mm, vmstat: suppress pcp stats for unpopulated zones in zoneinfo
[linux-2.6/btrfs-unstable.git] / mm / vmscan.c
blobec4555369e17cd39b87af46bbc76b5c4b9a90d0e
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/mm.h>
17 #include <linux/sched/mm.h>
18 #include <linux/module.h>
19 #include <linux/gfp.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/swap.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/highmem.h>
25 #include <linux/vmpressure.h>
26 #include <linux/vmstat.h>
27 #include <linux/file.h>
28 #include <linux/writeback.h>
29 #include <linux/blkdev.h>
30 #include <linux/buffer_head.h> /* for try_to_release_page(),
31 buffer_heads_over_limit */
32 #include <linux/mm_inline.h>
33 #include <linux/backing-dev.h>
34 #include <linux/rmap.h>
35 #include <linux/topology.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/compaction.h>
39 #include <linux/notifier.h>
40 #include <linux/rwsem.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/freezer.h>
44 #include <linux/memcontrol.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
52 #include <asm/tlbflush.h>
53 #include <asm/div64.h>
55 #include <linux/swapops.h>
56 #include <linux/balloon_compaction.h>
58 #include "internal.h"
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/vmscan.h>
63 struct scan_control {
64 /* How many pages shrink_list() should reclaim */
65 unsigned long nr_to_reclaim;
67 /* This context's GFP mask */
68 gfp_t gfp_mask;
70 /* Allocation order */
71 int order;
74 * Nodemask of nodes allowed by the caller. If NULL, all nodes
75 * are scanned.
77 nodemask_t *nodemask;
80 * The memory cgroup that hit its limit and as a result is the
81 * primary target of this reclaim invocation.
83 struct mem_cgroup *target_mem_cgroup;
85 /* Scan (total_size >> priority) pages at once */
86 int priority;
88 /* The highest zone to isolate pages for reclaim from */
89 enum zone_type reclaim_idx;
91 /* Writepage batching in laptop mode; RECLAIM_WRITE */
92 unsigned int may_writepage:1;
94 /* Can mapped pages be reclaimed? */
95 unsigned int may_unmap:1;
97 /* Can pages be swapped as part of reclaim? */
98 unsigned int may_swap:1;
100 /* Can cgroups be reclaimed below their normal consumption range? */
101 unsigned int may_thrash:1;
103 unsigned int hibernation_mode:1;
105 /* One of the zones is ready for compaction */
106 unsigned int compaction_ready:1;
108 /* Incremented by the number of inactive pages that were scanned */
109 unsigned long nr_scanned;
111 /* Number of pages freed so far during a call to shrink_zones() */
112 unsigned long nr_reclaimed;
115 #ifdef ARCH_HAS_PREFETCH
116 #define prefetch_prev_lru_page(_page, _base, _field) \
117 do { \
118 if ((_page)->lru.prev != _base) { \
119 struct page *prev; \
121 prev = lru_to_page(&(_page->lru)); \
122 prefetch(&prev->_field); \
124 } while (0)
125 #else
126 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
127 #endif
129 #ifdef ARCH_HAS_PREFETCHW
130 #define prefetchw_prev_lru_page(_page, _base, _field) \
131 do { \
132 if ((_page)->lru.prev != _base) { \
133 struct page *prev; \
135 prev = lru_to_page(&(_page->lru)); \
136 prefetchw(&prev->_field); \
138 } while (0)
139 #else
140 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
141 #endif
144 * From 0 .. 100. Higher means more swappy.
146 int vm_swappiness = 60;
148 * The total number of pages which are beyond the high watermark within all
149 * zones.
151 unsigned long vm_total_pages;
153 static LIST_HEAD(shrinker_list);
154 static DECLARE_RWSEM(shrinker_rwsem);
156 #ifdef CONFIG_MEMCG
157 static bool global_reclaim(struct scan_control *sc)
159 return !sc->target_mem_cgroup;
163 * sane_reclaim - is the usual dirty throttling mechanism operational?
164 * @sc: scan_control in question
166 * The normal page dirty throttling mechanism in balance_dirty_pages() is
167 * completely broken with the legacy memcg and direct stalling in
168 * shrink_page_list() is used for throttling instead, which lacks all the
169 * niceties such as fairness, adaptive pausing, bandwidth proportional
170 * allocation and configurability.
172 * This function tests whether the vmscan currently in progress can assume
173 * that the normal dirty throttling mechanism is operational.
175 static bool sane_reclaim(struct scan_control *sc)
177 struct mem_cgroup *memcg = sc->target_mem_cgroup;
179 if (!memcg)
180 return true;
181 #ifdef CONFIG_CGROUP_WRITEBACK
182 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
183 return true;
184 #endif
185 return false;
187 #else
188 static bool global_reclaim(struct scan_control *sc)
190 return true;
193 static bool sane_reclaim(struct scan_control *sc)
195 return true;
197 #endif
200 * This misses isolated pages which are not accounted for to save counters.
201 * As the data only determines if reclaim or compaction continues, it is
202 * not expected that isolated pages will be a dominating factor.
204 unsigned long zone_reclaimable_pages(struct zone *zone)
206 unsigned long nr;
208 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
209 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
210 if (get_nr_swap_pages() > 0)
211 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
212 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
214 return nr;
217 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
219 unsigned long nr;
221 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
222 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
223 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
225 if (get_nr_swap_pages() > 0)
226 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
227 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
228 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
230 return nr;
234 * lruvec_lru_size - Returns the number of pages on the given LRU list.
235 * @lruvec: lru vector
236 * @lru: lru to use
237 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
239 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
241 unsigned long lru_size;
242 int zid;
244 if (!mem_cgroup_disabled())
245 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
246 else
247 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
249 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
250 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
251 unsigned long size;
253 if (!managed_zone(zone))
254 continue;
256 if (!mem_cgroup_disabled())
257 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
258 else
259 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
260 NR_ZONE_LRU_BASE + lru);
261 lru_size -= min(size, lru_size);
264 return lru_size;
269 * Add a shrinker callback to be called from the vm.
271 int register_shrinker(struct shrinker *shrinker)
273 size_t size = sizeof(*shrinker->nr_deferred);
275 if (shrinker->flags & SHRINKER_NUMA_AWARE)
276 size *= nr_node_ids;
278 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
279 if (!shrinker->nr_deferred)
280 return -ENOMEM;
282 down_write(&shrinker_rwsem);
283 list_add_tail(&shrinker->list, &shrinker_list);
284 up_write(&shrinker_rwsem);
285 return 0;
287 EXPORT_SYMBOL(register_shrinker);
290 * Remove one
292 void unregister_shrinker(struct shrinker *shrinker)
294 down_write(&shrinker_rwsem);
295 list_del(&shrinker->list);
296 up_write(&shrinker_rwsem);
297 kfree(shrinker->nr_deferred);
299 EXPORT_SYMBOL(unregister_shrinker);
301 #define SHRINK_BATCH 128
303 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
304 struct shrinker *shrinker,
305 unsigned long nr_scanned,
306 unsigned long nr_eligible)
308 unsigned long freed = 0;
309 unsigned long long delta;
310 long total_scan;
311 long freeable;
312 long nr;
313 long new_nr;
314 int nid = shrinkctl->nid;
315 long batch_size = shrinker->batch ? shrinker->batch
316 : SHRINK_BATCH;
317 long scanned = 0, next_deferred;
319 freeable = shrinker->count_objects(shrinker, shrinkctl);
320 if (freeable == 0)
321 return 0;
324 * copy the current shrinker scan count into a local variable
325 * and zero it so that other concurrent shrinker invocations
326 * don't also do this scanning work.
328 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
330 total_scan = nr;
331 delta = (4 * nr_scanned) / shrinker->seeks;
332 delta *= freeable;
333 do_div(delta, nr_eligible + 1);
334 total_scan += delta;
335 if (total_scan < 0) {
336 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
337 shrinker->scan_objects, total_scan);
338 total_scan = freeable;
339 next_deferred = nr;
340 } else
341 next_deferred = total_scan;
344 * We need to avoid excessive windup on filesystem shrinkers
345 * due to large numbers of GFP_NOFS allocations causing the
346 * shrinkers to return -1 all the time. This results in a large
347 * nr being built up so when a shrink that can do some work
348 * comes along it empties the entire cache due to nr >>>
349 * freeable. This is bad for sustaining a working set in
350 * memory.
352 * Hence only allow the shrinker to scan the entire cache when
353 * a large delta change is calculated directly.
355 if (delta < freeable / 4)
356 total_scan = min(total_scan, freeable / 2);
359 * Avoid risking looping forever due to too large nr value:
360 * never try to free more than twice the estimate number of
361 * freeable entries.
363 if (total_scan > freeable * 2)
364 total_scan = freeable * 2;
366 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
367 nr_scanned, nr_eligible,
368 freeable, delta, total_scan);
371 * Normally, we should not scan less than batch_size objects in one
372 * pass to avoid too frequent shrinker calls, but if the slab has less
373 * than batch_size objects in total and we are really tight on memory,
374 * we will try to reclaim all available objects, otherwise we can end
375 * up failing allocations although there are plenty of reclaimable
376 * objects spread over several slabs with usage less than the
377 * batch_size.
379 * We detect the "tight on memory" situations by looking at the total
380 * number of objects we want to scan (total_scan). If it is greater
381 * than the total number of objects on slab (freeable), we must be
382 * scanning at high prio and therefore should try to reclaim as much as
383 * possible.
385 while (total_scan >= batch_size ||
386 total_scan >= freeable) {
387 unsigned long ret;
388 unsigned long nr_to_scan = min(batch_size, total_scan);
390 shrinkctl->nr_to_scan = nr_to_scan;
391 ret = shrinker->scan_objects(shrinker, shrinkctl);
392 if (ret == SHRINK_STOP)
393 break;
394 freed += ret;
396 count_vm_events(SLABS_SCANNED, nr_to_scan);
397 total_scan -= nr_to_scan;
398 scanned += nr_to_scan;
400 cond_resched();
403 if (next_deferred >= scanned)
404 next_deferred -= scanned;
405 else
406 next_deferred = 0;
408 * move the unused scan count back into the shrinker in a
409 * manner that handles concurrent updates. If we exhausted the
410 * scan, there is no need to do an update.
412 if (next_deferred > 0)
413 new_nr = atomic_long_add_return(next_deferred,
414 &shrinker->nr_deferred[nid]);
415 else
416 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
418 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
419 return freed;
423 * shrink_slab - shrink slab caches
424 * @gfp_mask: allocation context
425 * @nid: node whose slab caches to target
426 * @memcg: memory cgroup whose slab caches to target
427 * @nr_scanned: pressure numerator
428 * @nr_eligible: pressure denominator
430 * Call the shrink functions to age shrinkable caches.
432 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
433 * unaware shrinkers will receive a node id of 0 instead.
435 * @memcg specifies the memory cgroup to target. If it is not NULL,
436 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
437 * objects from the memory cgroup specified. Otherwise, only unaware
438 * shrinkers are called.
440 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
441 * the available objects should be scanned. Page reclaim for example
442 * passes the number of pages scanned and the number of pages on the
443 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
444 * when it encountered mapped pages. The ratio is further biased by
445 * the ->seeks setting of the shrink function, which indicates the
446 * cost to recreate an object relative to that of an LRU page.
448 * Returns the number of reclaimed slab objects.
450 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
451 struct mem_cgroup *memcg,
452 unsigned long nr_scanned,
453 unsigned long nr_eligible)
455 struct shrinker *shrinker;
456 unsigned long freed = 0;
458 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
459 return 0;
461 if (nr_scanned == 0)
462 nr_scanned = SWAP_CLUSTER_MAX;
464 if (!down_read_trylock(&shrinker_rwsem)) {
466 * If we would return 0, our callers would understand that we
467 * have nothing else to shrink and give up trying. By returning
468 * 1 we keep it going and assume we'll be able to shrink next
469 * time.
471 freed = 1;
472 goto out;
475 list_for_each_entry(shrinker, &shrinker_list, list) {
476 struct shrink_control sc = {
477 .gfp_mask = gfp_mask,
478 .nid = nid,
479 .memcg = memcg,
483 * If kernel memory accounting is disabled, we ignore
484 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
485 * passing NULL for memcg.
487 if (memcg_kmem_enabled() &&
488 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
489 continue;
491 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
492 sc.nid = 0;
494 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
497 up_read(&shrinker_rwsem);
498 out:
499 cond_resched();
500 return freed;
503 void drop_slab_node(int nid)
505 unsigned long freed;
507 do {
508 struct mem_cgroup *memcg = NULL;
510 freed = 0;
511 do {
512 freed += shrink_slab(GFP_KERNEL, nid, memcg,
513 1000, 1000);
514 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
515 } while (freed > 10);
518 void drop_slab(void)
520 int nid;
522 for_each_online_node(nid)
523 drop_slab_node(nid);
526 static inline int is_page_cache_freeable(struct page *page)
529 * A freeable page cache page is referenced only by the caller
530 * that isolated the page, the page cache radix tree and
531 * optional buffer heads at page->private.
533 return page_count(page) - page_has_private(page) == 2;
536 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
538 if (current->flags & PF_SWAPWRITE)
539 return 1;
540 if (!inode_write_congested(inode))
541 return 1;
542 if (inode_to_bdi(inode) == current->backing_dev_info)
543 return 1;
544 return 0;
548 * We detected a synchronous write error writing a page out. Probably
549 * -ENOSPC. We need to propagate that into the address_space for a subsequent
550 * fsync(), msync() or close().
