qede: Add vlan filtering offload support
[linux-2.6/btrfs-unstable.git] / drivers / net / ethernet / qlogic / qede / qede_main.c
blob5f15e23a0f7db89b637f0f7ea5898edaae03e692
1 /* QLogic qede NIC Driver
2 * Copyright (c) 2015 QLogic Corporation
4 * This software is available under the terms of the GNU General Public License
5 * (GPL) Version 2, available from the file COPYING in the main directory of
6 * this source tree.
7 */
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/version.h>
12 #include <linux/device.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/skbuff.h>
16 #include <linux/errno.h>
17 #include <linux/list.h>
18 #include <linux/string.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/interrupt.h>
21 #include <asm/byteorder.h>
22 #include <asm/param.h>
23 #include <linux/io.h>
24 #include <linux/netdev_features.h>
25 #include <linux/udp.h>
26 #include <linux/tcp.h>
27 #include <net/vxlan.h>
28 #include <linux/ip.h>
29 #include <net/ipv6.h>
30 #include <net/tcp.h>
31 #include <linux/if_ether.h>
32 #include <linux/if_vlan.h>
33 #include <linux/pkt_sched.h>
34 #include <linux/ethtool.h>
35 #include <linux/in.h>
36 #include <linux/random.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/bitops.h>
40 #include "qede.h"
42 static const char version[] = "QLogic QL4xxx 40G/100G Ethernet Driver qede "
43 DRV_MODULE_VERSION "\n";
45 MODULE_DESCRIPTION("QLogic 40G/100G Ethernet Driver");
46 MODULE_LICENSE("GPL");
47 MODULE_VERSION(DRV_MODULE_VERSION);
49 static uint debug;
50 module_param(debug, uint, 0);
51 MODULE_PARM_DESC(debug, " Default debug msglevel");
53 static const struct qed_eth_ops *qed_ops;
55 #define CHIP_NUM_57980S_40 0x1634
56 #define CHIP_NUM_57980S_10 0x1635
57 #define CHIP_NUM_57980S_MF 0x1636
58 #define CHIP_NUM_57980S_100 0x1644
59 #define CHIP_NUM_57980S_50 0x1654
60 #define CHIP_NUM_57980S_25 0x1656
62 #ifndef PCI_DEVICE_ID_NX2_57980E
63 #define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40
64 #define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10
65 #define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF
66 #define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100
67 #define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50
68 #define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25
69 #endif
71 static const struct pci_device_id qede_pci_tbl[] = {
72 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), 0 },
73 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), 0 },
74 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), 0 },
75 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), 0 },
76 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), 0 },
77 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), 0 },
78 { 0 }
81 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
83 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
85 #define TX_TIMEOUT (5 * HZ)
87 static void qede_remove(struct pci_dev *pdev);
88 static int qede_alloc_rx_buffer(struct qede_dev *edev,
89 struct qede_rx_queue *rxq);
90 static void qede_link_update(void *dev, struct qed_link_output *link);
92 static struct pci_driver qede_pci_driver = {
93 .name = "qede",
94 .id_table = qede_pci_tbl,
95 .probe = qede_probe,
96 .remove = qede_remove,
99 static struct qed_eth_cb_ops qede_ll_ops = {
101 .link_update = qede_link_update,
105 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
106 void *ptr)
108 struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
109 struct ethtool_drvinfo drvinfo;
110 struct qede_dev *edev;
112 /* Currently only support name change */
113 if (event != NETDEV_CHANGENAME)
114 goto done;
116 /* Check whether this is a qede device */
117 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
118 goto done;
120 memset(&drvinfo, 0, sizeof(drvinfo));
121 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
122 if (strcmp(drvinfo.driver, "qede"))
123 goto done;
124 edev = netdev_priv(ndev);
126 /* Notify qed of the name change */
127 if (!edev->ops || !edev->ops->common)
128 goto done;
129 edev->ops->common->set_id(edev->cdev, edev->ndev->name,
130 "qede");
132 done:
133 return NOTIFY_DONE;
136 static struct notifier_block qede_netdev_notifier = {
137 .notifier_call = qede_netdev_event,
140 static
141 int __init qede_init(void)
143 int ret;
144 u32 qed_ver;
146 pr_notice("qede_init: %s\n", version);
148 qed_ver = qed_get_protocol_version(QED_PROTOCOL_ETH);
149 if (qed_ver != QEDE_ETH_INTERFACE_VERSION) {
150 pr_notice("Version mismatch [%08x != %08x]\n",
151 qed_ver,
152 QEDE_ETH_INTERFACE_VERSION);
153 return -EINVAL;
156 qed_ops = qed_get_eth_ops(QEDE_ETH_INTERFACE_VERSION);
157 if (!qed_ops) {
158 pr_notice("Failed to get qed ethtool operations\n");
159 return -EINVAL;
162 /* Must register notifier before pci ops, since we might miss
163 * interface rename after pci probe and netdev registeration.
