mm, vmstat: suppress pcp stats for unpopulated zones in zoneinfo
[linux-2.6/btrfs-unstable.git] / mm / page_alloc.c
blob34ac32428de81dd2ff76f17e618b721206b50ccf
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
69 #include <asm/sections.h>
70 #include <asm/tlbflush.h>
71 #include <asm/div64.h>
72 #include "internal.h"
74 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
75 static DEFINE_MUTEX(pcp_batch_high_lock);
76 #define MIN_PERCPU_PAGELIST_FRACTION (8)
78 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
79 DEFINE_PER_CPU(int, numa_node);
80 EXPORT_PER_CPU_SYMBOL(numa_node);
81 #endif
83 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
85 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
86 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
87 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
88 * defined in <linux/topology.h>.
90 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
91 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
92 int _node_numa_mem_[MAX_NUMNODES];
93 #endif
95 /* work_structs for global per-cpu drains */
96 DEFINE_MUTEX(pcpu_drain_mutex);
97 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
99 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
100 volatile unsigned long latent_entropy __latent_entropy;
101 EXPORT_SYMBOL(latent_entropy);
102 #endif
105 * Array of node states.
107 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
108 [N_POSSIBLE] = NODE_MASK_ALL,
109 [N_ONLINE] = { { [0] = 1UL } },
110 #ifndef CONFIG_NUMA
111 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
112 #ifdef CONFIG_HIGHMEM
113 [N_HIGH_MEMORY] = { { [0] = 1UL } },
114 #endif
115 #ifdef CONFIG_MOVABLE_NODE
116 [N_MEMORY] = { { [0] = 1UL } },
117 #endif
118 [N_CPU] = { { [0] = 1UL } },
119 #endif /* NUMA */
121 EXPORT_SYMBOL(node_states);
123 /* Protect totalram_pages and zone->managed_pages */
124 static DEFINE_SPINLOCK(managed_page_count_lock);
126 unsigned long totalram_pages __read_mostly;
127 unsigned long totalreserve_pages __read_mostly;
128 unsigned long totalcma_pages __read_mostly;
130 int percpu_pagelist_fraction;
131 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
134 * A cached value of the page's pageblock's migratetype, used when the page is
135 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
136 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
137 * Also the migratetype set in the page does not necessarily match the pcplist
138 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
139 * other index - this ensures that it will be put on the correct CMA freelist.
141 static inline int get_pcppage_migratetype(struct page *page)
143 return page->index;
146 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
148 page->index = migratetype;
151 #ifdef CONFIG_PM_SLEEP
153 * The following functions are used by the suspend/hibernate code to temporarily
154 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
155 * while devices are suspended. To avoid races with the suspend/hibernate code,
156 * they should always be called with pm_mutex held (gfp_allowed_mask also should
157 * only be modified with pm_mutex held, unless the suspend/hibernate code is
158 * guaranteed not to run in parallel with that modification).
161 static gfp_t saved_gfp_mask;
163 void pm_restore_gfp_mask(void)
165 WARN_ON(!mutex_is_locked(&pm_mutex));
166 if (saved_gfp_mask) {
167 gfp_allowed_mask = saved_gfp_mask;
168 saved_gfp_mask = 0;
172 void pm_restrict_gfp_mask(void)
174 WARN_ON(!mutex_is_locked(&pm_mutex));
175 WARN_ON(saved_gfp_mask);
176 saved_gfp_mask = gfp_allowed_mask;
177 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
180 bool pm_suspended_storage(void)
182 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
183 return false;
184 return true;
186 #endif /* CONFIG_PM_SLEEP */
188 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
189 unsigned int pageblock_order __read_mostly;
190 #endif
192 static void __free_pages_ok(struct page *page, unsigned int order);
195 * results with 256, 32 in the lowmem_reserve sysctl:
196 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
197 * 1G machine -> (16M dma, 784M normal, 224M high)
198 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
199 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
200 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
202 * TBD: should special case ZONE_DMA32 machines here - in those we normally
203 * don't need any ZONE_NORMAL reservation
205 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
206 #ifdef CONFIG_ZONE_DMA
207 256,
208 #endif
209 #ifdef CONFIG_ZONE_DMA32
210 256,
211 #endif
212 #ifdef CONFIG_HIGHMEM
214 #endif
218 EXPORT_SYMBOL(totalram_pages);
220 static char * const zone_names[MAX_NR_ZONES] = {
221 #ifdef CONFIG_ZONE_DMA
222 "DMA",
223 #endif
224 #ifdef CONFIG_ZONE_DMA32
225 "DMA32",
226 #endif
227 "Normal",
228 #ifdef CONFIG_HIGHMEM
229 "HighMem",
230 #endif
231 "Movable",
232 #ifdef CONFIG_ZONE_DEVICE
233 "Device",
234 #endif
237 char * const migratetype_names[MIGRATE_TYPES] = {
238 "Unmovable",
239 "Movable",
240 "Reclaimable",
241 "HighAtomic",
242 #ifdef CONFIG_CMA
243 "CMA",
244 #endif
245 #ifdef CONFIG_MEMORY_ISOLATION
246 "Isolate",
247 #endif
250 compound_page_dtor * const compound_page_dtors[] = {
251 NULL,
252 free_compound_page,
253 #ifdef CONFIG_HUGETLB_PAGE
254 free_huge_page,
255 #endif
256 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
257 free_transhuge_page,
258 #endif
261 int min_free_kbytes = 1024;
262 int user_min_free_kbytes = -1;
263 int watermark_scale_factor = 10;
265 static unsigned long __meminitdata nr_kernel_pages;
266 static unsigned long __meminitdata nr_all_pages;
267 static unsigned long __meminitdata dma_reserve;
269 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
270 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
271 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
272 static unsigned long __initdata required_kernelcore;
273 static unsigned long __initdata required_movablecore;
274 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
275 static bool mirrored_kernelcore;
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278 int movable_zone;
279 EXPORT_SYMBOL(movable_zone);
280 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
282 #if MAX_NUMNODES > 1
283 int nr_node_ids __read_mostly = MAX_NUMNODES;
284 int nr_online_nodes __read_mostly = 1;
285 EXPORT_SYMBOL(nr_node_ids);
286 EXPORT_SYMBOL(nr_online_nodes);
287 #endif
289 int page_group_by_mobility_disabled __read_mostly;
291 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
292 static inline void reset_deferred_meminit(pg_data_t *pgdat)
294 pgdat->first_deferred_pfn = ULONG_MAX;
297 /* Returns true if the struct page for the pfn is uninitialised */
298 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
300 int nid = early_pfn_to_nid(pfn);
302 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
303 return true;
305 return false;
309 * Returns false when the remaining initialisation should be deferred until
310 * later in the boot cycle when it can be parallelised.
312 static inline bool update_defer_init(pg_data_t *pgdat,
313 unsigned long pfn, unsigned long zone_end,
314 unsigned long *nr_initialised)
316 unsigned long max_initialise;
318 /* Always populate low zones for address-contrained allocations */
319 if (zone_end < pgdat_end_pfn(pgdat))
320 return true;
322 * Initialise at least 2G of a node but also take into account that
323 * two large system hashes that can take up 1GB for 0.25TB/node.
325 max_initialise = max(2UL << (30 - PAGE_SHIFT),
326 (pgdat->node_spanned_pages >> 8));
328 (*nr_initialised)++;
329 if ((*nr_initialised > max_initialise) &&
330 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
331 pgdat->first_deferred_pfn = pfn;
332 return false;
335 return true;
337 #else
338 static inline void reset_deferred_meminit(pg_data_t *pgdat)
342 static inline bool early_page_uninitialised(unsigned long pfn)
344 return false;
347 static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
351 return true;
353 #endif
355 /* Return a pointer to the bitmap storing bits affecting a block of pages */
356 static inline unsigned long *get_pageblock_bitmap(struct page *page,
357 unsigned long pfn)
359 #ifdef CONFIG_SPARSEMEM
360 return __pfn_to_section(pfn)->pageblock_flags;
361 #else
362 return page_zone(page)->pageblock_flags;
363 #endif /* CONFIG_SPARSEMEM */
366 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
368 #ifdef CONFIG_SPARSEMEM
369 pfn &= (PAGES_PER_SECTION-1);
370 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
371 #else
372 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
373 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
374 #endif /* CONFIG_SPARSEMEM */
378 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
379 * @page: The page within the block of interest
380 * @pfn: The target page frame number
381 * @end_bitidx: The last bit of interest to retrieve
382 * @mask: mask of bits that the caller is interested in
384 * Return: pageblock_bits flags
386 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
387 unsigned long pfn,
388 unsigned long end_bitidx,
389 unsigned long mask)
391 unsigned long *bitmap;
392 unsigned long bitidx, word_bitidx;
393 unsigned long word;
395 bitmap = get_pageblock_bitmap(page, pfn);
396 bitidx = pfn_to_bitidx(page, pfn);
397 word_bitidx = bitidx / BITS_PER_LONG;
398 bitidx &= (BITS_PER_LONG-1);
400 word = bitmap[word_bitidx];
401 bitidx += end_bitidx;
402 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
405 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
406 unsigned long end_bitidx,
407 unsigned long mask)
409 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
412 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
414 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
418 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
419 * @page: The page within the block of interest
420 * @flags: The flags to set
421 * @pfn: The target page frame number
422 * @end_bitidx: The last bit of interest
423 * @mask: mask of bits that the caller is interested in
425 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
426 unsigned long pfn,
427 unsigned long end_bitidx,
428 unsigned long mask)
430 unsigned long *bitmap;
431 unsigned long bitidx, word_bitidx;
432 unsigned long old_word, word;
434 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
436 bitmap = get_pageblock_bitmap(page, pfn);
437 bitidx = pfn_to_bitidx(page, pfn);
438 word_bitidx = bitidx / BITS_PER_LONG;
439 bitidx &= (BITS_PER_LONG-1);
441 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
443 bitidx += end_bitidx;
444 mask <<= (BITS_PER_LONG - bitidx - 1);
445 flags <<= (BITS_PER_LONG - bitidx - 1);
447 word = READ_ONCE(bitmap[word_bitidx]);
448 for (;;) {
449 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
450 if (word == old_word)
451 break;
452 word = old_word;
456 void set_pageblock_migratetype(struct page *page, int migratetype)
458 if (unlikely(page_group_by_mobility_disabled &&
459 migratetype < MIGRATE_PCPTYPES))
460 migratetype = MIGRATE_UNMOVABLE;
462 set_pageblock_flags_group(page, (unsigned long)migratetype,
463 PB_migrate, PB_migrate_end);
466 #ifdef CONFIG_DEBUG_VM
467 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
469 int ret = 0;
470 unsigned seq;
471 unsigned long pfn = page_to_pfn(page);
472 unsigned long sp, start_pfn;
474 do {
475 seq = zone_span_seqbegin(zone);
476 start_pfn = zone->zone_start_pfn;
477 sp = zone->spanned_pages;
478 if (!zone_spans_pfn(zone, pfn))
479 ret = 1;
480 } while (zone_span_seqretry(zone, seq));
482 if (ret)
483 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
484 pfn, zone_to_nid(zone), zone->name,
485 start_pfn, start_pfn + sp);
487 return ret;
490 static int page_is_consistent(struct zone *zone, struct page *page)
492 if (!pfn_valid_within(page_to_pfn(page)))
493 return 0;
494 if (zone != page_zone(page))
495 return 0;
497 return 1;
500 * Temporary debugging check for pages not lying within a given zone.
502 static int bad_range(struct zone *zone, struct page *page)
504 if (page_outside_zone_boundaries(zone, page))
505 return 1;
506 if (!page_is_consistent(zone, page))
507 return 1;
509 return 0;
511 #else
512 static inline int bad_range(struct zone *zone, struct page *page)
514 return 0;
516 #endif
518 static void bad_page(struct page *page, const char *reason,
519 unsigned long bad_flags)
521 static unsigned long resume;
522 static unsigned long nr_shown;
523 static unsigned long nr_unshown;
526 * Allow a burst of 60 reports, then keep quiet for that minute;
527 * or allow a steady drip of one report per second.
529 if (nr_shown == 60) {
530 if (time_before(jiffies, resume)) {
531 nr_unshown++;
532 goto out;
534 if (nr_unshown) {
535 pr_alert(
536 "BUG: Bad page state: %lu messages suppressed\n",
537 nr_unshown);
538 nr_unshown = 0;
540 nr_shown = 0;
542 if (nr_shown++ == 0)
543 resume = jiffies + 60 * HZ;
545 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
546 current->comm, page_to_pfn(page));
547 __dump_page(page, reason);
548 bad_flags &= page->flags;
549 if (bad_flags)
550 pr_alert("bad because of flags: %#lx(%pGp)\n",
551 bad_flags, &bad_flags);
552 dump_page_owner(page);
554 print_modules();
555 dump_stack();
556 out:
557 /* Leave bad fields for debug, except PageBuddy could make trouble */
558 page_mapcount_reset(page); /* remove PageBuddy */
559 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
563 * Higher-order pages are called "compound pages". They are structured thusly:
565 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
567 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
568 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
570 * The first tail page's ->compound_dtor holds the offset in array of compound
571 * page destructors. See compound_page_dtors.
573 * The first tail page's ->compound_order holds the order of allocation.
574 * This usage means that zero-order pages may not be compound.
577 void free_compound_page(struct page *page)
579 __free_pages_ok(page, compound_order(page));
582 void prep_compound_page(struct page *page, unsigned int order)
584 int i;
585 int nr_pages = 1 << order;
587 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
588 set_compound_order(page, order);
589 __SetPageHead(page);
590 for (i = 1; i < nr_pages; i++) {
591 struct page *p = page + i;
592 set_page_count(p, 0);
593 p->mapping = TAIL_MAPPING;
594 set_compound_head(p, page);
596 atomic_set(compound_mapcount_ptr(page), -1);
599 #ifdef CONFIG_DEBUG_PAGEALLOC
600 unsigned int _debug_guardpage_minorder;
601 bool _debug_pagealloc_enabled __read_mostly
602 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
603 EXPORT_SYMBOL(_debug_pagealloc_enabled);
604 bool _debug_guardpage_enabled __read_mostly;
606 static int __init early_debug_pagealloc(char *buf)
608 if (!buf)
609 return -EINVAL;
610 return kstrtobool(buf, &_debug_pagealloc_enabled);
612 early_param("debug_pagealloc", early_debug_pagealloc);
614 static bool need_debug_guardpage(void)
616 /* If we don't use debug_pagealloc, we don't need guard page */
617 if (!debug_pagealloc_enabled())
618 return false;
620 if (!debug_guardpage_minorder())
621 return false;
623 return true;
626 static void init_debug_guardpage(void)
628 if (!debug_pagealloc_enabled())
629 return;
631 if (!debug_guardpage_minorder())
632 return;
634 _debug_guardpage_enabled = true;
637 struct page_ext_operations debug_guardpage_ops = {
638 .need = need_debug_guardpage,
639 .init = init_debug_guardpage,
642 static int __init debug_guardpage_minorder_setup(char *buf)
644 unsigned long res;
646 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
647 pr_err("Bad debug_guardpage_minorder value\n");
648 return 0;
650 _debug_guardpage_minorder = res;
651 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
652 return 0;
654 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
656 static inline bool set_page_guard(struct zone *zone, struct page *page,
657 unsigned int order, int migratetype)
659 struct page_ext *page_ext;
661 if (!debug_guardpage_enabled())
662 return false;
664 if (order >= debug_guardpage_minorder())
665 return false;
667 page_ext = lookup_page_ext(page);
668 if (unlikely(!page_ext))
669 return false;
671 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
673 INIT_LIST_HEAD(&page->lru);
674 set_page_private(page, order);
675 /* Guard pages are not available for any usage */
676 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
678 return true;
681 static inline void clear_page_guard(struct zone *zone, struct page *page,
682 unsigned int order, int migratetype)
684 struct page_ext *page_ext;
686 if (!debug_guardpage_enabled())
687 return;
689 page_ext = lookup_page_ext(page);
690 if (unlikely(!page_ext))
691 return;
693 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
695 set_page_private(page, 0);
696 if (!is_migrate_isolate(migratetype))
697 __mod_zone_freepage_state(zone, (1 << order), migratetype);
699 #else
700 struct page_ext_operations debug_guardpage_ops;
701 static inline bool set_page_guard(struct zone *zone, struct page *page,
702 unsigned int order, int migratetype) { return false; }
703 static inline void clear_page_guard(struct zone *zone, struct page *page,
704 unsigned int order, int migratetype) {}
705 #endif
707 static inline void set_page_order(struct page *page, unsigned int order)
709 set_page_private(page, order);
710 __SetPageBuddy(page);
713 static inline void rmv_page_order(struct page *page)
715 __ClearPageBuddy(page);
716 set_page_private(page, 0);
720 * This function checks whether a page is free && is the buddy
721 * we can do coalesce a page and its buddy if
722 * (a) the buddy is not in a hole (check before calling!) &&
723 * (b) the buddy is in the buddy system &&
724 * (c) a page and its buddy have the same order &&
725 * (d) a page and its buddy are in the same zone.
727 * For recording whether a page is in the buddy system, we set ->_mapcount
728 * PAGE_BUDDY_MAPCOUNT_VALUE.
729 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
730 * serialized by zone->lock.
732 * For recording page's order, we use page_private(page).
734 static inline int page_is_buddy(struct page *page, struct page *buddy,
735 unsigned int order)
737 if (page_is_guard(buddy) && page_order(buddy) == order) {
738 if (page_zone_id(page) != page_zone_id(buddy))
739 return 0;
741 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
743 return 1;
746 if (PageBuddy(buddy) && page_order(buddy) == order) {
748 * zone check is done late to avoid uselessly
749 * calculating zone/node ids for pages that could
750 * never merge.
752 if (page_zone_id(page) != page_zone_id(buddy))
753 return 0;
755 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
757 return 1;
759 return 0;
763 * Freeing function for a buddy system allocator.
765 * The concept of a buddy system is to maintain direct-mapped table
766 * (containing bit values) for memory blocks of various "orders".
767 * The bottom level table contains the map for the smallest allocatable
768 * units of memory (here, pages), and each level above it describes
769 * pairs of units from the levels below, hence, "buddies".
770 * At a high level, all that happens here is marking the table entry
771 * at the bottom level available, and propagating the changes upward
772 * as necessary, plus some accounting needed to play nicely with other
773 * parts of the VM system.
774 * At each level, we keep a list of pages, which are heads of continuous
775 * free pages of length of (1 << order) and marked with _mapcount
776 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
777 * field.
778 * So when we are allocating or freeing one, we can derive the state of the
779 * other. That is, if we allocate a small block, and both were
780 * free, the remainder of the region must be split into blocks.
781 * If a block is freed, and its buddy is also free, then this
782 * triggers coalescing into a block of larger size.
784 * -- nyc
787 static inline void __free_one_page(struct page *page,
788 unsigned long pfn,
789 struct zone *zone, unsigned int order,
790 int migratetype)
792 unsigned long combined_pfn;
793 unsigned long uninitialized_var(buddy_pfn);
794 struct page *buddy;
795 unsigned int max_order;
797 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
799 VM_BUG_ON(!zone_is_initialized(zone));
800 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
802 VM_BUG_ON(migratetype == -1);
803 if (likely(!is_migrate_isolate(migratetype)))
804 __mod_zone_freepage_state(zone, 1 << order, migratetype);
806 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
807 VM_BUG_ON_PAGE(bad_range(zone, page), page);
809 continue_merging:
810 while (order < max_order - 1) {
811 buddy_pfn = __find_buddy_pfn(pfn, order);
812 buddy = page + (buddy_pfn - pfn);
814 if (!pfn_valid_within(buddy_pfn))
815 goto done_merging;
816 if (!page_is_buddy(page, buddy, order))
817 goto done_merging;
819 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
820 * merge with it and move up one order.
822 if (page_is_guard(buddy)) {
823 clear_page_guard(zone, buddy, order, migratetype);
824 } else {
825 list_del(&buddy->lru);
826 zone->free_area[order].nr_free--;
827 rmv_page_order(buddy);
829 combined_pfn = buddy_pfn & pfn;
830 page = page + (combined_pfn - pfn);
831 pfn = combined_pfn;
832 order++;
834 if (max_order < MAX_ORDER) {
835 /* If we are here, it means order is >= pageblock_order.
836 * We want to prevent merge between freepages on isolate
837 * pageblock and normal pageblock. Without this, pageblock
838 * isolation could cause incorrect freepage or CMA accounting.
840 * We don't want to hit this code for the more frequent
841 * low-order merging.
843 if (unlikely(has_isolate_pageblock(zone))) {
844 int buddy_mt;
846 buddy_pfn = __find_buddy_pfn(pfn, order);
847 buddy = page + (buddy_pfn - pfn);
848 buddy_mt = get_pageblock_migratetype(buddy);
850 if (migratetype != buddy_mt
851 && (is_migrate_isolate(migratetype) ||
852 is_migrate_isolate(buddy_mt)))
853 goto done_merging;
855 max_order++;
856 goto continue_merging;
859 done_merging:
860 set_page_order(page, order);
863 * If this is not the largest possible page, check if the buddy
864 * of the next-highest order is free. If it is, it's possible
865 * that pages are being freed that will coalesce soon. In case,
866 * that is happening, add the free page to the tail of the list
867 * so it's less likely to be used soon and more likely to be merged
868 * as a higher order page
870 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
871 struct page *higher_page, *higher_buddy;
872 combined_pfn = buddy_pfn & pfn;
873 higher_page = page + (combined_pfn - pfn);
874 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
875 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
876 if (pfn_valid_within(buddy_pfn) &&
877 page_is_buddy(higher_page, higher_buddy, order + 1)) {
878 list_add_tail(&page->lru,
879 &zone->free_area[order].free_list[migratetype]);
880 goto out;
884 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
885 out:
886 zone->free_area[order].nr_free++;
890 * A bad page could be due to a number of fields. Instead of multiple branches,
891 * try and check multiple fields with one check. The caller must do a detailed
892 * check if necessary.
894 static inline bool page_expected_state(struct page *page,
895 unsigned long check_flags)
897 if (unlikely(atomic_read(&page->_mapcount) != -1))
898 return false;
900 if (unlikely((unsigned long)page->mapping |
901 page_ref_count(page) |
902 #ifdef CONFIG_MEMCG
903 (unsigned long)page->mem_cgroup |
904 #endif
905 (page->flags & check_flags)))
906 return false;
908 return true;
911 static void free_pages_check_bad(struct page *page)
913 const char *bad_reason;
914 unsigned long bad_flags;
916 bad_reason = NULL;
917 bad_flags = 0;
919 if (unlikely(atomic_read(&page->_mapcount) != -1))
920 bad_reason = "nonzero mapcount";
921 if (unlikely(page->mapping != NULL))
922 bad_reason = "non-NULL mapping";
923 if (unlikely(page_ref_count(page) != 0))
924 bad_reason = "nonzero _refcount";
925 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
926 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
927 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
929 #ifdef CONFIG_MEMCG
930 if (unlikely(page->mem_cgroup))
931 bad_reason = "page still charged to cgroup";
932 #endif
933 bad_page(page, bad_reason, bad_flags);
936 static inline int free_pages_check(struct page *page)
938 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
939 return 0;
941 /* Something has gone sideways, find it */
942 free_pages_check_bad(page);
943 return 1;
946 static int free_tail_pages_check(struct page *head_page, struct page *page)
948 int ret = 1;
951 * We rely page->lru.next never has bit 0 set, unless the page
952 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
954 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
956 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
957 ret = 0;
958 goto out;
960 switch (page - head_page) {
961 case 1:
962 /* the first tail page: ->mapping is compound_mapcount() */
963 if (unlikely(compound_mapcount(page))) {
964 bad_page(page, "nonzero compound_mapcount", 0);
965 goto out;
967 break;
968 case 2:
970 * the second tail page: ->mapping is
971 * page_deferred_list().next -- ignore value.
973 break;
974 default:
975 if (page->mapping != TAIL_MAPPING) {
976 bad_page(page, "corrupted mapping in tail page", 0);
977 goto out;
979 break;
981 if (unlikely(!PageTail(page))) {
982 bad_page(page, "PageTail not set", 0);
983 goto out;
985 if (unlikely(compound_head(page) != head_page)) {
986 bad_page(page, "compound_head not consistent", 0);
987 goto out;
989 ret = 0;
990 out:
991 page->mapping = NULL;
992 clear_compound_head(page);
993 return ret;
996 static __always_inline bool free_pages_prepare(struct page *page,
997 unsigned int order, bool check_free)
999 int bad = 0;
1001 VM_BUG_ON_PAGE(PageTail(page), page);
1003 trace_mm_page_free(page, order);
1004 kmemcheck_free_shadow(page, order);
1007 * Check tail pages before head page information is cleared to
1008 * avoid checking PageCompound for order-0 pages.