552 * The tricky part is that after writepage we cannot touch the mapping: nothing
553 * prevents it from being freed up. But we have a ref on the page and once
554 * that page is locked, the mapping is pinned.
556 * We're allowed to run sleeping lock_page() here because we know the caller has
557 * __GFP_FS.
559 static void handle_write_error(struct address_space *mapping,
560 struct page *page, int error)
562 lock_page(page);
563 if (page_mapping(page) == mapping)
564 mapping_set_error(mapping, error);
565 unlock_page(page);
568 /* possible outcome of pageout() */
569 typedef enum {
570 /* failed to write page out, page is locked */
571 PAGE_KEEP,
572 /* move page to the active list, page is locked */
573 PAGE_ACTIVATE,
574 /* page has been sent to the disk successfully, page is unlocked */
575 PAGE_SUCCESS,
576 /* page is clean and locked */
577 PAGE_CLEAN,
578 } pageout_t;
581 * pageout is called by shrink_page_list() for each dirty page.
582 * Calls ->writepage().
584 static pageout_t pageout(struct page *page, struct address_space *mapping,
585 struct scan_control *sc)
588 * If the page is dirty, only perform writeback if that write
589 * will be non-blocking. To prevent this allocation from being
590 * stalled by pagecache activity. But note that there may be
591 * stalls if we need to run get_block(). We could test
592 * PagePrivate for that.
594 * If this process is currently in __generic_file_write_iter() against
595 * this page's queue, we can perform writeback even if that
596 * will block.
598 * If the page is swapcache, write it back even if that would
599 * block, for some throttling. This happens by accident, because
600 * swap_backing_dev_info is bust: it doesn't reflect the
601 * congestion state of the swapdevs. Easy to fix, if needed.
603 if (!is_page_cache_freeable(page))
604 return PAGE_KEEP;
605 if (!mapping) {
607 * Some data journaling orphaned pages can have
608 * page->mapping == NULL while being dirty with clean buffers.
610 if (page_has_private(page)) {
611 if (try_to_free_buffers(page)) {
612 ClearPageDirty(page);
613 pr_info("%s: orphaned page\n", __func__);
614 return PAGE_CLEAN;
617 return PAGE_KEEP;
619 if (mapping->a_ops->writepage == NULL)
620 return PAGE_ACTIVATE;
621 if (!may_write_to_inode(mapping->host, sc))
622 return PAGE_KEEP;
624 if (clear_page_dirty_for_io(page)) {
625 int res;
626 struct writeback_control wbc = {
627 .sync_mode = WB_SYNC_NONE,
628 .nr_to_write = SWAP_CLUSTER_MAX,
629 .range_start = 0,
630 .range_end = LLONG_MAX,
631 .for_reclaim = 1,
634 SetPageReclaim(page);
635 res = mapping->a_ops->writepage(page, &wbc);
636 if (res < 0)
637 handle_write_error(mapping, page, res);
638 if (res == AOP_WRITEPAGE_ACTIVATE) {
639 ClearPageReclaim(page);
640 return PAGE_ACTIVATE;
643 if (!PageWriteback(page)) {
644 /* synchronous write or broken a_ops? */
645 ClearPageReclaim(page);
647 trace_mm_vmscan_writepage(page);
648 inc_node_page_state(page, NR_VMSCAN_WRITE);
649 return PAGE_SUCCESS;
652 return PAGE_CLEAN;
656 * Same as remove_mapping, but if the page is removed from the mapping, it
657 * gets returned with a refcount of 0.
659 static int __remove_mapping(struct address_space *mapping, struct page *page,
660 bool reclaimed)
662 unsigned long flags;
664 BUG_ON(!PageLocked(page));
665 BUG_ON(mapping != page_mapping(page));
667 spin_lock_irqsave(&mapping->tree_lock, flags);
669 * The non racy check for a busy page.
671 * Must be careful with the order of the tests. When someone has
672 * a ref to the page, it may be possible that they dirty it then
673 * drop the reference. So if PageDirty is tested before page_count
674 * here, then the following race may occur:
676 * get_user_pages(&page);
677 * [user mapping goes away]
678 * write_to(page);
679 * !PageDirty(page) [good]
680 * SetPageDirty(page);
681 * put_page(page);
682 * !page_count(page) [good, discard it]
684 * [oops, our write_to data is lost]
686 * Reversing the order of the tests ensures such a situation cannot
687 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
688 * load is not satisfied before that of page->_refcount.
690 * Note that if SetPageDirty is always performed via set_page_dirty,
691 * and thus under tree_lock, then this ordering is not required.
693 if (!page_ref_freeze(page, 2))
694 goto cannot_free;
695 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
696 if (unlikely(PageDirty(page))) {
697 page_ref_unfreeze(page, 2);
698 goto cannot_free;
701 if (PageSwapCache(page)) {
702 swp_entry_t swap = { .val = page_private(page) };
703 mem_cgroup_swapout(page, swap);
704 __delete_from_swap_cache(page);
705 spin_unlock_irqrestore(&mapping->tree_lock, flags);
706 swapcache_free(swap);
707 } else {
708 void (*freepage)(struct page *);
709 void *shadow = NULL;
711 freepage = mapping->a_ops->freepage;
713 * Remember a shadow entry for reclaimed file cache in
714 * order to detect refaults, thus thrashing, later on.
716 * But don't store shadows in an address space that is
717 * already exiting. This is not just an optizimation,
718 * inode reclaim needs to empty out the radix tree or
719 * the nodes are lost. Don't plant shadows behind its
720 * back.
722 * We also don't store shadows for DAX mappings because the
723 * only page cache pages found in these are zero pages
724 * covering holes, and because we don't want to mix DAX
725 * exceptional entries and shadow exceptional entries in the
726 * same page_tree.
728 if (reclaimed && page_is_file_cache(page) &&
729 !mapping_exiting(mapping) && !dax_mapping(mapping))
730 shadow = workingset_eviction(mapping, page);
731 __delete_from_page_cache(page, shadow);
732 spin_unlock_irqrestore(&mapping->tree_lock, flags);
734 if (freepage != NULL)
735 freepage(page);
738 return 1;
740 cannot_free:
741 spin_unlock_irqrestore(&mapping->tree_lock, flags);
742 return 0;
746 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
747 * someone else has a ref on the page, abort and return 0. If it was
748 * successfully detached, return 1. Assumes the caller has a single ref on
749 * this page.
751 int remove_mapping(struct address_space *mapping, struct page *page)
753 if (__remove_mapping(mapping, page, false)) {
755 * Unfreezing the refcount with 1 rather than 2 effectively
756 * drops the pagecache ref for us without requiring another
757 * atomic operation.
759 page_ref_unfreeze(page, 1);
760 return 1;
762 return 0;
766 * putback_lru_page - put previously isolated page onto appropriate LRU list
767 * @page: page to be put back to appropriate lru list
769 * Add previously isolated @page to appropriate LRU list.
770 * Page may still be unevictable for other reasons.
772 * lru_lock must not be held, interrupts must be enabled.
774 void putback_lru_page(struct page *page)
776 bool is_unevictable;
777 int was_unevictable = PageUnevictable(page);
779 VM_BUG_ON_PAGE(PageLRU(page), page);
781 redo:
782 ClearPageUnevictable(page);
784 if (page_evictable(page)) {
786 * For evictable pages, we can use the cache.
787 * In event of a race, worst case is we end up with an
788 * unevictable page on [in]active list.
789 * We know how to handle that.
791 is_unevictable = false;
792 lru_cache_add(page);
793 } else {
795 * Put unevictable pages directly on zone's unevictable
796 * list.
798 is_unevictable = true;
799 add_page_to_unevictable_list(page);
801 * When racing with an mlock or AS_UNEVICTABLE clearing
802 * (page is unlocked) make sure that if the other thread
803 * does not observe our setting of PG_lru and fails
804 * isolation/check_move_unevictable_pages,
805 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
806 * the page back to the evictable list.
808 * The other side is TestClearPageMlocked() or shmem_lock().
810 smp_mb();
814 * page's status can change while we move it among lru. If an evictable
815 * page is on unevictable list, it never be freed. To avoid that,
816 * check after we added it to the list, again.
818 if (is_unevictable && page_evictable(page)) {
819 if (!isolate_lru_page(page)) {
820 put_page(page);
821 goto redo;
823 /* This means someone else dropped this page from LRU
824 * So, it will be freed or putback to LRU again. There is
825 * nothing to do here.
829 if (was_unevictable && !is_unevictable)
830 count_vm_event(UNEVICTABLE_PGRESCUED);
831 else if (!was_unevictable && is_unevictable)
832 count_vm_event(UNEVICTABLE_PGCULLED);
834 put_page(page); /* drop ref from isolate */
837 enum page_references {
838 PAGEREF_RECLAIM,
839 PAGEREF_RECLAIM_CLEAN,
840 PAGEREF_KEEP,
841 PAGEREF_ACTIVATE,
844 static enum page_references page_check_references(struct page *page,
845 struct scan_control *sc)
847 int referenced_ptes, referenced_page;
848 unsigned long vm_flags;
850 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
851 &vm_flags);
852 referenced_page = TestClearPageReferenced(page);
855 * Mlock lost the isolation race with us. Let try_to_unmap()
856 * move the page to the unevictable list.
858 if (vm_flags & VM_LOCKED)
859 return PAGEREF_RECLAIM;
861 if (referenced_ptes) {
862 if (PageSwapBacked(page))
863 return PAGEREF_ACTIVATE;
865 * All mapped pages start out with page table
866 * references from the instantiating fault, so we need
867 * to look twice if a mapped file page is used more
868 * than once.
870 * Mark it and spare it for another trip around the
871 * inactive list. Another page table reference will
872 * lead to its activation.
874 * Note: the mark is set for activated pages as well
875 * so that recently deactivated but used pages are
876 * quickly recovered.
878 SetPageReferenced(page);
880 if (referenced_page || referenced_ptes > 1)
881 return PAGEREF_ACTIVATE;
884 * Activate file-backed executable pages after first usage.
886 if (vm_flags & VM_EXEC)
887 return PAGEREF_ACTIVATE;
889 return PAGEREF_KEEP;
892 /* Reclaim if clean, defer dirty pages to writeback */
893 if (referenced_page && !PageSwapBacked(page))
894 return PAGEREF_RECLAIM_CLEAN;
896 return PAGEREF_RECLAIM;
899 /* Check if a page is dirty or under writeback */
900 static void page_check_dirty_writeback(struct page *page,
901 bool *dirty, bool *writeback)
903 struct address_space *mapping;
906 * Anonymous pages are not handled by flushers and must be written
907 * from reclaim context. Do not stall reclaim based on them
909 if (!page_is_file_cache(page) ||
910 (PageAnon(page) && !PageSwapBacked(page))) {
911 *dirty = false;
912 *writeback = false;
913 return;
916 /* By default assume that the page flags are accurate */
917 *dirty = PageDirty(page);
918 *writeback = PageWriteback(page);
920 /* Verify dirty/writeback state if the filesystem supports it */
921 if (!page_has_private(page))
922 return;
924 mapping = page_mapping(page);
925 if (mapping && mapping->a_ops->is_dirty_writeback)
926 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
929 struct reclaim_stat {
930 unsigned nr_dirty;
931 unsigned nr_unqueued_dirty;
932 unsigned nr_congested;
933 unsigned nr_writeback;
934 unsigned nr_immediate;
935 unsigned nr_activate;
936 unsigned nr_ref_keep;
937 unsigned nr_unmap_fail;
941 * shrink_page_list() returns the number of reclaimed pages
943 static unsigned long shrink_page_list(struct list_head *page_list,
944 struct pglist_data *pgdat,
945 struct scan_control *sc,
946 enum ttu_flags ttu_flags,
947 struct reclaim_stat *stat,
948 bool force_reclaim)
950 LIST_HEAD(ret_pages);
951 LIST_HEAD(free_pages);
952 int pgactivate = 0;
953 unsigned nr_unqueued_dirty = 0;
954 unsigned nr_dirty = 0;
955 unsigned nr_congested = 0;
956 unsigned nr_reclaimed = 0;
957 unsigned nr_writeback = 0;
958 unsigned nr_immediate = 0;
959 unsigned nr_ref_keep = 0;
960 unsigned nr_unmap_fail = 0;
962 cond_resched();
964 while (!list_empty(page_list)) {
965 struct address_space *mapping;
966 struct page *page;
967 int may_enter_fs;
968 enum page_references references = PAGEREF_RECLAIM_CLEAN;
969 bool dirty, writeback;
970 int ret = SWAP_SUCCESS;
972 cond_resched();
974 page = lru_to_page(page_list);
975 list_del(&page->lru);
977 if (!trylock_page(page))
978 goto keep;
980 VM_BUG_ON_PAGE(PageActive(page), page);
982 sc->nr_scanned++;
984 if (unlikely(!page_evictable(page)))
985 goto cull_mlocked;
987 if (!sc->may_unmap && page_mapped(page))
988 goto keep_locked;
990 /* Double the slab pressure for mapped and swapcache pages */
991 if ((page_mapped(page) || PageSwapCache(page)) &&
992 !(PageAnon(page) && !PageSwapBacked(page)))
993 sc->nr_scanned++;
995 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
996 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
999 * The number of dirty pages determines if a zone is marked
1000 * reclaim_congested which affects wait_iff_congested. kswapd
1001 * will stall and start writing pages if the tail of the LRU
1002 * is all dirty unqueued pages.
1004 page_check_dirty_writeback(page, &dirty, &writeback);
1005 if (dirty || writeback)
1006 nr_dirty++;
1008 if (dirty && !writeback)
1009 nr_unqueued_dirty++;
1012 * Treat this page as congested if the underlying BDI is or if
1013 * pages are cycling through the LRU so quickly that the
1014 * pages marked for immediate reclaim are making it to the
1015 * end of the LRU a second time.