165 ret = register_netdevice_notifier(&qede_netdev_notifier);
166 if (ret) {
167 pr_notice("Failed to register netdevice_notifier\n");
168 qed_put_eth_ops();
169 return -EINVAL;
172 ret = pci_register_driver(&qede_pci_driver);
173 if (ret) {
174 pr_notice("Failed to register driver\n");
175 unregister_netdevice_notifier(&qede_netdev_notifier);
176 qed_put_eth_ops();
177 return -EINVAL;
180 return 0;
183 static void __exit qede_cleanup(void)
185 pr_notice("qede_cleanup called\n");
187 unregister_netdevice_notifier(&qede_netdev_notifier);
188 pci_unregister_driver(&qede_pci_driver);
189 qed_put_eth_ops();
192 module_init(qede_init);
193 module_exit(qede_cleanup);
195 /* -------------------------------------------------------------------------
196 * START OF FAST-PATH
197 * -------------------------------------------------------------------------
200 /* Unmap the data and free skb */
201 static int qede_free_tx_pkt(struct qede_dev *edev,
202 struct qede_tx_queue *txq,
203 int *len)
205 u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
206 struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
207 struct eth_tx_1st_bd *first_bd;
208 struct eth_tx_bd *tx_data_bd;
209 int bds_consumed = 0;
210 int nbds;
211 bool data_split = txq->sw_tx_ring[idx].flags & QEDE_TSO_SPLIT_BD;
212 int i, split_bd_len = 0;
214 if (unlikely(!skb)) {
215 DP_ERR(edev,
216 "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
217 idx, txq->sw_tx_cons, txq->sw_tx_prod);
218 return -1;
221 *len = skb->len;
223 first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
225 bds_consumed++;
227 nbds = first_bd->data.nbds;
229 if (data_split) {
230 struct eth_tx_bd *split = (struct eth_tx_bd *)
231 qed_chain_consume(&txq->tx_pbl);
232 split_bd_len = BD_UNMAP_LEN(split);
233 bds_consumed++;
235 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
236 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
238 /* Unmap the data of the skb frags */
239 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
240 tx_data_bd = (struct eth_tx_bd *)
241 qed_chain_consume(&txq->tx_pbl);
242 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
243 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
246 while (bds_consumed++ < nbds)
247 qed_chain_consume(&txq->tx_pbl);
249 /* Free skb */
250 dev_kfree_skb_any(skb);
251 txq->sw_tx_ring[idx].skb = NULL;
252 txq->sw_tx_ring[idx].flags = 0;
254 return 0;
257 /* Unmap the data and free skb when mapping failed during start_xmit */
258 static void qede_free_failed_tx_pkt(struct qede_dev *edev,
259 struct qede_tx_queue *txq,
260 struct eth_tx_1st_bd *first_bd,
261 int nbd,
262 bool data_split)
264 u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
265 struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
266 struct eth_tx_bd *tx_data_bd;
267 int i, split_bd_len = 0;
269 /* Return prod to its position before this skb was handled */
270 qed_chain_set_prod(&txq->tx_pbl,
271 le16_to_cpu(txq->tx_db.data.bd_prod),
272 first_bd);
274 first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
276 if (data_split) {
277 struct eth_tx_bd *split = (struct eth_tx_bd *)
278 qed_chain_produce(&txq->tx_pbl);
279 split_bd_len = BD_UNMAP_LEN(split);
280 nbd--;
283 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
284 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
286 /* Unmap the data of the skb frags */
287 for (i = 0; i < nbd; i++) {
288 tx_data_bd = (struct eth_tx_bd *)
289 qed_chain_produce(&txq->tx_pbl);