1010 if (unlikely(order)) {
1011 bool compound = PageCompound(page);
1012 int i;
1014 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1016 if (compound)
1017 ClearPageDoubleMap(page);
1018 for (i = 1; i < (1 << order); i++) {
1019 if (compound)
1020 bad += free_tail_pages_check(page, page + i);
1021 if (unlikely(free_pages_check(page + i))) {
1022 bad++;
1023 continue;
1025 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1028 if (PageMappingFlags(page))
1029 page->mapping = NULL;
1030 if (memcg_kmem_enabled() && PageKmemcg(page))
1031 memcg_kmem_uncharge(page, order);
1032 if (check_free)
1033 bad += free_pages_check(page);
1034 if (bad)
1035 return false;
1037 page_cpupid_reset_last(page);
1038 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1039 reset_page_owner(page, order);
1041 if (!PageHighMem(page)) {
1042 debug_check_no_locks_freed(page_address(page),
1043 PAGE_SIZE << order);
1044 debug_check_no_obj_freed(page_address(page),
1045 PAGE_SIZE << order);
1047 arch_free_page(page, order);
1048 kernel_poison_pages(page, 1 << order, 0);
1049 kernel_map_pages(page, 1 << order, 0);
1050 kasan_free_pages(page, order);
1052 return true;
1055 #ifdef CONFIG_DEBUG_VM
1056 static inline bool free_pcp_prepare(struct page *page)
1058 return free_pages_prepare(page, 0, true);
1061 static inline bool bulkfree_pcp_prepare(struct page *page)
1063 return false;
1065 #else
1066 static bool free_pcp_prepare(struct page *page)
1068 return free_pages_prepare(page, 0, false);
1071 static bool bulkfree_pcp_prepare(struct page *page)
1073 return free_pages_check(page);
1075 #endif /* CONFIG_DEBUG_VM */
1078 * Frees a number of pages from the PCP lists
1079 * Assumes all pages on list are in same zone, and of same order.
1080 * count is the number of pages to free.
1082 * If the zone was previously in an "all pages pinned" state then look to
1083 * see if this freeing clears that state.
1085 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1086 * pinned" detection logic.
1088 static void free_pcppages_bulk(struct zone *zone, int count,
1089 struct per_cpu_pages *pcp)
1091 int migratetype = 0;
1092 int batch_free = 0;
1093 bool isolated_pageblocks;
1095 spin_lock(&zone->lock);
1096 isolated_pageblocks = has_isolate_pageblock(zone);
1098 while (count) {
1099 struct page *page;
1100 struct list_head *list;
1103 * Remove pages from lists in a round-robin fashion. A
1104 * batch_free count is maintained that is incremented when an
1105 * empty list is encountered. This is so more pages are freed
1106 * off fuller lists instead of spinning excessively around empty
1107 * lists
1109 do {
1110 batch_free++;
1111 if (++migratetype == MIGRATE_PCPTYPES)
1112 migratetype = 0;
1113 list = &pcp->lists[migratetype];
1114 } while (list_empty(list));
1116 /* This is the only non-empty list. Free them all. */
1117 if (batch_free == MIGRATE_PCPTYPES)
1118 batch_free = count;
1120 do {
1121 int mt; /* migratetype of the to-be-freed page */
1123 page = list_last_entry(list, struct page, lru);
1124 /* must delete as __free_one_page list manipulates */
1125 list_del(&page->lru);
1127 mt = get_pcppage_migratetype(page);
1128 /* MIGRATE_ISOLATE page should not go to pcplists */
1129 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1130 /* Pageblock could have been isolated meanwhile */
1131 if (unlikely(isolated_pageblocks))
1132 mt = get_pageblock_migratetype(page);
1134 if (bulkfree_pcp_prepare(page))
1135 continue;
1137 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1138 trace_mm_page_pcpu_drain(page, 0, mt);
1139 } while (--count && --batch_free && !list_empty(list));
1141 spin_unlock(&zone->lock);
1144 static void free_one_page(struct zone *zone,
1145 struct page *page, unsigned long pfn,
1146 unsigned int order,
1147 int migratetype)
1149 spin_lock(&zone->lock);
1150 if (unlikely(has_isolate_pageblock(zone) ||
1151 is_migrate_isolate(migratetype))) {
1152 migratetype = get_pfnblock_migratetype(page, pfn);
1154 __free_one_page(page, pfn, zone, order, migratetype);
1155 spin_unlock(&zone->lock);
1158 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1159 unsigned long zone, int nid)
1161 set_page_links(page, zone, nid, pfn);
1162 init_page_count(page);
1163 page_mapcount_reset(page);
1164 page_cpupid_reset_last(page);
1166 INIT_LIST_HEAD(&page->lru);
1167 #ifdef WANT_PAGE_VIRTUAL
1168 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1169 if (!is_highmem_idx(zone))
1170 set_page_address(page, __va(pfn << PAGE_SHIFT));
1171 #endif
1174 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1175 int nid)
1177 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1180 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1181 static void init_reserved_page(unsigned long pfn)
1183 pg_data_t *pgdat;
1184 int nid, zid;
1186 if (!early_page_uninitialised(pfn))
1187 return;
1189 nid = early_pfn_to_nid(pfn);
1190 pgdat = NODE_DATA(nid);
1192 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1193 struct zone *zone = &pgdat->node_zones[zid];
1195 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1196 break;
1198 __init_single_pfn(pfn, zid, nid);
1200 #else
1201 static inline void init_reserved_page(unsigned long pfn)
1204 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1207 * Initialised pages do not have PageReserved set. This function is
1208 * called for each range allocated by the bootmem allocator and
1209 * marks the pages PageReserved. The remaining valid pages are later
1210 * sent to the buddy page allocator.
1212 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1214 unsigned long start_pfn = PFN_DOWN(start);
1215 unsigned long end_pfn = PFN_UP(end);
1217 for (; start_pfn < end_pfn; start_pfn++) {
1218 if (pfn_valid(start_pfn)) {
1219 struct page *page = pfn_to_page(start_pfn);
1221 init_reserved_page(start_pfn);
1223 /* Avoid false-positive PageTail() */
1224 INIT_LIST_HEAD(&page->lru);
1226 SetPageReserved(page);
1231 static void __free_pages_ok(struct page *page, unsigned int order)
1233 unsigned long flags;
1234 int migratetype;
1235 unsigned long pfn = page_to_pfn(page);
1237 if (!free_pages_prepare(page, order, true))
1238 return;
1240 migratetype = get_pfnblock_migratetype(page, pfn);
1241 local_irq_save(flags);
1242 __count_vm_events(PGFREE, 1 << order);
1243 free_one_page(page_zone(page), page, pfn, order, migratetype);
1244 local_irq_restore(flags);
1247 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1249 unsigned int nr_pages = 1 << order;
1250 struct page *p = page;
1251 unsigned int loop;
1253 prefetchw(p);
1254 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1255 prefetchw(p + 1);
1256 __ClearPageReserved(p);
1257 set_page_count(p, 0);
1259 __ClearPageReserved(p);
1260 set_page_count(p, 0);
1262 page_zone(page)->managed_pages += nr_pages;
1263 set_page_refcounted(page);
1264 __free_pages(page, order);
1267 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1268 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1270 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1272 int __meminit early_pfn_to_nid(unsigned long pfn)
1274 static DEFINE_SPINLOCK(early_pfn_lock);
1275 int nid;
1277 spin_lock(&early_pfn_lock);
1278 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1279 if (nid < 0)
1280 nid = first_online_node;
1281 spin_unlock(&early_pfn_lock);
1283 return nid;
1285 #endif
1287 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1288 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1289 struct mminit_pfnnid_cache *state)
1291 int nid;
1293 nid = __early_pfn_to_nid(pfn, state);
1294 if (nid >= 0 && nid != node)
1295 return false;
1296 return true;
1299 /* Only safe to use early in boot when initialisation is single-threaded */
1300 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1302 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1305 #else
1307 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1309 return true;
1311 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1312 struct mminit_pfnnid_cache *state)
1314 return true;
1316 #endif
1319 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1320 unsigned int order)
1322 if (early_page_uninitialised(pfn))
1323 return;
1324 return __free_pages_boot_core(page, order);
1328 * Check that the whole (or subset of) a pageblock given by the interval of
1329 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1330 * with the migration of free compaction scanner. The scanners then need to
1331 * use only pfn_valid_within() check for arches that allow holes within
1332 * pageblocks.
1334 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1336 * It's possible on some configurations to have a setup like node0 node1 node0
1337 * i.e. it's possible that all pages within a zones range of pages do not
1338 * belong to a single zone. We assume that a border between node0 and node1
1339 * can occur within a single pageblock, but not a node0 node1 node0
1340 * interleaving within a single pageblock. It is therefore sufficient to check
1341 * the first and last page of a pageblock and avoid checking each individual
1342 * page in a pageblock.
1344 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1345 unsigned long end_pfn, struct zone *zone)
1347 struct page *start_page;
1348 struct page *end_page;
1350 /* end_pfn is one past the range we are checking */
1351 end_pfn--;
1353 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1354 return NULL;
1356 start_page = pfn_to_page(start_pfn);
1358 if (page_zone(start_page) != zone)
1359 return NULL;
1361 end_page = pfn_to_page(end_pfn);
1363 /* This gives a shorter code than deriving page_zone(end_page) */
1364 if (page_zone_id(start_page) != page_zone_id(end_page))
1365 return NULL;
1367 return start_page;
1370 void set_zone_contiguous(struct zone *zone)
1372 unsigned long block_start_pfn = zone->zone_start_pfn;
1373 unsigned long block_end_pfn;
1375 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1376 for (; block_start_pfn < zone_end_pfn(zone);
1377 block_start_pfn = block_end_pfn,
1378 block_end_pfn += pageblock_nr_pages) {
1380 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1382 if (!__pageblock_pfn_to_page(block_start_pfn,
1383 block_end_pfn, zone))
1384 return;
1387 /* We confirm that there is no hole */
1388 zone->contiguous = true;
1391 void clear_zone_contiguous(struct zone *zone)
1393 zone->contiguous = false;
1396 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1397 static void __init deferred_free_range(struct page *page,
1398 unsigned long pfn, int nr_pages)
1400 int i;
1402 if (!page)
1403 return;
1405 /* Free a large naturally-aligned chunk if possible */
1406 if (nr_pages == pageblock_nr_pages &&
1407 (pfn & (pageblock_nr_pages - 1)) == 0) {
1408 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1409 __free_pages_boot_core(page, pageblock_order);
1410 return;
1413 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1414 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1415 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1416 __free_pages_boot_core(page, 0);
1420 /* Completion tracking for deferred_init_memmap() threads */
1421 static atomic_t pgdat_init_n_undone __initdata;
1422 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1424 static inline void __init pgdat_init_report_one_done(void)
1426 if (atomic_dec_and_test(&pgdat_init_n_undone))
1427 complete(&pgdat_init_all_done_comp);
1430 /* Initialise remaining memory on a node */
1431 static int __init deferred_init_memmap(void *data)
1433 pg_data_t *pgdat = data;
1434 int nid = pgdat->node_id;
1435 struct mminit_pfnnid_cache nid_init_state = { };
1436 unsigned long start = jiffies;
1437 unsigned long nr_pages = 0;
1438 unsigned long walk_start, walk_end;
1439 int i, zid;
1440 struct zone *zone;
1441 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1442 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1444 if (first_init_pfn == ULONG_MAX) {
1445 pgdat_init_report_one_done();
1446 return 0;
1449 /* Bind memory initialisation thread to a local node if possible */
1450 if (!cpumask_empty(cpumask))
1451 set_cpus_allowed_ptr(current, cpumask);
1453 /* Sanity check boundaries */
1454 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1455 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1456 pgdat->first_deferred_pfn = ULONG_MAX;
1458 /* Only the highest zone is deferred so find it */
1459 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1460 zone = pgdat->node_zones + zid;
1461 if (first_init_pfn < zone_end_pfn(zone))
1462 break;
1465 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1466 unsigned long pfn, end_pfn;
1467 struct page *page = NULL;
1468 struct page *free_base_page = NULL;
1469 unsigned long free_base_pfn = 0;
1470 int nr_to_free = 0;
1472 end_pfn = min(walk_end, zone_end_pfn(zone));
1473 pfn = first_init_pfn;
1474 if (pfn < walk_start)
1475 pfn = walk_start;
1476 if (pfn < zone->zone_start_pfn)
1477 pfn = zone->zone_start_pfn;
1479 for (; pfn < end_pfn; pfn++) {
1480 if (!pfn_valid_within(pfn))
1481 goto free_range;
1484 * Ensure pfn_valid is checked every
1485 * pageblock_nr_pages for memory holes
1487 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1488 if (!pfn_valid(pfn)) {
1489 page = NULL;
1490 goto free_range;
1494 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1495 page = NULL;
1496 goto free_range;
1499 /* Minimise pfn page lookups and scheduler checks */
1500 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1501 page++;
1502 } else {
1503 nr_pages += nr_to_free;
1504 deferred_free_range(free_base_page,
1505 free_base_pfn, nr_to_free);
1506 free_base_page = NULL;
1507 free_base_pfn = nr_to_free = 0;
1509 page = pfn_to_page(pfn);
1510 cond_resched();
1513 if (page->flags) {
1514 VM_BUG_ON(page_zone(page) != zone);
1515 goto free_range;
1518 __init_single_page(page, pfn, zid, nid);
1519 if (!free_base_page) {
1520 free_base_page = page;
1521 free_base_pfn = pfn;
1522 nr_to_free = 0;
1524 nr_to_free++;
1526 /* Where possible, batch up pages for a single free */
1527 continue;
1528 free_range:
1529 /* Free the current block of pages to allocator */
1530 nr_pages += nr_to_free;
1531 deferred_free_range(free_base_page, free_base_pfn,
1532 nr_to_free);
1533 free_base_page = NULL;
1534 free_base_pfn = nr_to_free = 0;
1536 /* Free the last block of pages to allocator */
1537 nr_pages += nr_to_free;
1538 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1540 first_init_pfn = max(end_pfn, first_init_pfn);
1543 /* Sanity check that the next zone really is unpopulated */
1544 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1546 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1547 jiffies_to_msecs(jiffies - start));
1549 pgdat_init_report_one_done();
1550 return 0;
1552 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1554 void __init page_alloc_init_late(void)
1556 struct zone *zone;
1558 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1559 int nid;
1561 /* There will be num_node_state(N_MEMORY) threads */
1562 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1563 for_each_node_state(nid, N_MEMORY) {
1564 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1567 /* Block until all are initialised */
1568 wait_for_completion(&pgdat_init_all_done_comp);
1570 /* Reinit limits that are based on free pages after the kernel is up */
1571 files_maxfiles_init();
1572 #endif
1574 for_each_populated_zone(zone)
1575 set_zone_contiguous(zone);
1578 #ifdef CONFIG_CMA
1579 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1580 void __init init_cma_reserved_pageblock(struct page *page)
1582 unsigned i = pageblock_nr_pages;
1583 struct page *p = page;
1585 do {
1586 __ClearPageReserved(p);
1587 set_page_count(p, 0);
1588 } while (++p, --i);
1590 set_pageblock_migratetype(page, MIGRATE_CMA);
1592 if (pageblock_order >= MAX_ORDER) {
1593 i = pageblock_nr_pages;
1594 p = page;
1595 do {
1596 set_page_refcounted(p);
1597 __free_pages(p, MAX_ORDER - 1);
1598 p += MAX_ORDER_NR_PAGES;
1599 } while (i -= MAX_ORDER_NR_PAGES);
1600 } else {
1601 set_page_refcounted(page);
1602 __free_pages(page, pageblock_order);
1605 adjust_managed_page_count(page, pageblock_nr_pages);
1607 #endif
1610 * The order of subdivision here is critical for the IO subsystem.
1611 * Please do not alter this order without good reasons and regression
1612 * testing. Specifically, as large blocks of memory are subdivided,
1613 * the order in which smaller blocks are delivered depends on the order
1614 * they're subdivided in this function. This is the primary factor
1615 * influencing the order in which pages are delivered to the IO
1616 * subsystem according to empirical testing, and this is also justified
1617 * by considering the behavior of a buddy system containing a single
1618 * large block of memory acted on by a series of small allocations.
1619 * This behavior is a critical factor in sglist merging's success.
1621 * -- nyc
1623 static inline void expand(struct zone *zone, struct page *page,
1624 int low, int high, struct free_area *area,
1625 int migratetype)
1627 unsigned long size = 1 << high;
1629 while (high > low) {
1630 area--;
1631 high--;
1632 size >>= 1;
1633 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1636 * Mark as guard pages (or page), that will allow to
1637 * merge back to allocator when buddy will be freed.
1638 * Corresponding page table entries will not be touched,
1639 * pages will stay not present in virtual address space
1641 if (set_page_guard(zone, &page[size], high, migratetype))
1642 continue;
1644 list_add(&page[size].lru, &area->free_list[migratetype]);
1645 area->nr_free++;
1646 set_page_order(&page[size], high);
1650 static void check_new_page_bad(struct page *page)
1652 const char *bad_reason = NULL;
1653 unsigned long bad_flags = 0;
1655 if (unlikely(atomic_read(&page->_mapcount) != -1))
1656 bad_reason = "nonzero mapcount";
1657 if (unlikely(page->mapping != NULL))
1658 bad_reason = "non-NULL mapping";
1659 if (unlikely(page_ref_count(page) != 0))
1660 bad_reason = "nonzero _count";
1661 if (unlikely(page->flags & __PG_HWPOISON)) {
1662 bad_reason = "HWPoisoned (hardware-corrupted)";
1663 bad_flags = __PG_HWPOISON;
1664 /* Don't complain about hwpoisoned pages */
1665 page_mapcount_reset(page); /* remove PageBuddy */
1666 return;
1668 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1669 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1670 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1672 #ifdef CONFIG_MEMCG
1673 if (unlikely(page->mem_cgroup))
1674 bad_reason = "page still charged to cgroup";
1675 #endif
1676 bad_page(page, bad_reason, bad_flags);
1680 * This page is about to be returned from the page allocator
1682 static inline int check_new_page(struct page *page)
1684 if (likely(page_expected_state(page,
1685 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1686 return 0;
1688 check_new_page_bad(page);
1689 return 1;
1692 static inline bool free_pages_prezeroed(bool poisoned)
1694 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1695 page_poisoning_enabled() && poisoned;
1698 #ifdef CONFIG_DEBUG_VM
1699 static bool check_pcp_refill(struct page *page)
1701 return false;
1704 static bool check_new_pcp(struct page *page)
1706 return check_new_page(page);
1708 #else
1709 static bool check_pcp_refill(struct page *page)
1711 return check_new_page(page);
1713 static bool check_new_pcp(struct page *page)
1715 return false;
1717 #endif /* CONFIG_DEBUG_VM */
1719 static bool check_new_pages(struct page *page, unsigned int order)
1721 int i;
1722 for (i = 0; i < (1 << order); i++) {
1723 struct page *p = page + i;
1725 if (unlikely(check_new_page(p)))
1726 return true;
1729 return false;
1732 inline void post_alloc_hook(struct page *page, unsigned int order,
1733 gfp_t gfp_flags)
1735 set_page_private(page, 0);
1736 set_page_refcounted(page);
1738 arch_alloc_page(page, order);
1739 kernel_map_pages(page, 1 << order, 1);
1740 kernel_poison_pages(page, 1 << order, 1);
1741 kasan_alloc_pages(page, order);
1742 set_page_owner(page, order, gfp_flags);
1745 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1746 unsigned int alloc_flags)
1748 int i;
1749 bool poisoned = true;
1751 for (i = 0; i < (1 << order); i++) {
1752 struct page *p = page + i;
1753 if (poisoned)
1754 poisoned &= page_is_poisoned(p);
1757 post_alloc_hook(page, order, gfp_flags);
1759 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1760 for (i = 0; i < (1 << order); i++)
1761 clear_highpage(page + i);
1763 if (order && (gfp_flags & __GFP_COMP))
1764 prep_compound_page(page, order);
1767 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1768 * allocate the page. The expectation is that the caller is taking
1769 * steps that will free more memory. The caller should avoid the page
1770 * being used for !PFMEMALLOC purposes.
1772 if (alloc_flags & ALLOC_NO_WATERMARKS)
1773 set_page_pfmemalloc(page);
1774 else
1775 clear_page_pfmemalloc(page);
1779 * Go through the free lists for the given migratetype and remove
1780 * the smallest available page from the freelists
1782 static inline
1783 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1784 int migratetype)
1786 unsigned int current_order;
1787 struct free_area *area;
1788 struct page *page;
1790 /* Find a page of the appropriate size in the preferred list */
1791 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1792 area = &(zone->free_area[current_order]);
1793 page = list_first_entry_or_null(&area->free_list[migratetype],
1794 struct page, lru);
1795 if (!page)
1796 continue;
1797 list_del(&page->lru);
1798 rmv_page_order(page);
1799 area->nr_free--;
1800 expand(zone, page, order, current_order, area, migratetype);
1801 set_pcppage_migratetype(page, migratetype);
1802 return page;
1805 return NULL;
1810 * This array describes the order lists are fallen back to when
1811 * the free lists for the desirable migrate type are depleted
1813 static int fallbacks[MIGRATE_TYPES][4] = {
1814 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1815 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1816 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1817 #ifdef CONFIG_CMA
1818 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1819 #endif
1820 #ifdef CONFIG_MEMORY_ISOLATION
1821 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1822 #endif
1825 #ifdef CONFIG_CMA
1826 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1827 unsigned int order)
1829 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1831 #else
1832 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1833 unsigned int order) { return NULL; }
1834 #endif
1837 * Move the free pages in a range to the free lists of the requested type.
1838 * Note that start_page and end_pages are not aligned on a pageblock
1839 * boundary. If alignment is required, use move_freepages_block()
1841 int move_freepages(struct zone *zone,
1842 struct page *start_page, struct page *end_page,
1843 int migratetype)
1845 struct page *page;
1846 unsigned int order;
1847 int pages_moved = 0;
1849 #ifndef CONFIG_HOLES_IN_ZONE
1851 * page_zone is not safe to call in this context when
1852 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1853 * anyway as we check zone boundaries in move_freepages_block().
1854 * Remove at a later date when no bug reports exist related to
1855 * grouping pages by mobility
1857 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1858 #endif
1860 for (page = start_page; page <= end_page;) {
1861 if (!pfn_valid_within(page_to_pfn(page))) {
1862 page++;
1863 continue;
1866 /* Make sure we are not inadvertently changing nodes */
1867 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1869 if (!PageBuddy(page)) {
1870 page++;
1871 continue;
1874 order = page_order(page);
1875 list_move(&page->lru,
1876 &zone->free_area[order].free_list[migratetype]);
1877 page += 1 << order;
1878 pages_moved += 1 << order;
1881 return pages_moved;
1884 int move_freepages_block(struct zone *zone, struct page *page,
1885 int migratetype)
1887 unsigned long start_pfn, end_pfn;
1888 struct page *start_page, *end_page;
1890 start_pfn = page_to_pfn(page);
1891 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1892 start_page = pfn_to_page(start_pfn);
1893 end_page = start_page + pageblock_nr_pages - 1;
1894 end_pfn = start_pfn + pageblock_nr_pages - 1;
1896 /* Do not cross zone boundaries */
1897 if (!zone_spans_pfn(zone, start_pfn))
1898 start_page = page;
1899 if (!zone_spans_pfn(zone, end_pfn))
1900 return 0;
1902 return move_freepages(zone, start_page, end_page, migratetype);
1905 static void change_pageblock_range(struct page *pageblock_page,
1906 int start_order, int migratetype)
1908 int nr_pageblocks = 1 << (start_order - pageblock_order);
1910 while (nr_pageblocks--) {
1911 set_pageblock_migratetype(pageblock_page, migratetype);
1912 pageblock_page += pageblock_nr_pages;
1917 * When we are falling back to another migratetype during allocation, try to
1918 * steal extra free pages from the same pageblocks to satisfy further
1919 * allocations, instead of polluting multiple pageblocks.
1921 * If we are stealing a relatively large buddy page, it is likely there will
1922 * be more free pages in the pageblock, so try to steal them all. For
1923 * reclaimable and unmovable allocations, we steal regardless of page size,
1924 * as fragmentation caused by those allocations polluting movable pageblocks
1925 * is worse than movable allocations stealing from unmovable and reclaimable
1926 * pageblocks.
1928 static bool can_steal_fallback(unsigned int order, int start_mt)
1931 * Leaving this order check is intended, although there is
1932 * relaxed order check in next check. The reason is that
1933 * we can actually steal whole pageblock if this condition met,
1934 * but, below check doesn't guarantee it and that is just heuristic
1935 * so could be changed anytime.
1937 if (order >= pageblock_order)
1938 return true;
1940 if (order >= pageblock_order / 2 ||
1941 start_mt == MIGRATE_RECLAIMABLE ||
1942 start_mt == MIGRATE_UNMOVABLE ||
1943 page_group_by_mobility_disabled)
1944 return true;
1946 return false;
1950 * This function implements actual steal behaviour. If order is large enough,
1951 * we can steal whole pageblock. If not, we first move freepages in this
1952 * pageblock and check whether half of pages are moved or not. If half of
1953 * pages are moved, we can change migratetype of pageblock and permanently
1954 * use it's pages as requested migratetype in the future.
1956 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1957 int start_type)
1959 unsigned int current_order = page_order(page);
1960 int pages;
1962 /* Take ownership for orders >= pageblock_order */
1963 if (current_order >= pageblock_order) {
1964 change_pageblock_range(page, current_order, start_type);
1965 return;
1968 pages = move_freepages_block(zone, page, start_type);
1970 /* Claim the whole block if over half of it is free */
1971 if (pages >= (1 << (pageblock_order-1)) ||
1972 page_group_by_mobility_disabled)
1973 set_pageblock_migratetype(page, start_type);
1977 * Check whether there is a suitable fallback freepage with requested order.
1978 * If only_stealable is true, this function returns fallback_mt only if
1979 * we can steal other freepages all together. This would help to reduce
1980 * fragmentation due to mixed migratetype pages in one pageblock.