1017 mapping = page_mapping(page);
1018 if (((dirty || writeback) && mapping &&
1019 inode_write_congested(mapping->host)) ||
1020 (writeback && PageReclaim(page)))
1021 nr_congested++;
1024 * If a page at the tail of the LRU is under writeback, there
1025 * are three cases to consider.
1027 * 1) If reclaim is encountering an excessive number of pages
1028 * under writeback and this page is both under writeback and
1029 * PageReclaim then it indicates that pages are being queued
1030 * for IO but are being recycled through the LRU before the
1031 * IO can complete. Waiting on the page itself risks an
1032 * indefinite stall if it is impossible to writeback the
1033 * page due to IO error or disconnected storage so instead
1034 * note that the LRU is being scanned too quickly and the
1035 * caller can stall after page list has been processed.
1037 * 2) Global or new memcg reclaim encounters a page that is
1038 * not marked for immediate reclaim, or the caller does not
1039 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1040 * not to fs). In this case mark the page for immediate
1041 * reclaim and continue scanning.
1043 * Require may_enter_fs because we would wait on fs, which
1044 * may not have submitted IO yet. And the loop driver might
1045 * enter reclaim, and deadlock if it waits on a page for
1046 * which it is needed to do the write (loop masks off
1047 * __GFP_IO|__GFP_FS for this reason); but more thought
1048 * would probably show more reasons.
1050 * 3) Legacy memcg encounters a page that is already marked
1051 * PageReclaim. memcg does not have any dirty pages
1052 * throttling so we could easily OOM just because too many
1053 * pages are in writeback and there is nothing else to
1054 * reclaim. Wait for the writeback to complete.
1056 * In cases 1) and 2) we activate the pages to get them out of
1057 * the way while we continue scanning for clean pages on the
1058 * inactive list and refilling from the active list. The
1059 * observation here is that waiting for disk writes is more
1060 * expensive than potentially causing reloads down the line.
1061 * Since they're marked for immediate reclaim, they won't put
1062 * memory pressure on the cache working set any longer than it
1063 * takes to write them to disk.
1065 if (PageWriteback(page)) {
1066 /* Case 1 above */
1067 if (current_is_kswapd() &&
1068 PageReclaim(page) &&
1069 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1070 nr_immediate++;
1071 goto activate_locked;
1073 /* Case 2 above */
1074 } else if (sane_reclaim(sc) ||
1075 !PageReclaim(page) || !may_enter_fs) {
1077 * This is slightly racy - end_page_writeback()
1078 * might have just cleared PageReclaim, then
1079 * setting PageReclaim here end up interpreted
1080 * as PageReadahead - but that does not matter
1081 * enough to care. What we do want is for this
1082 * page to have PageReclaim set next time memcg
1083 * reclaim reaches the tests above, so it will
1084 * then wait_on_page_writeback() to avoid OOM;
1085 * and it's also appropriate in global reclaim.
1087 SetPageReclaim(page);
1088 nr_writeback++;
1089 goto activate_locked;
1091 /* Case 3 above */
1092 } else {
1093 unlock_page(page);
1094 wait_on_page_writeback(page);
1095 /* then go back and try same page again */
1096 list_add_tail(&page->lru, page_list);
1097 continue;
1101 if (!force_reclaim)
1102 references = page_check_references(page, sc);
1104 switch (references) {
1105 case PAGEREF_ACTIVATE:
1106 goto activate_locked;
1107 case PAGEREF_KEEP:
1108 nr_ref_keep++;
1109 goto keep_locked;
1110 case PAGEREF_RECLAIM:
1111 case PAGEREF_RECLAIM_CLEAN:
1112 ; /* try to reclaim the page below */
1116 * Anonymous process memory has backing store?
1117 * Try to allocate it some swap space here.
1118 * Lazyfree page could be freed directly
1120 if (PageAnon(page) && PageSwapBacked(page) &&
1121 !PageSwapCache(page)) {
1122 if (!(sc->gfp_mask & __GFP_IO))
1123 goto keep_locked;
1124 if (!add_to_swap(page, page_list))
1125 goto activate_locked;
1126 may_enter_fs = 1;
1128 /* Adding to swap updated mapping */
1129 mapping = page_mapping(page);
1130 } else if (unlikely(PageTransHuge(page))) {
1131 /* Split file THP */
1132 if (split_huge_page_to_list(page, page_list))
1133 goto keep_locked;
1136 VM_BUG_ON_PAGE(PageTransHuge(page), page);
1139 * The page is mapped into the page tables of one or more
1140 * processes. Try to unmap it here.
1142 if (page_mapped(page)) {
1143 switch (ret = try_to_unmap(page,
1144 ttu_flags | TTU_BATCH_FLUSH)) {
1145 case SWAP_DIRTY:
1146 SetPageSwapBacked(page);
1147 /* fall through */
1148 case SWAP_FAIL:
1149 nr_unmap_fail++;
1150 goto activate_locked;
1151 case SWAP_AGAIN:
1152 goto keep_locked;
1153 case SWAP_MLOCK:
1154 goto cull_mlocked;
1155 case SWAP_SUCCESS:
1156 ; /* try to free the page below */
1160 if (PageDirty(page)) {
1162 * Only kswapd can writeback filesystem pages
1163 * to avoid risk of stack overflow. But avoid
1164 * injecting inefficient single-page IO into
1165 * flusher writeback as much as possible: only
1166 * write pages when we've encountered many
1167 * dirty pages, and when we've already scanned
1168 * the rest of the LRU for clean pages and see
1169 * the same dirty pages again (PageReclaim).
1171 if (page_is_file_cache(page) &&
1172 (!current_is_kswapd() || !PageReclaim(page) ||
1173 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1175 * Immediately reclaim when written back.
1176 * Similar in principal to deactivate_page()
1177 * except we already have the page isolated
1178 * and know it's dirty
1180 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1181 SetPageReclaim(page);
1183 goto activate_locked;
1186 if (references == PAGEREF_RECLAIM_CLEAN)
1187 goto keep_locked;
1188 if (!may_enter_fs)
1189 goto keep_locked;
1190 if (!sc->may_writepage)
1191 goto keep_locked;
1194 * Page is dirty. Flush the TLB if a writable entry
1195 * potentially exists to avoid CPU writes after IO
1196 * starts and then write it out here.
1198 try_to_unmap_flush_dirty();
1199 switch (pageout(page, mapping, sc)) {
1200 case PAGE_KEEP:
1201 goto keep_locked;
1202 case PAGE_ACTIVATE:
1203 goto activate_locked;
1204 case PAGE_SUCCESS:
1205 if (PageWriteback(page))
1206 goto keep;
1207 if (PageDirty(page))
1208 goto keep;
1211 * A synchronous write - probably a ramdisk. Go
1212 * ahead and try to reclaim the page.
1214 if (!trylock_page(page))
1215 goto keep;
1216 if (PageDirty(page) || PageWriteback(page))
1217 goto keep_locked;
1218 mapping = page_mapping(page);
1219 case PAGE_CLEAN:
1220 ; /* try to free the page below */
1225 * If the page has buffers, try to free the buffer mappings
1226 * associated with this page. If we succeed we try to free
1227 * the page as well.
1229 * We do this even if the page is PageDirty().
1230 * try_to_release_page() does not perform I/O, but it is
1231 * possible for a page to have PageDirty set, but it is actually
1232 * clean (all its buffers are clean). This happens if the
1233 * buffers were written out directly, with submit_bh(). ext3
1234 * will do this, as well as the blockdev mapping.
1235 * try_to_release_page() will discover that cleanness and will
1236 * drop the buffers and mark the page clean - it can be freed.
1238 * Rarely, pages can have buffers and no ->mapping. These are
1239 * the pages which were not successfully invalidated in
1240 * truncate_complete_page(). We try to drop those buffers here
1241 * and if that worked, and the page is no longer mapped into
1242 * process address space (page_count == 1) it can be freed.
1243 * Otherwise, leave the page on the LRU so it is swappable.
1245 if (page_has_private(page)) {
1246 if (!try_to_release_page(page, sc->gfp_mask))
1247 goto activate_locked;
1248 if (!mapping && page_count(page) == 1) {
1249 unlock_page(page);
1250 if (put_page_testzero(page))
1251 goto free_it;
1252 else {
1254 * rare race with speculative reference.
1255 * the speculative reference will free
1256 * this page shortly, so we may
1257 * increment nr_reclaimed here (and
1258 * leave it off the LRU).
1260 nr_reclaimed++;
1261 continue;
1266 if (PageAnon(page) && !PageSwapBacked(page)) {
1267 /* follow __remove_mapping for reference */
1268 if (!page_ref_freeze(page, 1))
1269 goto keep_locked;
1270 if (PageDirty(page)) {
1271 page_ref_unfreeze(page, 1);
1272 goto keep_locked;
1275 count_vm_event(PGLAZYFREED);
1276 } else if (!mapping || !__remove_mapping(mapping, page, true))
1277 goto keep_locked;
1279 * At this point, we have no other references and there is
1280 * no way to pick any more up (removed from LRU, removed
1281 * from pagecache). Can use non-atomic bitops now (and
1282 * we obviously don't have to worry about waking up a process
1283 * waiting on the page lock, because there are no references.
1285 __ClearPageLocked(page);
1286 free_it:
1287 nr_reclaimed++;
1290 * Is there need to periodically free_page_list? It would
1291 * appear not as the counts should be low
1293 list_add(&page->lru, &free_pages);
1294 continue;
1296 cull_mlocked:
1297 if (PageSwapCache(page))
1298 try_to_free_swap(page);
1299 unlock_page(page);
1300 list_add(&page->lru, &ret_pages);
1301 continue;
1303 activate_locked:
1304 /* Not a candidate for swapping, so reclaim swap space. */
1305 if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1306 try_to_free_swap(page);
1307 VM_BUG_ON_PAGE(PageActive(page), page);
1308 SetPageActive(page);
1309 pgactivate++;
1310 keep_locked:
1311 unlock_page(page);
1312 keep:
1313 list_add(&page->lru, &ret_pages);
1314 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1317 mem_cgroup_uncharge_list(&free_pages);
1318 try_to_unmap_flush();
1319 free_hot_cold_page_list(&free_pages, true);
1321 list_splice(&ret_pages, page_list);
1322 count_vm_events(PGACTIVATE, pgactivate);
1324 if (stat) {
1325 stat->nr_dirty = nr_dirty;
1326 stat->nr_congested = nr_congested;
1327 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1328 stat->nr_writeback = nr_writeback;
1329 stat->nr_immediate = nr_immediate;
1330 stat->nr_activate = pgactivate;
1331 stat->nr_ref_keep = nr_ref_keep;
1332 stat->nr_unmap_fail = nr_unmap_fail;
1334 return nr_reclaimed;
1337 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1338 struct list_head *page_list)
1340 struct scan_control sc = {
1341 .gfp_mask = GFP_KERNEL,
1342 .priority = DEF_PRIORITY,
1343 .may_unmap = 1,
1345 unsigned long ret;
1346 struct page *page, *next;
1347 LIST_HEAD(clean_pages);
1349 list_for_each_entry_safe(page, next, page_list, lru) {
1350 if (page_is_file_cache(page) && !PageDirty(page) &&
1351 !__PageMovable(page)) {
1352 ClearPageActive(page);
1353 list_move(&page->lru, &clean_pages);
1357 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1358 TTU_IGNORE_ACCESS, NULL, true);
1359 list_splice(&clean_pages, page_list);
1360 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1361 return ret;
1365 * Attempt to remove the specified page from its LRU. Only take this page
1366 * if it is of the appropriate PageActive status. Pages which are being
1367 * freed elsewhere are also ignored.
1369 * page: page to consider
1370 * mode: one of the LRU isolation modes defined above
1372 * returns 0 on success, -ve errno on failure.
1374 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1376 int ret = -EINVAL;
1378 /* Only take pages on the LRU. */
1379 if (!PageLRU(page))
1380 return ret;
1382 /* Compaction should not handle unevictable pages but CMA can do so */
1383 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1384 return ret;
1386 ret = -EBUSY;
1389 * To minimise LRU disruption, the caller can indicate that it only
1390 * wants to isolate pages it will be able to operate on without
1391 * blocking - clean pages for the most part.
1393 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1394 * that it is possible to migrate without blocking
1396 if (mode & ISOLATE_ASYNC_MIGRATE) {
1397 /* All the caller can do on PageWriteback is block */
1398 if (PageWriteback(page))
1399 return ret;
1401 if (PageDirty(page)) {
1402 struct address_space *mapping;
1405 * Only pages without mappings or that have a
1406 * ->migratepage callback are possible to migrate
1407 * without blocking
1409 mapping = page_mapping(page);
1410 if (mapping && !mapping->a_ops->migratepage)
1411 return ret;
1415 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1416 return ret;
1418 if (likely(get_page_unless_zero(page))) {
1420 * Be careful not to clear PageLRU until after we're
1421 * sure the page is not being freed elsewhere -- the
1422 * page release code relies on it.
1424 ClearPageLRU(page);
1425 ret = 0;
1428 return ret;
1433 * Update LRU sizes after isolating pages. The LRU size updates must
1434 * be complete before mem_cgroup_update_lru_size due to a santity check.