290 if (tx_data_bd->nbytes)
291 dma_unmap_page(&edev->pdev->dev,
292 BD_UNMAP_ADDR(tx_data_bd),
293 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
296 /* Return again prod to its position before this skb was handled */
297 qed_chain_set_prod(&txq->tx_pbl,
298 le16_to_cpu(txq->tx_db.data.bd_prod),
299 first_bd);
301 /* Free skb */
302 dev_kfree_skb_any(skb);
303 txq->sw_tx_ring[idx].skb = NULL;
304 txq->sw_tx_ring[idx].flags = 0;
307 static u32 qede_xmit_type(struct qede_dev *edev,
308 struct sk_buff *skb,
309 int *ipv6_ext)
311 u32 rc = XMIT_L4_CSUM;
312 __be16 l3_proto;
314 if (skb->ip_summed != CHECKSUM_PARTIAL)
315 return XMIT_PLAIN;
317 l3_proto = vlan_get_protocol(skb);
318 if (l3_proto == htons(ETH_P_IPV6) &&
319 (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
320 *ipv6_ext = 1;
322 if (skb_is_gso(skb))
323 rc |= XMIT_LSO;
325 return rc;
328 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
329 struct eth_tx_2nd_bd *second_bd,
330 struct eth_tx_3rd_bd *third_bd)
332 u8 l4_proto;
333 u16 bd2_bits1 = 0, bd2_bits2 = 0;
335 bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
337 bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
338 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
339 << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
341 bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
342 ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
344 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
345 l4_proto = ipv6_hdr(skb)->nexthdr;
346 else
347 l4_proto = ip_hdr(skb)->protocol;
349 if (l4_proto == IPPROTO_UDP)
350 bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
352 if (third_bd)
353 third_bd->data.bitfields |=
354 cpu_to_le16(((tcp_hdrlen(skb) / 4) &
355 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
356 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
358 second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
359 second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
362 static int map_frag_to_bd(struct qede_dev *edev,
363 skb_frag_t *frag,
364 struct eth_tx_bd *bd)
366 dma_addr_t mapping;
368 /* Map skb non-linear frag data for DMA */
369 mapping = skb_frag_dma_map(&edev->pdev->dev, frag, 0,
370 skb_frag_size(frag),
371 DMA_TO_DEVICE);
372 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
373 DP_NOTICE(edev, "Unable to map frag - dropping packet\n");
374 return -ENOMEM;
377 /* Setup the data pointer of the frag data */
378 BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
380 return 0;
383 /* Main transmit function */
384 static
385 netdev_tx_t qede_start_xmit(struct sk_buff *skb,
386 struct net_device *ndev)
388 struct qede_dev *edev = netdev_priv(ndev);
389 struct netdev_queue *netdev_txq;
390 struct qede_tx_queue *txq;
391 struct eth_tx_1st_bd *first_bd;
392 struct eth_tx_2nd_bd *second_bd = NULL;
393 struct eth_tx_3rd_bd *third_bd = NULL;
394 struct eth_tx_bd *tx_data_bd = NULL;
395 u16 txq_index;
396 u8 nbd = 0;
397 dma_addr_t mapping;
398 int rc, frag_idx = 0, ipv6_ext = 0;
399 u8 xmit_type;
400 u16 idx;
401 u16 hlen;
402 bool data_split;
404 /* Get tx-queue context and netdev index */
405 txq_index = skb_get_queue_mapping(skb);
406 WARN_ON(txq_index >= QEDE_TSS_CNT(edev));
407 txq = QEDE_TX_QUEUE(edev, txq_index);
408 netdev_txq = netdev_get_tx_queue(ndev, txq_index);
410 /* Current code doesn't support SKB linearization, since the max number
411 * of skb frags can be passed in the FW HSI.