1982 int find_suitable_fallback(struct free_area *area, unsigned int order,
1983 int migratetype, bool only_stealable, bool *can_steal)
1985 int i;
1986 int fallback_mt;
1988 if (area->nr_free == 0)
1989 return -1;
1991 *can_steal = false;
1992 for (i = 0;; i++) {
1993 fallback_mt = fallbacks[migratetype][i];
1994 if (fallback_mt == MIGRATE_TYPES)
1995 break;
1997 if (list_empty(&area->free_list[fallback_mt]))
1998 continue;
2000 if (can_steal_fallback(order, migratetype))
2001 *can_steal = true;
2003 if (!only_stealable)
2004 return fallback_mt;
2006 if (*can_steal)
2007 return fallback_mt;
2010 return -1;
2014 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2015 * there are no empty page blocks that contain a page with a suitable order
2017 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2018 unsigned int alloc_order)
2020 int mt;
2021 unsigned long max_managed, flags;
2024 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2025 * Check is race-prone but harmless.
2027 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2028 if (zone->nr_reserved_highatomic >= max_managed)
2029 return;
2031 spin_lock_irqsave(&zone->lock, flags);
2033 /* Recheck the nr_reserved_highatomic limit under the lock */
2034 if (zone->nr_reserved_highatomic >= max_managed)
2035 goto out_unlock;
2037 /* Yoink! */
2038 mt = get_pageblock_migratetype(page);
2039 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2040 && !is_migrate_cma(mt)) {
2041 zone->nr_reserved_highatomic += pageblock_nr_pages;
2042 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2043 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2046 out_unlock:
2047 spin_unlock_irqrestore(&zone->lock, flags);
2051 * Used when an allocation is about to fail under memory pressure. This
2052 * potentially hurts the reliability of high-order allocations when under
2053 * intense memory pressure but failed atomic allocations should be easier
2054 * to recover from than an OOM.
2056 * If @force is true, try to unreserve a pageblock even though highatomic
2057 * pageblock is exhausted.
2059 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2060 bool force)
2062 struct zonelist *zonelist = ac->zonelist;
2063 unsigned long flags;
2064 struct zoneref *z;
2065 struct zone *zone;
2066 struct page *page;
2067 int order;
2068 bool ret;
2070 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2071 ac->nodemask) {
2073 * Preserve at least one pageblock unless memory pressure
2074 * is really high.
2076 if (!force && zone->nr_reserved_highatomic <=
2077 pageblock_nr_pages)
2078 continue;
2080 spin_lock_irqsave(&zone->lock, flags);
2081 for (order = 0; order < MAX_ORDER; order++) {
2082 struct free_area *area = &(zone->free_area[order]);
2084 page = list_first_entry_or_null(
2085 &area->free_list[MIGRATE_HIGHATOMIC],
2086 struct page, lru);
2087 if (!page)
2088 continue;
2091 * In page freeing path, migratetype change is racy so
2092 * we can counter several free pages in a pageblock
2093 * in this loop althoug we changed the pageblock type
2094 * from highatomic to ac->migratetype. So we should
2095 * adjust the count once.
2097 if (is_migrate_highatomic_page(page)) {
2099 * It should never happen but changes to
2100 * locking could inadvertently allow a per-cpu
2101 * drain to add pages to MIGRATE_HIGHATOMIC
2102 * while unreserving so be safe and watch for
2103 * underflows.
2105 zone->nr_reserved_highatomic -= min(
2106 pageblock_nr_pages,
2107 zone->nr_reserved_highatomic);
2111 * Convert to ac->migratetype and avoid the normal
2112 * pageblock stealing heuristics. Minimally, the caller
2113 * is doing the work and needs the pages. More
2114 * importantly, if the block was always converted to
2115 * MIGRATE_UNMOVABLE or another type then the number
2116 * of pageblocks that cannot be completely freed
2117 * may increase.
2119 set_pageblock_migratetype(page, ac->migratetype);
2120 ret = move_freepages_block(zone, page, ac->migratetype);
2121 if (ret) {
2122 spin_unlock_irqrestore(&zone->lock, flags);
2123 return ret;
2126 spin_unlock_irqrestore(&zone->lock, flags);
2129 return false;
2132 /* Remove an element from the buddy allocator from the fallback list */
2133 static inline struct page *
2134 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2136 struct free_area *area;
2137 unsigned int current_order;
2138 struct page *page;
2139 int fallback_mt;
2140 bool can_steal;
2142 /* Find the largest possible block of pages in the other list */
2143 for (current_order = MAX_ORDER-1;
2144 current_order >= order && current_order <= MAX_ORDER-1;
2145 --current_order) {
2146 area = &(zone->free_area[current_order]);
2147 fallback_mt = find_suitable_fallback(area, current_order,
2148 start_migratetype, false, &can_steal);
2149 if (fallback_mt == -1)
2150 continue;
2152 page = list_first_entry(&area->free_list[fallback_mt],
2153 struct page, lru);
2154 if (can_steal && !is_migrate_highatomic_page(page))
2155 steal_suitable_fallback(zone, page, start_migratetype);
2157 /* Remove the page from the freelists */
2158 area->nr_free--;
2159 list_del(&page->lru);
2160 rmv_page_order(page);
2162 expand(zone, page, order, current_order, area,
2163 start_migratetype);
2165 * The pcppage_migratetype may differ from pageblock's
2166 * migratetype depending on the decisions in
2167 * find_suitable_fallback(). This is OK as long as it does not
2168 * differ for MIGRATE_CMA pageblocks. Those can be used as
2169 * fallback only via special __rmqueue_cma_fallback() function
2171 set_pcppage_migratetype(page, start_migratetype);
2173 trace_mm_page_alloc_extfrag(page, order, current_order,
2174 start_migratetype, fallback_mt);
2176 return page;
2179 return NULL;
2183 * Do the hard work of removing an element from the buddy allocator.
2184 * Call me with the zone->lock already held.
2186 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2187 int migratetype)
2189 struct page *page;
2191 page = __rmqueue_smallest(zone, order, migratetype);
2192 if (unlikely(!page)) {
2193 if (migratetype == MIGRATE_MOVABLE)
2194 page = __rmqueue_cma_fallback(zone, order);
2196 if (!page)
2197 page = __rmqueue_fallback(zone, order, migratetype);
2200 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2201 return page;
2205 * Obtain a specified number of elements from the buddy allocator, all under
2206 * a single hold of the lock, for efficiency. Add them to the supplied list.
2207 * Returns the number of new pages which were placed at *list.
2209 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2210 unsigned long count, struct list_head *list,
2211 int migratetype, bool cold)
2213 int i, alloced = 0;
2215 spin_lock(&zone->lock);
2216 for (i = 0; i < count; ++i) {
2217 struct page *page = __rmqueue(zone, order, migratetype);
2218 if (unlikely(page == NULL))
2219 break;
2221 if (unlikely(check_pcp_refill(page)))
2222 continue;
2225 * Split buddy pages returned by expand() are received here
2226 * in physical page order. The page is added to the callers and
2227 * list and the list head then moves forward. From the callers
2228 * perspective, the linked list is ordered by page number in
2229 * some conditions. This is useful for IO devices that can
2230 * merge IO requests if the physical pages are ordered
2231 * properly.
2233 if (likely(!cold))
2234 list_add(&page->lru, list);
2235 else
2236 list_add_tail(&page->lru, list);
2237 list = &page->lru;
2238 alloced++;
2239 if (is_migrate_cma(get_pcppage_migratetype(page)))
2240 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2241 -(1 << order));
2245 * i pages were removed from the buddy list even if some leak due
2246 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2247 * on i. Do not confuse with 'alloced' which is the number of
2248 * pages added to the pcp list.
2250 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2251 spin_unlock(&zone->lock);
2252 return alloced;
2255 #ifdef CONFIG_NUMA
2257 * Called from the vmstat counter updater to drain pagesets of this
2258 * currently executing processor on remote nodes after they have
2259 * expired.
2261 * Note that this function must be called with the thread pinned to
2262 * a single processor.
2264 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2266 unsigned long flags;
2267 int to_drain, batch;
2269 local_irq_save(flags);
2270 batch = READ_ONCE(pcp->batch);
2271 to_drain = min(pcp->count, batch);
2272 if (to_drain > 0) {
2273 free_pcppages_bulk(zone, to_drain, pcp);
2274 pcp->count -= to_drain;
2276 local_irq_restore(flags);
2278 #endif
2281 * Drain pcplists of the indicated processor and zone.
2283 * The processor must either be the current processor and the
2284 * thread pinned to the current processor or a processor that
2285 * is not online.
2287 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2289 unsigned long flags;
2290 struct per_cpu_pageset *pset;
2291 struct per_cpu_pages *pcp;
2293 local_irq_save(flags);
2294 pset = per_cpu_ptr(zone->pageset, cpu);
2296 pcp = &pset->pcp;
2297 if (pcp->count) {
2298 free_pcppages_bulk(zone, pcp->count, pcp);
2299 pcp->count = 0;
2301 local_irq_restore(flags);
2305 * Drain pcplists of all zones on the indicated processor.
2307 * The processor must either be the current processor and the
2308 * thread pinned to the current processor or a processor that
2309 * is not online.
2311 static void drain_pages(unsigned int cpu)
2313 struct zone *zone;
2315 for_each_populated_zone(zone) {
2316 drain_pages_zone(cpu, zone);
2321 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2323 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2324 * the single zone's pages.
2326 void drain_local_pages(struct zone *zone)
2328 int cpu = smp_processor_id();
2330 if (zone)
2331 drain_pages_zone(cpu, zone);
2332 else
2333 drain_pages(cpu);
2336 static void drain_local_pages_wq(struct work_struct *work)
2339 * drain_all_pages doesn't use proper cpu hotplug protection so
2340 * we can race with cpu offline when the WQ can move this from
2341 * a cpu pinned worker to an unbound one. We can operate on a different
2342 * cpu which is allright but we also have to make sure to not move to
2343 * a different one.
2345 preempt_disable();
2346 drain_local_pages(NULL);
2347 preempt_enable();
2351 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2353 * When zone parameter is non-NULL, spill just the single zone's pages.
2355 * Note that this can be extremely slow as the draining happens in a workqueue.
2357 void drain_all_pages(struct zone *zone)
2359 int cpu;
2362 * Allocate in the BSS so we wont require allocation in
2363 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2365 static cpumask_t cpus_with_pcps;
2368 * Make sure nobody triggers this path before mm_percpu_wq is fully
2369 * initialized.
2371 if (WARN_ON_ONCE(!mm_percpu_wq))
2372 return;
2374 /* Workqueues cannot recurse */
2375 if (current->flags & PF_WQ_WORKER)
2376 return;
2379 * Do not drain if one is already in progress unless it's specific to
2380 * a zone. Such callers are primarily CMA and memory hotplug and need
2381 * the drain to be complete when the call returns.
2383 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2384 if (!zone)
2385 return;
2386 mutex_lock(&pcpu_drain_mutex);
2390 * We don't care about racing with CPU hotplug event
2391 * as offline notification will cause the notified
2392 * cpu to drain that CPU pcps and on_each_cpu_mask
2393 * disables preemption as part of its processing
2395 for_each_online_cpu(cpu) {
2396 struct per_cpu_pageset *pcp;
2397 struct zone *z;
2398 bool has_pcps = false;
2400 if (zone) {
2401 pcp = per_cpu_ptr(zone->pageset, cpu);
2402 if (pcp->pcp.count)
2403 has_pcps = true;
2404 } else {
2405 for_each_populated_zone(z) {
2406 pcp = per_cpu_ptr(z->pageset, cpu);
2407 if (pcp->pcp.count) {
2408 has_pcps = true;
2409 break;
2414 if (has_pcps)
2415 cpumask_set_cpu(cpu, &cpus_with_pcps);
2416 else
2417 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2420 for_each_cpu(cpu, &cpus_with_pcps) {
2421 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2422 INIT_WORK(work, drain_local_pages_wq);
2423 queue_work_on(cpu, mm_percpu_wq, work);
2425 for_each_cpu(cpu, &cpus_with_pcps)
2426 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2428 mutex_unlock(&pcpu_drain_mutex);
2431 #ifdef CONFIG_HIBERNATION
2433 void mark_free_pages(struct zone *zone)
2435 unsigned long pfn, max_zone_pfn;
2436 unsigned long flags;
2437 unsigned int order, t;
2438 struct page *page;
2440 if (zone_is_empty(zone))
2441 return;
2443 spin_lock_irqsave(&zone->lock, flags);
2445 max_zone_pfn = zone_end_pfn(zone);
2446 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2447 if (pfn_valid(pfn)) {
2448 page = pfn_to_page(pfn);
2450 if (page_zone(page) != zone)
2451 continue;
2453 if (!swsusp_page_is_forbidden(page))
2454 swsusp_unset_page_free(page);
2457 for_each_migratetype_order(order, t) {
2458 list_for_each_entry(page,
2459 &zone->free_area[order].free_list[t], lru) {
2460 unsigned long i;
2462 pfn = page_to_pfn(page);
2463 for (i = 0; i < (1UL << order); i++)
2464 swsusp_set_page_free(pfn_to_page(pfn + i));
2467 spin_unlock_irqrestore(&zone->lock, flags);
2469 #endif /* CONFIG_PM */
2472 * Free a 0-order page
2473 * cold == true ? free a cold page : free a hot page
2475 void free_hot_cold_page(struct page *page, bool cold)
2477 struct zone *zone = page_zone(page);
2478 struct per_cpu_pages *pcp;
2479 unsigned long flags;
2480 unsigned long pfn = page_to_pfn(page);
2481 int migratetype;
2483 if (!free_pcp_prepare(page))
2484 return;
2486 migratetype = get_pfnblock_migratetype(page, pfn);
2487 set_pcppage_migratetype(page, migratetype);
2488 local_irq_save(flags);
2489 __count_vm_event(PGFREE);
2492 * We only track unmovable, reclaimable and movable on pcp lists.
2493 * Free ISOLATE pages back to the allocator because they are being
2494 * offlined but treat HIGHATOMIC as movable pages so we can get those
2495 * areas back if necessary. Otherwise, we may have to free
2496 * excessively into the page allocator
2498 if (migratetype >= MIGRATE_PCPTYPES) {
2499 if (unlikely(is_migrate_isolate(migratetype))) {
2500 free_one_page(zone, page, pfn, 0, migratetype);
2501 goto out;
2503 migratetype = MIGRATE_MOVABLE;
2506 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2507 if (!cold)
2508 list_add(&page->lru, &pcp->lists[migratetype]);
2509 else
2510 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2511 pcp->count++;
2512 if (pcp->count >= pcp->high) {
2513 unsigned long batch = READ_ONCE(pcp->batch);
2514 free_pcppages_bulk(zone, batch, pcp);
2515 pcp->count -= batch;
2518 out:
2519 local_irq_restore(flags);
2523 * Free a list of 0-order pages
2525 void free_hot_cold_page_list(struct list_head *list, bool cold)
2527 struct page *page, *next;
2529 list_for_each_entry_safe(page, next, list, lru) {
2530 trace_mm_page_free_batched(page, cold);
2531 free_hot_cold_page(page, cold);
2536 * split_page takes a non-compound higher-order page, and splits it into
2537 * n (1<<order) sub-pages: page[0..n]
2538 * Each sub-page must be freed individually.
2540 * Note: this is probably too low level an operation for use in drivers.
2541 * Please consult with lkml before using this in your driver.
2543 void split_page(struct page *page, unsigned int order)
2545 int i;
2547 VM_BUG_ON_PAGE(PageCompound(page), page);
2548 VM_BUG_ON_PAGE(!page_count(page), page);
2550 #ifdef CONFIG_KMEMCHECK
2552 * Split shadow pages too, because free(page[0]) would
2553 * otherwise free the whole shadow.
2555 if (kmemcheck_page_is_tracked(page))
2556 split_page(virt_to_page(page[0].shadow), order);
2557 #endif
2559 for (i = 1; i < (1 << order); i++)
2560 set_page_refcounted(page + i);
2561 split_page_owner(page, order);
2563 EXPORT_SYMBOL_GPL(split_page);
2565 int __isolate_free_page(struct page *page, unsigned int order)
2567 unsigned long watermark;
2568 struct zone *zone;
2569 int mt;
2571 BUG_ON(!PageBuddy(page));
2573 zone = page_zone(page);
2574 mt = get_pageblock_migratetype(page);
2576 if (!is_migrate_isolate(mt)) {
2578 * Obey watermarks as if the page was being allocated. We can
2579 * emulate a high-order watermark check with a raised order-0
2580 * watermark, because we already know our high-order page
2581 * exists.
2583 watermark = min_wmark_pages(zone) + (1UL << order);
2584 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2585 return 0;
2587 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2590 /* Remove page from free list */
2591 list_del(&page->lru);
2592 zone->free_area[order].nr_free--;
2593 rmv_page_order(page);
2596 * Set the pageblock if the isolated page is at least half of a
2597 * pageblock
2599 if (order >= pageblock_order - 1) {
2600 struct page *endpage = page + (1 << order) - 1;
2601 for (; page < endpage; page += pageblock_nr_pages) {
2602 int mt = get_pageblock_migratetype(page);
2603 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2604 && !is_migrate_highatomic(mt))
2605 set_pageblock_migratetype(page,
2606 MIGRATE_MOVABLE);
2611 return 1UL << order;
2615 * Update NUMA hit/miss statistics
2617 * Must be called with interrupts disabled.
2619 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2621 #ifdef CONFIG_NUMA
2622 enum zone_stat_item local_stat = NUMA_LOCAL;
2624 if (z->node != numa_node_id())
2625 local_stat = NUMA_OTHER;
2627 if (z->node == preferred_zone->node)
2628 __inc_zone_state(z, NUMA_HIT);
2629 else {
2630 __inc_zone_state(z, NUMA_MISS);
2631 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2633 __inc_zone_state(z, local_stat);
2634 #endif
2637 /* Remove page from the per-cpu list, caller must protect the list */
2638 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2639 bool cold, struct per_cpu_pages *pcp,
2640 struct list_head *list)
2642 struct page *page;
2644 do {
2645 if (list_empty(list)) {
2646 pcp->count += rmqueue_bulk(zone, 0,
2647 pcp->batch, list,
2648 migratetype, cold);
2649 if (unlikely(list_empty(list)))
2650 return NULL;
2653 if (cold)
2654 page = list_last_entry(list, struct page, lru);
2655 else
2656 page = list_first_entry(list, struct page, lru);
2658 list_del(&page->lru);
2659 pcp->count--;
2660 } while (check_new_pcp(page));
2662 return page;
2665 /* Lock and remove page from the per-cpu list */
2666 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2667 struct zone *zone, unsigned int order,
2668 gfp_t gfp_flags, int migratetype)
2670 struct per_cpu_pages *pcp;
2671 struct list_head *list;
2672 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2673 struct page *page;
2674 unsigned long flags;
2676 local_irq_save(flags);
2677 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2678 list = &pcp->lists[migratetype];
2679 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2680 if (page) {
2681 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2682 zone_statistics(preferred_zone, zone);
2684 local_irq_restore(flags);
2685 return page;
2689 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2691 static inline
2692 struct page *rmqueue(struct zone *preferred_zone,
2693 struct zone *zone, unsigned int order,
2694 gfp_t gfp_flags, unsigned int alloc_flags,
2695 int migratetype)
2697 unsigned long flags;
2698 struct page *page;
2700 if (likely(order == 0)) {
2701 page = rmqueue_pcplist(preferred_zone, zone, order,
2702 gfp_flags, migratetype);
2703 goto out;
2707 * We most definitely don't want callers attempting to
2708 * allocate greater than order-1 page units with __GFP_NOFAIL.
2710 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2711 spin_lock_irqsave(&zone->lock, flags);
2713 do {
2714 page = NULL;
2715 if (alloc_flags & ALLOC_HARDER) {
2716 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2717 if (page)
2718 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2720 if (!page)
2721 page = __rmqueue(zone, order, migratetype);
2722 } while (page && check_new_pages(page, order));
2723 spin_unlock(&zone->lock);
2724 if (!page)
2725 goto failed;
2726 __mod_zone_freepage_state(zone, -(1 << order),
2727 get_pcppage_migratetype(page));
2729 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2730 zone_statistics(preferred_zone, zone);
2731 local_irq_restore(flags);
2733 out:
2734 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2735 return page;
2737 failed:
2738 local_irq_restore(flags);
2739 return NULL;
2742 #ifdef CONFIG_FAIL_PAGE_ALLOC
2744 static struct {
2745 struct fault_attr attr;
2747 bool ignore_gfp_highmem;
2748 bool ignore_gfp_reclaim;
2749 u32 min_order;
2750 } fail_page_alloc = {
2751 .attr = FAULT_ATTR_INITIALIZER,
2752 .ignore_gfp_reclaim = true,
2753 .ignore_gfp_highmem = true,
2754 .min_order = 1,
2757 static int __init setup_fail_page_alloc(char *str)
2759 return setup_fault_attr(&fail_page_alloc.attr, str);
2761 __setup("fail_page_alloc=", setup_fail_page_alloc);
2763 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2765 if (order < fail_page_alloc.min_order)
2766 return false;
2767 if (gfp_mask & __GFP_NOFAIL)
2768 return false;
2769 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2770 return false;
2771 if (fail_page_alloc.ignore_gfp_reclaim &&
2772 (gfp_mask & __GFP_DIRECT_RECLAIM))
2773 return false;
2775 return should_fail(&fail_page_alloc.attr, 1 << order);
2778 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2780 static int __init fail_page_alloc_debugfs(void)
2782 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2783 struct dentry *dir;
2785 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2786 &fail_page_alloc.attr);
2787 if (IS_ERR(dir))
2788 return PTR_ERR(dir);
2790 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2791 &fail_page_alloc.ignore_gfp_reclaim))
2792 goto fail;
2793 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2794 &fail_page_alloc.ignore_gfp_highmem))
2795 goto fail;
2796 if (!debugfs_create_u32("min-order", mode, dir,
2797 &fail_page_alloc.min_order))
2798 goto fail;
2800 return 0;
2801 fail:
2802 debugfs_remove_recursive(dir);
2804 return -ENOMEM;
2807 late_initcall(fail_page_alloc_debugfs);
2809 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2811 #else /* CONFIG_FAIL_PAGE_ALLOC */
2813 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2815 return false;
2818 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2821 * Return true if free base pages are above 'mark'. For high-order checks it
2822 * will return true of the order-0 watermark is reached and there is at least
2823 * one free page of a suitable size. Checking now avoids taking the zone lock
2824 * to check in the allocation paths if no pages are free.
2826 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2827 int classzone_idx, unsigned int alloc_flags,
2828 long free_pages)
2830 long min = mark;
2831 int o;
2832 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2834 /* free_pages may go negative - that's OK */
2835 free_pages -= (1 << order) - 1;
2837 if (alloc_flags & ALLOC_HIGH)
2838 min -= min / 2;
2841 * If the caller does not have rights to ALLOC_HARDER then subtract
2842 * the high-atomic reserves. This will over-estimate the size of the
2843 * atomic reserve but it avoids a search.
2845 if (likely(!alloc_harder))
2846 free_pages -= z->nr_reserved_highatomic;
2847 else
2848 min -= min / 4;
2850 #ifdef CONFIG_CMA
2851 /* If allocation can't use CMA areas don't use free CMA pages */
2852 if (!(alloc_flags & ALLOC_CMA))
2853 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2854 #endif
2857 * Check watermarks for an order-0 allocation request. If these
2858 * are not met, then a high-order request also cannot go ahead
2859 * even if a suitable page happened to be free.
2861 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2862 return false;
2864 /* If this is an order-0 request then the watermark is fine */
2865 if (!order)
2866 return true;
2868 /* For a high-order request, check at least one suitable page is free */
2869 for (o = order; o < MAX_ORDER; o++) {
2870 struct free_area *area = &z->free_area[o];
2871 int mt;
2873 if (!area->nr_free)
2874 continue;
2876 if (alloc_harder)
2877 return true;
2879 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2880 if (!list_empty(&area->free_list[mt]))
2881 return true;
2884 #ifdef CONFIG_CMA
2885 if ((alloc_flags & ALLOC_CMA) &&
2886 !list_empty(&area->free_list[MIGRATE_CMA])) {
2887 return true;
2889 #endif
2891 return false;
2894 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2895 int classzone_idx, unsigned int alloc_flags)
2897 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2898 zone_page_state(z, NR_FREE_PAGES));
2901 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2902 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2904 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2905 long cma_pages = 0;
2907 #ifdef CONFIG_CMA
2908 /* If allocation can't use CMA areas don't use free CMA pages */
2909 if (!(alloc_flags & ALLOC_CMA))
2910 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2911 #endif
2914 * Fast check for order-0 only. If this fails then the reserves
2915 * need to be calculated. There is a corner case where the check
2916 * passes but only the high-order atomic reserve are free. If
2917 * the caller is !atomic then it'll uselessly search the free
2918 * list. That corner case is then slower but it is harmless.
2920 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2921 return true;
2923 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2924 free_pages);
2927 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2928 unsigned long mark, int classzone_idx)
2930 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2932 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2933 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2935 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2936 free_pages);
2939 #ifdef CONFIG_NUMA
2940 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2942 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
2943 RECLAIM_DISTANCE;
2945 #else /* CONFIG_NUMA */
2946 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2948 return true;
2950 #endif /* CONFIG_NUMA */
2953 * get_page_from_freelist goes through the zonelist trying to allocate
2954 * a page.
2956 static struct page *
2957 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2958 const struct alloc_context *ac)
2960 struct zoneref *z = ac->preferred_zoneref;
2961 struct zone *zone;
2962 struct pglist_data *last_pgdat_dirty_limit = NULL;
2965 * Scan zonelist, looking for a zone with enough free.
