drm/i915: Force PSR exit by inactivating it.
[linux-2.6/btrfs-unstable.git] / drivers / gpu / drm / i915 / i915_gem.c
blob1794a041c13c21edb4b5d325bcfd348d2ce8afbc
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 bool force);
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
47 static void
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59 struct shrink_control *sc);
60 static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 unsigned long event,
62 void *ptr);
63 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
64 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
66 static bool cpu_cache_is_coherent(struct drm_device *dev,
67 enum i915_cache_level level)
69 return HAS_LLC(dev) || level != I915_CACHE_NONE;
72 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
74 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
75 return true;
77 return obj->pin_display;
80 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
82 if (obj->tiling_mode)
83 i915_gem_release_mmap(obj);
85 /* As we do not have an associated fence register, we will force
86 * a tiling change if we ever need to acquire one.
88 obj->fence_dirty = false;
89 obj->fence_reg = I915_FENCE_REG_NONE;
92 /* some bookkeeping */
93 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
94 size_t size)
96 spin_lock(&dev_priv->mm.object_stat_lock);
97 dev_priv->mm.object_count++;
98 dev_priv->mm.object_memory += size;
99 spin_unlock(&dev_priv->mm.object_stat_lock);
102 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
103 size_t size)
105 spin_lock(&dev_priv->mm.object_stat_lock);
106 dev_priv->mm.object_count--;
107 dev_priv->mm.object_memory -= size;
108 spin_unlock(&dev_priv->mm.object_stat_lock);
111 static int
112 i915_gem_wait_for_error(struct i915_gpu_error *error)
114 int ret;
116 #define EXIT_COND (!i915_reset_in_progress(error) || \
117 i915_terminally_wedged(error))
118 if (EXIT_COND)
119 return 0;
122 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
123 * userspace. If it takes that long something really bad is going on and
124 * we should simply try to bail out and fail as gracefully as possible.
126 ret = wait_event_interruptible_timeout(error->reset_queue,
127 EXIT_COND,
128 10*HZ);
129 if (ret == 0) {
130 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
131 return -EIO;
132 } else if (ret < 0) {
133 return ret;
135 #undef EXIT_COND
137 return 0;
140 int i915_mutex_lock_interruptible(struct drm_device *dev)
142 struct drm_i915_private *dev_priv = dev->dev_private;
143 int ret;
145 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
146 if (ret)
147 return ret;
149 ret = mutex_lock_interruptible(&dev->struct_mutex);
150 if (ret)
151 return ret;
153 WARN_ON(i915_verify_lists(dev));
154 return 0;
157 static inline bool
158 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
160 return i915_gem_obj_bound_any(obj) && !obj->active;
164 i915_gem_init_ioctl(struct drm_device *dev, void *data,
165 struct drm_file *file)
167 struct drm_i915_private *dev_priv = dev->dev_private;
168 struct drm_i915_gem_init *args = data;
170 if (drm_core_check_feature(dev, DRIVER_MODESET))
171 return -ENODEV;
173 if (args->gtt_start >= args->gtt_end ||
174 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
175 return -EINVAL;
177 /* GEM with user mode setting was never supported on ilk and later. */
178 if (INTEL_INFO(dev)->gen >= 5)
179 return -ENODEV;
181 mutex_lock(&dev->struct_mutex);
182 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
183 args->gtt_end);
184 dev_priv->gtt.mappable_end = args->gtt_end;
185 mutex_unlock(&dev->struct_mutex);
187 return 0;
191 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
192 struct drm_file *file)
194 struct drm_i915_private *dev_priv = dev->dev_private;
195 struct drm_i915_gem_get_aperture *args = data;
196 struct drm_i915_gem_object *obj;
197 size_t pinned;
199 pinned = 0;
200 mutex_lock(&dev->struct_mutex);
201 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
202 if (i915_gem_obj_is_pinned(obj))
203 pinned += i915_gem_obj_ggtt_size(obj);
204 mutex_unlock(&dev->struct_mutex);
206 args->aper_size = dev_priv->gtt.base.total;
207 args->aper_available_size = args->aper_size - pinned;
209 return 0;
212 static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
214 drm_dma_handle_t *phys = obj->phys_handle;
216 if (!phys)
217 return;
219 if (obj->madv == I915_MADV_WILLNEED) {
220 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
221 char *vaddr = phys->vaddr;
222 int i;
224 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
225 struct page *page = shmem_read_mapping_page(mapping, i);
226 if (!IS_ERR(page)) {
227 char *dst = kmap_atomic(page);
228 memcpy(dst, vaddr, PAGE_SIZE);
229 drm_clflush_virt_range(dst, PAGE_SIZE);
230 kunmap_atomic(dst);
232 set_page_dirty(page);
233 mark_page_accessed(page);
234 page_cache_release(page);
236 vaddr += PAGE_SIZE;
238 i915_gem_chipset_flush(obj->base.dev);
241 #ifdef CONFIG_X86
242 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
243 #endif
244 drm_pci_free(obj->base.dev, phys);
245 obj->phys_handle = NULL;
249 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
250 int align)
252 drm_dma_handle_t *phys;
253 struct address_space *mapping;
254 char *vaddr;
255 int i;
257 if (obj->phys_handle) {
258 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
259 return -EBUSY;
261 return 0;
264 if (obj->madv != I915_MADV_WILLNEED)
265 return -EFAULT;
267 if (obj->base.filp == NULL)
268 return -EINVAL;
270 /* create a new object */
271 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
272 if (!phys)
273 return -ENOMEM;
275 vaddr = phys->vaddr;
276 #ifdef CONFIG_X86
277 set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
278 #endif
279 mapping = file_inode(obj->base.filp)->i_mapping;
280 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
281 struct page *page;
282 char *src;
284 page = shmem_read_mapping_page(mapping, i);
285 if (IS_ERR(page)) {
286 #ifdef CONFIG_X86
287 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
288 #endif
289 drm_pci_free(obj->base.dev, phys);
290 return PTR_ERR(page);
293 src = kmap_atomic(page);
294 memcpy(vaddr, src, PAGE_SIZE);
295 kunmap_atomic(src);
297 mark_page_accessed(page);
298 page_cache_release(page);
300 vaddr += PAGE_SIZE;
303 obj->phys_handle = phys;
304 return 0;
307 static int
308 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
309 struct drm_i915_gem_pwrite *args,
310 struct drm_file *file_priv)
312 struct drm_device *dev = obj->base.dev;
313 void *vaddr = obj->phys_handle->vaddr + args->offset;
314 char __user *user_data = to_user_ptr(args->data_ptr);
316 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
317 unsigned long unwritten;
319 /* The physical object once assigned is fixed for the lifetime
320 * of the obj, so we can safely drop the lock and continue
321 * to access vaddr.
323 mutex_unlock(&dev->struct_mutex);
324 unwritten = copy_from_user(vaddr, user_data, args->size);
325 mutex_lock(&dev->struct_mutex);
326 if (unwritten)
327 return -EFAULT;
330 i915_gem_chipset_flush(dev);
331 return 0;
334 void *i915_gem_object_alloc(struct drm_device *dev)
336 struct drm_i915_private *dev_priv = dev->dev_private;
337 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
340 void i915_gem_object_free(struct drm_i915_gem_object *obj)
342 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
343 kmem_cache_free(dev_priv->slab, obj);
346 static int
347 i915_gem_create(struct drm_file *file,
348 struct drm_device *dev,
349 uint64_t size,
350 uint32_t *handle_p)
352 struct drm_i915_gem_object *obj;
353 int ret;
354 u32 handle;
356 size = roundup(size, PAGE_SIZE);
357 if (size == 0)
358 return -EINVAL;
360 /* Allocate the new object */
361 obj = i915_gem_alloc_object(dev, size);
362 if (obj == NULL)
363 return -ENOMEM;
365 ret = drm_gem_handle_create(file, &obj->base, &handle);
366 /* drop reference from allocate - handle holds it now */
367 drm_gem_object_unreference_unlocked(&obj->base);
368 if (ret)
369 return ret;
371 *handle_p = handle;
372 return 0;
376 i915_gem_dumb_create(struct drm_file *file,
377 struct drm_device *dev,
378 struct drm_mode_create_dumb *args)
380 /* have to work out size/pitch and return them */
381 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
382 args->size = args->pitch * args->height;
383 return i915_gem_create(file, dev,
384 args->size, &args->handle);
388 * Creates a new mm object and returns a handle to it.
391 i915_gem_create_ioctl(struct drm_device *dev, void *data,
392 struct drm_file *file)
394 struct drm_i915_gem_create *args = data;
396 return i915_gem_create(file, dev,
397 args->size, &args->handle);
400 static inline int
401 __copy_to_user_swizzled(char __user *cpu_vaddr,
402 const char *gpu_vaddr, int gpu_offset,
403 int length)
405 int ret, cpu_offset = 0;
407 while (length > 0) {
408 int cacheline_end = ALIGN(gpu_offset + 1, 64);
409 int this_length = min(cacheline_end - gpu_offset, length);
410 int swizzled_gpu_offset = gpu_offset ^ 64;
412 ret = __copy_to_user(cpu_vaddr + cpu_offset,
413 gpu_vaddr + swizzled_gpu_offset,
414 this_length);
415 if (ret)
416 return ret + length;
418 cpu_offset += this_length;
419 gpu_offset += this_length;
420 length -= this_length;
423 return 0;
426 static inline int
427 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
428 const char __user *cpu_vaddr,
429 int length)
431 int ret, cpu_offset = 0;
433 while (length > 0) {
434 int cacheline_end = ALIGN(gpu_offset + 1, 64);
435 int this_length = min(cacheline_end - gpu_offset, length);
436 int swizzled_gpu_offset = gpu_offset ^ 64;
438 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
439 cpu_vaddr + cpu_offset,
440 this_length);
441 if (ret)
442 return ret + length;
444 cpu_offset += this_length;
445 gpu_offset += this_length;
446 length -= this_length;
449 return 0;
453 * Pins the specified object's pages and synchronizes the object with
454 * GPU accesses. Sets needs_clflush to non-zero if the caller should
455 * flush the object from the CPU cache.
457 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
458 int *needs_clflush)
460 int ret;
462 *needs_clflush = 0;
464 if (!obj->base.filp)
465 return -EINVAL;
467 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
468 /* If we're not in the cpu read domain, set ourself into the gtt
469 * read domain and manually flush cachelines (if required). This
470 * optimizes for the case when the gpu will dirty the data
471 * anyway again before the next pread happens. */
472 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
473 obj->cache_level);
474 ret = i915_gem_object_wait_rendering(obj, true);
475 if (ret)
476 return ret;
478 i915_gem_object_retire(obj);
481 ret = i915_gem_object_get_pages(obj);
482 if (ret)
483 return ret;
485 i915_gem_object_pin_pages(obj);
487 return ret;
490 /* Per-page copy function for the shmem pread fastpath.
491 * Flushes invalid cachelines before reading the target if
492 * needs_clflush is set. */
493 static int
494 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
495 char __user *user_data,
496 bool page_do_bit17_swizzling, bool needs_clflush)
498 char *vaddr;
499 int ret;
501 if (unlikely(page_do_bit17_swizzling))
502 return -EINVAL;
504 vaddr = kmap_atomic(page);
505 if (needs_clflush)
506 drm_clflush_virt_range(vaddr + shmem_page_offset,
507 page_length);
508 ret = __copy_to_user_inatomic(user_data,
509 vaddr + shmem_page_offset,
510 page_length);
511 kunmap_atomic(vaddr);
513 return ret ? -EFAULT : 0;
516 static void
517 shmem_clflush_swizzled_range(char *addr, unsigned long length,
518 bool swizzled)
520 if (unlikely(swizzled)) {
521 unsigned long start = (unsigned long) addr;
522 unsigned long end = (unsigned long) addr + length;
524 /* For swizzling simply ensure that we always flush both
525 * channels. Lame, but simple and it works. Swizzled
526 * pwrite/pread is far from a hotpath - current userspace
527 * doesn't use it at all. */
528 start = round_down(start, 128);
529 end = round_up(end, 128);
531 drm_clflush_virt_range((void *)start, end - start);
532 } else {
533 drm_clflush_virt_range(addr, length);
538 /* Only difference to the fast-path function is that this can handle bit17
539 * and uses non-atomic copy and kmap functions. */
540 static int
541 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
542 char __user *user_data,
543 bool page_do_bit17_swizzling, bool needs_clflush)
545 char *vaddr;
546 int ret;
548 vaddr = kmap(page);
549 if (needs_clflush)
550 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
551 page_length,
552 page_do_bit17_swizzling);
554 if (page_do_bit17_swizzling)
555 ret = __copy_to_user_swizzled(user_data,
556 vaddr, shmem_page_offset,
557 page_length);
558 else
559 ret = __copy_to_user(user_data,
560 vaddr + shmem_page_offset,
561 page_length);
562 kunmap(page);
564 return ret ? - EFAULT : 0;
567 static int
568 i915_gem_shmem_pread(struct drm_device *dev,
569 struct drm_i915_gem_object *obj,
570 struct drm_i915_gem_pread *args,
571 struct drm_file *file)
573 char __user *user_data;
574 ssize_t remain;
575 loff_t offset;
576 int shmem_page_offset, page_length, ret = 0;
577 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
578 int prefaulted = 0;
579 int needs_clflush = 0;
580 struct sg_page_iter sg_iter;
582 user_data = to_user_ptr(args->data_ptr);
583 remain = args->size;
585 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
587 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
588 if (ret)
589 return ret;
591 offset = args->offset;
593 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
594 offset >> PAGE_SHIFT) {
595 struct page *page = sg_page_iter_page(&sg_iter);
597 if (remain <= 0)
598 break;
600 /* Operation in this page
602 * shmem_page_offset = offset within page in shmem file
603 * page_length = bytes to copy for this page
605 shmem_page_offset = offset_in_page(offset);
606 page_length = remain;
607 if ((shmem_page_offset + page_length) > PAGE_SIZE)
608 page_length = PAGE_SIZE - shmem_page_offset;
610 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
611 (page_to_phys(page) & (1 << 17)) != 0;
613 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
614 user_data, page_do_bit17_swizzling,
615 needs_clflush);
616 if (ret == 0)
617 goto next_page;
619 mutex_unlock(&dev->struct_mutex);
621 if (likely(!i915.prefault_disable) && !prefaulted) {
622 ret = fault_in_multipages_writeable(user_data, remain);
623 /* Userspace is tricking us, but we've already clobbered
624 * its pages with the prefault and promised to write the
625 * data up to the first fault. Hence ignore any errors
626 * and just continue. */
627 (void)ret;
628 prefaulted = 1;
631 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
632 user_data, page_do_bit17_swizzling,
633 needs_clflush);
635 mutex_lock(&dev->struct_mutex);
637 if (ret)
638 goto out;
640 next_page:
641 remain -= page_length;
642 user_data += page_length;
643 offset += page_length;
646 out:
647 i915_gem_object_unpin_pages(obj);
649 return ret;
653 * Reads data from the object referenced by handle.
655 * On error, the contents of *data are undefined.
658 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
659 struct drm_file *file)
661 struct drm_i915_gem_pread *args = data;
662 struct drm_i915_gem_object *obj;
663 int ret = 0;
665 if (args->size == 0)
666 return 0;
668 if (!access_ok(VERIFY_WRITE,
669 to_user_ptr(args->data_ptr),
670 args->size))
671 return -EFAULT;
673 ret = i915_mutex_lock_interruptible(dev);
674 if (ret)
675 return ret;
677 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
678 if (&obj->base == NULL) {
679 ret = -ENOENT;
680 goto unlock;
683 /* Bounds check source. */
684 if (args->offset > obj->base.size ||
685 args->size > obj->base.size - args->offset) {
686 ret = -EINVAL;
687 goto out;
690 /* prime objects have no backing filp to GEM pread/pwrite
691 * pages from.
693 if (!obj->base.filp) {
694 ret = -EINVAL;
695 goto out;
698 trace_i915_gem_object_pread(obj, args->offset, args->size);
700 ret = i915_gem_shmem_pread(dev, obj, args, file);
702 out:
703 drm_gem_object_unreference(&obj->base);
704 unlock:
705 mutex_unlock(&dev->struct_mutex);
706 return ret;
709 /* This is the fast write path which cannot handle
710 * page faults in the source data
713 static inline int
714 fast_user_write(struct io_mapping *mapping,
715 loff_t page_base, int page_offset,
716 char __user *user_data,
717 int length)
719 void __iomem *vaddr_atomic;
720 void *vaddr;
721 unsigned long unwritten;
723 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
724 /* We can use the cpu mem copy function because this is X86. */
725 vaddr = (void __force*)vaddr_atomic + page_offset;
726 unwritten = __copy_from_user_inatomic_nocache(vaddr,
727 user_data, length);
728 io_mapping_unmap_atomic(vaddr_atomic);
729 return unwritten;
733 * This is the fast pwrite path, where we copy the data directly from the
734 * user into the GTT, uncached.