413 BUILD_BUG_ON(MAX_SKB_FRAGS > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET);
415 WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) <
416 (MAX_SKB_FRAGS + 1));
418 xmit_type = qede_xmit_type(edev, skb, &ipv6_ext);
420 /* Fill the entry in the SW ring and the BDs in the FW ring */
421 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
422 txq->sw_tx_ring[idx].skb = skb;
423 first_bd = (struct eth_tx_1st_bd *)
424 qed_chain_produce(&txq->tx_pbl);
425 memset(first_bd, 0, sizeof(*first_bd));
426 first_bd->data.bd_flags.bitfields =
427 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
429 /* Map skb linear data for DMA and set in the first BD */
430 mapping = dma_map_single(&edev->pdev->dev, skb->data,
431 skb_headlen(skb), DMA_TO_DEVICE);
432 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
433 DP_NOTICE(edev, "SKB mapping failed\n");
434 qede_free_failed_tx_pkt(edev, txq, first_bd, 0, false);
435 return NETDEV_TX_OK;
437 nbd++;
438 BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
440 /* In case there is IPv6 with extension headers or LSO we need 2nd and
441 * 3rd BDs.
443 if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
444 second_bd = (struct eth_tx_2nd_bd *)
445 qed_chain_produce(&txq->tx_pbl);
446 memset(second_bd, 0, sizeof(*second_bd));
448 nbd++;
449 third_bd = (struct eth_tx_3rd_bd *)
450 qed_chain_produce(&txq->tx_pbl);
451 memset(third_bd, 0, sizeof(*third_bd));
453 nbd++;
454 /* We need to fill in additional data in second_bd... */
455 tx_data_bd = (struct eth_tx_bd *)second_bd;
458 if (skb_vlan_tag_present(skb)) {
459 first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
460 first_bd->data.bd_flags.bitfields |=
461 1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
464 /* Fill the parsing flags & params according to the requested offload */
465 if (xmit_type & XMIT_L4_CSUM) {
466 u16 temp = 1 << ETH_TX_DATA_1ST_BD_TUNN_CFG_OVERRIDE_SHIFT;
468 /* We don't re-calculate IP checksum as it is already done by
469 * the upper stack
471 first_bd->data.bd_flags.bitfields |=
472 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
474 first_bd->data.bitfields |= cpu_to_le16(temp);
476 /* If the packet is IPv6 with extension header, indicate that
477 * to FW and pass few params, since the device cracker doesn't
478 * support parsing IPv6 with extension header/s.
480 if (unlikely(ipv6_ext))
481 qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
484 if (xmit_type & XMIT_LSO) {
485 first_bd->data.bd_flags.bitfields |=
486 (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
487 third_bd->data.lso_mss =
488 cpu_to_le16(skb_shinfo(skb)->gso_size);
490 first_bd->data.bd_flags.bitfields |=
491 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
492 hlen = skb_transport_header(skb) +
493 tcp_hdrlen(skb) - skb->data;
495 /* @@@TBD - if will not be removed need to check */
496 third_bd->data.bitfields |=
497 cpu_to_le16((1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT));
499 /* Make life easier for FW guys who can't deal with header and
500 * data on same BD. If we need to split, use the second bd...