2966 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2968 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2969 ac->nodemask) {
2970 struct page *page;
2971 unsigned long mark;
2973 if (cpusets_enabled() &&
2974 (alloc_flags & ALLOC_CPUSET) &&
2975 !__cpuset_zone_allowed(zone, gfp_mask))
2976 continue;
2978 * When allocating a page cache page for writing, we
2979 * want to get it from a node that is within its dirty
2980 * limit, such that no single node holds more than its
2981 * proportional share of globally allowed dirty pages.
2982 * The dirty limits take into account the node's
2983 * lowmem reserves and high watermark so that kswapd
2984 * should be able to balance it without having to
2985 * write pages from its LRU list.
2987 * XXX: For now, allow allocations to potentially
2988 * exceed the per-node dirty limit in the slowpath
2989 * (spread_dirty_pages unset) before going into reclaim,
2990 * which is important when on a NUMA setup the allowed
2991 * nodes are together not big enough to reach the
2992 * global limit. The proper fix for these situations
2993 * will require awareness of nodes in the
2994 * dirty-throttling and the flusher threads.
2996 if (ac->spread_dirty_pages) {
2997 if (last_pgdat_dirty_limit == zone->zone_pgdat)
2998 continue;
3000 if (!node_dirty_ok(zone->zone_pgdat)) {
3001 last_pgdat_dirty_limit = zone->zone_pgdat;
3002 continue;
3006 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3007 if (!zone_watermark_fast(zone, order, mark,
3008 ac_classzone_idx(ac), alloc_flags)) {
3009 int ret;
3011 /* Checked here to keep the fast path fast */
3012 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3013 if (alloc_flags & ALLOC_NO_WATERMARKS)
3014 goto try_this_zone;
3016 if (node_reclaim_mode == 0 ||
3017 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3018 continue;
3020 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3021 switch (ret) {
3022 case NODE_RECLAIM_NOSCAN:
3023 /* did not scan */
3024 continue;
3025 case NODE_RECLAIM_FULL:
3026 /* scanned but unreclaimable */
3027 continue;
3028 default:
3029 /* did we reclaim enough */
3030 if (zone_watermark_ok(zone, order, mark,
3031 ac_classzone_idx(ac), alloc_flags))
3032 goto try_this_zone;
3034 continue;
3038 try_this_zone:
3039 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3040 gfp_mask, alloc_flags, ac->migratetype);
3041 if (page) {
3042 prep_new_page(page, order, gfp_mask, alloc_flags);
3045 * If this is a high-order atomic allocation then check
3046 * if the pageblock should be reserved for the future
3048 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3049 reserve_highatomic_pageblock(page, zone, order);
3051 return page;
3055 return NULL;
3059 * Large machines with many possible nodes should not always dump per-node
3060 * meminfo in irq context.
3062 static inline bool should_suppress_show_mem(void)
3064 bool ret = false;
3066 #if NODES_SHIFT > 8
3067 ret = in_interrupt();
3068 #endif
3069 return ret;
3072 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3074 unsigned int filter = SHOW_MEM_FILTER_NODES;
3075 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3077 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3078 return;
3081 * This documents exceptions given to allocations in certain
3082 * contexts that are allowed to allocate outside current's set
3083 * of allowed nodes.
3085 if (!(gfp_mask & __GFP_NOMEMALLOC))
3086 if (test_thread_flag(TIF_MEMDIE) ||
3087 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3088 filter &= ~SHOW_MEM_FILTER_NODES;
3089 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3090 filter &= ~SHOW_MEM_FILTER_NODES;
3092 show_mem(filter, nodemask);
3095 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3097 struct va_format vaf;
3098 va_list args;
3099 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3100 DEFAULT_RATELIMIT_BURST);
3102 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3103 debug_guardpage_minorder() > 0)
3104 return;
3106 pr_warn("%s: ", current->comm);
3108 va_start(args, fmt);
3109 vaf.fmt = fmt;
3110 vaf.va = &args;
3111 pr_cont("%pV", &vaf);
3112 va_end(args);
3114 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3115 if (nodemask)
3116 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3117 else
3118 pr_cont("(null)\n");
3120 cpuset_print_current_mems_allowed();
3122 dump_stack();
3123 warn_alloc_show_mem(gfp_mask, nodemask);
3126 static inline struct page *
3127 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3128 unsigned int alloc_flags,
3129 const struct alloc_context *ac)
3131 struct page *page;
3133 page = get_page_from_freelist(gfp_mask, order,
3134 alloc_flags|ALLOC_CPUSET, ac);
3136 * fallback to ignore cpuset restriction if our nodes
3137 * are depleted
3139 if (!page)
3140 page = get_page_from_freelist(gfp_mask, order,
3141 alloc_flags, ac);
3143 return page;
3146 static inline struct page *
3147 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3148 const struct alloc_context *ac, unsigned long *did_some_progress)
3150 struct oom_control oc = {
3151 .zonelist = ac->zonelist,
3152 .nodemask = ac->nodemask,
3153 .memcg = NULL,
3154 .gfp_mask = gfp_mask,
3155 .order = order,
3157 struct page *page;
3159 *did_some_progress = 0;
3162 * Acquire the oom lock. If that fails, somebody else is
3163 * making progress for us.
3165 if (!mutex_trylock(&oom_lock)) {
3166 *did_some_progress = 1;
3167 schedule_timeout_uninterruptible(1);
3168 return NULL;
3172 * Go through the zonelist yet one more time, keep very high watermark
3173 * here, this is only to catch a parallel oom killing, we must fail if
3174 * we're still under heavy pressure.
3176 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3177 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3178 if (page)
3179 goto out;
3181 /* Coredumps can quickly deplete all memory reserves */
3182 if (current->flags & PF_DUMPCORE)
3183 goto out;
3184 /* The OOM killer will not help higher order allocs */
3185 if (order > PAGE_ALLOC_COSTLY_ORDER)
3186 goto out;
3187 /* The OOM killer does not needlessly kill tasks for lowmem */
3188 if (ac->high_zoneidx < ZONE_NORMAL)
3189 goto out;
3190 if (pm_suspended_storage())
3191 goto out;
3193 * XXX: GFP_NOFS allocations should rather fail than rely on
3194 * other request to make a forward progress.
3195 * We are in an unfortunate situation where out_of_memory cannot
3196 * do much for this context but let's try it to at least get
3197 * access to memory reserved if the current task is killed (see
3198 * out_of_memory). Once filesystems are ready to handle allocation
3199 * failures more gracefully we should just bail out here.
3202 /* The OOM killer may not free memory on a specific node */
3203 if (gfp_mask & __GFP_THISNODE)
3204 goto out;
3206 /* Exhausted what can be done so it's blamo time */
3207 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3208 *did_some_progress = 1;
3211 * Help non-failing allocations by giving them access to memory
3212 * reserves
3214 if (gfp_mask & __GFP_NOFAIL)
3215 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3216 ALLOC_NO_WATERMARKS, ac);
3218 out:
3219 mutex_unlock(&oom_lock);
3220 return page;
3224 * Maximum number of compaction retries wit a progress before OOM
3225 * killer is consider as the only way to move forward.
3227 #define MAX_COMPACT_RETRIES 16
3229 #ifdef CONFIG_COMPACTION
3230 /* Try memory compaction for high-order allocations before reclaim */
3231 static struct page *
3232 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3233 unsigned int alloc_flags, const struct alloc_context *ac,
3234 enum compact_priority prio, enum compact_result *compact_result)
3236 struct page *page;
3238 if (!order)
3239 return NULL;
3241 current->flags |= PF_MEMALLOC;
3242 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3243 prio);
3244 current->flags &= ~PF_MEMALLOC;
3246 if (*compact_result <= COMPACT_INACTIVE)
3247 return NULL;
3250 * At least in one zone compaction wasn't deferred or skipped, so let's
3251 * count a compaction stall
3253 count_vm_event(COMPACTSTALL);
3255 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3257 if (page) {
3258 struct zone *zone = page_zone(page);
3260 zone->compact_blockskip_flush = false;
3261 compaction_defer_reset(zone, order, true);
3262 count_vm_event(COMPACTSUCCESS);
3263 return page;
3267 * It's bad if compaction run occurs and fails. The most likely reason
3268 * is that pages exist, but not enough to satisfy watermarks.
3270 count_vm_event(COMPACTFAIL);
3272 cond_resched();
3274 return NULL;
3277 static inline bool
3278 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3279 enum compact_result compact_result,
3280 enum compact_priority *compact_priority,
3281 int *compaction_retries)
3283 int max_retries = MAX_COMPACT_RETRIES;
3284 int min_priority;
3285 bool ret = false;
3286 int retries = *compaction_retries;
3287 enum compact_priority priority = *compact_priority;
3289 if (!order)
3290 return false;
3292 if (compaction_made_progress(compact_result))
3293 (*compaction_retries)++;
3296 * compaction considers all the zone as desperately out of memory
3297 * so it doesn't really make much sense to retry except when the
3298 * failure could be caused by insufficient priority
3300 if (compaction_failed(compact_result))
3301 goto check_priority;
3304 * make sure the compaction wasn't deferred or didn't bail out early
3305 * due to locks contention before we declare that we should give up.
3306 * But do not retry if the given zonelist is not suitable for
3307 * compaction.
3309 if (compaction_withdrawn(compact_result)) {
3310 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3311 goto out;
3315 * !costly requests are much more important than __GFP_REPEAT
3316 * costly ones because they are de facto nofail and invoke OOM
3317 * killer to move on while costly can fail and users are ready
3318 * to cope with that. 1/4 retries is rather arbitrary but we
3319 * would need much more detailed feedback from compaction to
3320 * make a better decision.
3322 if (order > PAGE_ALLOC_COSTLY_ORDER)
3323 max_retries /= 4;
3324 if (*compaction_retries <= max_retries) {
3325 ret = true;
3326 goto out;
3330 * Make sure there are attempts at the highest priority if we exhausted
3331 * all retries or failed at the lower priorities.
3333 check_priority:
3334 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3335 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3337 if (*compact_priority > min_priority) {
3338 (*compact_priority)--;
3339 *compaction_retries = 0;
3340 ret = true;
3342 out:
3343 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3344 return ret;
3346 #else
3347 static inline struct page *
3348 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3349 unsigned int alloc_flags, const struct alloc_context *ac,
3350 enum compact_priority prio, enum compact_result *compact_result)
3352 *compact_result = COMPACT_SKIPPED;
3353 return NULL;
3356 static inline bool
3357 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3358 enum compact_result compact_result,
3359 enum compact_priority *compact_priority,
3360 int *compaction_retries)
3362 struct zone *zone;
3363 struct zoneref *z;
3365 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3366 return false;
3369 * There are setups with compaction disabled which would prefer to loop
3370 * inside the allocator rather than hit the oom killer prematurely.
3371 * Let's give them a good hope and keep retrying while the order-0
3372 * watermarks are OK.
3374 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3375 ac->nodemask) {
3376 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3377 ac_classzone_idx(ac), alloc_flags))
3378 return true;
3380 return false;
3382 #endif /* CONFIG_COMPACTION */
3384 /* Perform direct synchronous page reclaim */
3385 static int
3386 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3387 const struct alloc_context *ac)
3389 struct reclaim_state reclaim_state;
3390 int progress;
3392 cond_resched();
3394 /* We now go into synchronous reclaim */
3395 cpuset_memory_pressure_bump();
3396 current->flags |= PF_MEMALLOC;
3397 lockdep_set_current_reclaim_state(gfp_mask);
3398 reclaim_state.reclaimed_slab = 0;
3399 current->reclaim_state = &reclaim_state;
3401 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3402 ac->nodemask);
3404 current->reclaim_state = NULL;
3405 lockdep_clear_current_reclaim_state();
3406 current->flags &= ~PF_MEMALLOC;
3408 cond_resched();
3410 return progress;
3413 /* The really slow allocator path where we enter direct reclaim */
3414 static inline struct page *
3415 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3416 unsigned int alloc_flags, const struct alloc_context *ac,
3417 unsigned long *did_some_progress)
3419 struct page *page = NULL;
3420 bool drained = false;
3422 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3423 if (unlikely(!(*did_some_progress)))
3424 return NULL;
3426 retry:
3427 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3430 * If an allocation failed after direct reclaim, it could be because
3431 * pages are pinned on the per-cpu lists or in high alloc reserves.
3432 * Shrink them them and try again
3434 if (!page && !drained) {
3435 unreserve_highatomic_pageblock(ac, false);
3436 drain_all_pages(NULL);
3437 drained = true;
3438 goto retry;
3441 return page;
3444 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3446 struct zoneref *z;
3447 struct zone *zone;
3448 pg_data_t *last_pgdat = NULL;
3450 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3451 ac->high_zoneidx, ac->nodemask) {
3452 if (last_pgdat != zone->zone_pgdat)
3453 wakeup_kswapd(zone, order, ac->high_zoneidx);
3454 last_pgdat = zone->zone_pgdat;
3458 static inline unsigned int
3459 gfp_to_alloc_flags(gfp_t gfp_mask)
3461 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3463 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3464 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3467 * The caller may dip into page reserves a bit more if the caller
3468 * cannot run direct reclaim, or if the caller has realtime scheduling
3469 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3470 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3472 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3474 if (gfp_mask & __GFP_ATOMIC) {
3476 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3477 * if it can't schedule.
3479 if (!(gfp_mask & __GFP_NOMEMALLOC))
3480 alloc_flags |= ALLOC_HARDER;
3482 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3483 * comment for __cpuset_node_allowed().
3485 alloc_flags &= ~ALLOC_CPUSET;
3486 } else if (unlikely(rt_task(current)) && !in_interrupt())
3487 alloc_flags |= ALLOC_HARDER;
3489 #ifdef CONFIG_CMA
3490 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3491 alloc_flags |= ALLOC_CMA;
3492 #endif
3493 return alloc_flags;
3496 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3498 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3499 return false;
3501 if (gfp_mask & __GFP_MEMALLOC)
3502 return true;
3503 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3504 return true;
3505 if (!in_interrupt() &&
3506 ((current->flags & PF_MEMALLOC) ||
3507 unlikely(test_thread_flag(TIF_MEMDIE))))
3508 return true;
3510 return false;
3514 * Checks whether it makes sense to retry the reclaim to make a forward progress
3515 * for the given allocation request.
3517 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3518 * without success, or when we couldn't even meet the watermark if we
3519 * reclaimed all remaining pages on the LRU lists.
3521 * Returns true if a retry is viable or false to enter the oom path.
3523 static inline bool
3524 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3525 struct alloc_context *ac, int alloc_flags,
3526 bool did_some_progress, int *no_progress_loops)
3528 struct zone *zone;
3529 struct zoneref *z;
3532 * Costly allocations might have made a progress but this doesn't mean
3533 * their order will become available due to high fragmentation so
3534 * always increment the no progress counter for them
3536 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3537 *no_progress_loops = 0;
3538 else
3539 (*no_progress_loops)++;
3542 * Make sure we converge to OOM if we cannot make any progress
3543 * several times in the row.
3545 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3546 /* Before OOM, exhaust highatomic_reserve */
3547 return unreserve_highatomic_pageblock(ac, true);
3551 * Keep reclaiming pages while there is a chance this will lead
3552 * somewhere. If none of the target zones can satisfy our allocation
3553 * request even if all reclaimable pages are considered then we are
3554 * screwed and have to go OOM.
3556 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3557 ac->nodemask) {
3558 unsigned long available;
3559 unsigned long reclaimable;
3560 unsigned long min_wmark = min_wmark_pages(zone);
3561 bool wmark;
3563 available = reclaimable = zone_reclaimable_pages(zone);
3564 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3567 * Would the allocation succeed if we reclaimed all
3568 * reclaimable pages?
3570 wmark = __zone_watermark_ok(zone, order, min_wmark,
3571 ac_classzone_idx(ac), alloc_flags, available);
3572 trace_reclaim_retry_zone(z, order, reclaimable,
3573 available, min_wmark, *no_progress_loops, wmark);
3574 if (wmark) {
3576 * If we didn't make any progress and have a lot of
3577 * dirty + writeback pages then we should wait for
3578 * an IO to complete to slow down the reclaim and
3579 * prevent from pre mature OOM
3581 if (!did_some_progress) {
3582 unsigned long write_pending;
3584 write_pending = zone_page_state_snapshot(zone,
3585 NR_ZONE_WRITE_PENDING);
3587 if (2 * write_pending > reclaimable) {
3588 congestion_wait(BLK_RW_ASYNC, HZ/10);
3589 return true;
3594 * Memory allocation/reclaim might be called from a WQ
3595 * context and the current implementation of the WQ
3596 * concurrency control doesn't recognize that
3597 * a particular WQ is congested if the worker thread is
3598 * looping without ever sleeping. Therefore we have to
3599 * do a short sleep here rather than calling
3600 * cond_resched().
3602 if (current->flags & PF_WQ_WORKER)
3603 schedule_timeout_uninterruptible(1);
3604 else
3605 cond_resched();
3607 return true;
3611 return false;
3614 static inline struct page *
3615 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3616 struct alloc_context *ac)
3618 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3619 struct page *page = NULL;
3620 unsigned int alloc_flags;
3621 unsigned long did_some_progress;
3622 enum compact_priority compact_priority;
3623 enum compact_result compact_result;
3624 int compaction_retries;
3625 int no_progress_loops;
3626 unsigned long alloc_start = jiffies;
3627 unsigned int stall_timeout = 10 * HZ;
3628 unsigned int cpuset_mems_cookie;
3631 * In the slowpath, we sanity check order to avoid ever trying to
3632 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3633 * be using allocators in order of preference for an area that is
3634 * too large.
3636 if (order >= MAX_ORDER) {
3637 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3638 return NULL;
3642 * We also sanity check to catch abuse of atomic reserves being used by
3643 * callers that are not in atomic context.
3645 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3646 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3647 gfp_mask &= ~__GFP_ATOMIC;
3649 retry_cpuset:
3650 compaction_retries = 0;
3651 no_progress_loops = 0;
3652 compact_priority = DEF_COMPACT_PRIORITY;
3653 cpuset_mems_cookie = read_mems_allowed_begin();
3656 * The fast path uses conservative alloc_flags to succeed only until
3657 * kswapd needs to be woken up, and to avoid the cost of setting up
3658 * alloc_flags precisely. So we do that now.
3660 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3663 * We need to recalculate the starting point for the zonelist iterator
3664 * because we might have used different nodemask in the fast path, or
3665 * there was a cpuset modification and we are retrying - otherwise we
3666 * could end up iterating over non-eligible zones endlessly.
3668 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3669 ac->high_zoneidx, ac->nodemask);
3670 if (!ac->preferred_zoneref->zone)
3671 goto nopage;
3673 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3674 wake_all_kswapds(order, ac);
3677 * The adjusted alloc_flags might result in immediate success, so try
3678 * that first
3680 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3681 if (page)
3682 goto got_pg;
3685 * For costly allocations, try direct compaction first, as it's likely
3686 * that we have enough base pages and don't need to reclaim. Don't try
3687 * that for allocations that are allowed to ignore watermarks, as the
3688 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3690 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3691 !gfp_pfmemalloc_allowed(gfp_mask)) {
3692 page = __alloc_pages_direct_compact(gfp_mask, order,
3693 alloc_flags, ac,
3694 INIT_COMPACT_PRIORITY,
3695 &compact_result);
3696 if (page)
3697 goto got_pg;
3700 * Checks for costly allocations with __GFP_NORETRY, which
3701 * includes THP page fault allocations
3703 if (gfp_mask & __GFP_NORETRY) {
3705 * If compaction is deferred for high-order allocations,
3706 * it is because sync compaction recently failed. If
3707 * this is the case and the caller requested a THP
3708 * allocation, we do not want to heavily disrupt the
3709 * system, so we fail the allocation instead of entering
3710 * direct reclaim.
3712 if (compact_result == COMPACT_DEFERRED)
3713 goto nopage;
3716 * Looks like reclaim/compaction is worth trying, but
3717 * sync compaction could be very expensive, so keep
3718 * using async compaction.
3720 compact_priority = INIT_COMPACT_PRIORITY;
3724 retry:
3725 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3726 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3727 wake_all_kswapds(order, ac);
3729 if (gfp_pfmemalloc_allowed(gfp_mask))
3730 alloc_flags = ALLOC_NO_WATERMARKS;
3733 * Reset the zonelist iterators if memory policies can be ignored.
3734 * These allocations are high priority and system rather than user
3735 * orientated.
3737 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3738 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3739 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3740 ac->high_zoneidx, ac->nodemask);
3743 /* Attempt with potentially adjusted zonelist and alloc_flags */
3744 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3745 if (page)
3746 goto got_pg;
3748 /* Caller is not willing to reclaim, we can't balance anything */
3749 if (!can_direct_reclaim)
3750 goto nopage;
3752 /* Make sure we know about allocations which stall for too long */
3753 if (time_after(jiffies, alloc_start + stall_timeout)) {
3754 warn_alloc(gfp_mask, ac->nodemask,
3755 "page allocation stalls for %ums, order:%u",
3756 jiffies_to_msecs(jiffies-alloc_start), order);
3757 stall_timeout += 10 * HZ;
3760 /* Avoid recursion of direct reclaim */
3761 if (current->flags & PF_MEMALLOC)
3762 goto nopage;
3764 /* Try direct reclaim and then allocating */
3765 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3766 &did_some_progress);
3767 if (page)
3768 goto got_pg;
3770 /* Try direct compaction and then allocating */
3771 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3772 compact_priority, &compact_result);
3773 if (page)
3774 goto got_pg;
3776 /* Do not loop if specifically requested */
3777 if (gfp_mask & __GFP_NORETRY)
3778 goto nopage;
3781 * Do not retry costly high order allocations unless they are
3782 * __GFP_REPEAT
3784 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3785 goto nopage;
3787 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3788 did_some_progress > 0, &no_progress_loops))
3789 goto retry;
3792 * It doesn't make any sense to retry for the compaction if the order-0
3793 * reclaim is not able to make any progress because the current
3794 * implementation of the compaction depends on the sufficient amount
3795 * of free memory (see __compaction_suitable)
3797 if (did_some_progress > 0 &&
3798 should_compact_retry(ac, order, alloc_flags,
3799 compact_result, &compact_priority,
3800 &compaction_retries))
3801 goto retry;
3804 * It's possible we raced with cpuset update so the OOM would be
3805 * premature (see below the nopage: label for full explanation).
3807 if (read_mems_allowed_retry(cpuset_mems_cookie))
3808 goto retry_cpuset;
3810 /* Reclaim has failed us, start killing things */
3811 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3812 if (page)
3813 goto got_pg;
3815 /* Avoid allocations with no watermarks from looping endlessly */
3816 if (test_thread_flag(TIF_MEMDIE))
3817 goto nopage;
3819 /* Retry as long as the OOM killer is making progress */
3820 if (did_some_progress) {
3821 no_progress_loops = 0;
3822 goto retry;
3825 nopage:
3827 * When updating a task's mems_allowed or mempolicy nodemask, it is
3828 * possible to race with parallel threads in such a way that our
3829 * allocation can fail while the mask is being updated. If we are about
3830 * to fail, check if the cpuset changed during allocation and if so,
3831 * retry.
3833 if (read_mems_allowed_retry(cpuset_mems_cookie))
3834 goto retry_cpuset;
3837 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
3838 * we always retry
3840 if (gfp_mask & __GFP_NOFAIL) {
3842 * All existing users of the __GFP_NOFAIL are blockable, so warn
3843 * of any new users that actually require GFP_NOWAIT
3845 if (WARN_ON_ONCE(!can_direct_reclaim))
3846 goto fail;
3849 * PF_MEMALLOC request from this context is rather bizarre
3850 * because we cannot reclaim anything and only can loop waiting
3851 * for somebody to do a work for us
3853 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
3856 * non failing costly orders are a hard requirement which we
3857 * are not prepared for much so let's warn about these users
3858 * so that we can identify them and convert them to something
3859 * else.
3861 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
3864 * Help non-failing allocations by giving them access to memory
3865 * reserves but do not use ALLOC_NO_WATERMARKS because this
3866 * could deplete whole memory reserves which would just make
3867 * the situation worse
3869 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
3870 if (page)
3871 goto got_pg;
3873 cond_resched();
3874 goto retry;
3876 fail:
3877 warn_alloc(gfp_mask, ac->nodemask,
3878 "page allocation failure: order:%u", order);
3879 got_pg:
3880 return page;
3883 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
3884 struct zonelist *zonelist, nodemask_t *nodemask,
3885 struct alloc_context *ac, gfp_t *alloc_mask,
3886 unsigned int *alloc_flags)
3888 ac->high_zoneidx = gfp_zone(gfp_mask);
3889 ac->zonelist = zonelist;
3890 ac->nodemask = nodemask;
3891 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
3893 if (cpusets_enabled()) {
3894 *alloc_mask |= __GFP_HARDWALL;
3895 if (!ac->nodemask)
3896 ac->nodemask = &cpuset_current_mems_allowed;
3897 else
3898 *alloc_flags |= ALLOC_CPUSET;
3901 lockdep_trace_alloc(gfp_mask);
3903 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3905 if (should_fail_alloc_page(gfp_mask, order))
3906 return false;
3908 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
3909 *alloc_flags |= ALLOC_CMA;
3911 return true;
3914 /* Determine whether to spread dirty pages and what the first usable zone */
3915 static inline void finalise_ac(gfp_t gfp_mask,
3916 unsigned int order, struct alloc_context *ac)
3918 /* Dirty zone balancing only done in the fast path */
3919 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3922 * The preferred zone is used for statistics but crucially it is
3923 * also used as the starting point for the zonelist iterator. It
3924 * may get reset for allocations that ignore memory policies.
3926 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3927 ac->high_zoneidx, ac->nodemask);
3931 * This is the 'heart' of the zoned buddy allocator.