736 static int
737 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
738 struct drm_i915_gem_object *obj,
739 struct drm_i915_gem_pwrite *args,
740 struct drm_file *file)
742 struct drm_i915_private *dev_priv = dev->dev_private;
743 ssize_t remain;
744 loff_t offset, page_base;
745 char __user *user_data;
746 int page_offset, page_length, ret;
748 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
749 if (ret)
750 goto out;
752 ret = i915_gem_object_set_to_gtt_domain(obj, true);
753 if (ret)
754 goto out_unpin;
756 ret = i915_gem_object_put_fence(obj);
757 if (ret)
758 goto out_unpin;
760 user_data = to_user_ptr(args->data_ptr);
761 remain = args->size;
763 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
765 while (remain > 0) {
766 /* Operation in this page
768 * page_base = page offset within aperture
769 * page_offset = offset within page
770 * page_length = bytes to copy for this page
772 page_base = offset & PAGE_MASK;
773 page_offset = offset_in_page(offset);
774 page_length = remain;
775 if ((page_offset + remain) > PAGE_SIZE)
776 page_length = PAGE_SIZE - page_offset;
778 /* If we get a fault while copying data, then (presumably) our
779 * source page isn't available. Return the error and we'll
780 * retry in the slow path.
782 if (fast_user_write(dev_priv->gtt.mappable, page_base,
783 page_offset, user_data, page_length)) {
784 ret = -EFAULT;
785 goto out_unpin;
788 remain -= page_length;
789 user_data += page_length;
790 offset += page_length;
793 out_unpin:
794 i915_gem_object_ggtt_unpin(obj);
795 out:
796 return ret;
799 /* Per-page copy function for the shmem pwrite fastpath.
800 * Flushes invalid cachelines before writing to the target if
801 * needs_clflush_before is set and flushes out any written cachelines after
802 * writing if needs_clflush is set. */
803 static int
804 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
805 char __user *user_data,
806 bool page_do_bit17_swizzling,
807 bool needs_clflush_before,
808 bool needs_clflush_after)
810 char *vaddr;
811 int ret;
813 if (unlikely(page_do_bit17_swizzling))
814 return -EINVAL;
816 vaddr = kmap_atomic(page);
817 if (needs_clflush_before)
818 drm_clflush_virt_range(vaddr + shmem_page_offset,
819 page_length);
820 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
821 user_data, page_length);
822 if (needs_clflush_after)
823 drm_clflush_virt_range(vaddr + shmem_page_offset,
824 page_length);
825 kunmap_atomic(vaddr);
827 return ret ? -EFAULT : 0;
830 /* Only difference to the fast-path function is that this can handle bit17
831 * and uses non-atomic copy and kmap functions. */
832 static int
833 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
834 char __user *user_data,
835 bool page_do_bit17_swizzling,
836 bool needs_clflush_before,
837 bool needs_clflush_after)
839 char *vaddr;
840 int ret;
842 vaddr = kmap(page);
843 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
844 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
845 page_length,
846 page_do_bit17_swizzling);
847 if (page_do_bit17_swizzling)
848 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
849 user_data,
850 page_length);
851 else
852 ret = __copy_from_user(vaddr + shmem_page_offset,
853 user_data,
854 page_length);
855 if (needs_clflush_after)
856 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
857 page_length,
858 page_do_bit17_swizzling);
859 kunmap(page);
861 return ret ? -EFAULT : 0;
864 static int
865 i915_gem_shmem_pwrite(struct drm_device *dev,
866 struct drm_i915_gem_object *obj,
867 struct drm_i915_gem_pwrite *args,
868 struct drm_file *file)
870 ssize_t remain;
871 loff_t offset;
872 char __user *user_data;
873 int shmem_page_offset, page_length, ret = 0;
874 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
875 int hit_slowpath = 0;
876 int needs_clflush_after = 0;
877 int needs_clflush_before = 0;
878 struct sg_page_iter sg_iter;
880 user_data = to_user_ptr(args->data_ptr);
881 remain = args->size;
883 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
885 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
886 /* If we're not in the cpu write domain, set ourself into the gtt
887 * write domain and manually flush cachelines (if required). This
888 * optimizes for the case when the gpu will use the data
889 * right away and we therefore have to clflush anyway. */
890 needs_clflush_after = cpu_write_needs_clflush(obj);
891 ret = i915_gem_object_wait_rendering(obj, false);
892 if (ret)
893 return ret;
895 i915_gem_object_retire(obj);
897 /* Same trick applies to invalidate partially written cachelines read
898 * before writing. */
899 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
900 needs_clflush_before =
901 !cpu_cache_is_coherent(dev, obj->cache_level);
903 ret = i915_gem_object_get_pages(obj);
904 if (ret)
905 return ret;
907 i915_gem_object_pin_pages(obj);
909 offset = args->offset;
910 obj->dirty = 1;
912 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
913 offset >> PAGE_SHIFT) {
914 struct page *page = sg_page_iter_page(&sg_iter);
915 int partial_cacheline_write;
917 if (remain <= 0)
918 break;
920 /* Operation in this page
922 * shmem_page_offset = offset within page in shmem file
923 * page_length = bytes to copy for this page
925 shmem_page_offset = offset_in_page(offset);
927 page_length = remain;
928 if ((shmem_page_offset + page_length) > PAGE_SIZE)
929 page_length = PAGE_SIZE - shmem_page_offset;
931 /* If we don't overwrite a cacheline completely we need to be
932 * careful to have up-to-date data by first clflushing. Don't
933 * overcomplicate things and flush the entire patch. */
934 partial_cacheline_write = needs_clflush_before &&
935 ((shmem_page_offset | page_length)
936 & (boot_cpu_data.x86_clflush_size - 1));
938 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
939 (page_to_phys(page) & (1 << 17)) != 0;
941 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
942 user_data, page_do_bit17_swizzling,
943 partial_cacheline_write,
944 needs_clflush_after);
945 if (ret == 0)
946 goto next_page;
948 hit_slowpath = 1;
949 mutex_unlock(&dev->struct_mutex);
950 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
951 user_data, page_do_bit17_swizzling,
952 partial_cacheline_write,
953 needs_clflush_after);
955 mutex_lock(&dev->struct_mutex);
957 if (ret)
958 goto out;
960 next_page:
961 remain -= page_length;
962 user_data += page_length;
963 offset += page_length;
966 out:
967 i915_gem_object_unpin_pages(obj);
969 if (hit_slowpath) {
971 * Fixup: Flush cpu caches in case we didn't flush the dirty
972 * cachelines in-line while writing and the object moved
973 * out of the cpu write domain while we've dropped the lock.
975 if (!needs_clflush_after &&
976 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
977 if (i915_gem_clflush_object(obj, obj->pin_display))
978 i915_gem_chipset_flush(dev);
982 if (needs_clflush_after)
983 i915_gem_chipset_flush(dev);
985 return ret;
989 * Writes data to the object referenced by handle.
991 * On error, the contents of the buffer that were to be modified are undefined.
994 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
995 struct drm_file *file)
997 struct drm_i915_gem_pwrite *args = data;
998 struct drm_i915_gem_object *obj;
999 int ret;
1001 if (args->size == 0)
1002 return 0;
1004 if (!access_ok(VERIFY_READ,
1005 to_user_ptr(args->data_ptr),
1006 args->size))
1007 return -EFAULT;
1009 if (likely(!i915.prefault_disable)) {
1010 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1011 args->size);
1012 if (ret)
1013 return -EFAULT;
1016 ret = i915_mutex_lock_interruptible(dev);
1017 if (ret)
1018 return ret;
1020 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1021 if (&obj->base == NULL) {
1022 ret = -ENOENT;
1023 goto unlock;
1026 /* Bounds check destination. */
1027 if (args->offset > obj->base.size ||
1028 args->size > obj->base.size - args->offset) {
1029 ret = -EINVAL;
1030 goto out;
1033 /* prime objects have no backing filp to GEM pread/pwrite
1034 * pages from.
1036 if (!obj->base.filp) {
1037 ret = -EINVAL;
1038 goto out;
1041 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1043 ret = -EFAULT;
1044 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1045 * it would end up going through the fenced access, and we'll get
1046 * different detiling behavior between reading and writing.
1047 * pread/pwrite currently are reading and writing from the CPU
1048 * perspective, requiring manual detiling by the client.
1050 if (obj->phys_handle) {
1051 ret = i915_gem_phys_pwrite(obj, args, file);
1052 goto out;
1055 if (obj->tiling_mode == I915_TILING_NONE &&
1056 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1057 cpu_write_needs_clflush(obj)) {
1058 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1059 /* Note that the gtt paths might fail with non-page-backed user
1060 * pointers (e.g. gtt mappings when moving data between
1061 * textures). Fallback to the shmem path in that case. */
1064 if (ret == -EFAULT || ret == -ENOSPC)
1065 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1067 out:
1068 drm_gem_object_unreference(&obj->base);
1069 unlock:
1070 mutex_unlock(&dev->struct_mutex);
1071 return ret;
1075 i915_gem_check_wedge(struct i915_gpu_error *error,
1076 bool interruptible)
1078 if (i915_reset_in_progress(error)) {
1079 /* Non-interruptible callers can't handle -EAGAIN, hence return
1080 * -EIO unconditionally for these. */
1081 if (!interruptible)
1082 return -EIO;
1084 /* Recovery complete, but the reset failed ... */
1085 if (i915_terminally_wedged(error))
1086 return -EIO;
1088 return -EAGAIN;
1091 return 0;
1095 * Compare seqno against outstanding lazy request. Emit a request if they are
1096 * equal.
1098 static int
1099 i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1101 int ret;
1103 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1105 ret = 0;
1106 if (seqno == ring->outstanding_lazy_seqno)
1107 ret = i915_add_request(ring, NULL);
1109 return ret;
1112 static void fake_irq(unsigned long data)
1114 wake_up_process((struct task_struct *)data);
1117 static bool missed_irq(struct drm_i915_private *dev_priv,
1118 struct intel_engine_cs *ring)
1120 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1123 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1125 if (file_priv == NULL)
1126 return true;
1128 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1132 * __wait_seqno - wait until execution of seqno has finished
1133 * @ring: the ring expected to report seqno
1134 * @seqno: duh!
1135 * @reset_counter: reset sequence associated with the given seqno
1136 * @interruptible: do an interruptible wait (normally yes)
1137 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1139 * Note: It is of utmost importance that the passed in seqno and reset_counter
1140 * values have been read by the caller in an smp safe manner. Where read-side
1141 * locks are involved, it is sufficient to read the reset_counter before
1142 * unlocking the lock that protects the seqno. For lockless tricks, the
1143 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1144 * inserted.
1146 * Returns 0 if the seqno was found within the alloted time. Else returns the
1147 * errno with remaining time filled in timeout argument.
1149 static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1150 unsigned reset_counter,
1151 bool interruptible,
1152 struct timespec *timeout,
1153 struct drm_i915_file_private *file_priv)
1155 struct drm_device *dev = ring->dev;
1156 struct drm_i915_private *dev_priv = dev->dev_private;
1157 const bool irq_test_in_progress =
1158 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1159 struct timespec before, now;
1160 DEFINE_WAIT(wait);
1161 unsigned long timeout_expire;
1162 int ret;
1164 WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
1166 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1167 return 0;
1169 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1171 if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
1172 gen6_rps_boost(dev_priv);
1173 if (file_priv)
1174 mod_delayed_work(dev_priv->wq,
1175 &file_priv->mm.idle_work,
1176 msecs_to_jiffies(100));
1179 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1180 return -ENODEV;
1182 /* Record current time in case interrupted by signal, or wedged */
1183 trace_i915_gem_request_wait_begin(ring, seqno);
1184 getrawmonotonic(&before);
1185 for (;;) {
1186 struct timer_list timer;
1188 prepare_to_wait(&ring->irq_queue, &wait,
1189 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1191 /* We need to check whether any gpu reset happened in between
1192 * the caller grabbing the seqno and now ... */
1193 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1194 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1195 * is truely gone. */
1196 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1197 if (ret == 0)
1198 ret = -EAGAIN;
1199 break;
1202 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1203 ret = 0;
1204 break;
1207 if (interruptible && signal_pending(current)) {
1208 ret = -ERESTARTSYS;
1209 break;
1212 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1213 ret = -ETIME;
1214 break;
1217 timer.function = NULL;
1218 if (timeout || missed_irq(dev_priv, ring)) {
1219 unsigned long expire;
1221 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1222 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1223 mod_timer(&timer, expire);
1226 io_schedule();
1228 if (timer.function) {
1229 del_singleshot_timer_sync(&timer);
1230 destroy_timer_on_stack(&timer);
1233 getrawmonotonic(&now);
1234 trace_i915_gem_request_wait_end(ring, seqno);
1236 if (!irq_test_in_progress)
1237 ring->irq_put(ring);
1239 finish_wait(&ring->irq_queue, &wait);
1241 if (timeout) {
1242 struct timespec sleep_time = timespec_sub(now, before);
1243 *timeout = timespec_sub(*timeout, sleep_time);
1244 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1245 set_normalized_timespec(timeout, 0, 0);
1248 return ret;
1252 * Waits for a sequence number to be signaled, and cleans up the
1253 * request and object lists appropriately for that event.
1256 i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1258 struct drm_device *dev = ring->dev;
1259 struct drm_i915_private *dev_priv = dev->dev_private;
1260 bool interruptible = dev_priv->mm.interruptible;
1261 int ret;
1263 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1264 BUG_ON(seqno == 0);
1266 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1267 if (ret)
1268 return ret;
1270 ret = i915_gem_check_olr(ring, seqno);
1271 if (ret)
1272 return ret;
1274 return __wait_seqno(ring, seqno,
1275 atomic_read(&dev_priv->gpu_error.reset_counter),
1276 interruptible, NULL, NULL);
1279 static int
1280 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1281 struct intel_engine_cs *ring)
1283 if (!obj->active)
1284 return 0;
1286 /* Manually manage the write flush as we may have not yet
1287 * retired the buffer.
1289 * Note that the last_write_seqno is always the earlier of
1290 * the two (read/write) seqno, so if we haved successfully waited,
1291 * we know we have passed the last write.
1293 obj->last_write_seqno = 0;
1295 return 0;
1299 * Ensures that all rendering to the object has completed and the object is
1300 * safe to unbind from the GTT or access from the CPU.
1302 static __must_check int
1303 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1304 bool readonly)
1306 struct intel_engine_cs *ring = obj->ring;
1307 u32 seqno;
1308 int ret;
1310 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1311 if (seqno == 0)
1312 return 0;
1314 ret = i915_wait_seqno(ring, seqno);
1315 if (ret)
1316 return ret;
1318 return i915_gem_object_wait_rendering__tail(obj, ring);
1321 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1322 * as the object state may change during this call.
1324 static __must_check int
1325 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1326 struct drm_i915_file_private *file_priv,
1327 bool readonly)
1329 struct drm_device *dev = obj->base.dev;
1330 struct drm_i915_private *dev_priv = dev->dev_private;
1331 struct intel_engine_cs *ring = obj->ring;
1332 unsigned reset_counter;
1333 u32 seqno;
1334 int ret;
1336 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1337 BUG_ON(!dev_priv->mm.interruptible);
1339 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1340 if (seqno == 0)
1341 return 0;
1343 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1344 if (ret)
1345 return ret;
1347 ret = i915_gem_check_olr(ring, seqno);
1348 if (ret)
1349 return ret;
1351 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1352 mutex_unlock(&dev->struct_mutex);
1353 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1354 mutex_lock(&dev->struct_mutex);
1355 if (ret)
1356 return ret;
1358 return i915_gem_object_wait_rendering__tail(obj, ring);
1362 * Called when user space prepares to use an object with the CPU, either
1363 * through the mmap ioctl's mapping or a GTT mapping.
1366 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1367 struct drm_file *file)
1369 struct drm_i915_gem_set_domain *args = data;
1370 struct drm_i915_gem_object *obj;
1371 uint32_t read_domains = args->read_domains;
1372 uint32_t write_domain = args->write_domain;
1373 int ret;
1375 /* Only handle setting domains to types used by the CPU. */
1376 if (write_domain & I915_GEM_GPU_DOMAINS)
1377 return -EINVAL;
1379 if (read_domains & I915_GEM_GPU_DOMAINS)
1380 return -EINVAL;
1382 /* Having something in the write domain implies it's in the read
1383 * domain, and only that read domain. Enforce that in the request.