502 if (unlikely(skb_headlen(skb) > hlen)) {
503 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
504 "TSO split header size is %d (%x:%x)\n",
505 first_bd->nbytes, first_bd->addr.hi,
506 first_bd->addr.lo);
508 mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
509 le32_to_cpu(first_bd->addr.lo)) +
510 hlen;
512 BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
513 le16_to_cpu(first_bd->nbytes) -
514 hlen);
516 /* this marks the BD as one that has no
517 * individual mapping
519 txq->sw_tx_ring[idx].flags |= QEDE_TSO_SPLIT_BD;
521 first_bd->nbytes = cpu_to_le16(hlen);
523 tx_data_bd = (struct eth_tx_bd *)third_bd;
524 data_split = true;
528 /* Handle fragmented skb */
529 /* special handle for frags inside 2nd and 3rd bds.. */
530 while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
531 rc = map_frag_to_bd(edev,
532 &skb_shinfo(skb)->frags[frag_idx],
533 tx_data_bd);
534 if (rc) {
535 qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
536 data_split);
537 return NETDEV_TX_OK;
540 if (tx_data_bd == (struct eth_tx_bd *)second_bd)
541 tx_data_bd = (struct eth_tx_bd *)third_bd;
542 else
543 tx_data_bd = NULL;
545 frag_idx++;
548 /* map last frags into 4th, 5th .... */
549 for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
550 tx_data_bd = (struct eth_tx_bd *)
551 qed_chain_produce(&txq->tx_pbl);
553 memset(tx_data_bd, 0, sizeof(*tx_data_bd));
555 rc = map_frag_to_bd(edev,
556 &skb_shinfo(skb)->frags[frag_idx],
557 tx_data_bd);
558 if (rc) {
559 qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
560 data_split);
561 return NETDEV_TX_OK;
565 /* update the first BD with the actual num BDs */
566 first_bd->data.nbds = nbd;
568 netdev_tx_sent_queue(netdev_txq, skb->len);
570 skb_tx_timestamp(skb);
572 /* Advance packet producer only before sending the packet since mapping
573 * of pages may fail.
575 txq->sw_tx_prod++;
577 /* 'next page' entries are counted in the producer value */
578 txq->tx_db.data.bd_prod =
579 cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
581 /* wmb makes sure that the BDs data is updated before updating the
582 * producer, otherwise FW may read old data from the BDs.
584 wmb();
585 barrier();
586 writel(txq->tx_db.raw, txq->doorbell_addr);
588 /* mmiowb is needed to synchronize doorbell writes from more than one
589 * processor. It guarantees that the write arrives to the device before
590 * the queue lock is released and another start_xmit is called (possibly
591 * on another CPU). Without this barrier, the next doorbell can bypass
592 * this doorbell. This is applicable to IA64/Altix systems.
594 mmiowb();
596 if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
597 < (MAX_SKB_FRAGS + 1))) {
598 netif_tx_stop_queue(netdev_txq);
599 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
600 "Stop queue was called\n");
601 /* paired memory barrier is in qede_tx_int(), we have to keep
602 * ordering of set_bit() in netif_tx_stop_queue() and read of
603 * fp->bd_tx_cons
605 smp_mb();
607 if (qed_chain_get_elem_left(&txq->tx_pbl)
608 >= (MAX_SKB_FRAGS + 1) &&
609 (edev->state == QEDE_STATE_OPEN)) {
610 netif_tx_wake_queue(netdev_txq);
611 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
612 "Wake queue was called\n");
616 return NETDEV_TX_OK;
619 static int qede_txq_has_work(struct qede_tx_queue *txq)
621 u16 hw_bd_cons;
623 /* Tell compiler that consumer and producer can change */
624 barrier();
625 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
626 if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
627 return 0;
629 return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
632 static int qede_tx_int(struct qede_dev *edev,
633 struct qede_tx_queue *txq)
635 struct netdev_queue *netdev_txq;
636 u16 hw_bd_cons;
637 unsigned int pkts_compl = 0, bytes_compl = 0;
638 int rc;
640 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
642 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
643 barrier();
645 while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
646 int len = 0;
648 rc = qede_free_tx_pkt(edev, txq, &len);
649 if (rc) {
650 DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
651 hw_bd_cons,
652 qed_chain_get_cons_idx(&txq->tx_pbl));
653 break;
656 bytes_compl += len;
657 pkts_compl++;
658 txq->sw_tx_cons++;
661 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
663 /* Need to make the tx_bd_cons update visible to start_xmit()
664 * before checking for netif_tx_queue_stopped(). Without the
665 * memory barrier, there is a small possibility that
666 * start_xmit() will miss it and cause the queue to be stopped
667 * forever.