3933 struct page *
3934 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3935 struct zonelist *zonelist, nodemask_t *nodemask)
3937 struct page *page;
3938 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3939 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3940 struct alloc_context ac = { };
3942 gfp_mask &= gfp_allowed_mask;
3943 if (!prepare_alloc_pages(gfp_mask, order, zonelist, nodemask, &ac, &alloc_mask, &alloc_flags))
3944 return NULL;
3946 finalise_ac(gfp_mask, order, &ac);
3948 /* First allocation attempt */
3949 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3950 if (likely(page))
3951 goto out;
3954 * Runtime PM, block IO and its error handling path can deadlock
3955 * because I/O on the device might not complete.
3957 alloc_mask = memalloc_noio_flags(gfp_mask);
3958 ac.spread_dirty_pages = false;
3961 * Restore the original nodemask if it was potentially replaced with
3962 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3964 if (unlikely(ac.nodemask != nodemask))
3965 ac.nodemask = nodemask;
3967 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3969 out:
3970 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3971 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3972 __free_pages(page, order);
3973 page = NULL;
3976 if (kmemcheck_enabled && page)
3977 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3979 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3981 return page;
3983 EXPORT_SYMBOL(__alloc_pages_nodemask);
3986 * Common helper functions.
3988 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3990 struct page *page;
3993 * __get_free_pages() returns a 32-bit address, which cannot represent
3994 * a highmem page
3996 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3998 page = alloc_pages(gfp_mask, order);
3999 if (!page)
4000 return 0;
4001 return (unsigned long) page_address(page);
4003 EXPORT_SYMBOL(__get_free_pages);
4005 unsigned long get_zeroed_page(gfp_t gfp_mask)
4007 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4009 EXPORT_SYMBOL(get_zeroed_page);
4011 void __free_pages(struct page *page, unsigned int order)
4013 if (put_page_testzero(page)) {
4014 if (order == 0)
4015 free_hot_cold_page(page, false);
4016 else
4017 __free_pages_ok(page, order);
4021 EXPORT_SYMBOL(__free_pages);
4023 void free_pages(unsigned long addr, unsigned int order)
4025 if (addr != 0) {
4026 VM_BUG_ON(!virt_addr_valid((void *)addr));
4027 __free_pages(virt_to_page((void *)addr), order);
4031 EXPORT_SYMBOL(free_pages);
4034 * Page Fragment:
4035 * An arbitrary-length arbitrary-offset area of memory which resides
4036 * within a 0 or higher order page. Multiple fragments within that page
4037 * are individually refcounted, in the page's reference counter.
4039 * The page_frag functions below provide a simple allocation framework for
4040 * page fragments. This is used by the network stack and network device
4041 * drivers to provide a backing region of memory for use as either an
4042 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4044 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4045 gfp_t gfp_mask)
4047 struct page *page = NULL;
4048 gfp_t gfp = gfp_mask;
4050 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4051 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4052 __GFP_NOMEMALLOC;
4053 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4054 PAGE_FRAG_CACHE_MAX_ORDER);
4055 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4056 #endif
4057 if (unlikely(!page))
4058 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4060 nc->va = page ? page_address(page) : NULL;
4062 return page;
4065 void __page_frag_cache_drain(struct page *page, unsigned int count)
4067 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4069 if (page_ref_sub_and_test(page, count)) {
4070 unsigned int order = compound_order(page);
4072 if (order == 0)
4073 free_hot_cold_page(page, false);
4074 else
4075 __free_pages_ok(page, order);
4078 EXPORT_SYMBOL(__page_frag_cache_drain);
4080 void *page_frag_alloc(struct page_frag_cache *nc,
4081 unsigned int fragsz, gfp_t gfp_mask)
4083 unsigned int size = PAGE_SIZE;
4084 struct page *page;
4085 int offset;
4087 if (unlikely(!nc->va)) {
4088 refill:
4089 page = __page_frag_cache_refill(nc, gfp_mask);
4090 if (!page)
4091 return NULL;
4093 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4094 /* if size can vary use size else just use PAGE_SIZE */
4095 size = nc->size;
4096 #endif
4097 /* Even if we own the page, we do not use atomic_set().
4098 * This would break get_page_unless_zero() users.
4100 page_ref_add(page, size - 1);
4102 /* reset page count bias and offset to start of new frag */
4103 nc->pfmemalloc = page_is_pfmemalloc(page);
4104 nc->pagecnt_bias = size;
4105 nc->offset = size;
4108 offset = nc->offset - fragsz;
4109 if (unlikely(offset < 0)) {
4110 page = virt_to_page(nc->va);
4112 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4113 goto refill;
4115 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4116 /* if size can vary use size else just use PAGE_SIZE */
4117 size = nc->size;
4118 #endif
4119 /* OK, page count is 0, we can safely set it */
4120 set_page_count(page, size);
4122 /* reset page count bias and offset to start of new frag */
4123 nc->pagecnt_bias = size;
4124 offset = size - fragsz;
4127 nc->pagecnt_bias--;
4128 nc->offset = offset;
4130 return nc->va + offset;
4132 EXPORT_SYMBOL(page_frag_alloc);
4135 * Frees a page fragment allocated out of either a compound or order 0 page.
4137 void page_frag_free(void *addr)
4139 struct page *page = virt_to_head_page(addr);
4141 if (unlikely(put_page_testzero(page)))
4142 __free_pages_ok(page, compound_order(page));
4144 EXPORT_SYMBOL(page_frag_free);
4146 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4147 size_t size)
4149 if (addr) {
4150 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4151 unsigned long used = addr + PAGE_ALIGN(size);
4153 split_page(virt_to_page((void *)addr), order);
4154 while (used < alloc_end) {
4155 free_page(used);
4156 used += PAGE_SIZE;
4159 return (void *)addr;
4163 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4164 * @size: the number of bytes to allocate
4165 * @gfp_mask: GFP flags for the allocation
4167 * This function is similar to alloc_pages(), except that it allocates the
4168 * minimum number of pages to satisfy the request. alloc_pages() can only
4169 * allocate memory in power-of-two pages.
4171 * This function is also limited by MAX_ORDER.
4173 * Memory allocated by this function must be released by free_pages_exact().
4175 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4177 unsigned int order = get_order(size);
4178 unsigned long addr;
4180 addr = __get_free_pages(gfp_mask, order);
4181 return make_alloc_exact(addr, order, size);
4183 EXPORT_SYMBOL(alloc_pages_exact);
4186 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4187 * pages on a node.
4188 * @nid: the preferred node ID where memory should be allocated
4189 * @size: the number of bytes to allocate
4190 * @gfp_mask: GFP flags for the allocation
4192 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4193 * back.
4195 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4197 unsigned int order = get_order(size);
4198 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4199 if (!p)
4200 return NULL;
4201 return make_alloc_exact((unsigned long)page_address(p), order, size);
4205 * free_pages_exact - release memory allocated via alloc_pages_exact()
4206 * @virt: the value returned by alloc_pages_exact.
4207 * @size: size of allocation, same value as passed to alloc_pages_exact().
4209 * Release the memory allocated by a previous call to alloc_pages_exact.
4211 void free_pages_exact(void *virt, size_t size)
4213 unsigned long addr = (unsigned long)virt;
4214 unsigned long end = addr + PAGE_ALIGN(size);
4216 while (addr < end) {
4217 free_page(addr);
4218 addr += PAGE_SIZE;
4221 EXPORT_SYMBOL(free_pages_exact);
4224 * nr_free_zone_pages - count number of pages beyond high watermark
4225 * @offset: The zone index of the highest zone
4227 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4228 * high watermark within all zones at or below a given zone index. For each
4229 * zone, the number of pages is calculated as:
4231 * nr_free_zone_pages = managed_pages - high_pages
4233 static unsigned long nr_free_zone_pages(int offset)
4235 struct zoneref *z;
4236 struct zone *zone;
4238 /* Just pick one node, since fallback list is circular */
4239 unsigned long sum = 0;
4241 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4243 for_each_zone_zonelist(zone, z, zonelist, offset) {
4244 unsigned long size = zone->managed_pages;
4245 unsigned long high = high_wmark_pages(zone);
4246 if (size > high)
4247 sum += size - high;
4250 return sum;
4254 * nr_free_buffer_pages - count number of pages beyond high watermark
4256 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4257 * watermark within ZONE_DMA and ZONE_NORMAL.
4259 unsigned long nr_free_buffer_pages(void)
4261 return nr_free_zone_pages(gfp_zone(GFP_USER));
4263 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4266 * nr_free_pagecache_pages - count number of pages beyond high watermark
4268 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4269 * high watermark within all zones.
4271 unsigned long nr_free_pagecache_pages(void)
4273 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4276 static inline void show_node(struct zone *zone)
4278 if (IS_ENABLED(CONFIG_NUMA))
4279 printk("Node %d ", zone_to_nid(zone));
4282 long si_mem_available(void)
4284 long available;
4285 unsigned long pagecache;
4286 unsigned long wmark_low = 0;
4287 unsigned long pages[NR_LRU_LISTS];
4288 struct zone *zone;
4289 int lru;
4291 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4292 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4294 for_each_zone(zone)
4295 wmark_low += zone->watermark[WMARK_LOW];
4298 * Estimate the amount of memory available for userspace allocations,
4299 * without causing swapping.
4301 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4304 * Not all the page cache can be freed, otherwise the system will
4305 * start swapping. Assume at least half of the page cache, or the
4306 * low watermark worth of cache, needs to stay.
4308 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4309 pagecache -= min(pagecache / 2, wmark_low);
4310 available += pagecache;
4313 * Part of the reclaimable slab consists of items that are in use,
4314 * and cannot be freed. Cap this estimate at the low watermark.
4316 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4317 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4319 if (available < 0)
4320 available = 0;
4321 return available;
4323 EXPORT_SYMBOL_GPL(si_mem_available);
4325 void si_meminfo(struct sysinfo *val)
4327 val->totalram = totalram_pages;
4328 val->sharedram = global_node_page_state(NR_SHMEM);
4329 val->freeram = global_page_state(NR_FREE_PAGES);
4330 val->bufferram = nr_blockdev_pages();
4331 val->totalhigh = totalhigh_pages;
4332 val->freehigh = nr_free_highpages();
4333 val->mem_unit = PAGE_SIZE;
4336 EXPORT_SYMBOL(si_meminfo);
4338 #ifdef CONFIG_NUMA
4339 void si_meminfo_node(struct sysinfo *val, int nid)
4341 int zone_type; /* needs to be signed */
4342 unsigned long managed_pages = 0;
4343 unsigned long managed_highpages = 0;
4344 unsigned long free_highpages = 0;
4345 pg_data_t *pgdat = NODE_DATA(nid);
4347 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4348 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4349 val->totalram = managed_pages;
4350 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4351 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4352 #ifdef CONFIG_HIGHMEM
4353 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4354 struct zone *zone = &pgdat->node_zones[zone_type];
4356 if (is_highmem(zone)) {
4357 managed_highpages += zone->managed_pages;
4358 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4361 val->totalhigh = managed_highpages;
4362 val->freehigh = free_highpages;
4363 #else
4364 val->totalhigh = managed_highpages;
4365 val->freehigh = free_highpages;
4366 #endif
4367 val->mem_unit = PAGE_SIZE;
4369 #endif
4372 * Determine whether the node should be displayed or not, depending on whether
4373 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4375 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4377 if (!(flags & SHOW_MEM_FILTER_NODES))
4378 return false;
4381 * no node mask - aka implicit memory numa policy. Do not bother with
4382 * the synchronization - read_mems_allowed_begin - because we do not
4383 * have to be precise here.
4385 if (!nodemask)
4386 nodemask = &cpuset_current_mems_allowed;
4388 return !node_isset(nid, *nodemask);
4391 #define K(x) ((x) << (PAGE_SHIFT-10))
4393 static void show_migration_types(unsigned char type)
4395 static const char types[MIGRATE_TYPES] = {
4396 [MIGRATE_UNMOVABLE] = 'U',
4397 [MIGRATE_MOVABLE] = 'M',
4398 [MIGRATE_RECLAIMABLE] = 'E',
4399 [MIGRATE_HIGHATOMIC] = 'H',
4400 #ifdef CONFIG_CMA
4401 [MIGRATE_CMA] = 'C',
4402 #endif
4403 #ifdef CONFIG_MEMORY_ISOLATION
4404 [MIGRATE_ISOLATE] = 'I',
4405 #endif
4407 char tmp[MIGRATE_TYPES + 1];
4408 char *p = tmp;
4409 int i;
4411 for (i = 0; i < MIGRATE_TYPES; i++) {
4412 if (type & (1 << i))
4413 *p++ = types[i];
4416 *p = '\0';
4417 printk(KERN_CONT "(%s) ", tmp);
4421 * Show free area list (used inside shift_scroll-lock stuff)
4422 * We also calculate the percentage fragmentation. We do this by counting the
4423 * memory on each free list with the exception of the first item on the list.
4425 * Bits in @filter:
4426 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4427 * cpuset.
4429 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4431 unsigned long free_pcp = 0;
4432 int cpu;
4433 struct zone *zone;
4434 pg_data_t *pgdat;
4436 for_each_populated_zone(zone) {
4437 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4438 continue;
4440 for_each_online_cpu(cpu)
4441 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4444 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4445 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4446 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4447 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4448 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4449 " free:%lu free_pcp:%lu free_cma:%lu\n",
4450 global_node_page_state(NR_ACTIVE_ANON),
4451 global_node_page_state(NR_INACTIVE_ANON),
4452 global_node_page_state(NR_ISOLATED_ANON),
4453 global_node_page_state(NR_ACTIVE_FILE),
4454 global_node_page_state(NR_INACTIVE_FILE),
4455 global_node_page_state(NR_ISOLATED_FILE),
4456 global_node_page_state(NR_UNEVICTABLE),
4457 global_node_page_state(NR_FILE_DIRTY),
4458 global_node_page_state(NR_WRITEBACK),
4459 global_node_page_state(NR_UNSTABLE_NFS),
4460 global_page_state(NR_SLAB_RECLAIMABLE),
4461 global_page_state(NR_SLAB_UNRECLAIMABLE),
4462 global_node_page_state(NR_FILE_MAPPED),
4463 global_node_page_state(NR_SHMEM),
4464 global_page_state(NR_PAGETABLE),
4465 global_page_state(NR_BOUNCE),
4466 global_page_state(NR_FREE_PAGES),
4467 free_pcp,
4468 global_page_state(NR_FREE_CMA_PAGES));
4470 for_each_online_pgdat(pgdat) {
4471 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4472 continue;
4474 printk("Node %d"
4475 " active_anon:%lukB"
4476 " inactive_anon:%lukB"
4477 " active_file:%lukB"
4478 " inactive_file:%lukB"
4479 " unevictable:%lukB"
4480 " isolated(anon):%lukB"
4481 " isolated(file):%lukB"
4482 " mapped:%lukB"
4483 " dirty:%lukB"
4484 " writeback:%lukB"
4485 " shmem:%lukB"
4486 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4487 " shmem_thp: %lukB"
4488 " shmem_pmdmapped: %lukB"
4489 " anon_thp: %lukB"
4490 #endif
4491 " writeback_tmp:%lukB"
4492 " unstable:%lukB"
4493 " all_unreclaimable? %s"
4494 "\n",
4495 pgdat->node_id,
4496 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4497 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4498 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4499 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4500 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4501 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4502 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4503 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4504 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4505 K(node_page_state(pgdat, NR_WRITEBACK)),
4506 K(node_page_state(pgdat, NR_SHMEM)),
4507 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4508 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4509 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4510 * HPAGE_PMD_NR),
4511 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4512 #endif
4513 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4514 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4515 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4516 "yes" : "no");
4519 for_each_populated_zone(zone) {
4520 int i;
4522 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4523 continue;
4525 free_pcp = 0;
4526 for_each_online_cpu(cpu)
4527 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4529 show_node(zone);
4530 printk(KERN_CONT
4531 "%s"
4532 " free:%lukB"
4533 " min:%lukB"
4534 " low:%lukB"
4535 " high:%lukB"
4536 " active_anon:%lukB"
4537 " inactive_anon:%lukB"
4538 " active_file:%lukB"
4539 " inactive_file:%lukB"
4540 " unevictable:%lukB"
4541 " writepending:%lukB"
4542 " present:%lukB"
4543 " managed:%lukB"
4544 " mlocked:%lukB"
4545 " slab_reclaimable:%lukB"
4546 " slab_unreclaimable:%lukB"
4547 " kernel_stack:%lukB"
4548 " pagetables:%lukB"
4549 " bounce:%lukB"
4550 " free_pcp:%lukB"
4551 " local_pcp:%ukB"
4552 " free_cma:%lukB"
4553 "\n",
4554 zone->name,
4555 K(zone_page_state(zone, NR_FREE_PAGES)),
4556 K(min_wmark_pages(zone)),
4557 K(low_wmark_pages(zone)),
4558 K(high_wmark_pages(zone)),
4559 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4560 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4561 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4562 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4563 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4564 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4565 K(zone->present_pages),
4566 K(zone->managed_pages),
4567 K(zone_page_state(zone, NR_MLOCK)),
4568 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4569 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4570 zone_page_state(zone, NR_KERNEL_STACK_KB),
4571 K(zone_page_state(zone, NR_PAGETABLE)),
4572 K(zone_page_state(zone, NR_BOUNCE)),
4573 K(free_pcp),
4574 K(this_cpu_read(zone->pageset->pcp.count)),
4575 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4576 printk("lowmem_reserve[]:");
4577 for (i = 0; i < MAX_NR_ZONES; i++)
4578 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4579 printk(KERN_CONT "\n");
4582 for_each_populated_zone(zone) {
4583 unsigned int order;
4584 unsigned long nr[MAX_ORDER], flags, total = 0;
4585 unsigned char types[MAX_ORDER];
4587 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4588 continue;
4589 show_node(zone);
4590 printk(KERN_CONT "%s: ", zone->name);
4592 spin_lock_irqsave(&zone->lock, flags);
4593 for (order = 0; order < MAX_ORDER; order++) {
4594 struct free_area *area = &zone->free_area[order];
4595 int type;
4597 nr[order] = area->nr_free;
4598 total += nr[order] << order;
4600 types[order] = 0;
4601 for (type = 0; type < MIGRATE_TYPES; type++) {
4602 if (!list_empty(&area->free_list[type]))
4603 types[order] |= 1 << type;
4606 spin_unlock_irqrestore(&zone->lock, flags);
4607 for (order = 0; order < MAX_ORDER; order++) {
4608 printk(KERN_CONT "%lu*%lukB ",
4609 nr[order], K(1UL) << order);
4610 if (nr[order])
4611 show_migration_types(types[order]);
4613 printk(KERN_CONT "= %lukB\n", K(total));
4616 hugetlb_show_meminfo();
4618 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4620 show_swap_cache_info();
4623 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4625 zoneref->zone = zone;
4626 zoneref->zone_idx = zone_idx(zone);
4630 * Builds allocation fallback zone lists.
4632 * Add all populated zones of a node to the zonelist.
4634 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4635 int nr_zones)
4637 struct zone *zone;
4638 enum zone_type zone_type = MAX_NR_ZONES;
4640 do {
4641 zone_type--;
4642 zone = pgdat->node_zones + zone_type;
4643 if (managed_zone(zone)) {
4644 zoneref_set_zone(zone,
4645 &zonelist->_zonerefs[nr_zones++]);
4646 check_highest_zone(zone_type);
4648 } while (zone_type);
4650 return nr_zones;
4655 * zonelist_order:
4656 * 0 = automatic detection of better ordering.
4657 * 1 = order by ([node] distance, -zonetype)
4658 * 2 = order by (-zonetype, [node] distance)
4660 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4661 * the same zonelist. So only NUMA can configure this param.
4663 #define ZONELIST_ORDER_DEFAULT 0
4664 #define ZONELIST_ORDER_NODE 1
4665 #define ZONELIST_ORDER_ZONE 2
4667 /* zonelist order in the kernel.
4668 * set_zonelist_order() will set this to NODE or ZONE.
4670 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4671 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4674 #ifdef CONFIG_NUMA
4675 /* The value user specified ....changed by config */
4676 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4677 /* string for sysctl */
4678 #define NUMA_ZONELIST_ORDER_LEN 16
4679 char numa_zonelist_order[16] = "default";
4682 * interface for configure zonelist ordering.
4683 * command line option "numa_zonelist_order"
4684 * = "[dD]efault - default, automatic configuration.
4685 * = "[nN]ode - order by node locality, then by zone within node
4686 * = "[zZ]one - order by zone, then by locality within zone
4689 static int __parse_numa_zonelist_order(char *s)
4691 if (*s == 'd' || *s == 'D') {
4692 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4693 } else if (*s == 'n' || *s == 'N') {
4694 user_zonelist_order = ZONELIST_ORDER_NODE;
4695 } else if (*s == 'z' || *s == 'Z') {
4696 user_zonelist_order = ZONELIST_ORDER_ZONE;
4697 } else {
4698 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4699 return -EINVAL;
4701 return 0;
4704 static __init int setup_numa_zonelist_order(char *s)
4706 int ret;
4708 if (!s)
4709 return 0;
4711 ret = __parse_numa_zonelist_order(s);
4712 if (ret == 0)
4713 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4715 return ret;
4717 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4720 * sysctl handler for numa_zonelist_order
4722 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4723 void __user *buffer, size_t *length,
4724 loff_t *ppos)
4726 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4727 int ret;
4728 static DEFINE_MUTEX(zl_order_mutex);
4730 mutex_lock(&zl_order_mutex);
4731 if (write) {
4732 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4733 ret = -EINVAL;
4734 goto out;
4736 strcpy(saved_string, (char *)table->data);
4738 ret = proc_dostring(table, write, buffer, length, ppos);
4739 if (ret)
4740 goto out;
4741 if (write) {
4742 int oldval = user_zonelist_order;
4744 ret = __parse_numa_zonelist_order((char *)table->data);
4745 if (ret) {
4747 * bogus value. restore saved string
4749 strncpy((char *)table->data, saved_string,
4750 NUMA_ZONELIST_ORDER_LEN);
4751 user_zonelist_order = oldval;
4752 } else if (oldval != user_zonelist_order) {
4753 mutex_lock(&zonelists_mutex);
4754 build_all_zonelists(NULL, NULL);
4755 mutex_unlock(&zonelists_mutex);
4758 out:
4759 mutex_unlock(&zl_order_mutex);
4760 return ret;
4764 #define MAX_NODE_LOAD (nr_online_nodes)
4765 static int node_load[MAX_NUMNODES];
4768 * find_next_best_node - find the next node that should appear in a given node's fallback list
4769 * @node: node whose fallback list we're appending
4770 * @used_node_mask: nodemask_t of already used nodes
4772 * We use a number of factors to determine which is the next node that should
4773 * appear on a given node's fallback list. The node should not have appeared
4774 * already in @node's fallback list, and it should be the next closest node
4775 * according to the distance array (which contains arbitrary distance values
4776 * from each node to each node in the system), and should also prefer nodes
4777 * with no CPUs, since presumably they'll have very little allocation pressure
4778 * on them otherwise.
4779 * It returns -1 if no node is found.
4781 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4783 int n, val;
4784 int min_val = INT_MAX;
4785 int best_node = NUMA_NO_NODE;
4786 const struct cpumask *tmp = cpumask_of_node(0);
4788 /* Use the local node if we haven't already */
4789 if (!node_isset(node, *used_node_mask)) {
4790 node_set(node, *used_node_mask);
4791 return node;
4794 for_each_node_state(n, N_MEMORY) {
4796 /* Don't want a node to appear more than once */
4797 if (node_isset(n, *used_node_mask))
4798 continue;
4800 /* Use the distance array to find the distance */
4801 val = node_distance(node, n);
4803 /* Penalize nodes under us ("prefer the next node") */
4804 val += (n < node);
4806 /* Give preference to headless and unused nodes */
4807 tmp = cpumask_of_node(n);
4808 if (!cpumask_empty(tmp))
4809 val += PENALTY_FOR_NODE_WITH_CPUS;
4811 /* Slight preference for less loaded node */
4812 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4813 val += node_load[n];
4815 if (val < min_val) {
4816 min_val = val;
4817 best_node = n;
4821 if (best_node >= 0)
4822 node_set(best_node, *used_node_mask);
4824 return best_node;
4829 * Build zonelists ordered by node and zones within node.
4830 * This results in maximum locality--normal zone overflows into local
4831 * DMA zone, if any--but risks exhausting DMA zone.
4833 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4835 int j;
4836 struct zonelist *zonelist;
4838 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4839 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4841 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4842 zonelist->_zonerefs[j].zone = NULL;
4843 zonelist->_zonerefs[j].zone_idx = 0;
4847 * Build gfp_thisnode zonelists
4849 static void build_thisnode_zonelists(pg_data_t *pgdat)
4851 int j;
4852 struct zonelist *zonelist;
4854 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4855 j = build_zonelists_node(pgdat, zonelist, 0);
4856 zonelist->_zonerefs[j].zone = NULL;
4857 zonelist->_zonerefs[j].zone_idx = 0;
4861 * Build zonelists ordered by zone and nodes within zones.
4862 * This results in conserving DMA zone[s] until all Normal memory is
4863 * exhausted, but results in overflowing to remote node while memory
4864 * may still exist in local DMA zone.
