x86: Use generic idle loop
[linux-2.6/btrfs-unstable.git] / arch / x86 / kernel / process.c
blob6833bffaadb7f07734ce9ed57851f4e4645ba7c7
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/module.h>
11 #include <linux/pm.h>
12 #include <linux/clockchips.h>
13 #include <linux/random.h>
14 #include <linux/user-return-notifier.h>
15 #include <linux/dmi.h>
16 #include <linux/utsname.h>
17 #include <linux/stackprotector.h>
18 #include <linux/tick.h>
19 #include <linux/cpuidle.h>
20 #include <trace/events/power.h>
21 #include <linux/hw_breakpoint.h>
22 #include <asm/cpu.h>
23 #include <asm/apic.h>
24 #include <asm/syscalls.h>
25 #include <asm/idle.h>
26 #include <asm/uaccess.h>
27 #include <asm/i387.h>
28 #include <asm/fpu-internal.h>
29 #include <asm/debugreg.h>
30 #include <asm/nmi.h>
33 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
34 * no more per-task TSS's. The TSS size is kept cacheline-aligned
35 * so they are allowed to end up in the .data..cacheline_aligned
36 * section. Since TSS's are completely CPU-local, we want them
37 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
39 DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
41 #ifdef CONFIG_X86_64
42 static DEFINE_PER_CPU(unsigned char, is_idle);
43 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
45 void idle_notifier_register(struct notifier_block *n)
47 atomic_notifier_chain_register(&idle_notifier, n);
49 EXPORT_SYMBOL_GPL(idle_notifier_register);
51 void idle_notifier_unregister(struct notifier_block *n)
53 atomic_notifier_chain_unregister(&idle_notifier, n);
55 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
56 #endif
58 struct kmem_cache *task_xstate_cachep;
59 EXPORT_SYMBOL_GPL(task_xstate_cachep);
62 * this gets called so that we can store lazy state into memory and copy the
63 * current task into the new thread.
65 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
67 int ret;
69 *dst = *src;
70 if (fpu_allocated(&src->thread.fpu)) {
71 memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
72 ret = fpu_alloc(&dst->thread.fpu);
73 if (ret)
74 return ret;
75 fpu_copy(dst, src);
77 return 0;
80 void free_thread_xstate(struct task_struct *tsk)
82 fpu_free(&tsk->thread.fpu);
85 void arch_release_task_struct(struct task_struct *tsk)
87 free_thread_xstate(tsk);
90 void arch_task_cache_init(void)
92 task_xstate_cachep =
93 kmem_cache_create("task_xstate", xstate_size,
94 __alignof__(union thread_xstate),
95 SLAB_PANIC | SLAB_NOTRACK, NULL);
99 * Free current thread data structures etc..
101 void exit_thread(void)
103 struct task_struct *me = current;
104 struct thread_struct *t = &me->thread;
105 unsigned long *bp = t->io_bitmap_ptr;
107 if (bp) {
108 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
110 t->io_bitmap_ptr = NULL;
111 clear_thread_flag(TIF_IO_BITMAP);
113 * Careful, clear this in the TSS too:
115 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
116 t->io_bitmap_max = 0;
117 put_cpu();
118 kfree(bp);
121 drop_fpu(me);
124 void show_regs_common(void)
126 const char *vendor, *product, *board;
128 vendor = dmi_get_system_info(DMI_SYS_VENDOR);
129 if (!vendor)
130 vendor = "";
131 product = dmi_get_system_info(DMI_PRODUCT_NAME);
132 if (!product)
133 product = "";
135 /* Board Name is optional */
136 board = dmi_get_system_info(DMI_BOARD_NAME);
138 printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s %s%s%s\n",
139 current->pid, current->comm, print_tainted(),
140 init_utsname()->release,
141 (int)strcspn(init_utsname()->version, " "),
142 init_utsname()->version,
143 vendor, product,
144 board ? "/" : "",
145 board ? board : "");
148 void flush_thread(void)
150 struct task_struct *tsk = current;
152 flush_ptrace_hw_breakpoint(tsk);
153 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
154 drop_init_fpu(tsk);
156 * Free the FPU state for non xsave platforms. They get reallocated
157 * lazily at the first use.
