs_icsb_sync_counters_locked(mp, flags);
1782 spin_unlock(&mp->m_sb_lock);
1786 * Balance and enable/disable counters as necessary.
1788 * Thresholds for re-enabling counters are somewhat magic. inode counts are
1789 * chosen to be the same number as single on disk allocation chunk per CPU, and
1790 * free blocks is something far enough zero that we aren't going thrash when we
1791 * get near ENOSPC. We also need to supply a minimum we require per cpu to
1792 * prevent looping endlessly when xfs_alloc_space asks for more than will
1793 * be distributed to a single CPU but each CPU has enough blocks to be
1794 * reenabled.
1796 * Note that we can be called when counters are already disabled.
1797 * xfs_icsb_disable_counter() optimises the counter locking in this case to
1798 * prevent locking every per-cpu counter needlessly.
1801 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
1802 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
1803 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
1804 STATIC void
1805 xfs_icsb_balance_counter_locked(
1806 xfs_mount_t *mp,
1807 xfs_sb_field_t field,
1808 int min_per_cpu)
1810 uint64_t count, resid;
1811 int weight = num_online_cpus();
1812 uint64_t min = (uint64_t)min_per_cpu;
1814 /* disable counter and sync counter */
1815 xfs_icsb_disable_counter(mp, field);
1817 /* update counters - first CPU gets residual*/
1818 switch (field) {
1819 case XFS_SBS_ICOUNT:
1820 count = mp->m_sb.sb_icount;
1821 resid = do_div(count, weight);
1822 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1823 return;
1824 break;
1825 case XFS_SBS_IFREE:
1826 count = mp->m_sb.sb_ifree;
1827 resid = do_div(count, weight);
1828 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1829 return;
1830 break;
1831 case XFS_SBS_FDBLOCKS:
1832 count = mp->m_sb.sb_fdblocks;
1833 resid = do_div(count, weight);
1834 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
1835 return;
1836 break;
1837 default:
1838 BUG();
1839 count = resid = 0; /* quiet, gcc */
1840 break;
1843 xfs_icsb_enable_counter(mp, field, count, resid);
1846 STATIC void
1847 xfs_icsb_balance_counter(
1848 xfs_mount_t *mp,
1849 xfs_sb_field_t fields,
1850 int min_per_cpu)
1852 spin_lock(&mp->m_sb_lock);
1853 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
1854 spin_unlock(&mp->m_sb_lock);
1858 xfs_icsb_modify_counters(
1859 xfs_mount_t *mp,
1860 xfs_sb_field_t field,
1861 int64_t delta,
1862 int rsvd)
1864 xfs_icsb_cnts_t *icsbp;
1865 long long lcounter; /* long counter for 64 bit fields */
1866 int ret = 0;
1868 might_sleep();
1869 again:
1870 preempt_disable();
1871 icsbp = this_cpu_ptr(mp->m_sb_cnts);
1874 * if the counter is disabled, go to slow path
1876 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
1877 goto slow_path;
1878 xfs_icsb_lock_cntr(icsbp);
1879 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
1880 xfs_icsb_unlock_cntr(icsbp);
1881 goto slow_path;
1884 switch (field) {
1885 case XFS_SBS_ICOUNT:
1886 lcounter = icsbp->icsb_icount;
1887 lcounter += delta;
1888 if (unlikely(lcounter < 0))
1889 goto balance_counter;
1890 icsbp->icsb_icount = lcounter;
1891 break;
1893 case XFS_SBS_IFREE:
1894 lcounter = icsbp->icsb_ifree;
1895 lcounter += delta;
1896 if (unlikely(lcounter < 0))
1897 goto balance_counter;
1898 icsbp->icsb_ifree = lcounter;
1899 break;
1901 case XFS_SBS_FDBLOCKS:
1902 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
1904 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1905 lcounter += delta;
1906 if (unlikely(lcounter < 0))
1907 goto balance_counter;
1908 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1909 break;
1910 default:
1911 BUG();
1912 break;
1914 xfs_icsb_unlock_cntr(icsbp);
1915 preempt_enable();
1916 return 0;
1918 slow_path:
1919 preempt_enable();
1922 * serialise with a mutex so we don't burn lots of cpu on
1923 * the superblock lock. We still need to hold the superblock
1924 * lock, however, when we modify the global structures.
1926 xfs_icsb_lock(mp);
1929 * Now running atomically.
1931 * If the counter is enabled, someone has beaten us to rebalancing.
1932 * Drop the lock and try again in the fast path....
1934 if (!(xfs_icsb_counter_disabled(mp, field))) {
1935 xfs_icsb_unlock(mp);
1936 goto again;
1940 * The counter is currently disabled. Because we are
1941 * running atomically here, we know a rebalance cannot
1942 * be in progress. Hence we can go straight to operating
1943 * on the global superblock. We do not call xfs_mod_incore_sb()
1944 * here even though we need to get the m_sb_lock. Doing so
1945 * will cause us to re-enter this function and deadlock.
1946 * Hence we get the m_sb_lock ourselves and then call
1947 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
1948 * directly on the global counters.
1950 spin_lock(&mp->m_sb_lock);
1951 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1952 spin_unlock(&mp->m_sb_lock);
1955 * Now that we've modified the global superblock, we
1956 * may be able to re-enable the distributed counters
1957 * (e.g. lots of space just got freed). After that
1958 * we are done.
1960 if (ret != ENOSPC)
1961 xfs_icsb_balance_counter(mp, field, 0);
1962 xfs_icsb_unlock(mp);
1963 return ret;
1965 balance_counter:
1966 xfs_icsb_unlock_cntr(icsbp);
1967 preempt_enable();
1970 * We may have multiple threads here if multiple per-cpu
1971 * counters run dry at the same time. This will mean we can
1972 * do more balances than strictly necessary but it is not
1973 * the common slowpath case.
1975 xfs_icsb_lock(mp);
1978 * running atomically.
1980 * This will leave the counter in the correct state for future
1981 * accesses. After the rebalance, we simply try again and our retry
1982 * will either succeed through the fast path or slow path without
1983 * another balance operation being required.
1985 xfs_icsb_balance_counter(mp, field, delta);
1986 xfs_icsb_unlock(mp);
1987 goto again;
1990 #endif