4866 static int node_order[MAX_NUMNODES];
4868 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4870 int pos, j, node;
4871 int zone_type; /* needs to be signed */
4872 struct zone *z;
4873 struct zonelist *zonelist;
4875 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4876 pos = 0;
4877 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4878 for (j = 0; j < nr_nodes; j++) {
4879 node = node_order[j];
4880 z = &NODE_DATA(node)->node_zones[zone_type];
4881 if (managed_zone(z)) {
4882 zoneref_set_zone(z,
4883 &zonelist->_zonerefs[pos++]);
4884 check_highest_zone(zone_type);
4888 zonelist->_zonerefs[pos].zone = NULL;
4889 zonelist->_zonerefs[pos].zone_idx = 0;
4892 #if defined(CONFIG_64BIT)
4894 * Devices that require DMA32/DMA are relatively rare and do not justify a
4895 * penalty to every machine in case the specialised case applies. Default
4896 * to Node-ordering on 64-bit NUMA machines
4898 static int default_zonelist_order(void)
4900 return ZONELIST_ORDER_NODE;
4902 #else
4904 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4905 * by the kernel. If processes running on node 0 deplete the low memory zone
4906 * then reclaim will occur more frequency increasing stalls and potentially
4907 * be easier to OOM if a large percentage of the zone is under writeback or
4908 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4909 * Hence, default to zone ordering on 32-bit.
4911 static int default_zonelist_order(void)
4913 return ZONELIST_ORDER_ZONE;
4915 #endif /* CONFIG_64BIT */
4917 static void set_zonelist_order(void)
4919 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4920 current_zonelist_order = default_zonelist_order();
4921 else
4922 current_zonelist_order = user_zonelist_order;
4925 static void build_zonelists(pg_data_t *pgdat)
4927 int i, node, load;
4928 nodemask_t used_mask;
4929 int local_node, prev_node;
4930 struct zonelist *zonelist;
4931 unsigned int order = current_zonelist_order;
4933 /* initialize zonelists */
4934 for (i = 0; i < MAX_ZONELISTS; i++) {
4935 zonelist = pgdat->node_zonelists + i;
4936 zonelist->_zonerefs[0].zone = NULL;
4937 zonelist->_zonerefs[0].zone_idx = 0;
4940 /* NUMA-aware ordering of nodes */
4941 local_node = pgdat->node_id;
4942 load = nr_online_nodes;
4943 prev_node = local_node;
4944 nodes_clear(used_mask);
4946 memset(node_order, 0, sizeof(node_order));
4947 i = 0;
4949 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4951 * We don't want to pressure a particular node.
4952 * So adding penalty to the first node in same
4953 * distance group to make it round-robin.
4955 if (node_distance(local_node, node) !=
4956 node_distance(local_node, prev_node))
4957 node_load[node] = load;
4959 prev_node = node;
4960 load--;
4961 if (order == ZONELIST_ORDER_NODE)
4962 build_zonelists_in_node_order(pgdat, node);
4963 else
4964 node_order[i++] = node; /* remember order */
4967 if (order == ZONELIST_ORDER_ZONE) {
4968 /* calculate node order -- i.e., DMA last! */
4969 build_zonelists_in_zone_order(pgdat, i);
4972 build_thisnode_zonelists(pgdat);
4975 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4977 * Return node id of node used for "local" allocations.
4978 * I.e., first node id of first zone in arg node's generic zonelist.
4979 * Used for initializing percpu 'numa_mem', which is used primarily
4980 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4982 int local_memory_node(int node)
4984 struct zoneref *z;
4986 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4987 gfp_zone(GFP_KERNEL),
4988 NULL);
4989 return z->zone->node;
4991 #endif
4993 static void setup_min_unmapped_ratio(void);
4994 static void setup_min_slab_ratio(void);
4995 #else /* CONFIG_NUMA */
4997 static void set_zonelist_order(void)
4999 current_zonelist_order = ZONELIST_ORDER_ZONE;
5002 static void build_zonelists(pg_data_t *pgdat)
5004 int node, local_node;
5005 enum zone_type j;
5006 struct zonelist *zonelist;
5008 local_node = pgdat->node_id;
5010 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5011 j = build_zonelists_node(pgdat, zonelist, 0);
5014 * Now we build the zonelist so that it contains the zones
5015 * of all the other nodes.
5016 * We don't want to pressure a particular node, so when
5017 * building the zones for node N, we make sure that the
5018 * zones coming right after the local ones are those from
5019 * node N+1 (modulo N)
5021 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5022 if (!node_online(node))
5023 continue;
5024 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5026 for (node = 0; node < local_node; node++) {
5027 if (!node_online(node))
5028 continue;
5029 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5032 zonelist->_zonerefs[j].zone = NULL;
5033 zonelist->_zonerefs[j].zone_idx = 0;
5036 #endif /* CONFIG_NUMA */
5039 * Boot pageset table. One per cpu which is going to be used for all
5040 * zones and all nodes. The parameters will be set in such a way
5041 * that an item put on a list will immediately be handed over to
5042 * the buddy list. This is safe since pageset manipulation is done
5043 * with interrupts disabled.
5045 * The boot_pagesets must be kept even after bootup is complete for
5046 * unused processors and/or zones. They do play a role for bootstrapping
5047 * hotplugged processors.
5049 * zoneinfo_show() and maybe other functions do
5050 * not check if the processor is online before following the pageset pointer.
5051 * Other parts of the kernel may not check if the zone is available.
5053 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5054 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5055 static void setup_zone_pageset(struct zone *zone);
5058 * Global mutex to protect against size modification of zonelists
5059 * as well as to serialize pageset setup for the new populated zone.
5061 DEFINE_MUTEX(zonelists_mutex);
5063 /* return values int ....just for stop_machine() */
5064 static int __build_all_zonelists(void *data)
5066 int nid;
5067 int cpu;
5068 pg_data_t *self = data;
5070 #ifdef CONFIG_NUMA
5071 memset(node_load, 0, sizeof(node_load));
5072 #endif
5074 if (self && !node_online(self->node_id)) {
5075 build_zonelists(self);
5078 for_each_online_node(nid) {
5079 pg_data_t *pgdat = NODE_DATA(nid);
5081 build_zonelists(pgdat);
5085 * Initialize the boot_pagesets that are going to be used
5086 * for bootstrapping processors. The real pagesets for
5087 * each zone will be allocated later when the per cpu
5088 * allocator is available.
5090 * boot_pagesets are used also for bootstrapping offline
5091 * cpus if the system is already booted because the pagesets
5092 * are needed to initialize allocators on a specific cpu too.
5093 * F.e. the percpu allocator needs the page allocator which
5094 * needs the percpu allocator in order to allocate its pagesets
5095 * (a chicken-egg dilemma).
5097 for_each_possible_cpu(cpu) {
5098 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5100 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5102 * We now know the "local memory node" for each node--
5103 * i.e., the node of the first zone in the generic zonelist.
5104 * Set up numa_mem percpu variable for on-line cpus. During
5105 * boot, only the boot cpu should be on-line; we'll init the
5106 * secondary cpus' numa_mem as they come on-line. During
5107 * node/memory hotplug, we'll fixup all on-line cpus.
5109 if (cpu_online(cpu))
5110 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5111 #endif
5114 return 0;
5117 static noinline void __init
5118 build_all_zonelists_init(void)
5120 __build_all_zonelists(NULL);
5121 mminit_verify_zonelist();
5122 cpuset_init_current_mems_allowed();
5126 * Called with zonelists_mutex held always
5127 * unless system_state == SYSTEM_BOOTING.
5129 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5130 * [we're only called with non-NULL zone through __meminit paths] and
5131 * (2) call of __init annotated helper build_all_zonelists_init
5132 * [protected by SYSTEM_BOOTING].
5134 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5136 set_zonelist_order();
5138 if (system_state == SYSTEM_BOOTING) {
5139 build_all_zonelists_init();
5140 } else {
5141 #ifdef CONFIG_MEMORY_HOTPLUG
5142 if (zone)
5143 setup_zone_pageset(zone);
5144 #endif
5145 /* we have to stop all cpus to guarantee there is no user
5146 of zonelist */
5147 stop_machine(__build_all_zonelists, pgdat, NULL);
5148 /* cpuset refresh routine should be here */
5150 vm_total_pages = nr_free_pagecache_pages();
5152 * Disable grouping by mobility if the number of pages in the
5153 * system is too low to allow the mechanism to work. It would be
5154 * more accurate, but expensive to check per-zone. This check is
5155 * made on memory-hotadd so a system can start with mobility
5156 * disabled and enable it later
5158 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5159 page_group_by_mobility_disabled = 1;
5160 else
5161 page_group_by_mobility_disabled = 0;
5163 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5164 nr_online_nodes,
5165 zonelist_order_name[current_zonelist_order],
5166 page_group_by_mobility_disabled ? "off" : "on",
5167 vm_total_pages);
5168 #ifdef CONFIG_NUMA
5169 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5170 #endif
5174 * Initially all pages are reserved - free ones are freed
5175 * up by free_all_bootmem() once the early boot process is
5176 * done. Non-atomic initialization, single-pass.
5178 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5179 unsigned long start_pfn, enum memmap_context context)
5181 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5182 unsigned long end_pfn = start_pfn + size;
5183 pg_data_t *pgdat = NODE_DATA(nid);
5184 unsigned long pfn;
5185 unsigned long nr_initialised = 0;
5186 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5187 struct memblock_region *r = NULL, *tmp;
5188 #endif
5190 if (highest_memmap_pfn < end_pfn - 1)
5191 highest_memmap_pfn = end_pfn - 1;
5194 * Honor reservation requested by the driver for this ZONE_DEVICE
5195 * memory
5197 if (altmap && start_pfn == altmap->base_pfn)
5198 start_pfn += altmap->reserve;
5200 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5202 * There can be holes in boot-time mem_map[]s handed to this
5203 * function. They do not exist on hotplugged memory.
5205 if (context != MEMMAP_EARLY)
5206 goto not_early;
5208 if (!early_pfn_valid(pfn)) {
5209 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5211 * Skip to the pfn preceding the next valid one (or
5212 * end_pfn), such that we hit a valid pfn (or end_pfn)
5213 * on our next iteration of the loop.
5215 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5216 #endif
5217 continue;
5219 if (!early_pfn_in_nid(pfn, nid))
5220 continue;
5221 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5222 break;
5224 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5226 * Check given memblock attribute by firmware which can affect
5227 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5228 * mirrored, it's an overlapped memmap init. skip it.
5230 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5231 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5232 for_each_memblock(memory, tmp)
5233 if (pfn < memblock_region_memory_end_pfn(tmp))
5234 break;
5235 r = tmp;
5237 if (pfn >= memblock_region_memory_base_pfn(r) &&
5238 memblock_is_mirror(r)) {
5239 /* already initialized as NORMAL */
5240 pfn = memblock_region_memory_end_pfn(r);
5241 continue;
5244 #endif
5246 not_early:
5248 * Mark the block movable so that blocks are reserved for
5249 * movable at startup. This will force kernel allocations
5250 * to reserve their blocks rather than leaking throughout
5251 * the address space during boot when many long-lived
5252 * kernel allocations are made.
5254 * bitmap is created for zone's valid pfn range. but memmap
5255 * can be created for invalid pages (for alignment)
5256 * check here not to call set_pageblock_migratetype() against
5257 * pfn out of zone.
5259 if (!(pfn & (pageblock_nr_pages - 1))) {
5260 struct page *page = pfn_to_page(pfn);
5262 __init_single_page(page, pfn, zone, nid);
5263 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5264 } else {
5265 __init_single_pfn(pfn, zone, nid);
5270 static void __meminit zone_init_free_lists(struct zone *zone)
5272 unsigned int order, t;
5273 for_each_migratetype_order(order, t) {
5274 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5275 zone->free_area[order].nr_free = 0;
5279 #ifndef __HAVE_ARCH_MEMMAP_INIT
5280 #define memmap_init(size, nid, zone, start_pfn) \
5281 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5282 #endif
5284 static int zone_batchsize(struct zone *zone)
5286 #ifdef CONFIG_MMU
5287 int batch;
5290 * The per-cpu-pages pools are set to around 1000th of the
5291 * size of the zone. But no more than 1/2 of a meg.
5293 * OK, so we don't know how big the cache is. So guess.
5295 batch = zone->managed_pages / 1024;
5296 if (batch * PAGE_SIZE > 512 * 1024)
5297 batch = (512 * 1024) / PAGE_SIZE;
5298 batch /= 4; /* We effectively *= 4 below */
5299 if (batch < 1)
5300 batch = 1;
5303 * Clamp the batch to a 2^n - 1 value. Having a power
5304 * of 2 value was found to be more likely to have
5305 * suboptimal cache aliasing properties in some cases.
5307 * For example if 2 tasks are alternately allocating
5308 * batches of pages, one task can end up with a lot
5309 * of pages of one half of the possible page colors
5310 * and the other with pages of the other colors.
5312 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5314 return batch;
5316 #else
5317 /* The deferral and batching of frees should be suppressed under NOMMU
5318 * conditions.
5320 * The problem is that NOMMU needs to be able to allocate large chunks
5321 * of contiguous memory as there's no hardware page translation to
5322 * assemble apparent contiguous memory from discontiguous pages.
5324 * Queueing large contiguous runs of pages for batching, however,
5325 * causes the pages to actually be freed in smaller chunks. As there
5326 * can be a significant delay between the individual batches being
5327 * recycled, this leads to the once large chunks of space being
5328 * fragmented and becoming unavailable for high-order allocations.
5330 return 0;
5331 #endif
5335 * pcp->high and pcp->batch values are related and dependent on one another:
5336 * ->batch must never be higher then ->high.
5337 * The following function updates them in a safe manner without read side
5338 * locking.
5340 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5341 * those fields changing asynchronously (acording the the above rule).
5343 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5344 * outside of boot time (or some other assurance that no concurrent updaters
5345 * exist).
5347 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5348 unsigned long batch)
5350 /* start with a fail safe value for batch */
5351 pcp->batch = 1;
5352 smp_wmb();
5354 /* Update high, then batch, in order */
5355 pcp->high = high;
5356 smp_wmb();
5358 pcp->batch = batch;
5361 /* a companion to pageset_set_high() */
5362 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5364 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5367 static void pageset_init(struct per_cpu_pageset *p)
5369 struct per_cpu_pages *pcp;
5370 int migratetype;
5372 memset(p, 0, sizeof(*p));
5374 pcp = &p->pcp;
5375 pcp->count = 0;
5376 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5377 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5380 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5382 pageset_init(p);
5383 pageset_set_batch(p, batch);
5387 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5388 * to the value high for the pageset p.
5390 static void pageset_set_high(struct per_cpu_pageset *p,
5391 unsigned long high)
5393 unsigned long batch = max(1UL, high / 4);
5394 if ((high / 4) > (PAGE_SHIFT * 8))
5395 batch = PAGE_SHIFT * 8;
5397 pageset_update(&p->pcp, high, batch);
5400 static void pageset_set_high_and_batch(struct zone *zone,
5401 struct per_cpu_pageset *pcp)
5403 if (percpu_pagelist_fraction)
5404 pageset_set_high(pcp,
5405 (zone->managed_pages /
5406 percpu_pagelist_fraction));
5407 else
5408 pageset_set_batch(pcp, zone_batchsize(zone));
5411 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5413 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5415 pageset_init(pcp);
5416 pageset_set_high_and_batch(zone, pcp);
5419 static void __meminit setup_zone_pageset(struct zone *zone)
5421 int cpu;
5422 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5423 for_each_possible_cpu(cpu)
5424 zone_pageset_init(zone, cpu);
5428 * Allocate per cpu pagesets and initialize them.
5429 * Before this call only boot pagesets were available.
5431 void __init setup_per_cpu_pageset(void)
5433 struct pglist_data *pgdat;
5434 struct zone *zone;
5436 for_each_populated_zone(zone)
5437 setup_zone_pageset(zone);
5439 for_each_online_pgdat(pgdat)
5440 pgdat->per_cpu_nodestats =
5441 alloc_percpu(struct per_cpu_nodestat);
5444 static __meminit void zone_pcp_init(struct zone *zone)
5447 * per cpu subsystem is not up at this point. The following code
5448 * relies on the ability of the linker to provide the
5449 * offset of a (static) per cpu variable into the per cpu area.
5451 zone->pageset = &boot_pageset;
5453 if (populated_zone(zone))
5454 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5455 zone->name, zone->present_pages,
5456 zone_batchsize(zone));
5459 int __meminit init_currently_empty_zone(struct zone *zone,
5460 unsigned long zone_start_pfn,
5461 unsigned long size)
5463 struct pglist_data *pgdat = zone->zone_pgdat;
5465 pgdat->nr_zones = zone_idx(zone) + 1;
5467 zone->zone_start_pfn = zone_start_pfn;
5469 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5470 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5471 pgdat->node_id,
5472 (unsigned long)zone_idx(zone),
5473 zone_start_pfn, (zone_start_pfn + size));
5475 zone_init_free_lists(zone);
5476 zone->initialized = 1;
5478 return 0;
5481 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5482 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5485 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5487 int __meminit __early_pfn_to_nid(unsigned long pfn,
5488 struct mminit_pfnnid_cache *state)
5490 unsigned long start_pfn, end_pfn;
5491 int nid;
5493 if (state->last_start <= pfn && pfn < state->last_end)
5494 return state->last_nid;
5496 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5497 if (nid != -1) {
5498 state->last_start = start_pfn;
5499 state->last_end = end_pfn;
5500 state->last_nid = nid;
5503 return nid;
5505 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5508 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5509 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5510 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5512 * If an architecture guarantees that all ranges registered contain no holes
5513 * and may be freed, this this function may be used instead of calling
5514 * memblock_free_early_nid() manually.
5516 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5518 unsigned long start_pfn, end_pfn;
5519 int i, this_nid;
5521 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5522 start_pfn = min(start_pfn, max_low_pfn);
5523 end_pfn = min(end_pfn, max_low_pfn);
5525 if (start_pfn < end_pfn)
5526 memblock_free_early_nid(PFN_PHYS(start_pfn),
5527 (end_pfn - start_pfn) << PAGE_SHIFT,
5528 this_nid);
5533 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5534 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5536 * If an architecture guarantees that all ranges registered contain no holes and may
5537 * be freed, this function may be used instead of calling memory_present() manually.
5539 void __init sparse_memory_present_with_active_regions(int nid)
5541 unsigned long start_pfn, end_pfn;
5542 int i, this_nid;
5544 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5545 memory_present(this_nid, start_pfn, end_pfn);
5549 * get_pfn_range_for_nid - Return the start and end page frames for a node
5550 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5551 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5552 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5554 * It returns the start and end page frame of a node based on information
5555 * provided by memblock_set_node(). If called for a node
5556 * with no available memory, a warning is printed and the start and end
5557 * PFNs will be 0.
5559 void __meminit get_pfn_range_for_nid(unsigned int nid,
5560 unsigned long *start_pfn, unsigned long *end_pfn)
5562 unsigned long this_start_pfn, this_end_pfn;
5563 int i;
5565 *start_pfn = -1UL;
5566 *end_pfn = 0;
5568 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5569 *start_pfn = min(*start_pfn, this_start_pfn);
5570 *end_pfn = max(*end_pfn, this_end_pfn);
5573 if (*start_pfn == -1UL)
5574 *start_pfn = 0;
5578 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5579 * assumption is made that zones within a node are ordered in monotonic
5580 * increasing memory addresses so that the "highest" populated zone is used
5582 static void __init find_usable_zone_for_movable(void)
5584 int zone_index;
5585 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5586 if (zone_index == ZONE_MOVABLE)
5587 continue;
5589 if (arch_zone_highest_possible_pfn[zone_index] >
5590 arch_zone_lowest_possible_pfn[zone_index])
5591 break;
5594 VM_BUG_ON(zone_index == -1);
5595 movable_zone = zone_index;
5599 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5600 * because it is sized independent of architecture. Unlike the other zones,
5601 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5602 * in each node depending on the size of each node and how evenly kernelcore
5603 * is distributed. This helper function adjusts the zone ranges
5604 * provided by the architecture for a given node by using the end of the
5605 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5606 * zones within a node are in order of monotonic increases memory addresses
5608 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5609 unsigned long zone_type,
5610 unsigned long node_start_pfn,
5611 unsigned long node_end_pfn,
5612 unsigned long *zone_start_pfn,
5613 unsigned long *zone_end_pfn)
5615 /* Only adjust if ZONE_MOVABLE is on this node */
5616 if (zone_movable_pfn[nid]) {
5617 /* Size ZONE_MOVABLE */
5618 if (zone_type == ZONE_MOVABLE) {
5619 *zone_start_pfn = zone_movable_pfn[nid];
5620 *zone_end_pfn = min(node_end_pfn,
5621 arch_zone_highest_possible_pfn[movable_zone]);
5623 /* Adjust for ZONE_MOVABLE starting within this range */
5624 } else if (!mirrored_kernelcore &&
5625 *zone_start_pfn < zone_movable_pfn[nid] &&
5626 *zone_end_pfn > zone_movable_pfn[nid]) {
5627 *zone_end_pfn = zone_movable_pfn[nid];
5629 /* Check if this whole range is within ZONE_MOVABLE */
5630 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5631 *zone_start_pfn = *zone_end_pfn;
5636 * Return the number of pages a zone spans in a node, including holes
5637 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5639 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5640 unsigned long zone_type,
5641 unsigned long node_start_pfn,
5642 unsigned long node_end_pfn,
5643 unsigned long *zone_start_pfn,
5644 unsigned long *zone_end_pfn,
5645 unsigned long *ignored)
5647 /* When hotadd a new node from cpu_up(), the node should be empty */
5648 if (!node_start_pfn && !node_end_pfn)
5649 return 0;
5651 /* Get the start and end of the zone */
5652 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5653 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5654 adjust_zone_range_for_zone_movable(nid, zone_type,
5655 node_start_pfn, node_end_pfn,
5656 zone_start_pfn, zone_end_pfn);
5658 /* Check that this node has pages within the zone's required range */
5659 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5660 return 0;
5662 /* Move the zone boundaries inside the node if necessary */
5663 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5664 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5666 /* Return the spanned pages */
5667 return *zone_end_pfn - *zone_start_pfn;
5671 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5672 * then all holes in the requested range will be accounted for.
5674 unsigned long __meminit __absent_pages_in_range(int nid,
5675 unsigned long range_start_pfn,
5676 unsigned long range_end_pfn)
5678 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5679 unsigned long start_pfn, end_pfn;
5680 int i;
5682 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5683 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5684 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5685 nr_absent -= end_pfn - start_pfn;
5687 return nr_absent;
5691 * absent_pages_in_range - Return number of page frames in holes within a range
5692 * @start_pfn: The start PFN to start searching for holes
5693 * @end_pfn: The end PFN to stop searching for holes
5695 * It returns the number of pages frames in memory holes within a range.
5697 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5698 unsigned long end_pfn)
5700 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5703 /* Return the number of page frames in holes in a zone on a node */
5704 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5705 unsigned long zone_type,
5706 unsigned long node_start_pfn,
5707 unsigned long node_end_pfn,
5708 unsigned long *ignored)
5710 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5711 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5712 unsigned long zone_start_pfn, zone_end_pfn;
5713 unsigned long nr_absent;
5715 /* When hotadd a new node from cpu_up(), the node should be empty */
5716 if (!node_start_pfn && !node_end_pfn)
5717 return 0;
5719 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5720 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5722 adjust_zone_range_for_zone_movable(nid, zone_type,
5723 node_start_pfn, node_end_pfn,
5724 &zone_start_pfn, &zone_end_pfn);
5725 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5728 * ZONE_MOVABLE handling.
5729 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5730 * and vice versa.
5732 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5733 unsigned long start_pfn, end_pfn;
5734 struct memblock_region *r;
5736 for_each_memblock(memory, r) {
5737 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5738 zone_start_pfn, zone_end_pfn);
5739 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5740 zone_start_pfn, zone_end_pfn);
5742 if (zone_type == ZONE_MOVABLE &&
5743 memblock_is_mirror(r))
5744 nr_absent += end_pfn - start_pfn;
5746 if (zone_type == ZONE_NORMAL &&
5747 !memblock_is_mirror(r))
5748 nr_absent += end_pfn - start_pfn;
5752 return nr_absent;
5755 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5756 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5757 unsigned long zone_type,
5758 unsigned long node_start_pfn,
5759 unsigned long node_end_pfn,
5760 unsigned long *zone_start_pfn,
5761 unsigned long *zone_end_pfn,
5762 unsigned long *zones_size)
5764 unsigned int zone;
5766 *zone_start_pfn = node_start_pfn;
5767 for (zone = 0; zone < zone_type; zone++)
5768 *zone_start_pfn += zones_size[zone];
5770 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5772 return zones_size[zone_type];
5775 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5776 unsigned long zone_type,
5777 unsigned long node_start_pfn,
5778 unsigned long node_end_pfn,
5779 unsigned long *zholes_size)
5781 if (!zholes_size)
5782 return 0;
5784 return zholes_size[zone_type];
5787 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5789 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5790 unsigned long node_start_pfn,
5791 unsigned long node_end_pfn,
5792 unsigned long *zones_size,
5793 unsigned long *zholes_size)
5795 unsigned long realtotalpages = 0, totalpages = 0;
5796 enum zone_type i;
5798 for (i = 0; i < MAX_NR_ZONES; i++) {
5799 struct zone *zone = pgdat->node_zones + i;
5800 unsigned long zone_start_pfn, zone_end_pfn;
5801 unsigned long size, real_size;
5803 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5804 node_start_pfn,
5805 node_end_pfn,
5806 &zone_start_pfn,
5807 &zone_end_pfn,
5808 zones_size);
5809 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5810 node_start_pfn, node_end_pfn,
5811 zholes_size);
5812 if (size)
5813 zone->zone_start_pfn = zone_start_pfn;
5814 else
5815 zone->zone_start_pfn = 0;
5816 zone->spanned_pages = size;
5817 zone->present_pages = real_size;
5819 totalpages += size;
5820 realtotalpages += real_size;
5823 pgdat->node_spanned_pages = totalpages;
5824 pgdat->node_present_pages = realtotalpages;
5825 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5826 realtotalpages);
5829 #ifndef CONFIG_SPARSEMEM
5831 * Calculate the size of the zone->blockflags rounded to an unsigned long
5832 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5833 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5834 * round what is now in bits to nearest long in bits, then return it in
5835 * bytes.