1385 if (write_domain != 0 && read_domains != write_domain)
1386 return -EINVAL;
1388 ret = i915_mutex_lock_interruptible(dev);
1389 if (ret)
1390 return ret;
1392 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1393 if (&obj->base == NULL) {
1394 ret = -ENOENT;
1395 goto unlock;
1398 intel_edp_psr_exit(dev, true);
1400 /* Try to flush the object off the GPU without holding the lock.
1401 * We will repeat the flush holding the lock in the normal manner
1402 * to catch cases where we are gazumped.
1404 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1405 file->driver_priv,
1406 !write_domain);
1407 if (ret)
1408 goto unref;
1410 if (read_domains & I915_GEM_DOMAIN_GTT) {
1411 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1413 /* Silently promote "you're not bound, there was nothing to do"
1414 * to success, since the client was just asking us to
1415 * make sure everything was done.
1417 if (ret == -EINVAL)
1418 ret = 0;
1419 } else {
1420 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1423 unref:
1424 drm_gem_object_unreference(&obj->base);
1425 unlock:
1426 mutex_unlock(&dev->struct_mutex);
1427 return ret;
1431 * Called when user space has done writes to this buffer
1434 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1435 struct drm_file *file)
1437 struct drm_i915_gem_sw_finish *args = data;
1438 struct drm_i915_gem_object *obj;
1439 int ret = 0;
1441 ret = i915_mutex_lock_interruptible(dev);
1442 if (ret)
1443 return ret;
1445 intel_edp_psr_exit(dev, true);
1447 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1448 if (&obj->base == NULL) {
1449 ret = -ENOENT;
1450 goto unlock;
1453 /* Pinned buffers may be scanout, so flush the cache */
1454 if (obj->pin_display)
1455 i915_gem_object_flush_cpu_write_domain(obj, true);
1457 drm_gem_object_unreference(&obj->base);
1458 unlock:
1459 mutex_unlock(&dev->struct_mutex);
1460 return ret;
1464 * Maps the contents of an object, returning the address it is mapped
1465 * into.
1467 * While the mapping holds a reference on the contents of the object, it doesn't
1468 * imply a ref on the object itself.
1471 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1472 struct drm_file *file)
1474 struct drm_i915_gem_mmap *args = data;
1475 struct drm_gem_object *obj;
1476 unsigned long addr;
1478 obj = drm_gem_object_lookup(dev, file, args->handle);
1479 if (obj == NULL)
1480 return -ENOENT;
1482 /* prime objects have no backing filp to GEM mmap
1483 * pages from.
1485 if (!obj->filp) {
1486 drm_gem_object_unreference_unlocked(obj);
1487 return -EINVAL;
1490 addr = vm_mmap(obj->filp, 0, args->size,
1491 PROT_READ | PROT_WRITE, MAP_SHARED,
1492 args->offset);
1493 drm_gem_object_unreference_unlocked(obj);
1494 if (IS_ERR((void *)addr))
1495 return addr;
1497 args->addr_ptr = (uint64_t) addr;
1499 return 0;
1503 * i915_gem_fault - fault a page into the GTT
1504 * vma: VMA in question
1505 * vmf: fault info
1507 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1508 * from userspace. The fault handler takes care of binding the object to
1509 * the GTT (if needed), allocating and programming a fence register (again,
1510 * only if needed based on whether the old reg is still valid or the object
1511 * is tiled) and inserting a new PTE into the faulting process.
1513 * Note that the faulting process may involve evicting existing objects
1514 * from the GTT and/or fence registers to make room. So performance may
1515 * suffer if the GTT working set is large or there are few fence registers
1516 * left.
1518 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1520 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1521 struct drm_device *dev = obj->base.dev;
1522 struct drm_i915_private *dev_priv = dev->dev_private;
1523 pgoff_t page_offset;
1524 unsigned long pfn;
1525 int ret = 0;
1526 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1528 intel_runtime_pm_get(dev_priv);
1530 /* We don't use vmf->pgoff since that has the fake offset */
1531 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1532 PAGE_SHIFT;
1534 ret = i915_mutex_lock_interruptible(dev);
1535 if (ret)
1536 goto out;
1538 trace_i915_gem_object_fault(obj, page_offset, true, write);
1540 /* Try to flush the object off the GPU first without holding the lock.
1541 * Upon reacquiring the lock, we will perform our sanity checks and then
1542 * repeat the flush holding the lock in the normal manner to catch cases
1543 * where we are gazumped.
1545 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1546 if (ret)
1547 goto unlock;
1549 /* Access to snoopable pages through the GTT is incoherent. */
1550 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1551 ret = -EFAULT;
1552 goto unlock;
1555 /* Now bind it into the GTT if needed */
1556 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1557 if (ret)
1558 goto unlock;
1560 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1561 if (ret)
1562 goto unpin;
1564 ret = i915_gem_object_get_fence(obj);
1565 if (ret)
1566 goto unpin;
1568 /* Finally, remap it using the new GTT offset */
1569 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1570 pfn >>= PAGE_SHIFT;
1572 if (!obj->fault_mappable) {
1573 int i;
1575 for (i = 0; i < obj->base.size >> PAGE_SHIFT; i++) {
1576 ret = vm_insert_pfn(vma,
1577 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1578 pfn + i);
1579 if (ret)
1580 break;
1583 obj->fault_mappable = true;
1584 } else
1585 ret = vm_insert_pfn(vma,
1586 (unsigned long)vmf->virtual_address,
1587 pfn + page_offset);
1588 unpin:
1589 i915_gem_object_ggtt_unpin(obj);
1590 unlock:
1591 mutex_unlock(&dev->struct_mutex);
1592 out:
1593 switch (ret) {
1594 case -EIO:
1595 /* If this -EIO is due to a gpu hang, give the reset code a
1596 * chance to clean up the mess. Otherwise return the proper
1597 * SIGBUS. */
1598 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1599 ret = VM_FAULT_SIGBUS;
1600 break;
1602 case -EAGAIN:
1604 * EAGAIN means the gpu is hung and we'll wait for the error
1605 * handler to reset everything when re-faulting in
1606 * i915_mutex_lock_interruptible.
1608 case 0:
1609 case -ERESTARTSYS:
1610 case -EINTR:
1611 case -EBUSY:
1613 * EBUSY is ok: this just means that another thread
1614 * already did the job.
1616 ret = VM_FAULT_NOPAGE;
1617 break;
1618 case -ENOMEM:
1619 ret = VM_FAULT_OOM;
1620 break;
1621 case -ENOSPC:
1622 case -EFAULT:
1623 ret = VM_FAULT_SIGBUS;
1624 break;
1625 default:
1626 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1627 ret = VM_FAULT_SIGBUS;
1628 break;
1631 intel_runtime_pm_put(dev_priv);
1632 return ret;
1635 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1637 struct i915_vma *vma;
1640 * Only the global gtt is relevant for gtt memory mappings, so restrict
1641 * list traversal to objects bound into the global address space. Note
1642 * that the active list should be empty, but better safe than sorry.
1644 WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1645 list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1646 i915_gem_release_mmap(vma->obj);
1647 list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1648 i915_gem_release_mmap(vma->obj);
1652 * i915_gem_release_mmap - remove physical page mappings
1653 * @obj: obj in question
1655 * Preserve the reservation of the mmapping with the DRM core code, but
1656 * relinquish ownership of the pages back to the system.
1658 * It is vital that we remove the page mapping if we have mapped a tiled
1659 * object through the GTT and then lose the fence register due to
1660 * resource pressure. Similarly if the object has been moved out of the
1661 * aperture, than pages mapped into userspace must be revoked. Removing the
1662 * mapping will then trigger a page fault on the next user access, allowing
1663 * fixup by i915_gem_fault().
1665 void
1666 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1668 if (!obj->fault_mappable)
1669 return;
1671 drm_vma_node_unmap(&obj->base.vma_node,
1672 obj->base.dev->anon_inode->i_mapping);
1673 obj->fault_mappable = false;
1676 uint32_t
1677 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1679 uint32_t gtt_size;
1681 if (INTEL_INFO(dev)->gen >= 4 ||
1682 tiling_mode == I915_TILING_NONE)
1683 return size;
1685 /* Previous chips need a power-of-two fence region when tiling */
1686 if (INTEL_INFO(dev)->gen == 3)
1687 gtt_size = 1024*1024;
1688 else
1689 gtt_size = 512*1024;
1691 while (gtt_size < size)
1692 gtt_size <<= 1;
1694 return gtt_size;
1698 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1699 * @obj: object to check
1701 * Return the required GTT alignment for an object, taking into account
1702 * potential fence register mapping.
1704 uint32_t
1705 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1706 int tiling_mode, bool fenced)
1709 * Minimum alignment is 4k (GTT page size), but might be greater
1710 * if a fence register is needed for the object.
1712 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1713 tiling_mode == I915_TILING_NONE)
1714 return 4096;
1717 * Previous chips need to be aligned to the size of the smallest
1718 * fence register that can contain the object.
1720 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1723 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1725 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1726 int ret;
1728 if (drm_vma_node_has_offset(&obj->base.vma_node))
1729 return 0;
1731 dev_priv->mm.shrinker_no_lock_stealing = true;
1733 ret = drm_gem_create_mmap_offset(&obj->base);
1734 if (ret != -ENOSPC)
1735 goto out;
1737 /* Badly fragmented mmap space? The only way we can recover
1738 * space is by destroying unwanted objects. We can't randomly release
1739 * mmap_offsets as userspace expects them to be persistent for the
1740 * lifetime of the objects. The closest we can is to release the
1741 * offsets on purgeable objects by truncating it and marking it purged,
1742 * which prevents userspace from ever using that object again.
1744 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1745 ret = drm_gem_create_mmap_offset(&obj->base);
1746 if (ret != -ENOSPC)
1747 goto out;
1749 i915_gem_shrink_all(dev_priv);
1750 ret = drm_gem_create_mmap_offset(&obj->base);
1751 out:
1752 dev_priv->mm.shrinker_no_lock_stealing = false;
1754 return ret;
1757 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1759 drm_gem_free_mmap_offset(&obj->base);
1763 i915_gem_mmap_gtt(struct drm_file *file,
1764 struct drm_device *dev,
1765 uint32_t handle,
1766 uint64_t *offset)
1768 struct drm_i915_private *dev_priv = dev->dev_private;
1769 struct drm_i915_gem_object *obj;
1770 int ret;
1772 ret = i915_mutex_lock_interruptible(dev);
1773 if (ret)
1774 return ret;
1776 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1777 if (&obj->base == NULL) {
1778 ret = -ENOENT;
1779 goto unlock;
1782 if (obj->base.size > dev_priv->gtt.mappable_end) {
1783 ret = -E2BIG;
1784 goto out;
1787 if (obj->madv != I915_MADV_WILLNEED) {
1788 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1789 ret = -EFAULT;
1790 goto out;
1793 ret = i915_gem_object_create_mmap_offset(obj);
1794 if (ret)
1795 goto out;
1797 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1799 out:
1800 drm_gem_object_unreference(&obj->base);
1801 unlock:
1802 mutex_unlock(&dev->struct_mutex);
1803 return ret;
1807 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1808 * @dev: DRM device
1809 * @data: GTT mapping ioctl data
1810 * @file: GEM object info
1812 * Simply returns the fake offset to userspace so it can mmap it.
1813 * The mmap call will end up in drm_gem_mmap(), which will set things
1814 * up so we can get faults in the handler above.
1816 * The fault handler will take care of binding the object into the GTT
1817 * (since it may have been evicted to make room for something), allocating
1818 * a fence register, and mapping the appropriate aperture address into
1819 * userspace.
1822 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1823 struct drm_file *file)
1825 struct drm_i915_gem_mmap_gtt *args = data;
1827 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1830 static inline int
1831 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1833 return obj->madv == I915_MADV_DONTNEED;
1836 /* Immediately discard the backing storage */
1837 static void
1838 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1840 i915_gem_object_free_mmap_offset(obj);
1842 if (obj->base.filp == NULL)
1843 return;
1845 /* Our goal here is to return as much of the memory as
1846 * is possible back to the system as we are called from OOM.
1847 * To do this we must instruct the shmfs to drop all of its
1848 * backing pages, *now*.
1850 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1851 obj->madv = __I915_MADV_PURGED;
1854 /* Try to discard unwanted pages */
1855 static void
1856 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1858 struct address_space *mapping;
1860 switch (obj->madv) {
1861 case I915_MADV_DONTNEED:
1862 i915_gem_object_truncate(obj);
1863 case __I915_MADV_PURGED:
1864 return;
1867 if (obj->base.filp == NULL)
1868 return;
1870 mapping = file_inode(obj->base.filp)->i_mapping,
1871 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1874 static void
1875 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1877 struct sg_page_iter sg_iter;
1878 int ret;
1880 BUG_ON(obj->madv == __I915_MADV_PURGED);
1882 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1883 if (ret) {
1884 /* In the event of a disaster, abandon all caches and
1885 * hope for the best.
1887 WARN_ON(ret != -EIO);
1888 i915_gem_clflush_object(obj, true);
1889 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1892 if (i915_gem_object_needs_bit17_swizzle(obj))
1893 i915_gem_object_save_bit_17_swizzle(obj);
1895 if (obj->madv == I915_MADV_DONTNEED)
1896 obj->dirty = 0;
1898 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1899 struct page *page = sg_page_iter_page(&sg_iter);
1901 if (obj->dirty)
1902 set_page_dirty(page);
1904 if (obj->madv == I915_MADV_WILLNEED)
1905 mark_page_accessed(page);
1907 page_cache_release(page);
1909 obj->dirty = 0;
1911 sg_free_table(obj->pages);
1912 kfree(obj->pages);
1916 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1918 const struct drm_i915_gem_object_ops *ops = obj->ops;
1920 if (obj->pages == NULL)
1921 return 0;
1923 if (obj->pages_pin_count)
1924 return -EBUSY;
1926 BUG_ON(i915_gem_obj_bound_any(obj));
1928 /* ->put_pages might need to allocate memory for the bit17 swizzle
1929 * array, hence protect them from being reaped by removing them from gtt
1930 * lists early. */
1931 list_del(&obj->global_list);
1933 ops->put_pages(obj);
1934 obj->pages = NULL;
1936 i915_gem_object_invalidate(obj);
1938 return 0;
1941 static unsigned long
1942 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1943 bool purgeable_only)
1945 struct list_head still_in_list;
1946 struct drm_i915_gem_object *obj;
1947 unsigned long count = 0;
1950 * As we may completely rewrite the (un)bound list whilst unbinding
1951 * (due to retiring requests) we have to strictly process only
1952 * one element of the list at the time, and recheck the list
1953 * on every iteration.
1955 * In particular, we must hold a reference whilst removing the
1956 * object as we may end up waiting for and/or retiring the objects.
1957 * This might release the final reference (held by the active list)
1958 * and result in the object being freed from under us. This is
1959 * similar to the precautions the eviction code must take whilst
1960 * removing objects.
1962 * Also note that although these lists do not hold a reference to
1963 * the object we can safely grab one here: The final object
1964 * unreferencing and the bound_list are both protected by the
1965 * dev->struct_mutex and so we won't ever be able to observe an
1966 * object on the bound_list with a reference count equals 0.