159 if (!use_eager_fpu())
160 free_thread_xstate(tsk);
163 static void hard_disable_TSC(void)
165 write_cr4(read_cr4() | X86_CR4_TSD);
168 void disable_TSC(void)
170 preempt_disable();
171 if (!test_and_set_thread_flag(TIF_NOTSC))
173 * Must flip the CPU state synchronously with
174 * TIF_NOTSC in the current running context.
176 hard_disable_TSC();
177 preempt_enable();
180 static void hard_enable_TSC(void)
182 write_cr4(read_cr4() & ~X86_CR4_TSD);
185 static void enable_TSC(void)
187 preempt_disable();
188 if (test_and_clear_thread_flag(TIF_NOTSC))
190 * Must flip the CPU state synchronously with
191 * TIF_NOTSC in the current running context.
193 hard_enable_TSC();
194 preempt_enable();
197 int get_tsc_mode(unsigned long adr)
199 unsigned int val;
201 if (test_thread_flag(TIF_NOTSC))
202 val = PR_TSC_SIGSEGV;
203 else
204 val = PR_TSC_ENABLE;
206 return put_user(val, (unsigned int __user *)adr);
209 int set_tsc_mode(unsigned int val)
211 if (val == PR_TSC_SIGSEGV)
212 disable_TSC();
213 else if (val == PR_TSC_ENABLE)
214 enable_TSC();
215 else
216 return -EINVAL;
218 return 0;
221 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
222 struct tss_struct *tss)
224 struct thread_struct *prev, *next;
226 prev = &prev_p->thread;
227 next = &next_p->thread;
229 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
230 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
231 unsigned long debugctl = get_debugctlmsr();
233 debugctl &= ~DEBUGCTLMSR_BTF;
234 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
235 debugctl |= DEBUGCTLMSR_BTF;
237 update_debugctlmsr(debugctl);
240 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
241 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
242 /* prev and next are different */
243 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
244 hard_disable_TSC();
245 else
246 hard_enable_TSC();
249 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
251 * Copy the relevant range of the IO bitmap.
252 * Normally this is 128 bytes or less:
254 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
255 max(prev->io_bitmap_max, next->io_bitmap_max));
256 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
258 * Clear any possible leftover bits:
260 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
262 propagate_user_return_notify(prev_p, next_p);
266 * Idle related variables and functions
268 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
269 EXPORT_SYMBOL(boot_option_idle_override);
271 static void (*x86_idle)(void);
273 #ifndef CONFIG_SMP
274 static inline void play_dead(void)
276 BUG();
278 #endif
280 #ifdef CONFIG_X86_64
281 void enter_idle(void)
283 this_cpu_write(is_idle, 1);
284 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
287 static void __exit_idle(void)
289 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
290 return;
291 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
294 /* Called from interrupts to signify idle end */
295 void exit_idle(void)
297 /* idle loop has pid 0 */
298 if (current->pid)
299 return;
300 __exit_idle();
302 #endif
304 void arch_cpu_idle_prepare(void)
307 * If we're the non-boot CPU, nothing set the stack canary up
308 * for us. CPU0 already has it initialized but no harm in
309 * doing it again. This is a good place for updating it, as
310 * we wont ever return from this function (so the invalid
311 * canaries already on the stack wont ever trigger).
313 boot_init_stack_canary();
316 void arch_cpu_idle_enter(void)
318 local_touch_nmi();
319 enter_idle();
322 void arch_cpu_idle_exit(void)
324 __exit_idle();
327 void arch_cpu_idle_dead(void)
329 play_dead();
333 * Called from the generic idle code.
335 void arch_cpu_idle(void)
337 if (cpuidle_idle_call())
338 x86_idle();
342 * We use this if we don't have any better idle routine..