5837 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5839 unsigned long usemapsize;
5841 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5842 usemapsize = roundup(zonesize, pageblock_nr_pages);
5843 usemapsize = usemapsize >> pageblock_order;
5844 usemapsize *= NR_PAGEBLOCK_BITS;
5845 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5847 return usemapsize / 8;
5850 static void __init setup_usemap(struct pglist_data *pgdat,
5851 struct zone *zone,
5852 unsigned long zone_start_pfn,
5853 unsigned long zonesize)
5855 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5856 zone->pageblock_flags = NULL;
5857 if (usemapsize)
5858 zone->pageblock_flags =
5859 memblock_virt_alloc_node_nopanic(usemapsize,
5860 pgdat->node_id);
5862 #else
5863 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5864 unsigned long zone_start_pfn, unsigned long zonesize) {}
5865 #endif /* CONFIG_SPARSEMEM */
5867 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5869 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5870 void __paginginit set_pageblock_order(void)
5872 unsigned int order;
5874 /* Check that pageblock_nr_pages has not already been setup */
5875 if (pageblock_order)
5876 return;
5878 if (HPAGE_SHIFT > PAGE_SHIFT)
5879 order = HUGETLB_PAGE_ORDER;
5880 else
5881 order = MAX_ORDER - 1;
5884 * Assume the largest contiguous order of interest is a huge page.
5885 * This value may be variable depending on boot parameters on IA64 and
5886 * powerpc.
5888 pageblock_order = order;
5890 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5893 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5894 * is unused as pageblock_order is set at compile-time. See
5895 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5896 * the kernel config
5898 void __paginginit set_pageblock_order(void)
5902 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5904 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5905 unsigned long present_pages)
5907 unsigned long pages = spanned_pages;
5910 * Provide a more accurate estimation if there are holes within
5911 * the zone and SPARSEMEM is in use. If there are holes within the
5912 * zone, each populated memory region may cost us one or two extra
5913 * memmap pages due to alignment because memmap pages for each
5914 * populated regions may not be naturally aligned on page boundary.
5915 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5917 if (spanned_pages > present_pages + (present_pages >> 4) &&
5918 IS_ENABLED(CONFIG_SPARSEMEM))
5919 pages = present_pages;
5921 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5925 * Set up the zone data structures:
5926 * - mark all pages reserved
5927 * - mark all memory queues empty
5928 * - clear the memory bitmaps
5930 * NOTE: pgdat should get zeroed by caller.
5932 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5934 enum zone_type j;
5935 int nid = pgdat->node_id;
5936 int ret;
5938 pgdat_resize_init(pgdat);
5939 #ifdef CONFIG_NUMA_BALANCING
5940 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5941 pgdat->numabalancing_migrate_nr_pages = 0;
5942 pgdat->numabalancing_migrate_next_window = jiffies;
5943 #endif
5944 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5945 spin_lock_init(&pgdat->split_queue_lock);
5946 INIT_LIST_HEAD(&pgdat->split_queue);
5947 pgdat->split_queue_len = 0;
5948 #endif
5949 init_waitqueue_head(&pgdat->kswapd_wait);
5950 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5951 #ifdef CONFIG_COMPACTION
5952 init_waitqueue_head(&pgdat->kcompactd_wait);
5953 #endif
5954 pgdat_page_ext_init(pgdat);
5955 spin_lock_init(&pgdat->lru_lock);
5956 lruvec_init(node_lruvec(pgdat));
5958 for (j = 0; j < MAX_NR_ZONES; j++) {
5959 struct zone *zone = pgdat->node_zones + j;
5960 unsigned long size, realsize, freesize, memmap_pages;
5961 unsigned long zone_start_pfn = zone->zone_start_pfn;
5963 size = zone->spanned_pages;
5964 realsize = freesize = zone->present_pages;
5967 * Adjust freesize so that it accounts for how much memory
5968 * is used by this zone for memmap. This affects the watermark
5969 * and per-cpu initialisations
5971 memmap_pages = calc_memmap_size(size, realsize);
5972 if (!is_highmem_idx(j)) {
5973 if (freesize >= memmap_pages) {
5974 freesize -= memmap_pages;
5975 if (memmap_pages)
5976 printk(KERN_DEBUG
5977 " %s zone: %lu pages used for memmap\n",
5978 zone_names[j], memmap_pages);
5979 } else
5980 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5981 zone_names[j], memmap_pages, freesize);
5984 /* Account for reserved pages */
5985 if (j == 0 && freesize > dma_reserve) {
5986 freesize -= dma_reserve;
5987 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5988 zone_names[0], dma_reserve);
5991 if (!is_highmem_idx(j))
5992 nr_kernel_pages += freesize;
5993 /* Charge for highmem memmap if there are enough kernel pages */
5994 else if (nr_kernel_pages > memmap_pages * 2)
5995 nr_kernel_pages -= memmap_pages;
5996 nr_all_pages += freesize;
5999 * Set an approximate value for lowmem here, it will be adjusted
6000 * when the bootmem allocator frees pages into the buddy system.
6001 * And all highmem pages will be managed by the buddy system.
6003 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6004 #ifdef CONFIG_NUMA
6005 zone->node = nid;
6006 #endif
6007 zone->name = zone_names[j];
6008 zone->zone_pgdat = pgdat;
6009 spin_lock_init(&zone->lock);
6010 zone_seqlock_init(zone);
6011 zone_pcp_init(zone);
6013 if (!size)
6014 continue;
6016 set_pageblock_order();
6017 setup_usemap(pgdat, zone, zone_start_pfn, size);
6018 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
6019 BUG_ON(ret);
6020 memmap_init(size, nid, j, zone_start_pfn);
6024 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6026 unsigned long __maybe_unused start = 0;
6027 unsigned long __maybe_unused offset = 0;
6029 /* Skip empty nodes */
6030 if (!pgdat->node_spanned_pages)
6031 return;
6033 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6034 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6035 offset = pgdat->node_start_pfn - start;
6036 /* ia64 gets its own node_mem_map, before this, without bootmem */
6037 if (!pgdat->node_mem_map) {
6038 unsigned long size, end;
6039 struct page *map;
6042 * The zone's endpoints aren't required to be MAX_ORDER
6043 * aligned but the node_mem_map endpoints must be in order
6044 * for the buddy allocator to function correctly.
6046 end = pgdat_end_pfn(pgdat);
6047 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6048 size = (end - start) * sizeof(struct page);
6049 map = alloc_remap(pgdat->node_id, size);
6050 if (!map)
6051 map = memblock_virt_alloc_node_nopanic(size,
6052 pgdat->node_id);
6053 pgdat->node_mem_map = map + offset;
6055 #ifndef CONFIG_NEED_MULTIPLE_NODES
6057 * With no DISCONTIG, the global mem_map is just set as node 0's
6059 if (pgdat == NODE_DATA(0)) {
6060 mem_map = NODE_DATA(0)->node_mem_map;
6061 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6062 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6063 mem_map -= offset;
6064 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6066 #endif
6067 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6070 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6071 unsigned long node_start_pfn, unsigned long *zholes_size)
6073 pg_data_t *pgdat = NODE_DATA(nid);
6074 unsigned long start_pfn = 0;
6075 unsigned long end_pfn = 0;
6077 /* pg_data_t should be reset to zero when it's allocated */
6078 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6080 reset_deferred_meminit(pgdat);
6081 pgdat->node_id = nid;
6082 pgdat->node_start_pfn = node_start_pfn;
6083 pgdat->per_cpu_nodestats = NULL;
6084 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6085 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6086 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6087 (u64)start_pfn << PAGE_SHIFT,
6088 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6089 #else
6090 start_pfn = node_start_pfn;
6091 #endif
6092 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6093 zones_size, zholes_size);
6095 alloc_node_mem_map(pgdat);
6096 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6097 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6098 nid, (unsigned long)pgdat,
6099 (unsigned long)pgdat->node_mem_map);
6100 #endif
6102 free_area_init_core(pgdat);
6105 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6107 #if MAX_NUMNODES > 1
6109 * Figure out the number of possible node ids.
6111 void __init setup_nr_node_ids(void)
6113 unsigned int highest;
6115 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6116 nr_node_ids = highest + 1;
6118 #endif
6121 * node_map_pfn_alignment - determine the maximum internode alignment
6123 * This function should be called after node map is populated and sorted.
6124 * It calculates the maximum power of two alignment which can distinguish
6125 * all the nodes.
6127 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6128 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6129 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6130 * shifted, 1GiB is enough and this function will indicate so.
6132 * This is used to test whether pfn -> nid mapping of the chosen memory
6133 * model has fine enough granularity to avoid incorrect mapping for the
6134 * populated node map.
6136 * Returns the determined alignment in pfn's. 0 if there is no alignment
6137 * requirement (single node).
6139 unsigned long __init node_map_pfn_alignment(void)
6141 unsigned long accl_mask = 0, last_end = 0;
6142 unsigned long start, end, mask;
6143 int last_nid = -1;
6144 int i, nid;
6146 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6147 if (!start || last_nid < 0 || last_nid == nid) {
6148 last_nid = nid;
6149 last_end = end;
6150 continue;
6154 * Start with a mask granular enough to pin-point to the
6155 * start pfn and tick off bits one-by-one until it becomes
6156 * too coarse to separate the current node from the last.
6158 mask = ~((1 << __ffs(start)) - 1);
6159 while (mask && last_end <= (start & (mask << 1)))
6160 mask <<= 1;
6162 /* accumulate all internode masks */
6163 accl_mask |= mask;
6166 /* convert mask to number of pages */
6167 return ~accl_mask + 1;
6170 /* Find the lowest pfn for a node */
6171 static unsigned long __init find_min_pfn_for_node(int nid)
6173 unsigned long min_pfn = ULONG_MAX;
6174 unsigned long start_pfn;
6175 int i;
6177 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6178 min_pfn = min(min_pfn, start_pfn);
6180 if (min_pfn == ULONG_MAX) {
6181 pr_warn("Could not find start_pfn for node %d\n", nid);
6182 return 0;
6185 return min_pfn;
6189 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6191 * It returns the minimum PFN based on information provided via
6192 * memblock_set_node().
6194 unsigned long __init find_min_pfn_with_active_regions(void)
6196 return find_min_pfn_for_node(MAX_NUMNODES);
6200 * early_calculate_totalpages()
6201 * Sum pages in active regions for movable zone.
6202 * Populate N_MEMORY for calculating usable_nodes.
6204 static unsigned long __init early_calculate_totalpages(void)
6206 unsigned long totalpages = 0;
6207 unsigned long start_pfn, end_pfn;
6208 int i, nid;
6210 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6211 unsigned long pages = end_pfn - start_pfn;
6213 totalpages += pages;
6214 if (pages)
6215 node_set_state(nid, N_MEMORY);
6217 return totalpages;
6221 * Find the PFN the Movable zone begins in each node. Kernel memory
6222 * is spread evenly between nodes as long as the nodes have enough
6223 * memory. When they don't, some nodes will have more kernelcore than
6224 * others
6226 static void __init find_zone_movable_pfns_for_nodes(void)
6228 int i, nid;
6229 unsigned long usable_startpfn;
6230 unsigned long kernelcore_node, kernelcore_remaining;
6231 /* save the state before borrow the nodemask */
6232 nodemask_t saved_node_state = node_states[N_MEMORY];
6233 unsigned long totalpages = early_calculate_totalpages();
6234 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6235 struct memblock_region *r;
6237 /* Need to find movable_zone earlier when movable_node is specified. */
6238 find_usable_zone_for_movable();
6241 * If movable_node is specified, ignore kernelcore and movablecore
6242 * options.
6244 if (movable_node_is_enabled()) {
6245 for_each_memblock(memory, r) {
6246 if (!memblock_is_hotpluggable(r))
6247 continue;
6249 nid = r->nid;
6251 usable_startpfn = PFN_DOWN(r->base);
6252 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6253 min(usable_startpfn, zone_movable_pfn[nid]) :
6254 usable_startpfn;
6257 goto out2;
6261 * If kernelcore=mirror is specified, ignore movablecore option
6263 if (mirrored_kernelcore) {
6264 bool mem_below_4gb_not_mirrored = false;
6266 for_each_memblock(memory, r) {
6267 if (memblock_is_mirror(r))
6268 continue;
6270 nid = r->nid;
6272 usable_startpfn = memblock_region_memory_base_pfn(r);
6274 if (usable_startpfn < 0x100000) {
6275 mem_below_4gb_not_mirrored = true;
6276 continue;
6279 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6280 min(usable_startpfn, zone_movable_pfn[nid]) :
6281 usable_startpfn;
6284 if (mem_below_4gb_not_mirrored)
6285 pr_warn("This configuration results in unmirrored kernel memory.");
6287 goto out2;
6291 * If movablecore=nn[KMG] was specified, calculate what size of
6292 * kernelcore that corresponds so that memory usable for
6293 * any allocation type is evenly spread. If both kernelcore
6294 * and movablecore are specified, then the value of kernelcore
6295 * will be used for required_kernelcore if it's greater than
6296 * what movablecore would have allowed.
6298 if (required_movablecore) {
6299 unsigned long corepages;
6302 * Round-up so that ZONE_MOVABLE is at least as large as what
6303 * was requested by the user
6305 required_movablecore =
6306 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6307 required_movablecore = min(totalpages, required_movablecore);
6308 corepages = totalpages - required_movablecore;
6310 required_kernelcore = max(required_kernelcore, corepages);
6314 * If kernelcore was not specified or kernelcore size is larger
6315 * than totalpages, there is no ZONE_MOVABLE.
6317 if (!required_kernelcore || required_kernelcore >= totalpages)
6318 goto out;
6320 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6321 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6323 restart:
6324 /* Spread kernelcore memory as evenly as possible throughout nodes */
6325 kernelcore_node = required_kernelcore / usable_nodes;
6326 for_each_node_state(nid, N_MEMORY) {
6327 unsigned long start_pfn, end_pfn;
6330 * Recalculate kernelcore_node if the division per node
6331 * now exceeds what is necessary to satisfy the requested
6332 * amount of memory for the kernel
6334 if (required_kernelcore < kernelcore_node)
6335 kernelcore_node = required_kernelcore / usable_nodes;
6338 * As the map is walked, we track how much memory is usable
6339 * by the kernel using kernelcore_remaining. When it is
6340 * 0, the rest of the node is usable by ZONE_MOVABLE
6342 kernelcore_remaining = kernelcore_node;
6344 /* Go through each range of PFNs within this node */
6345 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6346 unsigned long size_pages;
6348 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6349 if (start_pfn >= end_pfn)
6350 continue;
6352 /* Account for what is only usable for kernelcore */
6353 if (start_pfn < usable_startpfn) {
6354 unsigned long kernel_pages;
6355 kernel_pages = min(end_pfn, usable_startpfn)
6356 - start_pfn;
6358 kernelcore_remaining -= min(kernel_pages,
6359 kernelcore_remaining);
6360 required_kernelcore -= min(kernel_pages,
6361 required_kernelcore);
6363 /* Continue if range is now fully accounted */
6364 if (end_pfn <= usable_startpfn) {
6367 * Push zone_movable_pfn to the end so
6368 * that if we have to rebalance
6369 * kernelcore across nodes, we will
6370 * not double account here
6372 zone_movable_pfn[nid] = end_pfn;
6373 continue;
6375 start_pfn = usable_startpfn;
6379 * The usable PFN range for ZONE_MOVABLE is from
6380 * start_pfn->end_pfn. Calculate size_pages as the
6381 * number of pages used as kernelcore
6383 size_pages = end_pfn - start_pfn;
6384 if (size_pages > kernelcore_remaining)
6385 size_pages = kernelcore_remaining;
6386 zone_movable_pfn[nid] = start_pfn + size_pages;
6389 * Some kernelcore has been met, update counts and
6390 * break if the kernelcore for this node has been
6391 * satisfied
6393 required_kernelcore -= min(required_kernelcore,
6394 size_pages);
6395 kernelcore_remaining -= size_pages;
6396 if (!kernelcore_remaining)
6397 break;
6402 * If there is still required_kernelcore, we do another pass with one
6403 * less node in the count. This will push zone_movable_pfn[nid] further
6404 * along on the nodes that still have memory until kernelcore is
6405 * satisfied
6407 usable_nodes--;
6408 if (usable_nodes && required_kernelcore > usable_nodes)
6409 goto restart;
6411 out2:
6412 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6413 for (nid = 0; nid < MAX_NUMNODES; nid++)
6414 zone_movable_pfn[nid] =
6415 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6417 out:
6418 /* restore the node_state */
6419 node_states[N_MEMORY] = saved_node_state;
6422 /* Any regular or high memory on that node ? */
6423 static void check_for_memory(pg_data_t *pgdat, int nid)
6425 enum zone_type zone_type;
6427 if (N_MEMORY == N_NORMAL_MEMORY)
6428 return;
6430 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6431 struct zone *zone = &pgdat->node_zones[zone_type];
6432 if (populated_zone(zone)) {
6433 node_set_state(nid, N_HIGH_MEMORY);
6434 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6435 zone_type <= ZONE_NORMAL)
6436 node_set_state(nid, N_NORMAL_MEMORY);
6437 break;
6443 * free_area_init_nodes - Initialise all pg_data_t and zone data
6444 * @max_zone_pfn: an array of max PFNs for each zone
6446 * This will call free_area_init_node() for each active node in the system.
6447 * Using the page ranges provided by memblock_set_node(), the size of each
6448 * zone in each node and their holes is calculated. If the maximum PFN
6449 * between two adjacent zones match, it is assumed that the zone is empty.
6450 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6451 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6452 * starts where the previous one ended. For example, ZONE_DMA32 starts
6453 * at arch_max_dma_pfn.
6455 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6457 unsigned long start_pfn, end_pfn;
6458 int i, nid;
6460 /* Record where the zone boundaries are */
6461 memset(arch_zone_lowest_possible_pfn, 0,
6462 sizeof(arch_zone_lowest_possible_pfn));
6463 memset(arch_zone_highest_possible_pfn, 0,
6464 sizeof(arch_zone_highest_possible_pfn));
6466 start_pfn = find_min_pfn_with_active_regions();
6468 for (i = 0; i < MAX_NR_ZONES; i++) {
6469 if (i == ZONE_MOVABLE)
6470 continue;
6472 end_pfn = max(max_zone_pfn[i], start_pfn);
6473 arch_zone_lowest_possible_pfn[i] = start_pfn;
6474 arch_zone_highest_possible_pfn[i] = end_pfn;
6476 start_pfn = end_pfn;
6479 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6480 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6481 find_zone_movable_pfns_for_nodes();
6483 /* Print out the zone ranges */
6484 pr_info("Zone ranges:\n");
6485 for (i = 0; i < MAX_NR_ZONES; i++) {
6486 if (i == ZONE_MOVABLE)
6487 continue;
6488 pr_info(" %-8s ", zone_names[i]);
6489 if (arch_zone_lowest_possible_pfn[i] ==
6490 arch_zone_highest_possible_pfn[i])
6491 pr_cont("empty\n");
6492 else
6493 pr_cont("[mem %#018Lx-%#018Lx]\n",
6494 (u64)arch_zone_lowest_possible_pfn[i]
6495 << PAGE_SHIFT,
6496 ((u64)arch_zone_highest_possible_pfn[i]
6497 << PAGE_SHIFT) - 1);
6500 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6501 pr_info("Movable zone start for each node\n");
6502 for (i = 0; i < MAX_NUMNODES; i++) {
6503 if (zone_movable_pfn[i])
6504 pr_info(" Node %d: %#018Lx\n", i,
6505 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6508 /* Print out the early node map */
6509 pr_info("Early memory node ranges\n");
6510 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6511 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6512 (u64)start_pfn << PAGE_SHIFT,
6513 ((u64)end_pfn << PAGE_SHIFT) - 1);
6515 /* Initialise every node */
6516 mminit_verify_pageflags_layout();
6517 setup_nr_node_ids();
6518 for_each_online_node(nid) {
6519 pg_data_t *pgdat = NODE_DATA(nid);
6520 free_area_init_node(nid, NULL,
6521 find_min_pfn_for_node(nid), NULL);
6523 /* Any memory on that node */
6524 if (pgdat->node_present_pages)
6525 node_set_state(nid, N_MEMORY);
6526 check_for_memory(pgdat, nid);
6530 static int __init cmdline_parse_core(char *p, unsigned long *core)
6532 unsigned long long coremem;
6533 if (!p)
6534 return -EINVAL;
6536 coremem = memparse(p, &p);
6537 *core = coremem >> PAGE_SHIFT;
6539 /* Paranoid check that UL is enough for the coremem value */
6540 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6542 return 0;
6546 * kernelcore=size sets the amount of memory for use for allocations that
6547 * cannot be reclaimed or migrated.
6549 static int __init cmdline_parse_kernelcore(char *p)
6551 /* parse kernelcore=mirror */
6552 if (parse_option_str(p, "mirror")) {
6553 mirrored_kernelcore = true;
6554 return 0;
6557 return cmdline_parse_core(p, &required_kernelcore);
6561 * movablecore=size sets the amount of memory for use for allocations that
6562 * can be reclaimed or migrated.
6564 static int __init cmdline_parse_movablecore(char *p)
6566 return cmdline_parse_core(p, &required_movablecore);
6569 early_param("kernelcore", cmdline_parse_kernelcore);
6570 early_param("movablecore", cmdline_parse_movablecore);
6572 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6574 void adjust_managed_page_count(struct page *page, long count)
6576 spin_lock(&managed_page_count_lock);
6577 page_zone(page)->managed_pages += count;
6578 totalram_pages += count;
6579 #ifdef CONFIG_HIGHMEM
6580 if (PageHighMem(page))
6581 totalhigh_pages += count;
6582 #endif
6583 spin_unlock(&managed_page_count_lock);
6585 EXPORT_SYMBOL(adjust_managed_page_count);
6587 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6589 void *pos;
6590 unsigned long pages = 0;
6592 start = (void *)PAGE_ALIGN((unsigned long)start);
6593 end = (void *)((unsigned long)end & PAGE_MASK);
6594 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6595 if ((unsigned int)poison <= 0xFF)
6596 memset(pos, poison, PAGE_SIZE);
6597 free_reserved_page(virt_to_page(pos));
6600 if (pages && s)
6601 pr_info("Freeing %s memory: %ldK\n",
6602 s, pages << (PAGE_SHIFT - 10));
6604 return pages;
6606 EXPORT_SYMBOL(free_reserved_area);
6608 #ifdef CONFIG_HIGHMEM
6609 void free_highmem_page(struct page *page)
6611 __free_reserved_page(page);
6612 totalram_pages++;
6613 page_zone(page)->managed_pages++;
6614 totalhigh_pages++;
6616 #endif
6619 void __init mem_init_print_info(const char *str)
6621 unsigned long physpages, codesize, datasize, rosize, bss_size;
6622 unsigned long init_code_size, init_data_size;
6624 physpages = get_num_physpages();
6625 codesize = _etext - _stext;
6626 datasize = _edata - _sdata;
6627 rosize = __end_rodata - __start_rodata;
6628 bss_size = __bss_stop - __bss_start;
6629 init_data_size = __init_end - __init_begin;
6630 init_code_size = _einittext - _sinittext;
6633 * Detect special cases and adjust section sizes accordingly:
6634 * 1) .init.* may be embedded into .data sections
6635 * 2) .init.text.* may be out of [__init_begin, __init_end],
6636 * please refer to arch/tile/kernel/vmlinux.lds.S.
6637 * 3) .rodata.* may be embedded into .text or .data sections.
6639 #define adj_init_size(start, end, size, pos, adj) \
6640 do { \
6641 if (start <= pos && pos < end && size > adj) \
6642 size -= adj; \
6643 } while (0)
6645 adj_init_size(__init_begin, __init_end, init_data_size,
6646 _sinittext, init_code_size);
6647 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6648 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6649 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6650 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6652 #undef adj_init_size
6654 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6655 #ifdef CONFIG_HIGHMEM
6656 ", %luK highmem"
6657 #endif
6658 "%s%s)\n",
6659 nr_free_pages() << (PAGE_SHIFT - 10),
6660 physpages << (PAGE_SHIFT - 10),
6661 codesize >> 10, datasize >> 10, rosize >> 10,
6662 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6663 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6664 totalcma_pages << (PAGE_SHIFT - 10),
6665 #ifdef CONFIG_HIGHMEM
6666 totalhigh_pages << (PAGE_SHIFT - 10),
6667 #endif
6668 str ? ", " : "", str ? str : "");
6672 * set_dma_reserve - set the specified number of pages reserved in the first zone
6673 * @new_dma_reserve: The number of pages to mark reserved
6675 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6676 * In the DMA zone, a significant percentage may be consumed by kernel image
6677 * and other unfreeable allocations which can skew the watermarks badly. This
6678 * function may optionally be used to account for unfreeable pages in the
6679 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6680 * smaller per-cpu batchsize.
6682 void __init set_dma_reserve(unsigned long new_dma_reserve)
6684 dma_reserve = new_dma_reserve;
6687 void __init free_area_init(unsigned long *zones_size)
6689 free_area_init_node(0, zones_size,
6690 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6693 static int page_alloc_cpu_dead(unsigned int cpu)
6696 lru_add_drain_cpu(cpu);
6697 drain_pages(cpu);
6700 * Spill the event counters of the dead processor
6701 * into the current processors event counters.