1968 INIT_LIST_HEAD(&still_in_list);
1969 while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
1970 obj = list_first_entry(&dev_priv->mm.unbound_list,
1971 typeof(*obj), global_list);
1972 list_move_tail(&obj->global_list, &still_in_list);
1974 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1975 continue;
1977 drm_gem_object_reference(&obj->base);
1979 if (i915_gem_object_put_pages(obj) == 0)
1980 count += obj->base.size >> PAGE_SHIFT;
1982 drm_gem_object_unreference(&obj->base);
1984 list_splice(&still_in_list, &dev_priv->mm.unbound_list);
1986 INIT_LIST_HEAD(&still_in_list);
1987 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1988 struct i915_vma *vma, *v;
1990 obj = list_first_entry(&dev_priv->mm.bound_list,
1991 typeof(*obj), global_list);
1992 list_move_tail(&obj->global_list, &still_in_list);
1994 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1995 continue;
1997 drm_gem_object_reference(&obj->base);
1999 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
2000 if (i915_vma_unbind(vma))
2001 break;
2003 if (i915_gem_object_put_pages(obj) == 0)
2004 count += obj->base.size >> PAGE_SHIFT;
2006 drm_gem_object_unreference(&obj->base);
2008 list_splice(&still_in_list, &dev_priv->mm.bound_list);
2010 return count;
2013 static unsigned long
2014 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
2016 return __i915_gem_shrink(dev_priv, target, true);
2019 static unsigned long
2020 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2022 i915_gem_evict_everything(dev_priv->dev);
2023 return __i915_gem_shrink(dev_priv, LONG_MAX, false);
2026 static int
2027 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2029 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2030 int page_count, i;
2031 struct address_space *mapping;
2032 struct sg_table *st;
2033 struct scatterlist *sg;
2034 struct sg_page_iter sg_iter;
2035 struct page *page;
2036 unsigned long last_pfn = 0; /* suppress gcc warning */
2037 gfp_t gfp;
2039 /* Assert that the object is not currently in any GPU domain. As it
2040 * wasn't in the GTT, there shouldn't be any way it could have been in
2041 * a GPU cache
2043 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2044 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2046 st = kmalloc(sizeof(*st), GFP_KERNEL);
2047 if (st == NULL)
2048 return -ENOMEM;
2050 page_count = obj->base.size / PAGE_SIZE;
2051 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2052 kfree(st);
2053 return -ENOMEM;
2056 /* Get the list of pages out of our struct file. They'll be pinned
2057 * at this point until we release them.
2059 * Fail silently without starting the shrinker
2061 mapping = file_inode(obj->base.filp)->i_mapping;
2062 gfp = mapping_gfp_mask(mapping);
2063 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2064 gfp &= ~(__GFP_IO | __GFP_WAIT);
2065 sg = st->sgl;
2066 st->nents = 0;
2067 for (i = 0; i < page_count; i++) {
2068 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2069 if (IS_ERR(page)) {
2070 i915_gem_purge(dev_priv, page_count);
2071 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2073 if (IS_ERR(page)) {
2074 /* We've tried hard to allocate the memory by reaping
2075 * our own buffer, now let the real VM do its job and
2076 * go down in flames if truly OOM.
2078 i915_gem_shrink_all(dev_priv);
2079 page = shmem_read_mapping_page(mapping, i);
2080 if (IS_ERR(page))
2081 goto err_pages;
2083 #ifdef CONFIG_SWIOTLB
2084 if (swiotlb_nr_tbl()) {
2085 st->nents++;
2086 sg_set_page(sg, page, PAGE_SIZE, 0);
2087 sg = sg_next(sg);
2088 continue;
2090 #endif
2091 if (!i || page_to_pfn(page) != last_pfn + 1) {
2092 if (i)
2093 sg = sg_next(sg);
2094 st->nents++;
2095 sg_set_page(sg, page, PAGE_SIZE, 0);
2096 } else {
2097 sg->length += PAGE_SIZE;
2099 last_pfn = page_to_pfn(page);
2101 /* Check that the i965g/gm workaround works. */
2102 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2104 #ifdef CONFIG_SWIOTLB
2105 if (!swiotlb_nr_tbl())
2106 #endif
2107 sg_mark_end(sg);
2108 obj->pages = st;
2110 if (i915_gem_object_needs_bit17_swizzle(obj))
2111 i915_gem_object_do_bit_17_swizzle(obj);
2113 return 0;
2115 err_pages:
2116 sg_mark_end(sg);
2117 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2118 page_cache_release(sg_page_iter_page(&sg_iter));
2119 sg_free_table(st);
2120 kfree(st);
2122 /* shmemfs first checks if there is enough memory to allocate the page
2123 * and reports ENOSPC should there be insufficient, along with the usual
2124 * ENOMEM for a genuine allocation failure.
2126 * We use ENOSPC in our driver to mean that we have run out of aperture
2127 * space and so want to translate the error from shmemfs back to our
2128 * usual understanding of ENOMEM.
2130 if (PTR_ERR(page) == -ENOSPC)
2131 return -ENOMEM;
2132 else
2133 return PTR_ERR(page);
2136 /* Ensure that the associated pages are gathered from the backing storage
2137 * and pinned into our object. i915_gem_object_get_pages() may be called
2138 * multiple times before they are released by a single call to
2139 * i915_gem_object_put_pages() - once the pages are no longer referenced
2140 * either as a result of memory pressure (reaping pages under the shrinker)
2141 * or as the object is itself released.
2144 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2146 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2147 const struct drm_i915_gem_object_ops *ops = obj->ops;
2148 int ret;
2150 if (obj->pages)
2151 return 0;
2153 if (obj->madv != I915_MADV_WILLNEED) {
2154 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2155 return -EFAULT;
2158 BUG_ON(obj->pages_pin_count);
2160 ret = ops->get_pages(obj);
2161 if (ret)
2162 return ret;
2164 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2165 return 0;
2168 static void
2169 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2170 struct intel_engine_cs *ring)
2172 struct drm_device *dev = obj->base.dev;
2173 struct drm_i915_private *dev_priv = dev->dev_private;
2174 u32 seqno = intel_ring_get_seqno(ring);
2176 BUG_ON(ring == NULL);
2177 if (obj->ring != ring && obj->last_write_seqno) {
2178 /* Keep the seqno relative to the current ring */
2179 obj->last_write_seqno = seqno;
2181 obj->ring = ring;
2183 /* Add a reference if we're newly entering the active list. */
2184 if (!obj->active) {
2185 drm_gem_object_reference(&obj->base);
2186 obj->active = 1;
2189 list_move_tail(&obj->ring_list, &ring->active_list);
2191 obj->last_read_seqno = seqno;
2193 if (obj->fenced_gpu_access) {
2194 obj->last_fenced_seqno = seqno;
2196 /* Bump MRU to take account of the delayed flush */
2197 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2198 struct drm_i915_fence_reg *reg;
2200 reg = &dev_priv->fence_regs[obj->fence_reg];
2201 list_move_tail(&reg->lru_list,
2202 &dev_priv->mm.fence_list);
2207 void i915_vma_move_to_active(struct i915_vma *vma,
2208 struct intel_engine_cs *ring)
2210 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2211 return i915_gem_object_move_to_active(vma->obj, ring);
2214 static void
2215 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2217 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2218 struct i915_address_space *vm;
2219 struct i915_vma *vma;
2221 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2222 BUG_ON(!obj->active);
2224 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2225 vma = i915_gem_obj_to_vma(obj, vm);
2226 if (vma && !list_empty(&vma->mm_list))
2227 list_move_tail(&vma->mm_list, &vm->inactive_list);
2230 list_del_init(&obj->ring_list);
2231 obj->ring = NULL;
2233 obj->last_read_seqno = 0;
2234 obj->last_write_seqno = 0;
2235 obj->base.write_domain = 0;
2237 obj->last_fenced_seqno = 0;
2238 obj->fenced_gpu_access = false;
2240 obj->active = 0;
2241 drm_gem_object_unreference(&obj->base);
2243 WARN_ON(i915_verify_lists(dev));
2246 static void
2247 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2249 struct intel_engine_cs *ring = obj->ring;
2251 if (ring == NULL)
2252 return;
2254 if (i915_seqno_passed(ring->get_seqno(ring, true),
2255 obj->last_read_seqno))
2256 i915_gem_object_move_to_inactive(obj);
2259 static int
2260 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2262 struct drm_i915_private *dev_priv = dev->dev_private;
2263 struct intel_engine_cs *ring;
2264 int ret, i, j;
2266 /* Carefully retire all requests without writing to the rings */
2267 for_each_ring(ring, dev_priv, i) {
2268 ret = intel_ring_idle(ring);
2269 if (ret)
2270 return ret;
2272 i915_gem_retire_requests(dev);
2274 /* Finally reset hw state */
2275 for_each_ring(ring, dev_priv, i) {
2276 intel_ring_init_seqno(ring, seqno);
2278 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2279 ring->semaphore.sync_seqno[j] = 0;
2282 return 0;
2285 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2287 struct drm_i915_private *dev_priv = dev->dev_private;
2288 int ret;
2290 if (seqno == 0)
2291 return -EINVAL;
2293 /* HWS page needs to be set less than what we
2294 * will inject to ring
2296 ret = i915_gem_init_seqno(dev, seqno - 1);
2297 if (ret)
2298 return ret;
2300 /* Carefully set the last_seqno value so that wrap
2301 * detection still works
2303 dev_priv->next_seqno = seqno;
2304 dev_priv->last_seqno = seqno - 1;
2305 if (dev_priv->last_seqno == 0)
2306 dev_priv->last_seqno--;
2308 return 0;
2312 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2314 struct drm_i915_private *dev_priv = dev->dev_private;
2316 /* reserve 0 for non-seqno */
2317 if (dev_priv->next_seqno == 0) {
2318 int ret = i915_gem_init_seqno(dev, 0);
2319 if (ret)
2320 return ret;
2322 dev_priv->next_seqno = 1;
2325 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2326 return 0;
2329 int __i915_add_request(struct intel_engine_cs *ring,
2330 struct drm_file *file,
2331 struct drm_i915_gem_object *obj,
2332 u32 *out_seqno)
2334 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2335 struct drm_i915_gem_request *request;
2336 u32 request_ring_position, request_start;
2337 int ret;
2339 request_start = intel_ring_get_tail(ring);
2341 * Emit any outstanding flushes - execbuf can fail to emit the flush
2342 * after having emitted the batchbuffer command. Hence we need to fix
2343 * things up similar to emitting the lazy request. The difference here
2344 * is that the flush _must_ happen before the next request, no matter
2345 * what.
2347 ret = intel_ring_flush_all_caches(ring);
2348 if (ret)
2349 return ret;
2351 request = ring->preallocated_lazy_request;
2352 if (WARN_ON(request == NULL))
2353 return -ENOMEM;
2355 /* Record the position of the start of the request so that
2356 * should we detect the updated seqno part-way through the
2357 * GPU processing the request, we never over-estimate the
2358 * position of the head.
2360 request_ring_position = intel_ring_get_tail(ring);
2362 ret = ring->add_request(ring);
2363 if (ret)
2364 return ret;
2366 request->seqno = intel_ring_get_seqno(ring);
2367 request->ring = ring;
2368 request->head = request_start;
2369 request->tail = request_ring_position;
2371 /* Whilst this request exists, batch_obj will be on the
2372 * active_list, and so will hold the active reference. Only when this
2373 * request is retired will the the batch_obj be moved onto the
2374 * inactive_list and lose its active reference. Hence we do not need
2375 * to explicitly hold another reference here.
2377 request->batch_obj = obj;
2379 /* Hold a reference to the current context so that we can inspect
2380 * it later in case a hangcheck error event fires.
2382 request->ctx = ring->last_context;
2383 if (request->ctx)
2384 i915_gem_context_reference(request->ctx);
2386 request->emitted_jiffies = jiffies;
2387 list_add_tail(&request->list, &ring->request_list);
2388 request->file_priv = NULL;
2390 if (file) {
2391 struct drm_i915_file_private *file_priv = file->driver_priv;
2393 spin_lock(&file_priv->mm.lock);
2394 request->file_priv = file_priv;
2395 list_add_tail(&request->client_list,
2396 &file_priv->mm.request_list);
2397 spin_unlock(&file_priv->mm.lock);
2400 trace_i915_gem_request_add(ring, request->seqno);
2401 ring->outstanding_lazy_seqno = 0;
2402 ring->preallocated_lazy_request = NULL;
2404 if (!dev_priv->ums.mm_suspended) {
2405 i915_queue_hangcheck(ring->dev);
2407 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2408 queue_delayed_work(dev_priv->wq,
2409 &dev_priv->mm.retire_work,
2410 round_jiffies_up_relative(HZ));
2411 intel_mark_busy(dev_priv->dev);
2414 if (out_seqno)
2415 *out_seqno = request->seqno;
2416 return 0;
2419 static inline void
2420 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2422 struct drm_i915_file_private *file_priv = request->file_priv;
2424 if (!file_priv)
2425 return;
2427 spin_lock(&file_priv->mm.lock);
2428 list_del(&request->client_list);
2429 request->file_priv = NULL;
2430 spin_unlock(&file_priv->mm.lock);
2433 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2434 const struct intel_context *ctx)
2436 unsigned long elapsed;
2438 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2440 if (ctx->hang_stats.banned)
2441 return true;
2443 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2444 if (!i915_gem_context_is_default(ctx)) {
2445 DRM_DEBUG("context hanging too fast, banning!\n");
2446 return true;
2447 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2448 if (i915_stop_ring_allow_warn(dev_priv))
2449 DRM_ERROR("gpu hanging too fast, banning!\n");
2450 return true;
2454 return false;
2457 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2458 struct intel_context *ctx,
2459 const bool guilty)
2461 struct i915_ctx_hang_stats *hs;
2463 if (WARN_ON(!ctx))
2464 return;
2466 hs = &ctx->hang_stats;
2468 if (guilty) {
2469 hs->banned = i915_context_is_banned(dev_priv, ctx);
2470 hs->batch_active++;
2471 hs->guilty_ts = get_seconds();
2472 } else {
2473 hs->batch_pending++;
2477 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2479 list_del(&request->list);
2480 i915_gem_request_remove_from_client(request);
2482 if (request->ctx)
2483 i915_gem_context_unreference(request->ctx);
2485 kfree(request);
2488 struct drm_i915_gem_request *
2489 i915_gem_find_active_request(struct intel_engine_cs *ring)
2491 struct drm_i915_gem_request *request;
2492 u32 completed_seqno;
2494 completed_seqno = ring->get_seqno(ring, false);
2496 list_for_each_entry(request, &ring->request_list, list) {
2497 if (i915_seqno_passed(completed_seqno, request->seqno))
2498 continue;
2500 return request;
2503 return NULL;
2506 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2507 struct intel_engine_cs *ring)
2509 struct drm_i915_gem_request *request;
2510 bool ring_hung;
2512 request = i915_gem_find_active_request(ring);
2514 if (request == NULL)
2515 return;
2517 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2519 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2521 list_for_each_entry_continue(request, &ring->request_list, list)
2522 i915_set_reset_status(dev_priv, request->ctx, false);
2525 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2526 struct intel_engine_cs *ring)
2528 while (!list_empty(&ring->active_list)) {
2529 struct drm_i915_gem_object *obj;
2531 obj = list_first_entry(&ring->active_list,
2532 struct drm_i915_gem_object,
2533 ring_list);
2535 i915_gem_object_move_to_inactive(obj);
2539 * We must free the requests after all the corresponding objects have
2540 * been moved off active lists. Which is the same order as the normal
2541 * retire_requests function does. This is important if object hold
2542 * implicit references on things like e.g. ppgtt address spaces through
2543 * the request.
2545 while (!list_empty(&ring->request_list)) {
2546 struct drm_i915_gem_request *request;
2548 request = list_first_entry(&ring->request_list,
2549 struct drm_i915_gem_request,
2550 list);
2552 i915_gem_free_request(request);
2555 /* These may not have been flush before the reset, do so now */
2556 kfree(ring->preallocated_lazy_request);
2557 ring->preallocated_lazy_request = NULL;
2558 ring->outstanding_lazy_seqno = 0;
2561 void i915_gem_restore_fences(struct drm_device *dev)
2563 struct drm_i915_private *dev_priv = dev->dev_private;
2564 int i;
2566 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2567 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2570 * Commit delayed tiling changes if we have an object still
2571 * attached to the fence, otherwise just clear the fence.
2573 if (reg->obj) {
2574 i915_gem_object_update_fence(reg->obj, reg,
2575 reg->obj->tiling_mode);
2576 } else {
2577 i915_gem_write_fence(dev, i, NULL);
2582 void i915_gem_reset(struct drm_device *dev)
2584 struct drm_i915_private *dev_priv = dev->dev_private;
2585 struct intel_engine_cs *ring;
2586 int i;
2589 * Before we free the objects from the requests, we need to inspect
2590 * them for finding the guilty party. As the requests only borrow
2591 * their reference to the objects, the inspection must be done first.
2593 for_each_ring(ring, dev_priv, i)
2594 i915_gem_reset_ring_status(dev_priv, ring);
2596 for_each_ring(ring, dev_priv, i)
2597 i915_gem_reset_ring_cleanup(dev_priv, ring);
2599 i915_gem_context_reset(dev);
2601 i915_gem_restore_fences(dev);
2605 * This function clears the request list as sequence numbers are passed.
2607 void
2608 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2610 uint32_t seqno;
2612 if (list_empty(&ring->request_list))
2613 return;
2615 WARN_ON(i915_verify_lists(ring->dev));
2617 seqno = ring->get_seqno(ring, true);
2619 /* Move any buffers on the active list that are no longer referenced
2620 * by the ringbuffer to the flushing/inactive lists as appropriate,
2621 * before we free the context associated with the requests.