668 * On the other hand we need an rmb() here to ensure the proper
669 * ordering of bit testing in the following
670 * netif_tx_queue_stopped(txq) call.
672 smp_mb();
674 if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
675 /* Taking tx_lock is needed to prevent reenabling the queue
676 * while it's empty. This could have happen if rx_action() gets
677 * suspended in qede_tx_int() after the condition before
678 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
680 * stops the queue->sees fresh tx_bd_cons->releases the queue->
681 * sends some packets consuming the whole queue again->
682 * stops the queue
685 __netif_tx_lock(netdev_txq, smp_processor_id());
687 if ((netif_tx_queue_stopped(netdev_txq)) &&
688 (edev->state == QEDE_STATE_OPEN) &&
689 (qed_chain_get_elem_left(&txq->tx_pbl)
690 >= (MAX_SKB_FRAGS + 1))) {
691 netif_tx_wake_queue(netdev_txq);
692 DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
693 "Wake queue was called\n");
696 __netif_tx_unlock(netdev_txq);
699 return 0;
702 static bool qede_has_rx_work(struct qede_rx_queue *rxq)
704 u16 hw_comp_cons, sw_comp_cons;
706 /* Tell compiler that status block fields can change */
707 barrier();
709 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
710 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
712 return hw_comp_cons != sw_comp_cons;
715 static bool qede_has_tx_work(struct qede_fastpath *fp)
717 u8 tc;
719 for (tc = 0; tc < fp->edev->num_tc; tc++)
720 if (qede_txq_has_work(&fp->txqs[tc]))
721 return true;
722 return false;
725 /* This function reuses the buffer(from an offset) from
726 * consumer index to producer index in the bd ring
728 static inline void qede_reuse_page(struct qede_dev *edev,
729 struct qede_rx_queue *rxq,
730 struct sw_rx_data *curr_cons)
732 struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
733 struct sw_rx_data *curr_prod;
734 dma_addr_t new_mapping;
736 curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
737 *curr_prod = *curr_cons;
739 new_mapping = curr_prod->mapping + curr_prod->page_offset;
741 rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
742 rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping));
744 rxq->sw_rx_prod++;
745 curr_cons->data = NULL;
748 static inline int qede_realloc_rx_buffer(struct qede_dev *edev,
749 struct qede_rx_queue *rxq,
750 struct sw_rx_data *curr_cons)
752 /* Move to the next segment in the page */
753 curr_cons->page_offset += rxq->rx_buf_seg_size;
755 if (curr_cons->page_offset == PAGE_SIZE) {
756 if (unlikely(qede_alloc_rx_buffer(edev, rxq)))
757 return -ENOMEM;
759 dma_unmap_page(&edev->pdev->dev, curr_cons->mapping,
760 PAGE_SIZE, DMA_FROM_DEVICE);
761 } else {
762 /* Increment refcount of the page as we don't want
763 * network stack to take the ownership of the page
764 * which can be recycled multiple times by the driver.
766 atomic_inc(&curr_cons->data->_count);
767 qede_reuse_page(edev, rxq, curr_cons);
770 return 0;
773 static inline void qede_update_rx_prod(struct qede_dev *edev,
774 struct qede_rx_queue *rxq)
776 u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
777 u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
778 struct eth_rx_prod_data rx_prods = {0};
780 /* Update producers */
781 rx_prods.bd_prod = cpu_to_le16(bd_prod);
782 rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
784 /* Make sure that the BD and SGE data is updated before updating the
785 * producers since FW might read the BD/SGE right after the producer
786 * is updated.