6702 * This artificially elevates the count of the current
6703 * processor.
6705 vm_events_fold_cpu(cpu);
6708 * Zero the differential counters of the dead processor
6709 * so that the vm statistics are consistent.
6711 * This is only okay since the processor is dead and cannot
6712 * race with what we are doing.
6714 cpu_vm_stats_fold(cpu);
6715 return 0;
6718 void __init page_alloc_init(void)
6720 int ret;
6722 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6723 "mm/page_alloc:dead", NULL,
6724 page_alloc_cpu_dead);
6725 WARN_ON(ret < 0);
6729 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6730 * or min_free_kbytes changes.
6732 static void calculate_totalreserve_pages(void)
6734 struct pglist_data *pgdat;
6735 unsigned long reserve_pages = 0;
6736 enum zone_type i, j;
6738 for_each_online_pgdat(pgdat) {
6740 pgdat->totalreserve_pages = 0;
6742 for (i = 0; i < MAX_NR_ZONES; i++) {
6743 struct zone *zone = pgdat->node_zones + i;
6744 long max = 0;
6746 /* Find valid and maximum lowmem_reserve in the zone */
6747 for (j = i; j < MAX_NR_ZONES; j++) {
6748 if (zone->lowmem_reserve[j] > max)
6749 max = zone->lowmem_reserve[j];
6752 /* we treat the high watermark as reserved pages. */
6753 max += high_wmark_pages(zone);
6755 if (max > zone->managed_pages)
6756 max = zone->managed_pages;
6758 pgdat->totalreserve_pages += max;
6760 reserve_pages += max;
6763 totalreserve_pages = reserve_pages;
6767 * setup_per_zone_lowmem_reserve - called whenever
6768 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6769 * has a correct pages reserved value, so an adequate number of
6770 * pages are left in the zone after a successful __alloc_pages().
6772 static void setup_per_zone_lowmem_reserve(void)
6774 struct pglist_data *pgdat;
6775 enum zone_type j, idx;
6777 for_each_online_pgdat(pgdat) {
6778 for (j = 0; j < MAX_NR_ZONES; j++) {
6779 struct zone *zone = pgdat->node_zones + j;
6780 unsigned long managed_pages = zone->managed_pages;
6782 zone->lowmem_reserve[j] = 0;
6784 idx = j;
6785 while (idx) {
6786 struct zone *lower_zone;
6788 idx--;
6790 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6791 sysctl_lowmem_reserve_ratio[idx] = 1;
6793 lower_zone = pgdat->node_zones + idx;
6794 lower_zone->lowmem_reserve[j] = managed_pages /
6795 sysctl_lowmem_reserve_ratio[idx];
6796 managed_pages += lower_zone->managed_pages;
6801 /* update totalreserve_pages */
6802 calculate_totalreserve_pages();
6805 static void __setup_per_zone_wmarks(void)
6807 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6808 unsigned long lowmem_pages = 0;
6809 struct zone *zone;
6810 unsigned long flags;
6812 /* Calculate total number of !ZONE_HIGHMEM pages */
6813 for_each_zone(zone) {
6814 if (!is_highmem(zone))
6815 lowmem_pages += zone->managed_pages;
6818 for_each_zone(zone) {
6819 u64 tmp;
6821 spin_lock_irqsave(&zone->lock, flags);
6822 tmp = (u64)pages_min * zone->managed_pages;
6823 do_div(tmp, lowmem_pages);
6824 if (is_highmem(zone)) {
6826 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6827 * need highmem pages, so cap pages_min to a small
6828 * value here.
6830 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6831 * deltas control asynch page reclaim, and so should
6832 * not be capped for highmem.
6834 unsigned long min_pages;
6836 min_pages = zone->managed_pages / 1024;
6837 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6838 zone->watermark[WMARK_MIN] = min_pages;
6839 } else {
6841 * If it's a lowmem zone, reserve a number of pages
6842 * proportionate to the zone's size.
6844 zone->watermark[WMARK_MIN] = tmp;
6848 * Set the kswapd watermarks distance according to the
6849 * scale factor in proportion to available memory, but
6850 * ensure a minimum size on small systems.
6852 tmp = max_t(u64, tmp >> 2,
6853 mult_frac(zone->managed_pages,
6854 watermark_scale_factor, 10000));
6856 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6857 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6859 spin_unlock_irqrestore(&zone->lock, flags);
6862 /* update totalreserve_pages */
6863 calculate_totalreserve_pages();
6867 * setup_per_zone_wmarks - called when min_free_kbytes changes
6868 * or when memory is hot-{added|removed}
6870 * Ensures that the watermark[min,low,high] values for each zone are set
6871 * correctly with respect to min_free_kbytes.
6873 void setup_per_zone_wmarks(void)
6875 mutex_lock(&zonelists_mutex);
6876 __setup_per_zone_wmarks();
6877 mutex_unlock(&zonelists_mutex);
6881 * Initialise min_free_kbytes.
6883 * For small machines we want it small (128k min). For large machines
6884 * we want it large (64MB max). But it is not linear, because network
6885 * bandwidth does not increase linearly with machine size. We use
6887 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6888 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6890 * which yields
6892 * 16MB: 512k
6893 * 32MB: 724k
6894 * 64MB: 1024k
6895 * 128MB: 1448k
6896 * 256MB: 2048k
6897 * 512MB: 2896k
6898 * 1024MB: 4096k
6899 * 2048MB: 5792k
6900 * 4096MB: 8192k
6901 * 8192MB: 11584k
6902 * 16384MB: 16384k
6904 int __meminit init_per_zone_wmark_min(void)
6906 unsigned long lowmem_kbytes;
6907 int new_min_free_kbytes;
6909 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6910 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6912 if (new_min_free_kbytes > user_min_free_kbytes) {
6913 min_free_kbytes = new_min_free_kbytes;
6914 if (min_free_kbytes < 128)
6915 min_free_kbytes = 128;
6916 if (min_free_kbytes > 65536)
6917 min_free_kbytes = 65536;
6918 } else {
6919 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6920 new_min_free_kbytes, user_min_free_kbytes);
6922 setup_per_zone_wmarks();
6923 refresh_zone_stat_thresholds();
6924 setup_per_zone_lowmem_reserve();
6926 #ifdef CONFIG_NUMA
6927 setup_min_unmapped_ratio();
6928 setup_min_slab_ratio();
6929 #endif
6931 return 0;
6933 core_initcall(init_per_zone_wmark_min)
6936 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6937 * that we can call two helper functions whenever min_free_kbytes
6938 * changes.
6940 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6941 void __user *buffer, size_t *length, loff_t *ppos)
6943 int rc;
6945 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6946 if (rc)
6947 return rc;
6949 if (write) {
6950 user_min_free_kbytes = min_free_kbytes;
6951 setup_per_zone_wmarks();
6953 return 0;
6956 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6957 void __user *buffer, size_t *length, loff_t *ppos)
6959 int rc;
6961 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6962 if (rc)
6963 return rc;
6965 if (write)
6966 setup_per_zone_wmarks();
6968 return 0;
6971 #ifdef CONFIG_NUMA
6972 static void setup_min_unmapped_ratio(void)
6974 pg_data_t *pgdat;
6975 struct zone *zone;
6977 for_each_online_pgdat(pgdat)
6978 pgdat->min_unmapped_pages = 0;
6980 for_each_zone(zone)
6981 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
6982 sysctl_min_unmapped_ratio) / 100;
6986 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6987 void __user *buffer, size_t *length, loff_t *ppos)
6989 int rc;
6991 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6992 if (rc)
6993 return rc;
6995 setup_min_unmapped_ratio();
6997 return 0;
7000 static void setup_min_slab_ratio(void)
7002 pg_data_t *pgdat;
7003 struct zone *zone;
7005 for_each_online_pgdat(pgdat)
7006 pgdat->min_slab_pages = 0;
7008 for_each_zone(zone)
7009 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7010 sysctl_min_slab_ratio) / 100;
7013 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7014 void __user *buffer, size_t *length, loff_t *ppos)
7016 int rc;
7018 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7019 if (rc)
7020 return rc;
7022 setup_min_slab_ratio();
7024 return 0;
7026 #endif
7029 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7030 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7031 * whenever sysctl_lowmem_reserve_ratio changes.
7033 * The reserve ratio obviously has absolutely no relation with the
7034 * minimum watermarks. The lowmem reserve ratio can only make sense
7035 * if in function of the boot time zone sizes.
7037 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7038 void __user *buffer, size_t *length, loff_t *ppos)
7040 proc_dointvec_minmax(table, write, buffer, length, ppos);
7041 setup_per_zone_lowmem_reserve();
7042 return 0;
7046 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7047 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7048 * pagelist can have before it gets flushed back to buddy allocator.
7050 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7051 void __user *buffer, size_t *length, loff_t *ppos)
7053 struct zone *zone;
7054 int old_percpu_pagelist_fraction;
7055 int ret;
7057 mutex_lock(&pcp_batch_high_lock);
7058 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7060 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7061 if (!write || ret < 0)
7062 goto out;
7064 /* Sanity checking to avoid pcp imbalance */
7065 if (percpu_pagelist_fraction &&
7066 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7067 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7068 ret = -EINVAL;
7069 goto out;
7072 /* No change? */
7073 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7074 goto out;
7076 for_each_populated_zone(zone) {
7077 unsigned int cpu;
7079 for_each_possible_cpu(cpu)
7080 pageset_set_high_and_batch(zone,
7081 per_cpu_ptr(zone->pageset, cpu));
7083 out:
7084 mutex_unlock(&pcp_batch_high_lock);
7085 return ret;
7088 #ifdef CONFIG_NUMA
7089 int hashdist = HASHDIST_DEFAULT;
7091 static int __init set_hashdist(char *str)
7093 if (!str)
7094 return 0;
7095 hashdist = simple_strtoul(str, &str, 0);
7096 return 1;
7098 __setup("hashdist=", set_hashdist);
7099 #endif
7101 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7103 * Returns the number of pages that arch has reserved but
7104 * is not known to alloc_large_system_hash().
7106 static unsigned long __init arch_reserved_kernel_pages(void)
7108 return 0;
7110 #endif
7113 * allocate a large system hash table from bootmem
7114 * - it is assumed that the hash table must contain an exact power-of-2
7115 * quantity of entries
7116 * - limit is the number of hash buckets, not the total allocation size
7118 void *__init alloc_large_system_hash(const char *tablename,
7119 unsigned long bucketsize,
7120 unsigned long numentries,
7121 int scale,
7122 int flags,
7123 unsigned int *_hash_shift,
7124 unsigned int *_hash_mask,
7125 unsigned long low_limit,
7126 unsigned long high_limit)
7128 unsigned long long max = high_limit;
7129 unsigned long log2qty, size;
7130 void *table = NULL;
7132 /* allow the kernel cmdline to have a say */
7133 if (!numentries) {
7134 /* round applicable memory size up to nearest megabyte */
7135 numentries = nr_kernel_pages;
7136 numentries -= arch_reserved_kernel_pages();
7138 /* It isn't necessary when PAGE_SIZE >= 1MB */
7139 if (PAGE_SHIFT < 20)
7140 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7142 /* limit to 1 bucket per 2^scale bytes of low memory */
7143 if (scale > PAGE_SHIFT)
7144 numentries >>= (scale - PAGE_SHIFT);
7145 else
7146 numentries <<= (PAGE_SHIFT - scale);
7148 /* Make sure we've got at least a 0-order allocation.. */
7149 if (unlikely(flags & HASH_SMALL)) {
7150 /* Makes no sense without HASH_EARLY */
7151 WARN_ON(!(flags & HASH_EARLY));
7152 if (!(numentries >> *_hash_shift)) {
7153 numentries = 1UL << *_hash_shift;
7154 BUG_ON(!numentries);
7156 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7157 numentries = PAGE_SIZE / bucketsize;
7159 numentries = roundup_pow_of_two(numentries);
7161 /* limit allocation size to 1/16 total memory by default */
7162 if (max == 0) {
7163 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7164 do_div(max, bucketsize);
7166 max = min(max, 0x80000000ULL);
7168 if (numentries < low_limit)
7169 numentries = low_limit;
7170 if (numentries > max)
7171 numentries = max;
7173 log2qty = ilog2(numentries);
7175 do {
7176 size = bucketsize << log2qty;
7177 if (flags & HASH_EARLY)
7178 table = memblock_virt_alloc_nopanic(size, 0);
7179 else if (hashdist)
7180 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7181 else {
7183 * If bucketsize is not a power-of-two, we may free
7184 * some pages at the end of hash table which
7185 * alloc_pages_exact() automatically does
7187 if (get_order(size) < MAX_ORDER) {
7188 table = alloc_pages_exact(size, GFP_ATOMIC);
7189 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7192 } while (!table && size > PAGE_SIZE && --log2qty);
7194 if (!table)
7195 panic("Failed to allocate %s hash table\n", tablename);
7197 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7198 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7200 if (_hash_shift)
7201 *_hash_shift = log2qty;
7202 if (_hash_mask)
7203 *_hash_mask = (1 << log2qty) - 1;
7205 return table;
7209 * This function checks whether pageblock includes unmovable pages or not.
7210 * If @count is not zero, it is okay to include less @count unmovable pages
7212 * PageLRU check without isolation or lru_lock could race so that
7213 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7214 * check without lock_page also may miss some movable non-lru pages at
7215 * race condition. So you can't expect this function should be exact.
7217 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7218 bool skip_hwpoisoned_pages)
7220 unsigned long pfn, iter, found;
7221 int mt;
7224 * For avoiding noise data, lru_add_drain_all() should be called
7225 * If ZONE_MOVABLE, the zone never contains unmovable pages
7227 if (zone_idx(zone) == ZONE_MOVABLE)
7228 return false;
7229 mt = get_pageblock_migratetype(page);
7230 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7231 return false;
7233 pfn = page_to_pfn(page);
7234 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7235 unsigned long check = pfn + iter;
7237 if (!pfn_valid_within(check))
7238 continue;
7240 page = pfn_to_page(check);
7243 * Hugepages are not in LRU lists, but they're movable.
7244 * We need not scan over tail pages bacause we don't
7245 * handle each tail page individually in migration.
7247 if (PageHuge(page)) {
7248 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7249 continue;
7253 * We can't use page_count without pin a page
7254 * because another CPU can free compound page.
7255 * This check already skips compound tails of THP
7256 * because their page->_refcount is zero at all time.
7258 if (!page_ref_count(page)) {
7259 if (PageBuddy(page))
7260 iter += (1 << page_order(page)) - 1;
7261 continue;
7265 * The HWPoisoned page may be not in buddy system, and
7266 * page_count() is not 0.
7268 if (skip_hwpoisoned_pages && PageHWPoison(page))
7269 continue;
7271 if (__PageMovable(page))
7272 continue;
7274 if (!PageLRU(page))
7275 found++;
7277 * If there are RECLAIMABLE pages, we need to check
7278 * it. But now, memory offline itself doesn't call
7279 * shrink_node_slabs() and it still to be fixed.
7282 * If the page is not RAM, page_count()should be 0.
7283 * we don't need more check. This is an _used_ not-movable page.
7285 * The problematic thing here is PG_reserved pages. PG_reserved
7286 * is set to both of a memory hole page and a _used_ kernel
7287 * page at boot.
7289 if (found > count)
7290 return true;
7292 return false;
7295 bool is_pageblock_removable_nolock(struct page *page)
7297 struct zone *zone;
7298 unsigned long pfn;
7301 * We have to be careful here because we are iterating over memory
7302 * sections which are not zone aware so we might end up outside of
7303 * the zone but still within the section.
7304 * We have to take care about the node as well. If the node is offline
7305 * its NODE_DATA will be NULL - see page_zone.
7307 if (!node_online(page_to_nid(page)))
7308 return false;
7310 zone = page_zone(page);
7311 pfn = page_to_pfn(page);
7312 if (!zone_spans_pfn(zone, pfn))
7313 return false;
7315 return !has_unmovable_pages(zone, page, 0, true);
7318 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7320 static unsigned long pfn_max_align_down(unsigned long pfn)
7322 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7323 pageblock_nr_pages) - 1);
7326 static unsigned long pfn_max_align_up(unsigned long pfn)
7328 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7329 pageblock_nr_pages));
7332 /* [start, end) must belong to a single zone. */
7333 static int __alloc_contig_migrate_range(struct compact_control *cc,
7334 unsigned long start, unsigned long end)
7336 /* This function is based on compact_zone() from compaction.c. */
7337 unsigned long nr_reclaimed;
7338 unsigned long pfn = start;
7339 unsigned int tries = 0;
7340 int ret = 0;
7342 migrate_prep();
7344 while (pfn < end || !list_empty(&cc->migratepages)) {
7345 if (fatal_signal_pending(current)) {
7346 ret = -EINTR;
7347 break;
7350 if (list_empty(&cc->migratepages)) {
7351 cc->nr_migratepages = 0;
7352 pfn = isolate_migratepages_range(cc, pfn, end);
7353 if (!pfn) {
7354 ret = -EINTR;
7355 break;
7357 tries = 0;
7358 } else if (++tries == 5) {
7359 ret = ret < 0 ? ret : -EBUSY;
7360 break;
7363 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7364 &cc->migratepages);
7365 cc->nr_migratepages -= nr_reclaimed;
7367 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7368 NULL, 0, cc->mode, MR_CMA);
7370 if (ret < 0) {
7371 putback_movable_pages(&cc->migratepages);
7372 return ret;
7374 return 0;
7378 * alloc_contig_range() -- tries to allocate given range of pages
7379 * @start: start PFN to allocate
7380 * @end: one-past-the-last PFN to allocate
7381 * @migratetype: migratetype of the underlaying pageblocks (either
7382 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7383 * in range must have the same migratetype and it must
7384 * be either of the two.
7385 * @gfp_mask: GFP mask to use during compaction
7387 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7388 * aligned, however it's the caller's responsibility to guarantee that
7389 * we are the only thread that changes migrate type of pageblocks the
7390 * pages fall in.
7392 * The PFN range must belong to a single zone.
7394 * Returns zero on success or negative error code. On success all
7395 * pages which PFN is in [start, end) are allocated for the caller and
7396 * need to be freed with free_contig_range().
7398 int alloc_contig_range(unsigned long start, unsigned long end,
7399 unsigned migratetype, gfp_t gfp_mask)
7401 unsigned long outer_start, outer_end;
7402 unsigned int order;
7403 int ret = 0;
7405 struct compact_control cc = {
7406 .nr_migratepages = 0,
7407 .order = -1,
7408 .zone = page_zone(pfn_to_page(start)),
7409 .mode = MIGRATE_SYNC,
7410 .ignore_skip_hint = true,
7411 .gfp_mask = memalloc_noio_flags(gfp_mask),
7413 INIT_LIST_HEAD(&cc.migratepages);
7416 * What we do here is we mark all pageblocks in range as
7417 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7418 * have different sizes, and due to the way page allocator
7419 * work, we align the range to biggest of the two pages so
7420 * that page allocator won't try to merge buddies from
7421 * different pageblocks and change MIGRATE_ISOLATE to some
7422 * other migration type.
7424 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7425 * migrate the pages from an unaligned range (ie. pages that
7426 * we are interested in). This will put all the pages in
7427 * range back to page allocator as MIGRATE_ISOLATE.
7429 * When this is done, we take the pages in range from page
7430 * allocator removing them from the buddy system. This way
7431 * page allocator will never consider using them.
7433 * This lets us mark the pageblocks back as
7434 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7435 * aligned range but not in the unaligned, original range are
7436 * put back to page allocator so that buddy can use them.
7439 ret = start_isolate_page_range(pfn_max_align_down(start),
7440 pfn_max_align_up(end), migratetype,
7441 false);
7442 if (ret)
7443 return ret;
7446 * In case of -EBUSY, we'd like to know which page causes problem.
7447 * So, just fall through. We will check it in test_pages_isolated().
7449 ret = __alloc_contig_migrate_range(&cc, start, end);
7450 if (ret && ret != -EBUSY)
7451 goto done;
7454 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7455 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7456 * more, all pages in [start, end) are free in page allocator.
7457 * What we are going to do is to allocate all pages from
7458 * [start, end) (that is remove them from page allocator).
7460 * The only problem is that pages at the beginning and at the
7461 * end of interesting range may be not aligned with pages that
7462 * page allocator holds, ie. they can be part of higher order
7463 * pages. Because of this, we reserve the bigger range and
7464 * once this is done free the pages we are not interested in.
7466 * We don't have to hold zone->lock here because the pages are
7467 * isolated thus they won't get removed from buddy.
7470 lru_add_drain_all();
7471 drain_all_pages(cc.zone);
7473 order = 0;
7474 outer_start = start;
7475 while (!PageBuddy(pfn_to_page(outer_start))) {
7476 if (++order >= MAX_ORDER) {
7477 outer_start = start;
7478 break;
7480 outer_start &= ~0UL << order;
7483 if (outer_start != start) {
7484 order = page_order(pfn_to_page(outer_start));
7487 * outer_start page could be small order buddy page and
7488 * it doesn't include start page. Adjust outer_start
7489 * in this case to report failed page properly
7490 * on tracepoint in test_pages_isolated()
7492 if (outer_start + (1UL << order) <= start)
7493 outer_start = start;
7496 /* Make sure the range is really isolated. */
7497 if (test_pages_isolated(outer_start, end, false)) {
7498 pr_info("%s: [%lx, %lx) PFNs busy\n",
7499 __func__, outer_start, end);
7500 ret = -EBUSY;
7501 goto done;
7504 /* Grab isolated pages from freelists. */
7505 outer_end = isolate_freepages_range(&cc, outer_start, end);
7506 if (!outer_end) {
7507 ret = -EBUSY;
7508 goto done;
7511 /* Free head and tail (if any) */
7512 if (start != outer_start)
7513 free_contig_range(outer_start, start - outer_start);
7514 if (end != outer_end)
7515 free_contig_range(end, outer_end - end);
7517 done:
7518 undo_isolate_page_range(pfn_max_align_down(start),
7519 pfn_max_align_up(end), migratetype);
7520 return ret;
7523 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7525 unsigned int count = 0;
7527 for (; nr_pages--; pfn++) {
7528 struct page *page = pfn_to_page(pfn);
7530 count += page_count(page) != 1;
7531 __free_page(page);
7533 WARN(count != 0, "%d pages are still in use!\n", count);
7535 #endif
7537 #ifdef CONFIG_MEMORY_HOTPLUG
7539 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7540 * page high values need to be recalulated.
7542 void __meminit zone_pcp_update(struct zone *zone)
7544 unsigned cpu;
7545 mutex_lock(&pcp_batch_high_lock);
7546 for_each_possible_cpu(cpu)
7547 pageset_set_high_and_batch(zone,
7548 per_cpu_ptr(zone->pageset, cpu));
7549 mutex_unlock(&pcp_batch_high_lock);
7551 #endif
7553 void zone_pcp_reset(struct zone *zone)
7555 unsigned long flags;
7556 int cpu;
7557 struct per_cpu_pageset *pset;
7559 /* avoid races with drain_pages() */
7560 local_irq_save(flags);
7561 if (zone->pageset != &boot_pageset) {
7562 for_each_online_cpu(cpu) {
7563 pset = per_cpu_ptr(zone->pageset, cpu);
7564 drain_zonestat(zone, pset);
7566 free_percpu(zone->pageset);
7567 zone->pageset = &boot_pageset;
7569 local_irq_restore(flags);
7572 #ifdef CONFIG_MEMORY_HOTREMOVE
7574 * All pages in the range must be in a single zone and isolated
7575 * before calling this.
7577 void
7578 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7580 struct page *page;
7581 struct zone *zone;
7582 unsigned int order, i;
7583 unsigned long pfn;
7584 unsigned long flags;
7585 /* find the first valid pfn */
7586 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7587 if (pfn_valid(pfn))
7588 break;
7589 if (pfn == end_pfn)
7590 return;
7591 zone = page_zone(pfn_to_page(pfn));
7592 spin_lock_irqsave(&zone->lock, flags);
7593 pfn = start_pfn;
7594 while (pfn < end_pfn) {
7595 if (!pfn_valid(pfn)) {
7596 pfn++;
7597 continue;
7599 page = pfn_to_page(pfn);
7601 * The HWPoisoned page may be not in buddy system, and
7602 * page_count() is not 0.
7604 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7605 pfn++;
7606 SetPageReserved(page);
7607 continue;
7610 BUG_ON(page_count(page));
7611 BUG_ON(!PageBuddy(page));
7612 order = page_order(page);
7613 #ifdef CONFIG_DEBUG_VM
7614 pr_info("remove from free list %lx %d %lx\n",
7615 pfn, 1 << order, end_pfn);
7616 #endif
7617 list_del(&page->lru);
7618 rmv_page_order(page);
7619 zone->free_area[order].nr_free--;
7620 for (i = 0; i < (1 << order); i++)
7621 SetPageReserved((page+i));
7622 pfn += (1 << order);
7624 spin_unlock_irqrestore(&zone->lock, flags);
7626 #endif
7628 bool is_free_buddy_page(struct page *page)
7630 struct zone *zone = page_zone(page);
7631 unsigned long pfn = page_to_pfn(page);
7632 unsigned long flags;
7633 unsigned int order;
7635 spin_lock_irqsave(&zone->lock, flags);
7636 for (order = 0; order < MAX_ORDER; order++) {
7637 struct page *page_head = page - (pfn & ((1 << order) - 1));
7639 if (PageBuddy(page_head) && page_order(page_head) >= order)
7640 break;
7642 spin_unlock_irqrestore(&zone->lock, flags);
7644 return order < MAX_ORDER;