2623 while (!list_empty(&ring->active_list)) {
2624 struct drm_i915_gem_object *obj;
2626 obj = list_first_entry(&ring->active_list,
2627 struct drm_i915_gem_object,
2628 ring_list);
2630 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2631 break;
2633 i915_gem_object_move_to_inactive(obj);
2637 while (!list_empty(&ring->request_list)) {
2638 struct drm_i915_gem_request *request;
2640 request = list_first_entry(&ring->request_list,
2641 struct drm_i915_gem_request,
2642 list);
2644 if (!i915_seqno_passed(seqno, request->seqno))
2645 break;
2647 trace_i915_gem_request_retire(ring, request->seqno);
2648 /* We know the GPU must have read the request to have
2649 * sent us the seqno + interrupt, so use the position
2650 * of tail of the request to update the last known position
2651 * of the GPU head.
2653 ring->buffer->last_retired_head = request->tail;
2655 i915_gem_free_request(request);
2658 if (unlikely(ring->trace_irq_seqno &&
2659 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2660 ring->irq_put(ring);
2661 ring->trace_irq_seqno = 0;
2664 WARN_ON(i915_verify_lists(ring->dev));
2667 bool
2668 i915_gem_retire_requests(struct drm_device *dev)
2670 struct drm_i915_private *dev_priv = dev->dev_private;
2671 struct intel_engine_cs *ring;
2672 bool idle = true;
2673 int i;
2675 for_each_ring(ring, dev_priv, i) {
2676 i915_gem_retire_requests_ring(ring);
2677 idle &= list_empty(&ring->request_list);
2680 if (idle)
2681 mod_delayed_work(dev_priv->wq,
2682 &dev_priv->mm.idle_work,
2683 msecs_to_jiffies(100));
2685 return idle;
2688 static void
2689 i915_gem_retire_work_handler(struct work_struct *work)
2691 struct drm_i915_private *dev_priv =
2692 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2693 struct drm_device *dev = dev_priv->dev;
2694 bool idle;
2696 /* Come back later if the device is busy... */
2697 idle = false;
2698 if (mutex_trylock(&dev->struct_mutex)) {
2699 idle = i915_gem_retire_requests(dev);
2700 mutex_unlock(&dev->struct_mutex);
2702 if (!idle)
2703 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2704 round_jiffies_up_relative(HZ));
2707 static void
2708 i915_gem_idle_work_handler(struct work_struct *work)
2710 struct drm_i915_private *dev_priv =
2711 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2713 intel_mark_idle(dev_priv->dev);
2717 * Ensures that an object will eventually get non-busy by flushing any required
2718 * write domains, emitting any outstanding lazy request and retiring and
2719 * completed requests.
2721 static int
2722 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2724 int ret;
2726 if (obj->active) {
2727 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2728 if (ret)
2729 return ret;
2731 i915_gem_retire_requests_ring(obj->ring);
2734 return 0;
2738 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2739 * @DRM_IOCTL_ARGS: standard ioctl arguments
2741 * Returns 0 if successful, else an error is returned with the remaining time in
2742 * the timeout parameter.
2743 * -ETIME: object is still busy after timeout
2744 * -ERESTARTSYS: signal interrupted the wait
2745 * -ENONENT: object doesn't exist
2746 * Also possible, but rare:
2747 * -EAGAIN: GPU wedged
2748 * -ENOMEM: damn
2749 * -ENODEV: Internal IRQ fail
2750 * -E?: The add request failed
2752 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2753 * non-zero timeout parameter the wait ioctl will wait for the given number of
2754 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2755 * without holding struct_mutex the object may become re-busied before this
2756 * function completes. A similar but shorter * race condition exists in the busy
2757 * ioctl
2760 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2762 struct drm_i915_private *dev_priv = dev->dev_private;
2763 struct drm_i915_gem_wait *args = data;
2764 struct drm_i915_gem_object *obj;
2765 struct intel_engine_cs *ring = NULL;
2766 struct timespec timeout_stack, *timeout = NULL;
2767 unsigned reset_counter;
2768 u32 seqno = 0;
2769 int ret = 0;
2771 if (args->timeout_ns >= 0) {
2772 timeout_stack = ns_to_timespec(args->timeout_ns);
2773 timeout = &timeout_stack;
2776 ret = i915_mutex_lock_interruptible(dev);
2777 if (ret)
2778 return ret;
2780 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2781 if (&obj->base == NULL) {
2782 mutex_unlock(&dev->struct_mutex);
2783 return -ENOENT;
2786 /* Need to make sure the object gets inactive eventually. */
2787 ret = i915_gem_object_flush_active(obj);
2788 if (ret)
2789 goto out;
2791 if (obj->active) {
2792 seqno = obj->last_read_seqno;
2793 ring = obj->ring;
2796 if (seqno == 0)
2797 goto out;
2799 /* Do this after OLR check to make sure we make forward progress polling
2800 * on this IOCTL with a 0 timeout (like busy ioctl)
2802 if (!args->timeout_ns) {
2803 ret = -ETIME;
2804 goto out;
2807 drm_gem_object_unreference(&obj->base);
2808 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2809 mutex_unlock(&dev->struct_mutex);
2811 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2812 if (timeout)
2813 args->timeout_ns = timespec_to_ns(timeout);
2814 return ret;
2816 out:
2817 drm_gem_object_unreference(&obj->base);
2818 mutex_unlock(&dev->struct_mutex);
2819 return ret;
2823 * i915_gem_object_sync - sync an object to a ring.
2825 * @obj: object which may be in use on another ring.
2826 * @to: ring we wish to use the object on. May be NULL.
2828 * This code is meant to abstract object synchronization with the GPU.
2829 * Calling with NULL implies synchronizing the object with the CPU
2830 * rather than a particular GPU ring.
2832 * Returns 0 if successful, else propagates up the lower layer error.
2835 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2836 struct intel_engine_cs *to)
2838 struct intel_engine_cs *from = obj->ring;
2839 u32 seqno;
2840 int ret, idx;
2842 if (from == NULL || to == from)
2843 return 0;
2845 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2846 return i915_gem_object_wait_rendering(obj, false);
2848 idx = intel_ring_sync_index(from, to);
2850 seqno = obj->last_read_seqno;
2851 if (seqno <= from->semaphore.sync_seqno[idx])
2852 return 0;
2854 ret = i915_gem_check_olr(obj->ring, seqno);
2855 if (ret)
2856 return ret;
2858 trace_i915_gem_ring_sync_to(from, to, seqno);
2859 ret = to->semaphore.sync_to(to, from, seqno);
2860 if (!ret)
2861 /* We use last_read_seqno because sync_to()
2862 * might have just caused seqno wrap under
2863 * the radar.
2865 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2867 return ret;
2870 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2872 u32 old_write_domain, old_read_domains;
2874 /* Force a pagefault for domain tracking on next user access */
2875 i915_gem_release_mmap(obj);
2877 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2878 return;
2880 /* Wait for any direct GTT access to complete */
2881 mb();
2883 old_read_domains = obj->base.read_domains;
2884 old_write_domain = obj->base.write_domain;
2886 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2887 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2889 trace_i915_gem_object_change_domain(obj,
2890 old_read_domains,
2891 old_write_domain);
2894 int i915_vma_unbind(struct i915_vma *vma)
2896 struct drm_i915_gem_object *obj = vma->obj;
2897 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2898 int ret;
2900 if (list_empty(&vma->vma_link))
2901 return 0;
2903 if (!drm_mm_node_allocated(&vma->node)) {
2904 i915_gem_vma_destroy(vma);
2905 return 0;
2908 if (vma->pin_count)
2909 return -EBUSY;
2911 BUG_ON(obj->pages == NULL);
2913 ret = i915_gem_object_finish_gpu(obj);
2914 if (ret)
2915 return ret;
2916 /* Continue on if we fail due to EIO, the GPU is hung so we
2917 * should be safe and we need to cleanup or else we might
2918 * cause memory corruption through use-after-free.
2921 if (i915_is_ggtt(vma->vm)) {
2922 i915_gem_object_finish_gtt(obj);
2924 /* release the fence reg _after_ flushing */
2925 ret = i915_gem_object_put_fence(obj);
2926 if (ret)
2927 return ret;
2930 trace_i915_vma_unbind(vma);
2932 vma->unbind_vma(vma);
2934 i915_gem_gtt_finish_object(obj);
2936 list_del_init(&vma->mm_list);
2937 /* Avoid an unnecessary call to unbind on rebind. */
2938 if (i915_is_ggtt(vma->vm))
2939 obj->map_and_fenceable = true;
2941 drm_mm_remove_node(&vma->node);
2942 i915_gem_vma_destroy(vma);
2944 /* Since the unbound list is global, only move to that list if
2945 * no more VMAs exist. */
2946 if (list_empty(&obj->vma_list))
2947 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2949 /* And finally now the object is completely decoupled from this vma,
2950 * we can drop its hold on the backing storage and allow it to be
2951 * reaped by the shrinker.
2953 i915_gem_object_unpin_pages(obj);
2955 return 0;
2958 int i915_gpu_idle(struct drm_device *dev)
2960 struct drm_i915_private *dev_priv = dev->dev_private;
2961 struct intel_engine_cs *ring;
2962 int ret, i;
2964 /* Flush everything onto the inactive list. */
2965 for_each_ring(ring, dev_priv, i) {
2966 ret = i915_switch_context(ring, ring->default_context);
2967 if (ret)
2968 return ret;
2970 ret = intel_ring_idle(ring);
2971 if (ret)
2972 return ret;
2975 return 0;
2978 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2979 struct drm_i915_gem_object *obj)
2981 struct drm_i915_private *dev_priv = dev->dev_private;
2982 int fence_reg;
2983 int fence_pitch_shift;
2985 if (INTEL_INFO(dev)->gen >= 6) {
2986 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2987 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2988 } else {
2989 fence_reg = FENCE_REG_965_0;
2990 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2993 fence_reg += reg * 8;
2995 /* To w/a incoherency with non-atomic 64-bit register updates,
2996 * we split the 64-bit update into two 32-bit writes. In order
2997 * for a partial fence not to be evaluated between writes, we
2998 * precede the update with write to turn off the fence register,
2999 * and only enable the fence as the last step.
3001 * For extra levels of paranoia, we make sure each step lands
3002 * before applying the next step.
3004 I915_WRITE(fence_reg, 0);
3005 POSTING_READ(fence_reg);
3007 if (obj) {
3008 u32 size = i915_gem_obj_ggtt_size(obj);
3009 uint64_t val;
3011 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3012 0xfffff000) << 32;
3013 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3014 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3015 if (obj->tiling_mode == I915_TILING_Y)
3016 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3017 val |= I965_FENCE_REG_VALID;
3019 I915_WRITE(fence_reg + 4, val >> 32);
3020 POSTING_READ(fence_reg + 4);
3022 I915_WRITE(fence_reg + 0, val);
3023 POSTING_READ(fence_reg);
3024 } else {
3025 I915_WRITE(fence_reg + 4, 0);
3026 POSTING_READ(fence_reg + 4);
3030 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3031 struct drm_i915_gem_object *obj)
3033 struct drm_i915_private *dev_priv = dev->dev_private;
3034 u32 val;
3036 if (obj) {
3037 u32 size = i915_gem_obj_ggtt_size(obj);
3038 int pitch_val;
3039 int tile_width;
3041 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3042 (size & -size) != size ||
3043 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3044 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3045 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3047 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3048 tile_width = 128;
3049 else
3050 tile_width = 512;
3052 /* Note: pitch better be a power of two tile widths */
3053 pitch_val = obj->stride / tile_width;
3054 pitch_val = ffs(pitch_val) - 1;
3056 val = i915_gem_obj_ggtt_offset(obj);
3057 if (obj->tiling_mode == I915_TILING_Y)
3058 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3059 val |= I915_FENCE_SIZE_BITS(size);
3060 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3061 val |= I830_FENCE_REG_VALID;
3062 } else
3063 val = 0;
3065 if (reg < 8)
3066 reg = FENCE_REG_830_0 + reg * 4;
3067 else
3068 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3070 I915_WRITE(reg, val);
3071 POSTING_READ(reg);
3074 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3075 struct drm_i915_gem_object *obj)
3077 struct drm_i915_private *dev_priv = dev->dev_private;
3078 uint32_t val;
3080 if (obj) {
3081 u32 size = i915_gem_obj_ggtt_size(obj);
3082 uint32_t pitch_val;
3084 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3085 (size & -size) != size ||
3086 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3087 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3088 i915_gem_obj_ggtt_offset(obj), size);
3090 pitch_val = obj->stride / 128;
3091 pitch_val = ffs(pitch_val) - 1;
3093 val = i915_gem_obj_ggtt_offset(obj);
3094 if (obj->tiling_mode == I915_TILING_Y)
3095 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3096 val |= I830_FENCE_SIZE_BITS(size);
3097 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3098 val |= I830_FENCE_REG_VALID;
3099 } else
3100 val = 0;
3102 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3103 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3106 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3108 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3111 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3112 struct drm_i915_gem_object *obj)
3114 struct drm_i915_private *dev_priv = dev->dev_private;
3116 /* Ensure that all CPU reads are completed before installing a fence
3117 * and all writes before removing the fence.
3119 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3120 mb();
3122 WARN(obj && (!obj->stride || !obj->tiling_mode),
3123 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3124 obj->stride, obj->tiling_mode);
3126 switch (INTEL_INFO(dev)->gen) {
3127 case 8:
3128 case 7:
3129 case 6:
3130 case 5:
3131 case 4: i965_write_fence_reg(dev, reg, obj); break;
3132 case 3: i915_write_fence_reg(dev, reg, obj); break;
3133 case 2: i830_write_fence_reg(dev, reg, obj); break;
3134 default: BUG();
3137 /* And similarly be paranoid that no direct access to this region
3138 * is reordered to before the fence is installed.
3140 if (i915_gem_object_needs_mb(obj))
3141 mb();
3144 static inline int fence_number(struct drm_i915_private *dev_priv,
3145 struct drm_i915_fence_reg *fence)
3147 return fence - dev_priv->fence_regs;
3150 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3151 struct drm_i915_fence_reg *fence,
3152 bool enable)
3154 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3155 int reg = fence_number(dev_priv, fence);
3157 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3159 if (enable) {
3160 obj->fence_reg = reg;
3161 fence->obj = obj;
3162 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3163 } else {
3164 obj->fence_reg = I915_FENCE_REG_NONE;
3165 fence->obj = NULL;
3166 list_del_init(&fence->lru_list);
3168 obj->fence_dirty = false;
3171 static int
3172 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3174 if (obj->last_fenced_seqno) {
3175 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3176 if (ret)
3177 return ret;
3179 obj->last_fenced_seqno = 0;
3182 obj->fenced_gpu_access = false;
3183 return 0;
3187 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3189 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3190 struct drm_i915_fence_reg *fence;
3191 int ret;
3193 ret = i915_gem_object_wait_fence(obj);
3194 if (ret)
3195 return ret;
3197 if (obj->fence_reg == I915_FENCE_REG_NONE)
3198 return 0;
3200 fence = &dev_priv->fence_regs[obj->fence_reg];
3202 if (WARN_ON(fence->pin_count))
3203 return -EBUSY;
3205 i915_gem_object_fence_lost(obj);
3206 i915_gem_object_update_fence(obj, fence, false);
3208 return 0;
3211 static struct drm_i915_fence_reg *
3212 i915_find_fence_reg(struct drm_device *dev)
3214 struct drm_i915_private *dev_priv = dev->dev_private;
3215 struct drm_i915_fence_reg *reg, *avail;
3216 int i;
3218 /* First try to find a free reg */
3219 avail = NULL;
3220 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3221 reg = &dev_priv->fence_regs[i];
3222 if (!reg->obj)
3223 return reg;
3225 if (!reg->pin_count)
3226 avail = reg;
3229 if (avail == NULL)
3230 goto deadlock;
3232 /* None available, try to steal one or wait for a user to finish */
3233 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3234 if (reg->pin_count)
3235 continue;
3237 return reg;
3240 deadlock:
3241 /* Wait for completion of pending flips which consume fences */
3242 if (intel_has_pending_fb_unpin(dev))
3243 return ERR_PTR(-EAGAIN);
3245 return ERR_PTR(-EDEADLK);
3249 * i915_gem_object_get_fence - set up fencing for an object
3250 * @obj: object to map through a fence reg
3252 * When mapping objects through the GTT, userspace wants to be able to write
3253 * to them without having to worry about swizzling if the object is tiled.