1436 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1437 enum lru_list lru, unsigned long *nr_zone_taken)
1439 int zid;
1441 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1442 if (!nr_zone_taken[zid])
1443 continue;
1445 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1446 #ifdef CONFIG_MEMCG
1447 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1448 #endif
1454 * zone_lru_lock is heavily contended. Some of the functions that
1455 * shrink the lists perform better by taking out a batch of pages
1456 * and working on them outside the LRU lock.
1458 * For pagecache intensive workloads, this function is the hottest
1459 * spot in the kernel (apart from copy_*_user functions).
1461 * Appropriate locks must be held before calling this function.
1463 * @nr_to_scan: The number of pages to look through on the list.
1464 * @lruvec: The LRU vector to pull pages from.
1465 * @dst: The temp list to put pages on to.
1466 * @nr_scanned: The number of pages that were scanned.
1467 * @sc: The scan_control struct for this reclaim session
1468 * @mode: One of the LRU isolation modes
1469 * @lru: LRU list id for isolating
1471 * returns how many pages were moved onto *@dst.
1473 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1474 struct lruvec *lruvec, struct list_head *dst,
1475 unsigned long *nr_scanned, struct scan_control *sc,
1476 isolate_mode_t mode, enum lru_list lru)
1478 struct list_head *src = &lruvec->lists[lru];
1479 unsigned long nr_taken = 0;
1480 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1481 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1482 unsigned long skipped = 0;
1483 unsigned long scan, nr_pages;
1484 LIST_HEAD(pages_skipped);
1486 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1487 !list_empty(src); scan++) {
1488 struct page *page;
1490 page = lru_to_page(src);
1491 prefetchw_prev_lru_page(page, src, flags);
1493 VM_BUG_ON_PAGE(!PageLRU(page), page);
1495 if (page_zonenum(page) > sc->reclaim_idx) {
1496 list_move(&page->lru, &pages_skipped);
1497 nr_skipped[page_zonenum(page)]++;
1498 continue;
1501 switch (__isolate_lru_page(page, mode)) {
1502 case 0:
1503 nr_pages = hpage_nr_pages(page);
1504 nr_taken += nr_pages;
1505 nr_zone_taken[page_zonenum(page)] += nr_pages;
1506 list_move(&page->lru, dst);
1507 break;
1509 case -EBUSY:
1510 /* else it is being freed elsewhere */
1511 list_move(&page->lru, src);
1512 continue;
1514 default:
1515 BUG();
1520 * Splice any skipped pages to the start of the LRU list. Note that
1521 * this disrupts the LRU order when reclaiming for lower zones but
1522 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1523 * scanning would soon rescan the same pages to skip and put the
1524 * system at risk of premature OOM.
1526 if (!list_empty(&pages_skipped)) {
1527 int zid;
1529 list_splice(&pages_skipped, src);
1530 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1531 if (!nr_skipped[zid])
1532 continue;
1534 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1535 skipped += nr_skipped[zid];
1538 *nr_scanned = scan;
1539 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1540 scan, skipped, nr_taken, mode, lru);
1541 update_lru_sizes(lruvec, lru, nr_zone_taken);
1542 return nr_taken;
1546 * isolate_lru_page - tries to isolate a page from its LRU list
1547 * @page: page to isolate from its LRU list
1549 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1550 * vmstat statistic corresponding to whatever LRU list the page was on.
1552 * Returns 0 if the page was removed from an LRU list.
1553 * Returns -EBUSY if the page was not on an LRU list.
1555 * The returned page will have PageLRU() cleared. If it was found on
1556 * the active list, it will have PageActive set. If it was found on
1557 * the unevictable list, it will have the PageUnevictable bit set. That flag
1558 * may need to be cleared by the caller before letting the page go.
1560 * The vmstat statistic corresponding to the list on which the page was
1561 * found will be decremented.
1563 * Restrictions:
1564 * (1) Must be called with an elevated refcount on the page. This is a
1565 * fundamentnal difference from isolate_lru_pages (which is called
1566 * without a stable reference).
1567 * (2) the lru_lock must not be held.
1568 * (3) interrupts must be enabled.
1570 int isolate_lru_page(struct page *page)
1572 int ret = -EBUSY;
1574 VM_BUG_ON_PAGE(!page_count(page), page);
1575 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1577 if (PageLRU(page)) {
1578 struct zone *zone = page_zone(page);
1579 struct lruvec *lruvec;
1581 spin_lock_irq(zone_lru_lock(zone));
1582 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1583 if (PageLRU(page)) {
1584 int lru = page_lru(page);
1585 get_page(page);
1586 ClearPageLRU(page);
1587 del_page_from_lru_list(page, lruvec, lru);
1588 ret = 0;
1590 spin_unlock_irq(zone_lru_lock(zone));
1592 return ret;
1596 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1597 * then get resheduled. When there are massive number of tasks doing page
1598 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1599 * the LRU list will go small and be scanned faster than necessary, leading to
1600 * unnecessary swapping, thrashing and OOM.
1602 static int too_many_isolated(struct pglist_data *pgdat, int file,
1603 struct scan_control *sc)
1605 unsigned long inactive, isolated;
1607 if (current_is_kswapd())
1608 return 0;
1610 if (!sane_reclaim(sc))
1611 return 0;
1613 if (file) {
1614 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1615 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1616 } else {
1617 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1618 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1622 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1623 * won't get blocked by normal direct-reclaimers, forming a circular
1624 * deadlock.
1626 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1627 inactive >>= 3;
1629 return isolated > inactive;
1632 static noinline_for_stack void
1633 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1635 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1636 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1637 LIST_HEAD(pages_to_free);
1640 * Put back any unfreeable pages.
1642 while (!list_empty(page_list)) {
1643 struct page *page = lru_to_page(page_list);
1644 int lru;
1646 VM_BUG_ON_PAGE(PageLRU(page), page);
1647 list_del(&page->lru);
1648 if (unlikely(!page_evictable(page))) {
1649 spin_unlock_irq(&pgdat->lru_lock);
1650 putback_lru_page(page);
1651 spin_lock_irq(&pgdat->lru_lock);
1652 continue;
1655 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1657 SetPageLRU(page);
1658 lru = page_lru(page);
1659 add_page_to_lru_list(page, lruvec, lru);
1661 if (is_active_lru(lru)) {
1662 int file = is_file_lru(lru);
1663 int numpages = hpage_nr_pages(page);
1664 reclaim_stat->recent_rotated[file] += numpages;
1666 if (put_page_testzero(page)) {
1667 __ClearPageLRU(page);
1668 __ClearPageActive(page);
1669 del_page_from_lru_list(page, lruvec, lru);
1671 if (unlikely(PageCompound(page))) {
1672 spin_unlock_irq(&pgdat->lru_lock);
1673 mem_cgroup_uncharge(page);
1674 (*get_compound_page_dtor(page))(page);
1675 spin_lock_irq(&pgdat->lru_lock);
1676 } else
1677 list_add(&page->lru, &pages_to_free);
1682 * To save our caller's stack, now use input list for pages to free.
1684 list_splice(&pages_to_free, page_list);
1688 * If a kernel thread (such as nfsd for loop-back mounts) services
1689 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1690 * In that case we should only throttle if the backing device it is
1691 * writing to is congested. In other cases it is safe to throttle.
1693 static int current_may_throttle(void)
1695 return !(current->flags & PF_LESS_THROTTLE) ||
1696 current->backing_dev_info == NULL ||
1697 bdi_write_congested(current->backing_dev_info);
1701 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1702 * of reclaimed pages
1704 static noinline_for_stack unsigned long
1705 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1706 struct scan_control *sc, enum lru_list lru)
1708 LIST_HEAD(page_list);
1709 unsigned long nr_scanned;
1710 unsigned long nr_reclaimed = 0;
1711 unsigned long nr_taken;
1712 struct reclaim_stat stat = {};
1713 isolate_mode_t isolate_mode = 0;
1714 int file = is_file_lru(lru);
1715 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1716 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1718 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1719 congestion_wait(BLK_RW_ASYNC, HZ/10);
1721 /* We are about to die and free our memory. Return now. */
1722 if (fatal_signal_pending(current))
1723 return SWAP_CLUSTER_MAX;
1726 lru_add_drain();
1728 if (!sc->may_unmap)
1729 isolate_mode |= ISOLATE_UNMAPPED;
1731 spin_lock_irq(&pgdat->lru_lock);
1733 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1734 &nr_scanned, sc, isolate_mode, lru);
1736 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1737 reclaim_stat->recent_scanned[file] += nr_taken;
1739 if (global_reclaim(sc)) {
1740 if (current_is_kswapd())
1741 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1742 else
1743 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1745 spin_unlock_irq(&pgdat->lru_lock);
1747 if (nr_taken == 0)
1748 return 0;
1750 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1751 &stat, false);
1753 spin_lock_irq(&pgdat->lru_lock);
1755 if (global_reclaim(sc)) {
1756 if (current_is_kswapd())
1757 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1758 else
1759 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1762 putback_inactive_pages(lruvec, &page_list);
1764 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1766 spin_unlock_irq(&pgdat->lru_lock);
1768 mem_cgroup_uncharge_list(&page_list);
1769 free_hot_cold_page_list(&page_list, true);
1772 * If reclaim is isolating dirty pages under writeback, it implies
1773 * that the long-lived page allocation rate is exceeding the page
1774 * laundering rate. Either the global limits are not being effective
1775 * at throttling processes due to the page distribution throughout
1776 * zones or there is heavy usage of a slow backing device. The
1777 * only option is to throttle from reclaim context which is not ideal
1778 * as there is no guarantee the dirtying process is throttled in the
1779 * same way balance_dirty_pages() manages.
1781 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1782 * of pages under pages flagged for immediate reclaim and stall if any
1783 * are encountered in the nr_immediate check below.
1785 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1786 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1789 * Legacy memcg will stall in page writeback so avoid forcibly
1790 * stalling here.
1792 if (sane_reclaim(sc)) {
1794 * Tag a zone as congested if all the dirty pages scanned were
1795 * backed by a congested BDI and wait_iff_congested will stall.
1797 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1798 set_bit(PGDAT_CONGESTED, &pgdat->flags);
1801 * If dirty pages are scanned that are not queued for IO, it
1802 * implies that flushers are not doing their job. This can
1803 * happen when memory pressure pushes dirty pages to the end of
1804 * the LRU before the dirty limits are breached and the dirty
1805 * data has expired. It can also happen when the proportion of
1806 * dirty pages grows not through writes but through memory
1807 * pressure reclaiming all the clean cache. And in some cases,
1808 * the flushers simply cannot keep up with the allocation
1809 * rate. Nudge the flusher threads in case they are asleep, but
1810 * also allow kswapd to start writing pages during reclaim.
1812 if (stat.nr_unqueued_dirty == nr_taken) {
1813 wakeup_flusher_threads(0, WB_REASON_VMSCAN);
1814 set_bit(PGDAT_DIRTY, &pgdat->flags);
1818 * If kswapd scans pages marked marked for immediate
1819 * reclaim and under writeback (nr_immediate), it implies
1820 * that pages are cycling through the LRU faster than
1821 * they are written so also forcibly stall.
1823 if (stat.nr_immediate && current_may_throttle())
1824 congestion_wait(BLK_RW_ASYNC, HZ/10);
1828 * Stall direct reclaim for IO completions if underlying BDIs or zone
1829 * is congested. Allow kswapd to continue until it starts encountering
1830 * unqueued dirty pages or cycling through the LRU too quickly.
1832 if (!sc->hibernation_mode && !current_is_kswapd() &&
1833 current_may_throttle())
1834 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1836 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1837 nr_scanned, nr_reclaimed,
1838 stat.nr_dirty, stat.nr_writeback,
1839 stat.nr_congested, stat.nr_immediate,
1840 stat.nr_activate, stat.nr_ref_keep,
1841 stat.nr_unmap_fail,
1842 sc->priority, file);
1843 return nr_reclaimed;
1847 * This moves pages from the active list to the inactive list.
1849 * We move them the other way if the page is referenced by one or more
1850 * processes, from rmap.
1852 * If the pages are mostly unmapped, the processing is fast and it is
1853 * appropriate to hold zone_lru_lock across the whole operation. But if
1854 * the pages are mapped, the processing is slow (page_referenced()) so we
1855 * should drop zone_lru_lock around each page. It's impossible to balance
1856 * this, so instead we remove the pages from the LRU while processing them.
1857 * It is safe to rely on PG_active against the non-LRU pages in here because
1858 * nobody will play with that bit on a non-LRU page.
1860 * The downside is that we have to touch page->_refcount against each page.
1861 * But we had to alter page->flags anyway.
1863 * Returns the number of pages moved to the given lru.