788 wmb();
790 internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
791 (u32 *)&rx_prods);
793 /* mmiowb is needed to synchronize doorbell writes from more than one
794 * processor. It guarantees that the write arrives to the device before
795 * the napi lock is released and another qede_poll is called (possibly
796 * on another CPU). Without this barrier, the next doorbell can bypass
797 * this doorbell. This is applicable to IA64/Altix systems.
799 mmiowb();
802 static u32 qede_get_rxhash(struct qede_dev *edev,
803 u8 bitfields,
804 __le32 rss_hash,
805 enum pkt_hash_types *rxhash_type)
807 enum rss_hash_type htype;
809 htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
811 if ((edev->ndev->features & NETIF_F_RXHASH) && htype) {
812 *rxhash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
813 (htype == RSS_HASH_TYPE_IPV6)) ?
814 PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
815 return le32_to_cpu(rss_hash);
817 *rxhash_type = PKT_HASH_TYPE_NONE;
818 return 0;
821 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
823 skb_checksum_none_assert(skb);
825 if (csum_flag & QEDE_CSUM_UNNECESSARY)
826 skb->ip_summed = CHECKSUM_UNNECESSARY;
829 static inline void qede_skb_receive(struct qede_dev *edev,
830 struct qede_fastpath *fp,
831 struct sk_buff *skb,
832 u16 vlan_tag)
834 if (vlan_tag)
835 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
836 vlan_tag);
838 napi_gro_receive(&fp->napi, skb);
841 static u8 qede_check_csum(u16 flag)
843 u16 csum_flag = 0;
844 u8 csum = 0;
846 if ((PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
847 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT) & flag) {
848 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
849 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
850 csum = QEDE_CSUM_UNNECESSARY;
853 csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
854 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
856 if (csum_flag & flag)
857 return QEDE_CSUM_ERROR;
859 return csum;
862 static int qede_rx_int(struct qede_fastpath *fp, int budget)
864 struct qede_dev *edev = fp->edev;
865 struct qede_rx_queue *rxq = fp->rxq;
867 u16 hw_comp_cons, sw_comp_cons, sw_rx_index, parse_flag;
868 int rx_pkt = 0;
869 u8 csum_flag;
871 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
872 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
874 /* Memory barrier to prevent the CPU from doing speculative reads of CQE
875 * / BD in the while-loop before reading hw_comp_cons. If the CQE is
876 * read before it is written by FW, then FW writes CQE and SB, and then
877 * the CPU reads the hw_comp_cons, it will use an old CQE.
879 rmb();
881 /* Loop to complete all indicated BDs */
882 while (sw_comp_cons != hw_comp_cons) {
883 struct eth_fast_path_rx_reg_cqe *fp_cqe;
884 enum pkt_hash_types rxhash_type;
885 enum eth_rx_cqe_type cqe_type;
886 struct sw_rx_data *sw_rx_data;
887 union eth_rx_cqe *cqe;
888 struct sk_buff *skb;
889 struct page *data;
890 __le16 flags;
891 u16 len, pad;
892 u32 rx_hash;
894 /* Get the CQE from the completion ring */
895 cqe = (union eth_rx_cqe *)
896 qed_chain_consume(&rxq->rx_comp_ring);
897 cqe_type = cqe->fast_path_regular.type;
899 if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
900 edev->ops->eth_cqe_completion(
901 edev->cdev, fp->rss_id,
902 (struct eth_slow_path_rx_cqe *)cqe);
903 goto next_cqe;
906 /* Get the data from the SW ring */
907 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
908 sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