3254 * This function walks the fence regs looking for a free one for @obj,
3255 * stealing one if it can't find any.
3257 * It then sets up the reg based on the object's properties: address, pitch
3258 * and tiling format.
3260 * For an untiled surface, this removes any existing fence.
3263 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3265 struct drm_device *dev = obj->base.dev;
3266 struct drm_i915_private *dev_priv = dev->dev_private;
3267 bool enable = obj->tiling_mode != I915_TILING_NONE;
3268 struct drm_i915_fence_reg *reg;
3269 int ret;
3271 /* Have we updated the tiling parameters upon the object and so
3272 * will need to serialise the write to the associated fence register?
3274 if (obj->fence_dirty) {
3275 ret = i915_gem_object_wait_fence(obj);
3276 if (ret)
3277 return ret;
3280 /* Just update our place in the LRU if our fence is getting reused. */
3281 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3282 reg = &dev_priv->fence_regs[obj->fence_reg];
3283 if (!obj->fence_dirty) {
3284 list_move_tail(&reg->lru_list,
3285 &dev_priv->mm.fence_list);
3286 return 0;
3288 } else if (enable) {
3289 reg = i915_find_fence_reg(dev);
3290 if (IS_ERR(reg))
3291 return PTR_ERR(reg);
3293 if (reg->obj) {
3294 struct drm_i915_gem_object *old = reg->obj;
3296 ret = i915_gem_object_wait_fence(old);
3297 if (ret)
3298 return ret;
3300 i915_gem_object_fence_lost(old);
3302 } else
3303 return 0;
3305 i915_gem_object_update_fence(obj, reg, enable);
3307 return 0;
3310 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3311 struct drm_mm_node *gtt_space,
3312 unsigned long cache_level)
3314 struct drm_mm_node *other;
3316 /* On non-LLC machines we have to be careful when putting differing
3317 * types of snoopable memory together to avoid the prefetcher
3318 * crossing memory domains and dying.
3320 if (HAS_LLC(dev))
3321 return true;
3323 if (!drm_mm_node_allocated(gtt_space))
3324 return true;
3326 if (list_empty(&gtt_space->node_list))
3327 return true;
3329 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3330 if (other->allocated && !other->hole_follows && other->color != cache_level)
3331 return false;
3333 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3334 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3335 return false;
3337 return true;
3340 static void i915_gem_verify_gtt(struct drm_device *dev)
3342 #if WATCH_GTT
3343 struct drm_i915_private *dev_priv = dev->dev_private;
3344 struct drm_i915_gem_object *obj;
3345 int err = 0;
3347 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3348 if (obj->gtt_space == NULL) {
3349 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3350 err++;
3351 continue;
3354 if (obj->cache_level != obj->gtt_space->color) {
3355 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3356 i915_gem_obj_ggtt_offset(obj),
3357 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3358 obj->cache_level,
3359 obj->gtt_space->color);
3360 err++;
3361 continue;
3364 if (!i915_gem_valid_gtt_space(dev,
3365 obj->gtt_space,
3366 obj->cache_level)) {
3367 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3368 i915_gem_obj_ggtt_offset(obj),
3369 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3370 obj->cache_level);
3371 err++;
3372 continue;
3376 WARN_ON(err);
3377 #endif
3381 * Finds free space in the GTT aperture and binds the object there.
3383 static struct i915_vma *
3384 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3385 struct i915_address_space *vm,
3386 unsigned alignment,
3387 uint64_t flags)
3389 struct drm_device *dev = obj->base.dev;
3390 struct drm_i915_private *dev_priv = dev->dev_private;
3391 u32 size, fence_size, fence_alignment, unfenced_alignment;
3392 unsigned long start =
3393 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3394 unsigned long end =
3395 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3396 struct i915_vma *vma;
3397 int ret;
3399 fence_size = i915_gem_get_gtt_size(dev,
3400 obj->base.size,
3401 obj->tiling_mode);
3402 fence_alignment = i915_gem_get_gtt_alignment(dev,
3403 obj->base.size,
3404 obj->tiling_mode, true);
3405 unfenced_alignment =
3406 i915_gem_get_gtt_alignment(dev,
3407 obj->base.size,
3408 obj->tiling_mode, false);
3410 if (alignment == 0)
3411 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3412 unfenced_alignment;
3413 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3414 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3415 return ERR_PTR(-EINVAL);
3418 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3420 /* If the object is bigger than the entire aperture, reject it early
3421 * before evicting everything in a vain attempt to find space.
3423 if (obj->base.size > end) {
3424 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3425 obj->base.size,
3426 flags & PIN_MAPPABLE ? "mappable" : "total",
3427 end);
3428 return ERR_PTR(-E2BIG);
3431 ret = i915_gem_object_get_pages(obj);
3432 if (ret)
3433 return ERR_PTR(ret);
3435 i915_gem_object_pin_pages(obj);
3437 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3438 if (IS_ERR(vma))
3439 goto err_unpin;
3441 search_free:
3442 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3443 size, alignment,
3444 obj->cache_level,
3445 start, end,
3446 DRM_MM_SEARCH_DEFAULT,
3447 DRM_MM_CREATE_DEFAULT);
3448 if (ret) {
3449 ret = i915_gem_evict_something(dev, vm, size, alignment,
3450 obj->cache_level,
3451 start, end,
3452 flags);
3453 if (ret == 0)
3454 goto search_free;
3456 goto err_free_vma;
3458 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3459 obj->cache_level))) {
3460 ret = -EINVAL;
3461 goto err_remove_node;
3464 ret = i915_gem_gtt_prepare_object(obj);
3465 if (ret)
3466 goto err_remove_node;
3468 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3469 list_add_tail(&vma->mm_list, &vm->inactive_list);
3471 if (i915_is_ggtt(vm)) {
3472 bool mappable, fenceable;
3474 fenceable = (vma->node.size == fence_size &&
3475 (vma->node.start & (fence_alignment - 1)) == 0);
3477 mappable = (vma->node.start + obj->base.size <=
3478 dev_priv->gtt.mappable_end);
3480 obj->map_and_fenceable = mappable && fenceable;
3483 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3485 trace_i915_vma_bind(vma, flags);
3486 vma->bind_vma(vma, obj->cache_level,
3487 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3489 i915_gem_verify_gtt(dev);
3490 return vma;
3492 err_remove_node:
3493 drm_mm_remove_node(&vma->node);
3494 err_free_vma:
3495 i915_gem_vma_destroy(vma);
3496 vma = ERR_PTR(ret);
3497 err_unpin:
3498 i915_gem_object_unpin_pages(obj);
3499 return vma;
3502 bool
3503 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3504 bool force)
3506 /* If we don't have a page list set up, then we're not pinned
3507 * to GPU, and we can ignore the cache flush because it'll happen
3508 * again at bind time.
3510 if (obj->pages == NULL)
3511 return false;
3514 * Stolen memory is always coherent with the GPU as it is explicitly
3515 * marked as wc by the system, or the system is cache-coherent.
3517 if (obj->stolen)
3518 return false;
3520 /* If the GPU is snooping the contents of the CPU cache,
3521 * we do not need to manually clear the CPU cache lines. However,
3522 * the caches are only snooped when the render cache is
3523 * flushed/invalidated. As we always have to emit invalidations
3524 * and flushes when moving into and out of the RENDER domain, correct
3525 * snooping behaviour occurs naturally as the result of our domain
3526 * tracking.
3528 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3529 return false;
3531 trace_i915_gem_object_clflush(obj);
3532 drm_clflush_sg(obj->pages);
3534 return true;
3537 /** Flushes the GTT write domain for the object if it's dirty. */
3538 static void
3539 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3541 uint32_t old_write_domain;
3543 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3544 return;
3546 /* No actual flushing is required for the GTT write domain. Writes
3547 * to it immediately go to main memory as far as we know, so there's
3548 * no chipset flush. It also doesn't land in render cache.
3550 * However, we do have to enforce the order so that all writes through
3551 * the GTT land before any writes to the device, such as updates to
3552 * the GATT itself.
3554 wmb();
3556 old_write_domain = obj->base.write_domain;
3557 obj->base.write_domain = 0;
3559 trace_i915_gem_object_change_domain(obj,
3560 obj->base.read_domains,
3561 old_write_domain);
3564 /** Flushes the CPU write domain for the object if it's dirty. */
3565 static void
3566 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3567 bool force)
3569 uint32_t old_write_domain;
3571 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3572 return;
3574 if (i915_gem_clflush_object(obj, force))
3575 i915_gem_chipset_flush(obj->base.dev);
3577 old_write_domain = obj->base.write_domain;
3578 obj->base.write_domain = 0;
3580 trace_i915_gem_object_change_domain(obj,
3581 obj->base.read_domains,
3582 old_write_domain);
3586 * Moves a single object to the GTT read, and possibly write domain.
3588 * This function returns when the move is complete, including waiting on
3589 * flushes to occur.
3592 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3594 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3595 uint32_t old_write_domain, old_read_domains;
3596 int ret;
3598 /* Not valid to be called on unbound objects. */
3599 if (!i915_gem_obj_bound_any(obj))
3600 return -EINVAL;
3602 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3603 return 0;
3605 ret = i915_gem_object_wait_rendering(obj, !write);
3606 if (ret)
3607 return ret;
3609 i915_gem_object_retire(obj);
3610 i915_gem_object_flush_cpu_write_domain(obj, false);
3612 /* Serialise direct access to this object with the barriers for
3613 * coherent writes from the GPU, by effectively invalidating the
3614 * GTT domain upon first access.
3616 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3617 mb();
3619 old_write_domain = obj->base.write_domain;
3620 old_read_domains = obj->base.read_domains;
3622 /* It should now be out of any other write domains, and we can update
3623 * the domain values for our changes.
3625 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3626 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3627 if (write) {
3628 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3629 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3630 obj->dirty = 1;
3633 trace_i915_gem_object_change_domain(obj,
3634 old_read_domains,
3635 old_write_domain);
3637 /* And bump the LRU for this access */
3638 if (i915_gem_object_is_inactive(obj)) {
3639 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3640 if (vma)
3641 list_move_tail(&vma->mm_list,
3642 &dev_priv->gtt.base.inactive_list);
3646 return 0;
3649 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3650 enum i915_cache_level cache_level)
3652 struct drm_device *dev = obj->base.dev;
3653 struct i915_vma *vma, *next;
3654 int ret;
3656 if (obj->cache_level == cache_level)
3657 return 0;
3659 if (i915_gem_obj_is_pinned(obj)) {
3660 DRM_DEBUG("can not change the cache level of pinned objects\n");
3661 return -EBUSY;
3664 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3665 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3666 ret = i915_vma_unbind(vma);
3667 if (ret)
3668 return ret;
3672 if (i915_gem_obj_bound_any(obj)) {
3673 ret = i915_gem_object_finish_gpu(obj);
3674 if (ret)
3675 return ret;
3677 i915_gem_object_finish_gtt(obj);
3679 /* Before SandyBridge, you could not use tiling or fence
3680 * registers with snooped memory, so relinquish any fences
3681 * currently pointing to our region in the aperture.
3683 if (INTEL_INFO(dev)->gen < 6) {
3684 ret = i915_gem_object_put_fence(obj);
3685 if (ret)
3686 return ret;
3689 list_for_each_entry(vma, &obj->vma_list, vma_link)
3690 if (drm_mm_node_allocated(&vma->node))
3691 vma->bind_vma(vma, cache_level,
3692 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
3695 list_for_each_entry(vma, &obj->vma_list, vma_link)
3696 vma->node.color = cache_level;
3697 obj->cache_level = cache_level;
3699 if (cpu_write_needs_clflush(obj)) {
3700 u32 old_read_domains, old_write_domain;
3702 /* If we're coming from LLC cached, then we haven't
3703 * actually been tracking whether the data is in the
3704 * CPU cache or not, since we only allow one bit set
3705 * in obj->write_domain and have been skipping the clflushes.
3706 * Just set it to the CPU cache for now.
3708 i915_gem_object_retire(obj);
3709 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3711 old_read_domains = obj->base.read_domains;
3712 old_write_domain = obj->base.write_domain;
3714 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3715 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3717 trace_i915_gem_object_change_domain(obj,
3718 old_read_domains,
3719 old_write_domain);
3722 i915_gem_verify_gtt(dev);
3723 return 0;
3726 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3727 struct drm_file *file)
3729 struct drm_i915_gem_caching *args = data;
3730 struct drm_i915_gem_object *obj;
3731 int ret;
3733 ret = i915_mutex_lock_interruptible(dev);
3734 if (ret)
3735 return ret;
3737 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3738 if (&obj->base == NULL) {
3739 ret = -ENOENT;
3740 goto unlock;
3743 switch (obj->cache_level) {
3744 case I915_CACHE_LLC:
3745 case I915_CACHE_L3_LLC:
3746 args->caching = I915_CACHING_CACHED;
3747 break;
3749 case I915_CACHE_WT:
3750 args->caching = I915_CACHING_DISPLAY;
3751 break;
3753 default:
3754 args->caching = I915_CACHING_NONE;
3755 break;
3758 drm_gem_object_unreference(&obj->base);
3759 unlock:
3760 mutex_unlock(&dev->struct_mutex);
3761 return ret;
3764 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3765 struct drm_file *file)
3767 struct drm_i915_gem_caching *args = data;
3768 struct drm_i915_gem_object *obj;
3769 enum i915_cache_level level;
3770 int ret;
3772 switch (args->caching) {
3773 case I915_CACHING_NONE:
3774 level = I915_CACHE_NONE;
3775 break;
3776 case I915_CACHING_CACHED:
3777 level = I915_CACHE_LLC;
3778 break;
3779 case I915_CACHING_DISPLAY:
3780 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3781 break;
3782 default:
3783 return -EINVAL;
3786 ret = i915_mutex_lock_interruptible(dev);
3787 if (ret)
3788 return ret;
3790 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3791 if (&obj->base == NULL) {
3792 ret = -ENOENT;
3793 goto unlock;
3796 ret = i915_gem_object_set_cache_level(obj, level);
3798 drm_gem_object_unreference(&obj->base);
3799 unlock:
3800 mutex_unlock(&dev->struct_mutex);
3801 return ret;
3804 static bool is_pin_display(struct drm_i915_gem_object *obj)
3806 struct i915_vma *vma;
3808 if (list_empty(&obj->vma_list))
3809 return false;
3811 vma = i915_gem_obj_to_ggtt(obj);
3812 if (!vma)
3813 return false;
3815 /* There are 3 sources that pin objects:
3816 * 1. The display engine (scanouts, sprites, cursors);
3817 * 2. Reservations for execbuffer;
3818 * 3. The user.
3820 * We can ignore reservations as we hold the struct_mutex and
3821 * are only called outside of the reservation path. The user
3822 * can only increment pin_count once, and so if after
3823 * subtracting the potential reference by the user, any pin_count
3824 * remains, it must be due to another use by the display engine.
3826 return vma->pin_count - !!obj->user_pin_count;
3830 * Prepare buffer for display plane (scanout, cursors, etc).
3831 * Can be called from an uninterruptible phase (modesetting) and allows
3832 * any flushes to be pipelined (for pageflips).
3835 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3836 u32 alignment,
3837 struct intel_engine_cs *pipelined)
3839 u32 old_read_domains, old_write_domain;
3840 bool was_pin_display;
3841 int ret;
3843 if (pipelined != obj->ring) {
3844 ret = i915_gem_object_sync(obj, pipelined);
3845 if (ret)
3846 return ret;
3849 /* Mark the pin_display early so that we account for the
3850 * display coherency whilst setting up the cache domains.
3852 was_pin_display = obj->pin_display;
3853 obj->pin_display = true;
3855 /* The display engine is not coherent with the LLC cache on gen6. As
3856 * a result, we make sure that the pinning that is about to occur is
3857 * done with uncached PTEs. This is lowest common denominator for all
3858 * chipsets.
3860 * However for gen6+, we could do better by using the GFDT bit instead
3861 * of uncaching, which would allow us to flush all the LLC-cached data
3862 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3864 ret = i915_gem_object_set_cache_level(obj,
3865 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3866 if (ret)
3867 goto err_unpin_display;
3869 /* As the user may map the buffer once pinned in the display plane
3870 * (e.g. libkms for the bootup splash), we have to ensure that we
3871 * always use map_and_fenceable for all scanout buffers.
3873 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3874 if (ret)
3875 goto err_unpin_display;
3877 i915_gem_object_flush_cpu_write_domain(obj, true);
3879 old_write_domain = obj->base.write_domain;
3880 old_read_domains = obj->base.read_domains;
3882 /* It should now be out of any other write domains, and we can update
3883 * the domain values for our changes.