1866 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1867 struct list_head *list,
1868 struct list_head *pages_to_free,
1869 enum lru_list lru)
1871 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1872 struct page *page;
1873 int nr_pages;
1874 int nr_moved = 0;
1876 while (!list_empty(list)) {
1877 page = lru_to_page(list);
1878 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1880 VM_BUG_ON_PAGE(PageLRU(page), page);
1881 SetPageLRU(page);
1883 nr_pages = hpage_nr_pages(page);
1884 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1885 list_move(&page->lru, &lruvec->lists[lru]);
1887 if (put_page_testzero(page)) {
1888 __ClearPageLRU(page);
1889 __ClearPageActive(page);
1890 del_page_from_lru_list(page, lruvec, lru);
1892 if (unlikely(PageCompound(page))) {
1893 spin_unlock_irq(&pgdat->lru_lock);
1894 mem_cgroup_uncharge(page);
1895 (*get_compound_page_dtor(page))(page);
1896 spin_lock_irq(&pgdat->lru_lock);
1897 } else
1898 list_add(&page->lru, pages_to_free);
1899 } else {
1900 nr_moved += nr_pages;
1904 if (!is_active_lru(lru))
1905 __count_vm_events(PGDEACTIVATE, nr_moved);
1907 return nr_moved;
1910 static void shrink_active_list(unsigned long nr_to_scan,
1911 struct lruvec *lruvec,
1912 struct scan_control *sc,
1913 enum lru_list lru)
1915 unsigned long nr_taken;
1916 unsigned long nr_scanned;
1917 unsigned long vm_flags;
1918 LIST_HEAD(l_hold); /* The pages which were snipped off */
1919 LIST_HEAD(l_active);
1920 LIST_HEAD(l_inactive);
1921 struct page *page;
1922 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1923 unsigned nr_deactivate, nr_activate;
1924 unsigned nr_rotated = 0;
1925 isolate_mode_t isolate_mode = 0;
1926 int file = is_file_lru(lru);
1927 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1929 lru_add_drain();
1931 if (!sc->may_unmap)
1932 isolate_mode |= ISOLATE_UNMAPPED;
1934 spin_lock_irq(&pgdat->lru_lock);
1936 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1937 &nr_scanned, sc, isolate_mode, lru);
1939 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1940 reclaim_stat->recent_scanned[file] += nr_taken;
1942 __count_vm_events(PGREFILL, nr_scanned);
1944 spin_unlock_irq(&pgdat->lru_lock);
1946 while (!list_empty(&l_hold)) {
1947 cond_resched();
1948 page = lru_to_page(&l_hold);
1949 list_del(&page->lru);
1951 if (unlikely(!page_evictable(page))) {
1952 putback_lru_page(page);
1953 continue;
1956 if (unlikely(buffer_heads_over_limit)) {
1957 if (page_has_private(page) && trylock_page(page)) {
1958 if (page_has_private(page))
1959 try_to_release_page(page, 0);
1960 unlock_page(page);
1964 if (page_referenced(page, 0, sc->target_mem_cgroup,
1965 &vm_flags)) {
1966 nr_rotated += hpage_nr_pages(page);
1968 * Identify referenced, file-backed active pages and
1969 * give them one more trip around the active list. So
1970 * that executable code get better chances to stay in
1971 * memory under moderate memory pressure. Anon pages
1972 * are not likely to be evicted by use-once streaming
1973 * IO, plus JVM can create lots of anon VM_EXEC pages,
1974 * so we ignore them here.
1976 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1977 list_add(&page->lru, &l_active);
1978 continue;
1982 ClearPageActive(page); /* we are de-activating */
1983 list_add(&page->lru, &l_inactive);
1987 * Move pages back to the lru list.
1989 spin_lock_irq(&pgdat->lru_lock);
1991 * Count referenced pages from currently used mappings as rotated,
1992 * even though only some of them are actually re-activated. This
1993 * helps balance scan pressure between file and anonymous pages in
1994 * get_scan_count.
1996 reclaim_stat->recent_rotated[file] += nr_rotated;
1998 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1999 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2000 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2001 spin_unlock_irq(&pgdat->lru_lock);
2003 mem_cgroup_uncharge_list(&l_hold);
2004 free_hot_cold_page_list(&l_hold, true);
2005 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2006 nr_deactivate, nr_rotated, sc->priority, file);
2010 * The inactive anon list should be small enough that the VM never has
2011 * to do too much work.
2013 * The inactive file list should be small enough to leave most memory
2014 * to the established workingset on the scan-resistant active list,
2015 * but large enough to avoid thrashing the aggregate readahead window.
2017 * Both inactive lists should also be large enough that each inactive
2018 * page has a chance to be referenced again before it is reclaimed.
2020 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2021 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2022 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2024 * total target max
2025 * memory ratio inactive
2026 * -------------------------------------
2027 * 10MB 1 5MB
2028 * 100MB 1 50MB
2029 * 1GB 3 250MB
2030 * 10GB 10 0.9GB
2031 * 100GB 31 3GB
2032 * 1TB 101 10GB
2033 * 10TB 320 32GB
2035 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2036 struct scan_control *sc, bool trace)
2038 unsigned long inactive_ratio;
2039 unsigned long inactive, active;
2040 enum lru_list inactive_lru = file * LRU_FILE;
2041 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2042 unsigned long gb;
2045 * If we don't have swap space, anonymous page deactivation
2046 * is pointless.
2048 if (!file && !total_swap_pages)
2049 return false;
2051 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2052 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2054 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2055 if (gb)
2056 inactive_ratio = int_sqrt(10 * gb);
2057 else
2058 inactive_ratio = 1;
2060 if (trace)
2061 trace_mm_vmscan_inactive_list_is_low(lruvec_pgdat(lruvec)->node_id,
2062 sc->reclaim_idx,
2063 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2064 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2065 inactive_ratio, file);
2067 return inactive * inactive_ratio < active;
2070 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2071 struct lruvec *lruvec, struct scan_control *sc)
2073 if (is_active_lru(lru)) {
2074 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2075 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2076 return 0;
2079 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2082 enum scan_balance {
2083 SCAN_EQUAL,
2084 SCAN_FRACT,
2085 SCAN_ANON,
2086 SCAN_FILE,
2090 * Determine how aggressively the anon and file LRU lists should be
2091 * scanned. The relative value of each set of LRU lists is determined
2092 * by looking at the fraction of the pages scanned we did rotate back
2093 * onto the active list instead of evict.
2095 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2096 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2098 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2099 struct scan_control *sc, unsigned long *nr,
2100 unsigned long *lru_pages)
2102 int swappiness = mem_cgroup_swappiness(memcg);
2103 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2104 u64 fraction[2];
2105 u64 denominator = 0; /* gcc */
2106 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2107 unsigned long anon_prio, file_prio;
2108 enum scan_balance scan_balance;
2109 unsigned long anon, file;
2110 unsigned long ap, fp;
2111 enum lru_list lru;
2113 /* If we have no swap space, do not bother scanning anon pages. */
2114 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2115 scan_balance = SCAN_FILE;
2116 goto out;
2120 * Global reclaim will swap to prevent OOM even with no
2121 * swappiness, but memcg users want to use this knob to
2122 * disable swapping for individual groups completely when
2123 * using the memory controller's swap limit feature would be
2124 * too expensive.
2126 if (!global_reclaim(sc) && !swappiness) {
2127 scan_balance = SCAN_FILE;
2128 goto out;
2132 * Do not apply any pressure balancing cleverness when the
2133 * system is close to OOM, scan both anon and file equally
2134 * (unless the swappiness setting disagrees with swapping).
2136 if (!sc->priority && swappiness) {
2137 scan_balance = SCAN_EQUAL;
2138 goto out;
2142 * Prevent the reclaimer from falling into the cache trap: as
2143 * cache pages start out inactive, every cache fault will tip
2144 * the scan balance towards the file LRU. And as the file LRU
2145 * shrinks, so does the window for rotation from references.
2146 * This means we have a runaway feedback loop where a tiny
2147 * thrashing file LRU becomes infinitely more attractive than
2148 * anon pages. Try to detect this based on file LRU size.
2150 if (global_reclaim(sc)) {
2151 unsigned long pgdatfile;
2152 unsigned long pgdatfree;
2153 int z;
2154 unsigned long total_high_wmark = 0;
2156 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2157 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2158 node_page_state(pgdat, NR_INACTIVE_FILE);
2160 for (z = 0; z < MAX_NR_ZONES; z++) {
2161 struct zone *zone = &pgdat->node_zones[z];
2162 if (!managed_zone(zone))
2163 continue;
2165 total_high_wmark += high_wmark_pages(zone);
2168 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2169 scan_balance = SCAN_ANON;
2170 goto out;
2175 * If there is enough inactive page cache, i.e. if the size of the
2176 * inactive list is greater than that of the active list *and* the
2177 * inactive list actually has some pages to scan on this priority, we
2178 * do not reclaim anything from the anonymous working set right now.
2179 * Without the second condition we could end up never scanning an
2180 * lruvec even if it has plenty of old anonymous pages unless the
2181 * system is under heavy pressure.
2183 if (!inactive_list_is_low(lruvec, true, sc, false) &&
2184 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2185 scan_balance = SCAN_FILE;
2186 goto out;
2189 scan_balance = SCAN_FRACT;
2192 * With swappiness at 100, anonymous and file have the same priority.
2193 * This scanning priority is essentially the inverse of IO cost.
2195 anon_prio = swappiness;
2196 file_prio = 200 - anon_prio;
2199 * OK, so we have swap space and a fair amount of page cache
2200 * pages. We use the recently rotated / recently scanned
2201 * ratios to determine how valuable each cache is.
2203 * Because workloads change over time (and to avoid overflow)
2204 * we keep these statistics as a floating average, which ends
2205 * up weighing recent references more than old ones.
2207 * anon in [0], file in [1]
2210 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2211 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2212 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2213 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2215 spin_lock_irq(&pgdat->lru_lock);
2216 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2217 reclaim_stat->recent_scanned[0] /= 2;
2218 reclaim_stat->recent_rotated[0] /= 2;
2221 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2222 reclaim_stat->recent_scanned[1] /= 2;
2223 reclaim_stat->recent_rotated[1] /= 2;
2227 * The amount of pressure on anon vs file pages is inversely
2228 * proportional to the fraction of recently scanned pages on
2229 * each list that were recently referenced and in active use.
2231 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2232 ap /= reclaim_stat->recent_rotated[0] + 1;
2234 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2235 fp /= reclaim_stat->recent_rotated[1] + 1;
2236 spin_unlock_irq(&pgdat->lru_lock);
2238 fraction[0] = ap;
2239 fraction[1] = fp;
2240 denominator = ap + fp + 1;
2241 out:
2242 *lru_pages = 0;
2243 for_each_evictable_lru(lru) {
2244 int file = is_file_lru(lru);
2245 unsigned long size;
2246 unsigned long scan;
2248 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2249 scan = size >> sc->priority;
2251 * If the cgroup's already been deleted, make sure to
2252 * scrape out the remaining cache.
2254 if (!scan && !mem_cgroup_online(memcg))
2255 scan = min(size, SWAP_CLUSTER_MAX);
2257 switch (scan_balance) {
2258 case SCAN_EQUAL:
2259 /* Scan lists relative to size */
2260 break;
2261 case SCAN_FRACT:
2263 * Scan types proportional to swappiness and
2264 * their relative recent reclaim efficiency.
2266 scan = div64_u64(scan * fraction[file],
2267 denominator);
2268 break;
2269 case SCAN_FILE:
2270 case SCAN_ANON:
2271 /* Scan one type exclusively */
2272 if ((scan_balance == SCAN_FILE) != file) {
2273 size = 0;
2274 scan = 0;
2276 break;
2277 default:
2278 /* Look ma, no brain */
2279 BUG();
2282 *lru_pages += size;
2283 nr[lru] = scan;
2288 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2290 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2291 struct scan_control *sc, unsigned long *lru_pages)
2293 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2294 unsigned long nr[NR_LRU_LISTS];
2295 unsigned long targets[NR_LRU_LISTS];
2296 unsigned long nr_to_scan;
2297 enum lru_list lru;
2298 unsigned long nr_reclaimed = 0;
2299 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2300 struct blk_plug plug;
2301 bool scan_adjusted;
2303 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2305 /* Record the original scan target for proportional adjustments later */
2306 memcpy(targets, nr, sizeof(nr));
2309 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2310 * event that can occur when there is little memory pressure e.g.
2311 * multiple streaming readers/writers. Hence, we do not abort scanning
2312 * when the requested number of pages are reclaimed when scanning at
2313 * DEF_PRIORITY on the assumption that the fact we are direct
2314 * reclaiming implies that kswapd is not keeping up and it is best to
2315 * do a batch of work at once. For memcg reclaim one check is made to
2316 * abort proportional reclaim if either the file or anon lru has already
2317 * dropped to zero at the first pass.
2319 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2320 sc->priority == DEF_PRIORITY);
2322 blk_start_plug(&plug);
2323 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2324 nr[LRU_INACTIVE_FILE]) {
2325 unsigned long nr_anon, nr_file, percentage;
2326 unsigned long nr_scanned;
2328 for_each_evictable_lru(lru) {
2329 if (nr[lru]) {
2330 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2331 nr[lru] -= nr_to_scan;
2333 nr_reclaimed += shrink_list(lru, nr_to_scan,
2334 lruvec, sc);
2338 cond_resched();
2340 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2341 continue;
2344 * For kswapd and memcg, reclaim at least the number of pages
2345 * requested. Ensure that the anon and file LRUs are scanned
2346 * proportionally what was requested by get_scan_count(). We
2347 * stop reclaiming one LRU and reduce the amount scanning
2348 * proportional to the original scan target.
2350 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2351 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2354 * It's just vindictive to attack the larger once the smaller
2355 * has gone to zero. And given the way we stop scanning the
2356 * smaller below, this makes sure that we only make one nudge
2357 * towards proportionality once we've got nr_to_reclaim.