344 void default_idle(void)
346 trace_cpu_idle_rcuidle(1, smp_processor_id());
347 safe_halt();
348 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
350 #ifdef CONFIG_APM_MODULE
351 EXPORT_SYMBOL(default_idle);
352 #endif
354 #ifdef CONFIG_XEN
355 bool xen_set_default_idle(void)
357 bool ret = !!x86_idle;
359 x86_idle = default_idle;
361 return ret;
363 #endif
364 void stop_this_cpu(void *dummy)
366 local_irq_disable();
368 * Remove this CPU:
370 set_cpu_online(smp_processor_id(), false);
371 disable_local_APIC();
373 for (;;)
374 halt();
377 bool amd_e400_c1e_detected;
378 EXPORT_SYMBOL(amd_e400_c1e_detected);
380 static cpumask_var_t amd_e400_c1e_mask;
382 void amd_e400_remove_cpu(int cpu)
384 if (amd_e400_c1e_mask != NULL)
385 cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
389 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
390 * pending message MSR. If we detect C1E, then we handle it the same
391 * way as C3 power states (local apic timer and TSC stop)
393 static void amd_e400_idle(void)
395 if (need_resched())
396 return;
398 if (!amd_e400_c1e_detected) {
399 u32 lo, hi;
401 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
403 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
404 amd_e400_c1e_detected = true;
405 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
406 mark_tsc_unstable("TSC halt in AMD C1E");
407 pr_info("System has AMD C1E enabled\n");
411 if (amd_e400_c1e_detected) {
412 int cpu = smp_processor_id();
414 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
415 cpumask_set_cpu(cpu, amd_e400_c1e_mask);
417 * Force broadcast so ACPI can not interfere.
419 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
420 &cpu);
421 pr_info("Switch to broadcast mode on CPU%d\n", cpu);
423 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
425 default_idle();
428 * The switch back from broadcast mode needs to be
429 * called with interrupts disabled.
431 local_irq_disable();
432 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
433 local_irq_enable();
434 } else
435 default_idle();
438 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
440 #ifdef CONFIG_SMP
441 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
442 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
443 #endif
444 if (x86_idle || boot_option_idle_override == IDLE_POLL)
445 return;
447 if (cpu_has_amd_erratum(amd_erratum_400)) {
448 /* E400: APIC timer interrupt does not wake up CPU from C1e */
449 pr_info("using AMD E400 aware idle routine\n");
450 x86_idle = amd_e400_idle;
451 } else
452 x86_idle = default_idle;
455 void __init init_amd_e400_c1e_mask(void)
457 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
458 if (x86_idle == amd_e400_idle)
459 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
462 static int __init idle_setup(char *str)
464 if (!str)
465 return -EINVAL;
467 if (!strcmp(str, "poll")) {
468 pr_info("using polling idle threads\n");
469 boot_option_idle_override = IDLE_POLL;
470 cpu_idle_poll_ctrl(true);
471 } else if (!strcmp(str, "halt")) {
473 * When the boot option of idle=halt is added, halt is
474 * forced to be used for CPU idle. In such case CPU C2/C3
475 * won't be used again.
476 * To continue to load the CPU idle driver, don't touch
477 * the boot_option_idle_override.
479 x86_idle = default_idle;
480 boot_option_idle_override = IDLE_HALT;
481 } else if (!strcmp(str, "nomwait")) {
483 * If the boot option of "idle=nomwait" is added,
484 * it means that mwait will be disabled for CPU C2/C3
485 * states. In such case it won't touch the variable
486 * of boot_option_idle_override.
488 boot_option_idle_override = IDLE_NOMWAIT;
489 } else
490 return -1;
492 return 0;
494 early_param("idle", idle_setup);
496 unsigned long arch_align_stack(unsigned long sp)
498 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
499 sp -= get_random_int() % 8192;
500 return sp & ~0xf;
503 unsigned long arch_randomize_brk(struct mm_struct *mm)
505 unsigned long range_end = mm->brk + 0x02000000;
506 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;