3885 obj->base.write_domain = 0;
3886 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3888 trace_i915_gem_object_change_domain(obj,
3889 old_read_domains,
3890 old_write_domain);
3892 return 0;
3894 err_unpin_display:
3895 WARN_ON(was_pin_display != is_pin_display(obj));
3896 obj->pin_display = was_pin_display;
3897 return ret;
3900 void
3901 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3903 i915_gem_object_ggtt_unpin(obj);
3904 obj->pin_display = is_pin_display(obj);
3908 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3910 int ret;
3912 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3913 return 0;
3915 ret = i915_gem_object_wait_rendering(obj, false);
3916 if (ret)
3917 return ret;
3919 /* Ensure that we invalidate the GPU's caches and TLBs. */
3920 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3921 return 0;
3925 * Moves a single object to the CPU read, and possibly write domain.
3927 * This function returns when the move is complete, including waiting on
3928 * flushes to occur.
3931 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3933 uint32_t old_write_domain, old_read_domains;
3934 int ret;
3936 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3937 return 0;
3939 ret = i915_gem_object_wait_rendering(obj, !write);
3940 if (ret)
3941 return ret;
3943 i915_gem_object_retire(obj);
3944 i915_gem_object_flush_gtt_write_domain(obj);
3946 old_write_domain = obj->base.write_domain;
3947 old_read_domains = obj->base.read_domains;
3949 /* Flush the CPU cache if it's still invalid. */
3950 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3951 i915_gem_clflush_object(obj, false);
3953 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3956 /* It should now be out of any other write domains, and we can update
3957 * the domain values for our changes.
3959 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3961 /* If we're writing through the CPU, then the GPU read domains will
3962 * need to be invalidated at next use.
3964 if (write) {
3965 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3966 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3969 trace_i915_gem_object_change_domain(obj,
3970 old_read_domains,
3971 old_write_domain);
3973 return 0;
3976 /* Throttle our rendering by waiting until the ring has completed our requests
3977 * emitted over 20 msec ago.
3979 * Note that if we were to use the current jiffies each time around the loop,
3980 * we wouldn't escape the function with any frames outstanding if the time to
3981 * render a frame was over 20ms.
3983 * This should get us reasonable parallelism between CPU and GPU but also
3984 * relatively low latency when blocking on a particular request to finish.
3986 static int
3987 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3989 struct drm_i915_private *dev_priv = dev->dev_private;
3990 struct drm_i915_file_private *file_priv = file->driver_priv;
3991 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3992 struct drm_i915_gem_request *request;
3993 struct intel_engine_cs *ring = NULL;
3994 unsigned reset_counter;
3995 u32 seqno = 0;
3996 int ret;
3998 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3999 if (ret)
4000 return ret;
4002 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4003 if (ret)
4004 return ret;
4006 spin_lock(&file_priv->mm.lock);
4007 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4008 if (time_after_eq(request->emitted_jiffies, recent_enough))
4009 break;
4011 ring = request->ring;
4012 seqno = request->seqno;
4014 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4015 spin_unlock(&file_priv->mm.lock);
4017 if (seqno == 0)
4018 return 0;
4020 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4021 if (ret == 0)
4022 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4024 return ret;
4027 static bool
4028 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4030 struct drm_i915_gem_object *obj = vma->obj;
4032 if (alignment &&
4033 vma->node.start & (alignment - 1))
4034 return true;
4036 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4037 return true;
4039 if (flags & PIN_OFFSET_BIAS &&
4040 vma->node.start < (flags & PIN_OFFSET_MASK))
4041 return true;
4043 return false;
4047 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4048 struct i915_address_space *vm,
4049 uint32_t alignment,
4050 uint64_t flags)
4052 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4053 struct i915_vma *vma;
4054 int ret;
4056 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4057 return -ENODEV;
4059 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4060 return -EINVAL;
4062 vma = i915_gem_obj_to_vma(obj, vm);
4063 if (vma) {
4064 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4065 return -EBUSY;
4067 if (i915_vma_misplaced(vma, alignment, flags)) {
4068 WARN(vma->pin_count,
4069 "bo is already pinned with incorrect alignment:"
4070 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4071 " obj->map_and_fenceable=%d\n",
4072 i915_gem_obj_offset(obj, vm), alignment,
4073 !!(flags & PIN_MAPPABLE),
4074 obj->map_and_fenceable);
4075 ret = i915_vma_unbind(vma);
4076 if (ret)
4077 return ret;
4079 vma = NULL;
4083 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4084 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4085 if (IS_ERR(vma))
4086 return PTR_ERR(vma);
4089 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
4090 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4092 vma->pin_count++;
4093 if (flags & PIN_MAPPABLE)
4094 obj->pin_mappable |= true;
4096 return 0;
4099 void
4100 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4102 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4104 BUG_ON(!vma);
4105 BUG_ON(vma->pin_count == 0);
4106 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4108 if (--vma->pin_count == 0)
4109 obj->pin_mappable = false;
4112 bool
4113 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4115 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4116 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4117 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4119 WARN_ON(!ggtt_vma ||
4120 dev_priv->fence_regs[obj->fence_reg].pin_count >
4121 ggtt_vma->pin_count);
4122 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4123 return true;
4124 } else
4125 return false;
4128 void
4129 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4131 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4132 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4133 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4134 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4139 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4140 struct drm_file *file)
4142 struct drm_i915_gem_pin *args = data;
4143 struct drm_i915_gem_object *obj;
4144 int ret;
4146 if (INTEL_INFO(dev)->gen >= 6)
4147 return -ENODEV;
4149 ret = i915_mutex_lock_interruptible(dev);
4150 if (ret)
4151 return ret;
4153 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4154 if (&obj->base == NULL) {
4155 ret = -ENOENT;
4156 goto unlock;
4159 if (obj->madv != I915_MADV_WILLNEED) {
4160 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4161 ret = -EFAULT;
4162 goto out;
4165 if (obj->pin_filp != NULL && obj->pin_filp != file) {
4166 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4167 args->handle);
4168 ret = -EINVAL;
4169 goto out;
4172 if (obj->user_pin_count == ULONG_MAX) {
4173 ret = -EBUSY;
4174 goto out;
4177 if (obj->user_pin_count == 0) {
4178 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4179 if (ret)
4180 goto out;
4183 obj->user_pin_count++;
4184 obj->pin_filp = file;
4186 args->offset = i915_gem_obj_ggtt_offset(obj);
4187 out:
4188 drm_gem_object_unreference(&obj->base);
4189 unlock:
4190 mutex_unlock(&dev->struct_mutex);
4191 return ret;
4195 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4196 struct drm_file *file)
4198 struct drm_i915_gem_pin *args = data;
4199 struct drm_i915_gem_object *obj;
4200 int ret;
4202 ret = i915_mutex_lock_interruptible(dev);
4203 if (ret)
4204 return ret;
4206 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4207 if (&obj->base == NULL) {
4208 ret = -ENOENT;
4209 goto unlock;
4212 if (obj->pin_filp != file) {
4213 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4214 args->handle);
4215 ret = -EINVAL;
4216 goto out;
4218 obj->user_pin_count--;
4219 if (obj->user_pin_count == 0) {
4220 obj->pin_filp = NULL;
4221 i915_gem_object_ggtt_unpin(obj);
4224 out:
4225 drm_gem_object_unreference(&obj->base);
4226 unlock:
4227 mutex_unlock(&dev->struct_mutex);
4228 return ret;
4232 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4233 struct drm_file *file)
4235 struct drm_i915_gem_busy *args = data;
4236 struct drm_i915_gem_object *obj;
4237 int ret;
4239 ret = i915_mutex_lock_interruptible(dev);
4240 if (ret)
4241 return ret;
4243 intel_edp_psr_exit(dev, true);
4245 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4246 if (&obj->base == NULL) {
4247 ret = -ENOENT;
4248 goto unlock;
4251 /* Count all active objects as busy, even if they are currently not used
4252 * by the gpu. Users of this interface expect objects to eventually
4253 * become non-busy without any further actions, therefore emit any
4254 * necessary flushes here.
4256 ret = i915_gem_object_flush_active(obj);
4258 args->busy = obj->active;
4259 if (obj->ring) {
4260 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4261 args->busy |= intel_ring_flag(obj->ring) << 16;
4264 drm_gem_object_unreference(&obj->base);
4265 unlock:
4266 mutex_unlock(&dev->struct_mutex);
4267 return ret;
4271 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4272 struct drm_file *file_priv)
4274 return i915_gem_ring_throttle(dev, file_priv);
4278 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4279 struct drm_file *file_priv)
4281 struct drm_i915_gem_madvise *args = data;
4282 struct drm_i915_gem_object *obj;
4283 int ret;
4285 switch (args->madv) {
4286 case I915_MADV_DONTNEED:
4287 case I915_MADV_WILLNEED:
4288 break;
4289 default:
4290 return -EINVAL;
4293 ret = i915_mutex_lock_interruptible(dev);
4294 if (ret)
4295 return ret;
4297 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4298 if (&obj->base == NULL) {
4299 ret = -ENOENT;
4300 goto unlock;
4303 if (i915_gem_obj_is_pinned(obj)) {
4304 ret = -EINVAL;
4305 goto out;
4308 if (obj->madv != __I915_MADV_PURGED)
4309 obj->madv = args->madv;
4311 /* if the object is no longer attached, discard its backing storage */
4312 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4313 i915_gem_object_truncate(obj);
4315 args->retained = obj->madv != __I915_MADV_PURGED;
4317 out:
4318 drm_gem_object_unreference(&obj->base);
4319 unlock:
4320 mutex_unlock(&dev->struct_mutex);
4321 return ret;
4324 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4325 const struct drm_i915_gem_object_ops *ops)
4327 INIT_LIST_HEAD(&obj->global_list);
4328 INIT_LIST_HEAD(&obj->ring_list);
4329 INIT_LIST_HEAD(&obj->obj_exec_link);
4330 INIT_LIST_HEAD(&obj->vma_list);
4332 obj->ops = ops;
4334 obj->fence_reg = I915_FENCE_REG_NONE;
4335 obj->madv = I915_MADV_WILLNEED;
4336 /* Avoid an unnecessary call to unbind on the first bind. */
4337 obj->map_and_fenceable = true;
4339 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4342 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4343 .get_pages = i915_gem_object_get_pages_gtt,
4344 .put_pages = i915_gem_object_put_pages_gtt,
4347 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4348 size_t size)
4350 struct drm_i915_gem_object *obj;
4351 struct address_space *mapping;
4352 gfp_t mask;
4354 obj = i915_gem_object_alloc(dev);
4355 if (obj == NULL)
4356 return NULL;
4358 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4359 i915_gem_object_free(obj);
4360 return NULL;
4363 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4364 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4365 /* 965gm cannot relocate objects above 4GiB. */
4366 mask &= ~__GFP_HIGHMEM;
4367 mask |= __GFP_DMA32;
4370 mapping = file_inode(obj->base.filp)->i_mapping;
4371 mapping_set_gfp_mask(mapping, mask);
4373 i915_gem_object_init(obj, &i915_gem_object_ops);
4375 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4376 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4378 if (HAS_LLC(dev)) {
4379 /* On some devices, we can have the GPU use the LLC (the CPU
4380 * cache) for about a 10% performance improvement
4381 * compared to uncached. Graphics requests other than
4382 * display scanout are coherent with the CPU in
4383 * accessing this cache. This means in this mode we
4384 * don't need to clflush on the CPU side, and on the
4385 * GPU side we only need to flush internal caches to
4386 * get data visible to the CPU.
4388 * However, we maintain the display planes as UC, and so
4389 * need to rebind when first used as such.
4391 obj->cache_level = I915_CACHE_LLC;
4392 } else
4393 obj->cache_level = I915_CACHE_NONE;
4395 trace_i915_gem_object_create(obj);
4397 return obj;
4400 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4402 /* If we are the last user of the backing storage (be it shmemfs
4403 * pages or stolen etc), we know that the pages are going to be
4404 * immediately released. In this case, we can then skip copying
4405 * back the contents from the GPU.
4408 if (obj->madv != I915_MADV_WILLNEED)
4409 return false;
4411 if (obj->base.filp == NULL)
4412 return true;
4414 /* At first glance, this looks racy, but then again so would be
4415 * userspace racing mmap against close. However, the first external
4416 * reference to the filp can only be obtained through the
4417 * i915_gem_mmap_ioctl() which safeguards us against the user
4418 * acquiring such a reference whilst we are in the middle of
4419 * freeing the object.
4421 return atomic_long_read(&obj->base.filp->f_count) == 1;
4424 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4426 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4427 struct drm_device *dev = obj->base.dev;
4428 struct drm_i915_private *dev_priv = dev->dev_private;
4429 struct i915_vma *vma, *next;
4431 intel_runtime_pm_get(dev_priv);
4433 trace_i915_gem_object_destroy(obj);
4435 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4436 int ret;
4438 vma->pin_count = 0;
4439 ret = i915_vma_unbind(vma);
4440 if (WARN_ON(ret == -ERESTARTSYS)) {
4441 bool was_interruptible;
4443 was_interruptible = dev_priv->mm.interruptible;
4444 dev_priv->mm.interruptible = false;
4446 WARN_ON(i915_vma_unbind(vma));
4448 dev_priv->mm.interruptible = was_interruptible;
4452 i915_gem_object_detach_phys(obj);
4454 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4455 * before progressing. */
4456 if (obj->stolen)
4457 i915_gem_object_unpin_pages(obj);
4459 if (WARN_ON(obj->pages_pin_count))
4460 obj->pages_pin_count = 0;
4461 if (discard_backing_storage(obj))
4462 obj->madv = I915_MADV_DONTNEED;
4463 i915_gem_object_put_pages(obj);
4464 i915_gem_object_free_mmap_offset(obj);
4466 BUG_ON(obj->pages);
4468 if (obj->base.import_attach)
4469 drm_prime_gem_destroy(&obj->base, NULL);
4471 if (obj->ops->release)
4472 obj->ops->release(obj);
4474 drm_gem_object_release(&obj->base);
4475 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4477 kfree(obj->bit_17);
4478 i915_gem_object_free(obj);
4480 intel_runtime_pm_put(dev_priv);
4483 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4484 struct i915_address_space *vm)
4486 struct i915_vma *vma;
4487 list_for_each_entry(vma, &obj->vma_list, vma_link)
4488 if (vma->vm == vm)
4489 return vma;
4491 return NULL;
4494 void i915_gem_vma_destroy(struct i915_vma *vma)
4496 WARN_ON(vma->node.allocated);
4498 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4499 if (!list_empty(&vma->exec_list))
4500 return;
4502 list_del(&vma->vma_link);
4504 kfree(vma);
4507 static void
4508 i915_gem_stop_ringbuffers(struct drm_device *dev)
4510 struct drm_i915_private *dev_priv = dev->dev_private;
4511 struct intel_engine_cs *ring;
4512 int i;
4514 for_each_ring(ring, dev_priv, i)
4515 intel_stop_ring_buffer(ring);
4519 i915_gem_suspend(struct drm_device *dev)
4521 struct drm_i915_private *dev_priv = dev->dev_private;
4522 int ret = 0;
4524 mutex_lock(&dev->struct_mutex);
4525 if (dev_priv->ums.mm_suspended)
4526 goto err;
4528 ret = i915_gpu_idle(dev);
4529 if (ret)
4530 goto err;
4532 i915_gem_retire_requests(dev);
4534 /* Under UMS, be paranoid and evict. */
4535 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4536 i915_gem_evict_everything(dev);
4538 i915_kernel_lost_context(dev);
4539 i915_gem_stop_ringbuffers(dev);
4541 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4542 * We need to replace this with a semaphore, or something.
4543 * And not confound ums.mm_suspended!
4545 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4546 DRIVER_MODESET);
4547 mutex_unlock(&dev->struct_mutex);
4549 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4550 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4551 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4553 return 0;
4555 err:
4556 mutex_unlock(&dev->struct_mutex);
4557 return ret;
4560 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4562 struct drm_device *dev = ring->dev;
4563 struct drm_i915_private *dev_priv = dev->dev_private;
4564 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4565 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4566 int i, ret;
4568 if (!HAS_L3_DPF(dev) || !remap_info)
4569 return 0;
4571 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4572 if (ret)
4573 return ret;
4576 * Note: We do not worry about the concurrent register cacheline hang
4577 * here because no other code should access these registers other than
4578 * at initialization time.