2359 if (!nr_file || !nr_anon)
2360 break;
2362 if (nr_file > nr_anon) {
2363 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2364 targets[LRU_ACTIVE_ANON] + 1;
2365 lru = LRU_BASE;
2366 percentage = nr_anon * 100 / scan_target;
2367 } else {
2368 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2369 targets[LRU_ACTIVE_FILE] + 1;
2370 lru = LRU_FILE;
2371 percentage = nr_file * 100 / scan_target;
2374 /* Stop scanning the smaller of the LRU */
2375 nr[lru] = 0;
2376 nr[lru + LRU_ACTIVE] = 0;
2379 * Recalculate the other LRU scan count based on its original
2380 * scan target and the percentage scanning already complete
2382 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2383 nr_scanned = targets[lru] - nr[lru];
2384 nr[lru] = targets[lru] * (100 - percentage) / 100;
2385 nr[lru] -= min(nr[lru], nr_scanned);
2387 lru += LRU_ACTIVE;
2388 nr_scanned = targets[lru] - nr[lru];
2389 nr[lru] = targets[lru] * (100 - percentage) / 100;
2390 nr[lru] -= min(nr[lru], nr_scanned);
2392 scan_adjusted = true;
2394 blk_finish_plug(&plug);
2395 sc->nr_reclaimed += nr_reclaimed;
2398 * Even if we did not try to evict anon pages at all, we want to
2399 * rebalance the anon lru active/inactive ratio.
2401 if (inactive_list_is_low(lruvec, false, sc, true))
2402 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2403 sc, LRU_ACTIVE_ANON);
2406 /* Use reclaim/compaction for costly allocs or under memory pressure */
2407 static bool in_reclaim_compaction(struct scan_control *sc)
2409 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2410 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2411 sc->priority < DEF_PRIORITY - 2))
2412 return true;
2414 return false;
2418 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2419 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2420 * true if more pages should be reclaimed such that when the page allocator
2421 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2422 * It will give up earlier than that if there is difficulty reclaiming pages.
2424 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2425 unsigned long nr_reclaimed,
2426 unsigned long nr_scanned,
2427 struct scan_control *sc)
2429 unsigned long pages_for_compaction;
2430 unsigned long inactive_lru_pages;
2431 int z;
2433 /* If not in reclaim/compaction mode, stop */
2434 if (!in_reclaim_compaction(sc))
2435 return false;
2437 /* Consider stopping depending on scan and reclaim activity */
2438 if (sc->gfp_mask & __GFP_REPEAT) {
2440 * For __GFP_REPEAT allocations, stop reclaiming if the
2441 * full LRU list has been scanned and we are still failing
2442 * to reclaim pages. This full LRU scan is potentially
2443 * expensive but a __GFP_REPEAT caller really wants to succeed
2445 if (!nr_reclaimed && !nr_scanned)
2446 return false;
2447 } else {
2449 * For non-__GFP_REPEAT allocations which can presumably
2450 * fail without consequence, stop if we failed to reclaim
2451 * any pages from the last SWAP_CLUSTER_MAX number of
2452 * pages that were scanned. This will return to the
2453 * caller faster at the risk reclaim/compaction and
2454 * the resulting allocation attempt fails
2456 if (!nr_reclaimed)
2457 return false;
2461 * If we have not reclaimed enough pages for compaction and the
2462 * inactive lists are large enough, continue reclaiming
2464 pages_for_compaction = compact_gap(sc->order);
2465 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2466 if (get_nr_swap_pages() > 0)
2467 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2468 if (sc->nr_reclaimed < pages_for_compaction &&
2469 inactive_lru_pages > pages_for_compaction)
2470 return true;
2472 /* If compaction would go ahead or the allocation would succeed, stop */
2473 for (z = 0; z <= sc->reclaim_idx; z++) {
2474 struct zone *zone = &pgdat->node_zones[z];
2475 if (!managed_zone(zone))
2476 continue;
2478 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2479 case COMPACT_SUCCESS:
2480 case COMPACT_CONTINUE:
2481 return false;
2482 default:
2483 /* check next zone */
2487 return true;
2490 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2492 struct reclaim_state *reclaim_state = current->reclaim_state;
2493 unsigned long nr_reclaimed, nr_scanned;
2494 bool reclaimable = false;
2496 do {
2497 struct mem_cgroup *root = sc->target_mem_cgroup;
2498 struct mem_cgroup_reclaim_cookie reclaim = {
2499 .pgdat = pgdat,
2500 .priority = sc->priority,
2502 unsigned long node_lru_pages = 0;
2503 struct mem_cgroup *memcg;
2505 nr_reclaimed = sc->nr_reclaimed;
2506 nr_scanned = sc->nr_scanned;
2508 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2509 do {
2510 unsigned long lru_pages;
2511 unsigned long reclaimed;
2512 unsigned long scanned;
2514 if (mem_cgroup_low(root, memcg)) {
2515 if (!sc->may_thrash)
2516 continue;
2517 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2520 reclaimed = sc->nr_reclaimed;
2521 scanned = sc->nr_scanned;
2523 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2524 node_lru_pages += lru_pages;
2526 if (memcg)
2527 shrink_slab(sc->gfp_mask, pgdat->node_id,
2528 memcg, sc->nr_scanned - scanned,
2529 lru_pages);
2531 /* Record the group's reclaim efficiency */
2532 vmpressure(sc->gfp_mask, memcg, false,
2533 sc->nr_scanned - scanned,
2534 sc->nr_reclaimed - reclaimed);
2537 * Direct reclaim and kswapd have to scan all memory
2538 * cgroups to fulfill the overall scan target for the
2539 * node.
2541 * Limit reclaim, on the other hand, only cares about
2542 * nr_to_reclaim pages to be reclaimed and it will
2543 * retry with decreasing priority if one round over the
2544 * whole hierarchy is not sufficient.
2546 if (!global_reclaim(sc) &&
2547 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2548 mem_cgroup_iter_break(root, memcg);
2549 break;
2551 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2554 * Shrink the slab caches in the same proportion that
2555 * the eligible LRU pages were scanned.
2557 if (global_reclaim(sc))
2558 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2559 sc->nr_scanned - nr_scanned,
2560 node_lru_pages);
2562 if (reclaim_state) {
2563 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2564 reclaim_state->reclaimed_slab = 0;
2567 /* Record the subtree's reclaim efficiency */
2568 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2569 sc->nr_scanned - nr_scanned,
2570 sc->nr_reclaimed - nr_reclaimed);
2572 if (sc->nr_reclaimed - nr_reclaimed)
2573 reclaimable = true;
2575 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2576 sc->nr_scanned - nr_scanned, sc));
2579 * Kswapd gives up on balancing particular nodes after too
2580 * many failures to reclaim anything from them and goes to
2581 * sleep. On reclaim progress, reset the failure counter. A
2582 * successful direct reclaim run will revive a dormant kswapd.
2584 if (reclaimable)
2585 pgdat->kswapd_failures = 0;
2587 return reclaimable;
2591 * Returns true if compaction should go ahead for a costly-order request, or
2592 * the allocation would already succeed without compaction. Return false if we
2593 * should reclaim first.
2595 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2597 unsigned long watermark;
2598 enum compact_result suitable;
2600 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2601 if (suitable == COMPACT_SUCCESS)
2602 /* Allocation should succeed already. Don't reclaim. */
2603 return true;
2604 if (suitable == COMPACT_SKIPPED)
2605 /* Compaction cannot yet proceed. Do reclaim. */
2606 return false;
2609 * Compaction is already possible, but it takes time to run and there
2610 * are potentially other callers using the pages just freed. So proceed
2611 * with reclaim to make a buffer of free pages available to give
2612 * compaction a reasonable chance of completing and allocating the page.
2613 * Note that we won't actually reclaim the whole buffer in one attempt
2614 * as the target watermark in should_continue_reclaim() is lower. But if
2615 * we are already above the high+gap watermark, don't reclaim at all.
2617 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2619 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2623 * This is the direct reclaim path, for page-allocating processes. We only
2624 * try to reclaim pages from zones which will satisfy the caller's allocation
2625 * request.
2627 * If a zone is deemed to be full of pinned pages then just give it a light
2628 * scan then give up on it.
2630 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2632 struct zoneref *z;
2633 struct zone *zone;
2634 unsigned long nr_soft_reclaimed;
2635 unsigned long nr_soft_scanned;
2636 gfp_t orig_mask;
2637 pg_data_t *last_pgdat = NULL;
2640 * If the number of buffer_heads in the machine exceeds the maximum
2641 * allowed level, force direct reclaim to scan the highmem zone as
2642 * highmem pages could be pinning lowmem pages storing buffer_heads
2644 orig_mask = sc->gfp_mask;
2645 if (buffer_heads_over_limit) {
2646 sc->gfp_mask |= __GFP_HIGHMEM;
2647 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2650 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2651 sc->reclaim_idx, sc->nodemask) {
2653 * Take care memory controller reclaiming has small influence
2654 * to global LRU.
2656 if (global_reclaim(sc)) {
2657 if (!cpuset_zone_allowed(zone,
2658 GFP_KERNEL | __GFP_HARDWALL))
2659 continue;
2662 * If we already have plenty of memory free for
2663 * compaction in this zone, don't free any more.
2664 * Even though compaction is invoked for any
2665 * non-zero order, only frequent costly order
2666 * reclamation is disruptive enough to become a
2667 * noticeable problem, like transparent huge
2668 * page allocations.
2670 if (IS_ENABLED(CONFIG_COMPACTION) &&
2671 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2672 compaction_ready(zone, sc)) {
2673 sc->compaction_ready = true;
2674 continue;
2678 * Shrink each node in the zonelist once. If the
2679 * zonelist is ordered by zone (not the default) then a
2680 * node may be shrunk multiple times but in that case
2681 * the user prefers lower zones being preserved.
2683 if (zone->zone_pgdat == last_pgdat)
2684 continue;
2687 * This steals pages from memory cgroups over softlimit
2688 * and returns the number of reclaimed pages and
2689 * scanned pages. This works for global memory pressure
2690 * and balancing, not for a memcg's limit.
2692 nr_soft_scanned = 0;
2693 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2694 sc->order, sc->gfp_mask,
2695 &nr_soft_scanned);
2696 sc->nr_reclaimed += nr_soft_reclaimed;
2697 sc->nr_scanned += nr_soft_scanned;
2698 /* need some check for avoid more shrink_zone() */
2701 /* See comment about same check for global reclaim above */
2702 if (zone->zone_pgdat == last_pgdat)
2703 continue;
2704 last_pgdat = zone->zone_pgdat;
2705 shrink_node(zone->zone_pgdat, sc);
2709 * Restore to original mask to avoid the impact on the caller if we
2710 * promoted it to __GFP_HIGHMEM.
2712 sc->gfp_mask = orig_mask;
2716 * This is the main entry point to direct page reclaim.
2718 * If a full scan of the inactive list fails to free enough memory then we
2719 * are "out of memory" and something needs to be killed.
2721 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2722 * high - the zone may be full of dirty or under-writeback pages, which this
2723 * caller can't do much about. We kick the writeback threads and take explicit
2724 * naps in the hope that some of these pages can be written. But if the
2725 * allocating task holds filesystem locks which prevent writeout this might not
2726 * work, and the allocation attempt will fail.
2728 * returns: 0, if no pages reclaimed
2729 * else, the number of pages reclaimed
2731 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2732 struct scan_control *sc)
2734 int initial_priority = sc->priority;
2735 retry:
2736 delayacct_freepages_start();
2738 if (global_reclaim(sc))
2739 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2741 do {
2742 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2743 sc->priority);
2744 sc->nr_scanned = 0;
2745 shrink_zones(zonelist, sc);
2747 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2748 break;
2750 if (sc->compaction_ready)
2751 break;
2754 * If we're getting trouble reclaiming, start doing
2755 * writepage even in laptop mode.
2757 if (sc->priority < DEF_PRIORITY - 2)
2758 sc->may_writepage = 1;
2759 } while (--sc->priority >= 0);
2761 delayacct_freepages_end();
2763 if (sc->nr_reclaimed)
2764 return sc->nr_reclaimed;
2766 /* Aborted reclaim to try compaction? don't OOM, then */
2767 if (sc->compaction_ready)
2768 return 1;
2770 /* Untapped cgroup reserves? Don't OOM, retry. */
2771 if (!sc->may_thrash) {
2772 sc->priority = initial_priority;
2773 sc->may_thrash = 1;
2774 goto retry;
2777 return 0;
2780 static bool allow_direct_reclaim(pg_data_t *pgdat)
2782 struct zone *zone;
2783 unsigned long pfmemalloc_reserve = 0;
2784 unsigned long free_pages = 0;
2785 int i;
2786 bool wmark_ok;
2788 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2789 return true;
2791 for (i = 0; i <= ZONE_NORMAL; i++) {
2792 zone = &pgdat->node_zones[i];
2793 if (!managed_zone(zone))
2794 continue;
2796 if (!zone_reclaimable_pages(zone))
2797 continue;
2799 pfmemalloc_reserve += min_wmark_pages(zone);
2800 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2803 /* If there are no reserves (unexpected config) then do not throttle */
2804 if (!pfmemalloc_reserve)
2805 return true;
2807 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2809 /* kswapd must be awake if processes are being throttled */
2810 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2811 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2812 (enum zone_type)ZONE_NORMAL);
2813 wake_up_interruptible(&pgdat->kswapd_wait);
2816 return wmark_ok;
2820 * Throttle direct reclaimers if backing storage is backed by the network
2821 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2822 * depleted. kswapd will continue to make progress and wake the processes
2823 * when the low watermark is reached.
2825 * Returns true if a fatal signal was delivered during throttling. If this
2826 * happens, the page allocator should not consider triggering the OOM killer.
2828 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2829 nodemask_t *nodemask)
2831 struct zoneref *z;
2832 struct zone *zone;
2833 pg_data_t *pgdat = NULL;
2836 * Kernel threads should not be throttled as they may be indirectly
2837 * responsible for cleaning pages necessary for reclaim to make forward
2838 * progress. kjournald for example may enter direct reclaim while
2839 * committing a transaction where throttling it could forcing other
2840 * processes to block on log_wait_commit().
2842 if (current->flags & PF_KTHREAD)
2843 goto out;
2846 * If a fatal signal is pending, this process should not throttle.
2847 * It should return quickly so it can exit and free its memory
2849 if (fatal_signal_pending(current))
2850 goto out;
2853 * Check if the pfmemalloc reserves are ok by finding the first node
2854 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2855 * GFP_KERNEL will be required for allocating network buffers when
2856 * swapping over the network so ZONE_HIGHMEM is unusable.
2858 * Throttling is based on the first usable node and throttled processes
2859 * wait on a queue until kswapd makes progress and wakes them. There
2860 * is an affinity then between processes waking up and where reclaim
2861 * progress has been made assuming the process wakes on the same node.
2862 * More importantly, processes running on remote nodes will not compete
2863 * for remote pfmemalloc reserves and processes on different nodes
2864 * should make reasonable progress.
2866 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2867 gfp_zone(gfp_mask), nodemask) {
2868 if (zone_idx(zone) > ZONE_NORMAL)
2869 continue;
2871 /* Throttle based on the first usable node */
2872 pgdat = zone->zone_pgdat;
2873 if (allow_direct_reclaim(pgdat))
2874 goto out;
2875 break;
2878 /* If no zone was usable by the allocation flags then do not throttle */
2879 if (!pgdat)
2880 goto out;
2882 /* Account for the throttling */
2883 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2886 * If the caller cannot enter the filesystem, it's possible that it
2887 * is due to the caller holding an FS lock or performing a journal
2888 * transaction in the case of a filesystem like ext[3|4]. In this case,
2889 * it is not safe to block on pfmemalloc_wait as kswapd could be
2890 * blocked waiting on the same lock. Instead, throttle for up to a
2891 * second before continuing.
2893 if (!(gfp_mask & __GFP_FS)) {
2894 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2895 allow_direct_reclaim(pgdat), HZ);
2897 goto check_pending;
2900 /* Throttle until kswapd wakes the process */
2901 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2902 allow_direct_reclaim(pgdat));
2904 check_pending:
2905 if (fatal_signal_pending(current))
2906 return true;
2908 out:
2909 return false;
2912 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2913 gfp_t gfp_mask, nodemask_t *nodemask)
2915 unsigned long nr_reclaimed;
2916 struct scan_control sc = {
2917 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2918 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2919 .reclaim_idx = gfp_zone(gfp_mask),
2920 .order = order,
2921 .nodemask = nodemask,
2922 .priority = DEF_PRIORITY,
2923 .may_writepage = !laptop_mode,
2924 .may_unmap = 1,
2925 .may_swap = 1,
2929 * Do not enter reclaim if fatal signal was delivered while throttled.
2930 * 1 is returned so that the page allocator does not OOM kill at this
2931 * point.
2933 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2934 return 1;
2936 trace_mm_vmscan_direct_reclaim_begin(order,
2937 sc.may_writepage,
2938 gfp_mask,
2939 sc.reclaim_idx);
2941 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2943 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2945 return nr_reclaimed;
2948 #ifdef CONFIG_MEMCG
2950 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
2951 gfp_t gfp_mask, bool noswap,
2952 pg_data_t *pgdat,
2953 unsigned long *nr_scanned)
2955 struct scan_control sc = {
2956 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2957 .target_mem_cgroup = memcg,
2958 .may_writepage = !laptop_mode,
2959 .may_unmap = 1,
2960 .reclaim_idx = MAX_NR_ZONES - 1,
2961 .may_swap = !noswap,
2963 unsigned long lru_pages;
2965 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2966 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2968 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2969 sc.may_writepage,
2970 sc.gfp_mask,
2971 sc.reclaim_idx);
2974 * NOTE: Although we can get the priority field, using it
2975 * here is not a good idea, since it limits the pages we can scan.
2976 * if we don't reclaim here, the shrink_node from balance_pgdat
2977 * will pick up pages from other mem cgroup's as well. We hack
2978 * the priority and make it zero.
2980 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
2982 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2984 *nr_scanned = sc.nr_scanned;
2985 return sc.nr_reclaimed;
2988 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2989 unsigned long nr_pages,
2990 gfp_t gfp_mask,
2991 bool may_swap)
2993 struct zonelist *zonelist;
2994 unsigned long nr_reclaimed;
2995 int nid;
2996 struct scan_control sc = {
2997 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2998 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2999 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3000 .reclaim_idx = MAX_NR_ZONES - 1,
3001 .target_mem_cgroup = memcg,
3002 .priority = DEF_PRIORITY,
3003 .may_writepage = !laptop_mode,
3004 .may_unmap = 1,
3005 .may_swap = may_swap,
3009 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3010 * take care of from where we get pages. So the node where we start the
3011 * scan does not need to be the current node.
3013 nid = mem_cgroup_select_victim_node(memcg);
3015 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3017 trace_mm_vmscan_memcg_reclaim_begin(0,
3018 sc.may_writepage,
3019 sc.gfp_mask,
3020 sc.reclaim_idx);
3022 current->flags |= PF_MEMALLOC;
3023 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3024 current->flags &= ~PF_MEMALLOC;
3026 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3028 return nr_reclaimed;
3030 #endif
3032 static void age_active_anon(struct pglist_data *pgdat,
3033 struct scan_control *sc)
3035 struct mem_cgroup *memcg;
3037 if (!total_swap_pages)
3038 return;
3040 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3041 do {
3042 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3044 if (inactive_list_is_low(lruvec, false, sc, true))
3045 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3046 sc, LRU_ACTIVE_ANON);
3048 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3049 } while (memcg);
3052 static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
3054 unsigned long mark = high_wmark_pages(zone);
3056 if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3057 return false;
3060 * If any eligible zone is balanced then the node is not considered
3061 * to be congested or dirty
3063 clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
3064 clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
3065 clear_bit(PGDAT_WRITEBACK, &zone->zone_pgdat->flags);
3067 return true;
3071 * Prepare kswapd for sleeping. This verifies that there are no processes
3072 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3074 * Returns true if kswapd is ready to sleep
3076 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3078 int i;
3081 * The throttled processes are normally woken up in balance_pgdat() as
3082 * soon as allow_direct_reclaim() is true. But there is a potential
3083 * race between when kswapd checks the watermarks and a process gets
3084 * throttled. There is also a potential race if processes get
3085 * throttled, kswapd wakes, a large process exits thereby balancing the
3086 * zones, which causes kswapd to exit balance_pgdat() before reaching
3087 * the wake up checks. If kswapd is going to sleep, no process should
3088 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3089 * the wake up is premature, processes will wake kswapd and get
3090 * throttled again. The difference from wake ups in balance_pgdat() is
3091 * that here we are under prepare_to_wait().
3093 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3094 wake_up_all(&pgdat->pfmemalloc_wait);
3096 /* Hopeless node, leave it to direct reclaim */
3097 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3098 return true;
3100 for (i = 0; i <= classzone_idx; i++) {
3101 struct zone *zone = pgdat->node_zones + i;
3103 if (!managed_zone(zone))
3104 continue;
3106 if (!zone_balanced(zone, order, classzone_idx))
3107 return false;
3110 return true;
3114 * kswapd shrinks a node of pages that are at or below the highest usable
3115 * zone that is currently unbalanced.
3117 * Returns true if kswapd scanned at least the requested number of pages to
3118 * reclaim or if the lack of progress was due to pages under writeback.
3119 * This is used to determine if the scanning priority needs to be raised.
3121 static bool kswapd_shrink_node(pg_data_t *pgdat,
3122 struct scan_control *sc)
3124 struct zone *zone;
3125 int z;
3127 /* Reclaim a number of pages proportional to the number of zones */
3128 sc->nr_to_reclaim = 0;
3129 for (z = 0; z <= sc->reclaim_idx; z++) {
3130 zone = pgdat->node_zones + z;
3131 if (!managed_zone(zone))
3132 continue;
3134 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3138 * Historically care was taken to put equal pressure on all zones but
3139 * now pressure is applied based on node LRU order.
3141 shrink_node(pgdat, sc);
3144 * Fragmentation may mean that the system cannot be rebalanced for
3145 * high-order allocations. If twice the allocation size has been
3146 * reclaimed then recheck watermarks only at order-0 to prevent
3147 * excessive reclaim. Assume that a process requested a high-order
3148 * can direct reclaim/compact.
3150 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3151 sc->order = 0;
3153 return sc->nr_scanned >= sc->nr_to_reclaim;
3157 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3158 * that are eligible for use by the caller until at least one zone is
3159 * balanced.
3161 * Returns the order kswapd finished reclaiming at.
3163 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3164 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3165 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3166 * or lower is eligible for reclaim until at least one usable zone is
3167 * balanced.
3169 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3171 int i;
3172 unsigned long nr_soft_reclaimed;
3173 unsigned long nr_soft_scanned;
3174 struct zone *zone;
3175 struct scan_control sc = {
3176 .gfp_mask = GFP_KERNEL,
3177 .order = order,
3178 .priority = DEF_PRIORITY,
3179 .may_writepage = !laptop_mode,
3180 .may_unmap = 1,
3181 .may_swap = 1,
3183 count_vm_event(PAGEOUTRUN);
3185 do {
3186 unsigned long nr_reclaimed = sc.nr_reclaimed;
3187 bool raise_priority = true;
3189 sc.reclaim_idx = classzone_idx;
3192 * If the number of buffer_heads exceeds the maximum allowed
3193 * then consider reclaiming from all zones. This has a dual
3194 * purpose -- on 64-bit systems it is expected that
3195 * buffer_heads are stripped during active rotation. On 32-bit
3196 * systems, highmem pages can pin lowmem memory and shrinking
3197 * buffers can relieve lowmem pressure. Reclaim may still not
3198 * go ahead if all eligible zones for the original allocation
3199 * request are balanced to avoid excessive reclaim from kswapd.
3201 if (buffer_heads_over_limit) {
3202 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3203 zone = pgdat->node_zones + i;
3204 if (!managed_zone(zone))
3205 continue;
3207 sc.reclaim_idx = i;
3208 break;
3213 * Only reclaim if there are no eligible zones. Check from
3214 * high to low zone as allocations prefer higher zones.
3215 * Scanning from low to high zone would allow congestion to be
3216 * cleared during a very small window when a small low
3217 * zone was balanced even under extreme pressure when the
3218 * overall node may be congested. Note that sc.reclaim_idx
3219 * is not used as buffer_heads_over_limit may have adjusted
3220 * it.
3222 for (i = classzone_idx; i >= 0; i--) {
3223 zone = pgdat->node_zones + i;
3224 if (!managed_zone(zone))
3225 continue;
3227 if (zone_balanced(zone, sc.order, classzone_idx))
3228 goto out;
3232 * Do some background aging of the anon list, to give
3233 * pages a chance to be referenced before reclaiming. All
3234 * pages are rotated regardless of classzone as this is
3235 * about consistent aging.
3237 age_active_anon(pgdat, &sc);
3240 * If we're getting trouble reclaiming, start doing writepage
3241 * even in laptop mode.
3243 if (sc.priority < DEF_PRIORITY - 2)
3244 sc.may_writepage = 1;
3246 /* Call soft limit reclaim before calling shrink_node. */
3247 sc.nr_scanned = 0;
3248 nr_soft_scanned = 0;
3249 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3250 sc.gfp_mask, &nr_soft_scanned);
3251 sc.nr_reclaimed += nr_soft_reclaimed;
3254 * There should be no need to raise the scanning priority if
3255 * enough pages are already being scanned that that high
3256 * watermark would be met at 100% efficiency.
3258 if (kswapd_shrink_node(pgdat, &sc))
3259 raise_priority = false;
3262 * If the low watermark is met there is no need for processes
3263 * to be throttled on pfmemalloc_wait as they should not be
3264 * able to safely make forward progress. Wake them
3266 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3267 allow_direct_reclaim(pgdat))
3268 wake_up_all(&pgdat->pfmemalloc_wait);
3270 /* Check if kswapd should be suspending */
3271 if (try_to_freeze() || kthread_should_stop())
3272 break;
3275 * Raise priority if scanning rate is too low or there was no
3276 * progress in reclaiming pages
3278 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3279 if (raise_priority || !nr_reclaimed)
3280 sc.priority--;
3281 } while (sc.priority >= 1);
3283 if (!sc.nr_reclaimed)
3284 pgdat->kswapd_failures++;
3286 out:
3288 * Return the order kswapd stopped reclaiming at as
3289 * prepare_kswapd_sleep() takes it into account. If another caller
3290 * entered the allocator slow path while kswapd was awake, order will
3291 * remain at the higher level.
3293 return sc.order;
3296 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3297 unsigned int classzone_idx)
3299 long remaining = 0;
3300 DEFINE_WAIT(wait);
3302 if (freezing(current) || kthread_should_stop())
3303 return;
3305 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3307 /* Try to sleep for a short interval */
3308 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3310 * Compaction records what page blocks it recently failed to
3311 * isolate pages from and skips them in the future scanning.
3312 * When kswapd is going to sleep, it is reasonable to assume
3313 * that pages and compaction may succeed so reset the cache.
3315 reset_isolation_suitable(pgdat);
3318 * We have freed the memory, now we should compact it to make
3319 * allocation of the requested order possible.
3321 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3323 remaining = schedule_timeout(HZ/10);
3326 * If woken prematurely then reset kswapd_classzone_idx and
3327 * order. The values will either be from a wakeup request or
3328 * the previous request that slept prematurely.
3330 if (remaining) {
3331 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3332 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3335 finish_wait(&pgdat->kswapd_wait, &wait);
3336 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3340 * After a short sleep, check if it was a premature sleep. If not, then
3341 * go fully to sleep until explicitly woken up.