4580 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4581 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4582 intel_ring_emit(ring, reg_base + i);
4583 intel_ring_emit(ring, remap_info[i/4]);
4586 intel_ring_advance(ring);
4588 return ret;
4591 void i915_gem_init_swizzling(struct drm_device *dev)
4593 struct drm_i915_private *dev_priv = dev->dev_private;
4595 if (INTEL_INFO(dev)->gen < 5 ||
4596 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4597 return;
4599 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4600 DISP_TILE_SURFACE_SWIZZLING);
4602 if (IS_GEN5(dev))
4603 return;
4605 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4606 if (IS_GEN6(dev))
4607 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4608 else if (IS_GEN7(dev))
4609 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4610 else if (IS_GEN8(dev))
4611 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4612 else
4613 BUG();
4616 static bool
4617 intel_enable_blt(struct drm_device *dev)
4619 if (!HAS_BLT(dev))
4620 return false;
4622 /* The blitter was dysfunctional on early prototypes */
4623 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4624 DRM_INFO("BLT not supported on this pre-production hardware;"
4625 " graphics performance will be degraded.\n");
4626 return false;
4629 return true;
4632 static int i915_gem_init_rings(struct drm_device *dev)
4634 struct drm_i915_private *dev_priv = dev->dev_private;
4635 int ret;
4637 ret = intel_init_render_ring_buffer(dev);
4638 if (ret)
4639 return ret;
4641 if (HAS_BSD(dev)) {
4642 ret = intel_init_bsd_ring_buffer(dev);
4643 if (ret)
4644 goto cleanup_render_ring;
4647 if (intel_enable_blt(dev)) {
4648 ret = intel_init_blt_ring_buffer(dev);
4649 if (ret)
4650 goto cleanup_bsd_ring;
4653 if (HAS_VEBOX(dev)) {
4654 ret = intel_init_vebox_ring_buffer(dev);
4655 if (ret)
4656 goto cleanup_blt_ring;
4659 if (HAS_BSD2(dev)) {
4660 ret = intel_init_bsd2_ring_buffer(dev);
4661 if (ret)
4662 goto cleanup_vebox_ring;
4665 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4666 if (ret)
4667 goto cleanup_bsd2_ring;
4669 return 0;
4671 cleanup_bsd2_ring:
4672 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4673 cleanup_vebox_ring:
4674 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4675 cleanup_blt_ring:
4676 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4677 cleanup_bsd_ring:
4678 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4679 cleanup_render_ring:
4680 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4682 return ret;
4686 i915_gem_init_hw(struct drm_device *dev)
4688 struct drm_i915_private *dev_priv = dev->dev_private;
4689 int ret, i;
4691 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4692 return -EIO;
4694 if (dev_priv->ellc_size)
4695 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4697 if (IS_HASWELL(dev))
4698 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4699 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4701 if (HAS_PCH_NOP(dev)) {
4702 if (IS_IVYBRIDGE(dev)) {
4703 u32 temp = I915_READ(GEN7_MSG_CTL);
4704 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4705 I915_WRITE(GEN7_MSG_CTL, temp);
4706 } else if (INTEL_INFO(dev)->gen >= 7) {
4707 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4708 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4709 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4713 i915_gem_init_swizzling(dev);
4715 ret = i915_gem_init_rings(dev);
4716 if (ret)
4717 return ret;
4719 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4720 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4723 * XXX: Contexts should only be initialized once. Doing a switch to the
4724 * default context switch however is something we'd like to do after
4725 * reset or thaw (the latter may not actually be necessary for HW, but
4726 * goes with our code better). Context switching requires rings (for
4727 * the do_switch), but before enabling PPGTT. So don't move this.
4729 ret = i915_gem_context_enable(dev_priv);
4730 if (ret && ret != -EIO) {
4731 DRM_ERROR("Context enable failed %d\n", ret);
4732 i915_gem_cleanup_ringbuffer(dev);
4735 return ret;
4738 int i915_gem_init(struct drm_device *dev)
4740 struct drm_i915_private *dev_priv = dev->dev_private;
4741 int ret;
4743 mutex_lock(&dev->struct_mutex);
4745 if (IS_VALLEYVIEW(dev)) {
4746 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4747 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4748 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4749 VLV_GTLC_ALLOWWAKEACK), 10))
4750 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4753 i915_gem_init_userptr(dev);
4754 i915_gem_init_global_gtt(dev);
4756 ret = i915_gem_context_init(dev);
4757 if (ret) {
4758 mutex_unlock(&dev->struct_mutex);
4759 return ret;
4762 ret = i915_gem_init_hw(dev);
4763 if (ret == -EIO) {
4764 /* Allow ring initialisation to fail by marking the GPU as
4765 * wedged. But we only want to do this where the GPU is angry,
4766 * for all other failure, such as an allocation failure, bail.
4768 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4769 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4770 ret = 0;
4772 mutex_unlock(&dev->struct_mutex);
4774 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4775 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4776 dev_priv->dri1.allow_batchbuffer = 1;
4777 return ret;
4780 void
4781 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4783 struct drm_i915_private *dev_priv = dev->dev_private;
4784 struct intel_engine_cs *ring;
4785 int i;
4787 for_each_ring(ring, dev_priv, i)
4788 intel_cleanup_ring_buffer(ring);
4792 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4793 struct drm_file *file_priv)
4795 struct drm_i915_private *dev_priv = dev->dev_private;
4796 int ret;
4798 if (drm_core_check_feature(dev, DRIVER_MODESET))
4799 return 0;
4801 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4802 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4803 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4806 mutex_lock(&dev->struct_mutex);
4807 dev_priv->ums.mm_suspended = 0;
4809 ret = i915_gem_init_hw(dev);
4810 if (ret != 0) {
4811 mutex_unlock(&dev->struct_mutex);
4812 return ret;
4815 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4817 ret = drm_irq_install(dev, dev->pdev->irq);
4818 if (ret)
4819 goto cleanup_ringbuffer;
4820 mutex_unlock(&dev->struct_mutex);
4822 return 0;
4824 cleanup_ringbuffer:
4825 i915_gem_cleanup_ringbuffer(dev);
4826 dev_priv->ums.mm_suspended = 1;
4827 mutex_unlock(&dev->struct_mutex);
4829 return ret;
4833 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4834 struct drm_file *file_priv)
4836 if (drm_core_check_feature(dev, DRIVER_MODESET))
4837 return 0;
4839 mutex_lock(&dev->struct_mutex);
4840 drm_irq_uninstall(dev);
4841 mutex_unlock(&dev->struct_mutex);
4843 return i915_gem_suspend(dev);
4846 void
4847 i915_gem_lastclose(struct drm_device *dev)
4849 int ret;
4851 if (drm_core_check_feature(dev, DRIVER_MODESET))
4852 return;
4854 ret = i915_gem_suspend(dev);
4855 if (ret)
4856 DRM_ERROR("failed to idle hardware: %d\n", ret);
4859 static void
4860 init_ring_lists(struct intel_engine_cs *ring)
4862 INIT_LIST_HEAD(&ring->active_list);
4863 INIT_LIST_HEAD(&ring->request_list);
4866 void i915_init_vm(struct drm_i915_private *dev_priv,
4867 struct i915_address_space *vm)
4869 if (!i915_is_ggtt(vm))
4870 drm_mm_init(&vm->mm, vm->start, vm->total);
4871 vm->dev = dev_priv->dev;
4872 INIT_LIST_HEAD(&vm->active_list);
4873 INIT_LIST_HEAD(&vm->inactive_list);
4874 INIT_LIST_HEAD(&vm->global_link);
4875 list_add_tail(&vm->global_link, &dev_priv->vm_list);
4878 void
4879 i915_gem_load(struct drm_device *dev)
4881 struct drm_i915_private *dev_priv = dev->dev_private;
4882 int i;
4884 dev_priv->slab =
4885 kmem_cache_create("i915_gem_object",
4886 sizeof(struct drm_i915_gem_object), 0,
4887 SLAB_HWCACHE_ALIGN,
4888 NULL);
4890 INIT_LIST_HEAD(&dev_priv->vm_list);
4891 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4893 INIT_LIST_HEAD(&dev_priv->context_list);
4894 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4895 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4896 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4897 for (i = 0; i < I915_NUM_RINGS; i++)
4898 init_ring_lists(&dev_priv->ring[i]);
4899 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4900 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4901 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4902 i915_gem_retire_work_handler);
4903 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4904 i915_gem_idle_work_handler);
4905 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4907 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4908 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
4909 I915_WRITE(MI_ARB_STATE,
4910 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4913 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4915 /* Old X drivers will take 0-2 for front, back, depth buffers */
4916 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4917 dev_priv->fence_reg_start = 3;
4919 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4920 dev_priv->num_fence_regs = 32;
4921 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4922 dev_priv->num_fence_regs = 16;
4923 else
4924 dev_priv->num_fence_regs = 8;
4926 /* Initialize fence registers to zero */
4927 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4928 i915_gem_restore_fences(dev);
4930 i915_gem_detect_bit_6_swizzle(dev);
4931 init_waitqueue_head(&dev_priv->pending_flip_queue);
4933 dev_priv->mm.interruptible = true;
4935 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
4936 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
4937 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
4938 register_shrinker(&dev_priv->mm.shrinker);
4940 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
4941 register_oom_notifier(&dev_priv->mm.oom_notifier);
4944 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4946 struct drm_i915_file_private *file_priv = file->driver_priv;
4948 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4950 /* Clean up our request list when the client is going away, so that
4951 * later retire_requests won't dereference our soon-to-be-gone
4952 * file_priv.
4954 spin_lock(&file_priv->mm.lock);
4955 while (!list_empty(&file_priv->mm.request_list)) {
4956 struct drm_i915_gem_request *request;
4958 request = list_first_entry(&file_priv->mm.request_list,
4959 struct drm_i915_gem_request,
4960 client_list);
4961 list_del(&request->client_list);
4962 request->file_priv = NULL;
4964 spin_unlock(&file_priv->mm.lock);
4967 static void
4968 i915_gem_file_idle_work_handler(struct work_struct *work)
4970 struct drm_i915_file_private *file_priv =
4971 container_of(work, typeof(*file_priv), mm.idle_work.work);
4973 atomic_set(&file_priv->rps_wait_boost, false);
4976 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4978 struct drm_i915_file_private *file_priv;
4979 int ret;
4981 DRM_DEBUG_DRIVER("\n");
4983 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4984 if (!file_priv)
4985 return -ENOMEM;
4987 file->driver_priv = file_priv;
4988 file_priv->dev_priv = dev->dev_private;
4989 file_priv->file = file;
4991 spin_lock_init(&file_priv->mm.lock);
4992 INIT_LIST_HEAD(&file_priv->mm.request_list);
4993 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4994 i915_gem_file_idle_work_handler);
4996 ret = i915_gem_context_open(dev, file);
4997 if (ret)
4998 kfree(file_priv);
5000 return ret;
5003 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5005 if (!mutex_is_locked(mutex))
5006 return false;
5008 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5009 return mutex->owner == task;
5010 #else
5011 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5012 return false;
5013 #endif
5016 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5018 if (!mutex_trylock(&dev->struct_mutex)) {
5019 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5020 return false;
5022 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5023 return false;
5025 *unlock = false;
5026 } else
5027 *unlock = true;
5029 return true;
5032 static int num_vma_bound(struct drm_i915_gem_object *obj)
5034 struct i915_vma *vma;
5035 int count = 0;
5037 list_for_each_entry(vma, &obj->vma_list, vma_link)
5038 if (drm_mm_node_allocated(&vma->node))
5039 count++;
5041 return count;
5044 static unsigned long
5045 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5047 struct drm_i915_private *dev_priv =
5048 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5049 struct drm_device *dev = dev_priv->dev;
5050 struct drm_i915_gem_object *obj;
5051 unsigned long count;
5052 bool unlock;
5054 if (!i915_gem_shrinker_lock(dev, &unlock))
5055 return 0;
5057 count = 0;
5058 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5059 if (obj->pages_pin_count == 0)
5060 count += obj->base.size >> PAGE_SHIFT;
5062 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5063 if (!i915_gem_obj_is_pinned(obj) &&
5064 obj->pages_pin_count == num_vma_bound(obj))
5065 count += obj->base.size >> PAGE_SHIFT;
5068 if (unlock)
5069 mutex_unlock(&dev->struct_mutex);
5071 return count;
5074 /* All the new VM stuff */
5075 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5076 struct i915_address_space *vm)
5078 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5079 struct i915_vma *vma;
5081 if (!dev_priv->mm.aliasing_ppgtt ||
5082 vm == &dev_priv->mm.aliasing_ppgtt->base)
5083 vm = &dev_priv->gtt.base;
5085 BUG_ON(list_empty(&o->vma_list));
5086 list_for_each_entry(vma, &o->vma_list, vma_link) {
5087 if (vma->vm == vm)
5088 return vma->node.start;
5091 return -1;
5094 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5095 struct i915_address_space *vm)
5097 struct i915_vma *vma;
5099 list_for_each_entry(vma, &o->vma_list, vma_link)
5100 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5101 return true;
5103 return false;
5106 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5108 struct i915_vma *vma;
5110 list_for_each_entry(vma, &o->vma_list, vma_link)
5111 if (drm_mm_node_allocated(&vma->node))
5112 return true;
5114 return false;
5117 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5118 struct i915_address_space *vm)
5120 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5121 struct i915_vma *vma;
5123 if (!dev_priv->mm.aliasing_ppgtt ||
5124 vm == &dev_priv->mm.aliasing_ppgtt->base)
5125 vm = &dev_priv->gtt.base;
5127 BUG_ON(list_empty(&o->vma_list));
5129 list_for_each_entry(vma, &o->vma_list, vma_link)
5130 if (vma->vm == vm)
5131 return vma->node.size;
5133 return 0;
5136 static unsigned long
5137 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5139 struct drm_i915_private *dev_priv =
5140 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5141 struct drm_device *dev = dev_priv->dev;
5142 unsigned long freed;
5143 bool unlock;
5145 if (!i915_gem_shrinker_lock(dev, &unlock))
5146 return SHRINK_STOP;
5148 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5149 if (freed < sc->nr_to_scan)
5150 freed += __i915_gem_shrink(dev_priv,
5151 sc->nr_to_scan - freed,
5152 false);
5153 if (unlock)
5154 mutex_unlock(&dev->struct_mutex);
5156 return freed;
5159 static int
5160 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5162 struct drm_i915_private *dev_priv =
5163 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5164 struct drm_device *dev = dev_priv->dev;
5165 struct drm_i915_gem_object *obj;
5166 unsigned long timeout = msecs_to_jiffies(5000) + 1;
5167 unsigned long pinned, bound, unbound, freed;
5168 bool was_interruptible;
5169 bool unlock;
5171 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout)
5172 schedule_timeout_killable(1);
5173 if (timeout == 0) {
5174 pr_err("Unable to purge GPU memory due lock contention.\n");
5175 return NOTIFY_DONE;
5178 was_interruptible = dev_priv->mm.interruptible;
5179 dev_priv->mm.interruptible = false;
5181 freed = i915_gem_shrink_all(dev_priv);
5183 dev_priv->mm.interruptible = was_interruptible;
5185 /* Because we may be allocating inside our own driver, we cannot
5186 * assert that there are no objects with pinned pages that are not
5187 * being pointed to by hardware.
5189 unbound = bound = pinned = 0;
5190 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5191 if (!obj->base.filp) /* not backed by a freeable object */
5192 continue;
5194 if (obj->pages_pin_count)
5195 pinned += obj->base.size;
5196 else
5197 unbound += obj->base.size;
5199 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5200 if (!obj->base.filp)
5201 continue;
5203 if (obj->pages_pin_count)
5204 pinned += obj->base.size;
5205 else
5206 bound += obj->base.size;
5209 if (unlock)
5210 mutex_unlock(&dev->struct_mutex);
5212 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5213 freed, pinned);
5214 if (unbound || bound)
5215 pr_err("%lu and %lu bytes still available in the "
5216 "bound and unbound GPU page lists.\n",
5217 bound, unbound);
5219 *(unsigned long *)ptr += freed;
5220 return NOTIFY_DONE;
5223 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5225 struct i915_vma *vma;
5227 /* This WARN has probably outlived its usefulness (callers already
5228 * WARN if they don't find the GGTT vma they expect). When removing,
5229 * remember to remove the pre-check in is_pin_display() as well */
5230 if (WARN_ON(list_empty(&obj->vma_list)))
5231 return NULL;
5233 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5234 if (vma->vm != obj_to_ggtt(obj))
5235 return NULL;
5237 return vma;