3343 if (!remaining &&
3344 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3345 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3348 * vmstat counters are not perfectly accurate and the estimated
3349 * value for counters such as NR_FREE_PAGES can deviate from the
3350 * true value by nr_online_cpus * threshold. To avoid the zone
3351 * watermarks being breached while under pressure, we reduce the
3352 * per-cpu vmstat threshold while kswapd is awake and restore
3353 * them before going back to sleep.
3355 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3357 if (!kthread_should_stop())
3358 schedule();
3360 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3361 } else {
3362 if (remaining)
3363 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3364 else
3365 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3367 finish_wait(&pgdat->kswapd_wait, &wait);
3371 * The background pageout daemon, started as a kernel thread
3372 * from the init process.
3374 * This basically trickles out pages so that we have _some_
3375 * free memory available even if there is no other activity
3376 * that frees anything up. This is needed for things like routing
3377 * etc, where we otherwise might have all activity going on in
3378 * asynchronous contexts that cannot page things out.
3380 * If there are applications that are active memory-allocators
3381 * (most normal use), this basically shouldn't matter.
3383 static int kswapd(void *p)
3385 unsigned int alloc_order, reclaim_order, classzone_idx;
3386 pg_data_t *pgdat = (pg_data_t*)p;
3387 struct task_struct *tsk = current;
3389 struct reclaim_state reclaim_state = {
3390 .reclaimed_slab = 0,
3392 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3394 lockdep_set_current_reclaim_state(GFP_KERNEL);
3396 if (!cpumask_empty(cpumask))
3397 set_cpus_allowed_ptr(tsk, cpumask);
3398 current->reclaim_state = &reclaim_state;
3401 * Tell the memory management that we're a "memory allocator",
3402 * and that if we need more memory we should get access to it
3403 * regardless (see "__alloc_pages()"). "kswapd" should
3404 * never get caught in the normal page freeing logic.
3406 * (Kswapd normally doesn't need memory anyway, but sometimes
3407 * you need a small amount of memory in order to be able to
3408 * page out something else, and this flag essentially protects
3409 * us from recursively trying to free more memory as we're
3410 * trying to free the first piece of memory in the first place).
3412 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3413 set_freezable();
3415 pgdat->kswapd_order = alloc_order = reclaim_order = 0;
3416 pgdat->kswapd_classzone_idx = classzone_idx = 0;
3417 for ( ; ; ) {
3418 bool ret;
3420 kswapd_try_sleep:
3421 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3422 classzone_idx);
3424 /* Read the new order and classzone_idx */
3425 alloc_order = reclaim_order = pgdat->kswapd_order;
3426 classzone_idx = pgdat->kswapd_classzone_idx;
3427 pgdat->kswapd_order = 0;
3428 pgdat->kswapd_classzone_idx = 0;
3430 ret = try_to_freeze();
3431 if (kthread_should_stop())
3432 break;
3435 * We can speed up thawing tasks if we don't call balance_pgdat
3436 * after returning from the refrigerator
3438 if (ret)
3439 continue;
3442 * Reclaim begins at the requested order but if a high-order
3443 * reclaim fails then kswapd falls back to reclaiming for
3444 * order-0. If that happens, kswapd will consider sleeping
3445 * for the order it finished reclaiming at (reclaim_order)
3446 * but kcompactd is woken to compact for the original
3447 * request (alloc_order).
3449 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3450 alloc_order);
3451 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3452 if (reclaim_order < alloc_order)
3453 goto kswapd_try_sleep;
3455 alloc_order = reclaim_order = pgdat->kswapd_order;
3456 classzone_idx = pgdat->kswapd_classzone_idx;
3459 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3460 current->reclaim_state = NULL;
3461 lockdep_clear_current_reclaim_state();
3463 return 0;
3467 * A zone is low on free memory, so wake its kswapd task to service it.
3469 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3471 pg_data_t *pgdat;
3472 int z;
3474 if (!managed_zone(zone))
3475 return;
3477 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3478 return;
3479 pgdat = zone->zone_pgdat;
3480 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3481 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3482 if (!waitqueue_active(&pgdat->kswapd_wait))
3483 return;
3485 /* Hopeless node, leave it to direct reclaim */
3486 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3487 return;
3489 /* Only wake kswapd if all zones are unbalanced */
3490 for (z = 0; z <= classzone_idx; z++) {
3491 zone = pgdat->node_zones + z;
3492 if (!managed_zone(zone))
3493 continue;
3495 if (zone_balanced(zone, order, classzone_idx))
3496 return;
3499 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3500 wake_up_interruptible(&pgdat->kswapd_wait);
3503 #ifdef CONFIG_HIBERNATION
3505 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3506 * freed pages.
3508 * Rather than trying to age LRUs the aim is to preserve the overall
3509 * LRU order by reclaiming preferentially
3510 * inactive > active > active referenced > active mapped
3512 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3514 struct reclaim_state reclaim_state;
3515 struct scan_control sc = {
3516 .nr_to_reclaim = nr_to_reclaim,
3517 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3518 .reclaim_idx = MAX_NR_ZONES - 1,
3519 .priority = DEF_PRIORITY,
3520 .may_writepage = 1,
3521 .may_unmap = 1,
3522 .may_swap = 1,
3523 .hibernation_mode = 1,
3525 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3526 struct task_struct *p = current;
3527 unsigned long nr_reclaimed;
3529 p->flags |= PF_MEMALLOC;
3530 lockdep_set_current_reclaim_state(sc.gfp_mask);
3531 reclaim_state.reclaimed_slab = 0;
3532 p->reclaim_state = &reclaim_state;
3534 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3536 p->reclaim_state = NULL;
3537 lockdep_clear_current_reclaim_state();
3538 p->flags &= ~PF_MEMALLOC;
3540 return nr_reclaimed;
3542 #endif /* CONFIG_HIBERNATION */
3544 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3545 not required for correctness. So if the last cpu in a node goes
3546 away, we get changed to run anywhere: as the first one comes back,
3547 restore their cpu bindings. */
3548 static int kswapd_cpu_online(unsigned int cpu)
3550 int nid;
3552 for_each_node_state(nid, N_MEMORY) {
3553 pg_data_t *pgdat = NODE_DATA(nid);
3554 const struct cpumask *mask;
3556 mask = cpumask_of_node(pgdat->node_id);
3558 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3559 /* One of our CPUs online: restore mask */
3560 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3562 return 0;
3566 * This kswapd start function will be called by init and node-hot-add.
3567 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3569 int kswapd_run(int nid)
3571 pg_data_t *pgdat = NODE_DATA(nid);
3572 int ret = 0;
3574 if (pgdat->kswapd)
3575 return 0;
3577 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3578 if (IS_ERR(pgdat->kswapd)) {
3579 /* failure at boot is fatal */
3580 BUG_ON(system_state == SYSTEM_BOOTING);
3581 pr_err("Failed to start kswapd on node %d\n", nid);
3582 ret = PTR_ERR(pgdat->kswapd);
3583 pgdat->kswapd = NULL;
3585 return ret;
3589 * Called by memory hotplug when all memory in a node is offlined. Caller must
3590 * hold mem_hotplug_begin/end().
3592 void kswapd_stop(int nid)
3594 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3596 if (kswapd) {
3597 kthread_stop(kswapd);
3598 NODE_DATA(nid)->kswapd = NULL;
3602 static int __init kswapd_init(void)
3604 int nid, ret;
3606 swap_setup();
3607 for_each_node_state(nid, N_MEMORY)
3608 kswapd_run(nid);
3609 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3610 "mm/vmscan:online", kswapd_cpu_online,
3611 NULL);
3612 WARN_ON(ret < 0);
3613 return 0;
3616 module_init(kswapd_init)
3618 #ifdef CONFIG_NUMA
3620 * Node reclaim mode
3622 * If non-zero call node_reclaim when the number of free pages falls below
3623 * the watermarks.
3625 int node_reclaim_mode __read_mostly;
3627 #define RECLAIM_OFF 0
3628 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3629 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3630 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3633 * Priority for NODE_RECLAIM. This determines the fraction of pages
3634 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3635 * a zone.
3637 #define NODE_RECLAIM_PRIORITY 4
3640 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3641 * occur.
3643 int sysctl_min_unmapped_ratio = 1;
3646 * If the number of slab pages in a zone grows beyond this percentage then
3647 * slab reclaim needs to occur.
3649 int sysctl_min_slab_ratio = 5;
3651 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3653 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3654 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3655 node_page_state(pgdat, NR_ACTIVE_FILE);
3658 * It's possible for there to be more file mapped pages than
3659 * accounted for by the pages on the file LRU lists because
3660 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3662 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3665 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3666 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3668 unsigned long nr_pagecache_reclaimable;
3669 unsigned long delta = 0;
3672 * If RECLAIM_UNMAP is set, then all file pages are considered
3673 * potentially reclaimable. Otherwise, we have to worry about
3674 * pages like swapcache and node_unmapped_file_pages() provides
3675 * a better estimate
3677 if (node_reclaim_mode & RECLAIM_UNMAP)
3678 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3679 else
3680 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3682 /* If we can't clean pages, remove dirty pages from consideration */
3683 if (!(node_reclaim_mode & RECLAIM_WRITE))
3684 delta += node_page_state(pgdat, NR_FILE_DIRTY);
3686 /* Watch for any possible underflows due to delta */
3687 if (unlikely(delta > nr_pagecache_reclaimable))
3688 delta = nr_pagecache_reclaimable;
3690 return nr_pagecache_reclaimable - delta;
3694 * Try to free up some pages from this node through reclaim.
3696 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3698 /* Minimum pages needed in order to stay on node */
3699 const unsigned long nr_pages = 1 << order;
3700 struct task_struct *p = current;
3701 struct reclaim_state reclaim_state;
3702 int classzone_idx = gfp_zone(gfp_mask);
3703 struct scan_control sc = {
3704 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3705 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3706 .order = order,
3707 .priority = NODE_RECLAIM_PRIORITY,
3708 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3709 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3710 .may_swap = 1,
3711 .reclaim_idx = classzone_idx,
3714 cond_resched();
3716 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3717 * and we also need to be able to write out pages for RECLAIM_WRITE
3718 * and RECLAIM_UNMAP.
3720 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3721 lockdep_set_current_reclaim_state(gfp_mask);
3722 reclaim_state.reclaimed_slab = 0;
3723 p->reclaim_state = &reclaim_state;
3725 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3727 * Free memory by calling shrink zone with increasing
3728 * priorities until we have enough memory freed.
3730 do {
3731 shrink_node(pgdat, &sc);
3732 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3735 p->reclaim_state = NULL;
3736 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3737 lockdep_clear_current_reclaim_state();
3738 return sc.nr_reclaimed >= nr_pages;
3741 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3743 int ret;
3746 * Node reclaim reclaims unmapped file backed pages and
3747 * slab pages if we are over the defined limits.
3749 * A small portion of unmapped file backed pages is needed for
3750 * file I/O otherwise pages read by file I/O will be immediately
3751 * thrown out if the node is overallocated. So we do not reclaim
3752 * if less than a specified percentage of the node is used by
3753 * unmapped file backed pages.
3755 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3756 sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3757 return NODE_RECLAIM_FULL;
3760 * Do not scan if the allocation should not be delayed.
3762 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3763 return NODE_RECLAIM_NOSCAN;
3766 * Only run node reclaim on the local node or on nodes that do not
3767 * have associated processors. This will favor the local processor
3768 * over remote processors and spread off node memory allocations
3769 * as wide as possible.
3771 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3772 return NODE_RECLAIM_NOSCAN;
3774 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3775 return NODE_RECLAIM_NOSCAN;
3777 ret = __node_reclaim(pgdat, gfp_mask, order);
3778 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3780 if (!ret)
3781 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3783 return ret;
3785 #endif
3788 * page_evictable - test whether a page is evictable
3789 * @page: the page to test
3791 * Test whether page is evictable--i.e., should be placed on active/inactive
3792 * lists vs unevictable list.
3794 * Reasons page might not be evictable:
3795 * (1) page's mapping marked unevictable
3796 * (2) page is part of an mlocked VMA
3799 int page_evictable(struct page *page)
3801 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3804 #ifdef CONFIG_SHMEM
3806 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3807 * @pages: array of pages to check
3808 * @nr_pages: number of pages to check
3810 * Checks pages for evictability and moves them to the appropriate lru list.
3812 * This function is only used for SysV IPC SHM_UNLOCK.
3814 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3816 struct lruvec *lruvec;
3817 struct pglist_data *pgdat = NULL;
3818 int pgscanned = 0;
3819 int pgrescued = 0;
3820 int i;
3822 for (i = 0; i < nr_pages; i++) {
3823 struct page *page = pages[i];
3824 struct pglist_data *pagepgdat = page_pgdat(page);
3826 pgscanned++;
3827 if (pagepgdat != pgdat) {
3828 if (pgdat)
3829 spin_unlock_irq(&pgdat->lru_lock);
3830 pgdat = pagepgdat;
3831 spin_lock_irq(&pgdat->lru_lock);
3833 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3835 if (!PageLRU(page) || !PageUnevictable(page))
3836 continue;
3838 if (page_evictable(page)) {
3839 enum lru_list lru = page_lru_base_type(page);
3841 VM_BUG_ON_PAGE(PageActive(page), page);
3842 ClearPageUnevictable(page);
3843 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3844 add_page_to_lru_list(page, lruvec, lru);
3845 pgrescued++;
3849 if (pgdat) {
3850 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3851 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3852 spin_unlock_irq(&pgdat->lru_lock);
3855 #endif /* CONFIG_SHMEM */