909 data = sw_rx_data->data;
911 fp_cqe = &cqe->fast_path_regular;
912 len = le16_to_cpu(fp_cqe->len_on_first_bd);
913 pad = fp_cqe->placement_offset;
914 flags = cqe->fast_path_regular.pars_flags.flags;
916 /* If this is an error packet then drop it */
917 parse_flag = le16_to_cpu(flags);
919 csum_flag = qede_check_csum(parse_flag);
920 if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
921 DP_NOTICE(edev,
922 "CQE in CONS = %u has error, flags = %x, dropping incoming packet\n",
923 sw_comp_cons, parse_flag);
924 rxq->rx_hw_errors++;
925 qede_reuse_page(edev, rxq, sw_rx_data);
926 goto next_rx;
929 skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
930 if (unlikely(!skb)) {
931 DP_NOTICE(edev,
932 "Build_skb failed, dropping incoming packet\n");
933 qede_reuse_page(edev, rxq, sw_rx_data);
934 rxq->rx_alloc_errors++;
935 goto next_rx;
938 /* Copy data into SKB */
939 if (len + pad <= QEDE_RX_HDR_SIZE) {
940 memcpy(skb_put(skb, len),
941 page_address(data) + pad +
942 sw_rx_data->page_offset, len);
943 qede_reuse_page(edev, rxq, sw_rx_data);
944 } else {
945 struct skb_frag_struct *frag;
946 unsigned int pull_len;
947 unsigned char *va;
949 frag = &skb_shinfo(skb)->frags[0];
951 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, data,
952 pad + sw_rx_data->page_offset,
953 len, rxq->rx_buf_seg_size);
955 va = skb_frag_address(frag);
956 pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE);
958 /* Align the pull_len to optimize memcpy */
959 memcpy(skb->data, va, ALIGN(pull_len, sizeof(long)));
961 skb_frag_size_sub(frag, pull_len);
962 frag->page_offset += pull_len;
963 skb->data_len -= pull_len;
964 skb->tail += pull_len;
966 if (unlikely(qede_realloc_rx_buffer(edev, rxq,
967 sw_rx_data))) {
968 DP_ERR(edev, "Failed to allocate rx buffer\n");
969 rxq->rx_alloc_errors++;
970 goto next_cqe;
974 if (fp_cqe->bd_num != 1) {
975 u16 pkt_len = le16_to_cpu(fp_cqe->pkt_len);
976 u8 num_frags;
978 pkt_len -= len;
980 for (num_frags = fp_cqe->bd_num - 1; num_frags > 0;
981 num_frags--) {
982 u16 cur_size = pkt_len > rxq->rx_buf_size ?
983 rxq->rx_buf_size : pkt_len;
985 WARN_ONCE(!cur_size,
986 "Still got %d BDs for mapping jumbo, but length became 0\n",
987 num_frags);
989 if (unlikely(qede_alloc_rx_buffer(edev, rxq)))
990 goto next_cqe;
992 rxq->sw_rx_cons++;
993 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
994 sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
995 qed_chain_consume(&rxq->rx_bd_ring);
996 dma_unmap_page(&edev->pdev->dev,
997 sw_rx_data->mapping,
998 PAGE_SIZE, DMA_FROM_DEVICE);
1000 skb_fill_page_desc(skb,
1001 skb_shinfo(skb)->nr_frags++,
1002 sw_rx_data->data, 0,
1003 cur_size);
1005 skb->truesize += PAGE_SIZE;
1006 skb->data_len += cur_size;
1007 skb->len += cur_size;
1008 pkt_len -= cur_size;
1011 if (pkt_len)
1012 DP_ERR(edev,
1013 "Mapped all BDs of jumbo, but still have %d bytes\n",
1014 pkt_len);
1017 skb->protocol = eth_type_trans(skb, edev->ndev);
1019 rx_hash = qede_get_rxhash(edev, fp_cqe->bitfields,
1020 fp_cqe->rss_hash,
1021 &rxhash_type);
1023 skb_set_hash(skb, rx_hash, rxhash_type);
1025 qede_set_skb_csum(skb, csum_flag);
1027 skb_record_rx_queue(skb, fp->rss_id);
1029 qede_skb_receive(edev, fp, skb, le16_to_cpu(fp_cqe->vlan_tag));
1031 qed_chain_consume(&rxq->rx_bd_ring);
1033 next_rx:
1034 rxq->sw_rx_cons++;
1035 rx_pkt++;
1037 next_cqe: /* don't consume bd rx buffer */
1038 qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1039 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1040 /* CR TPA - revisit how to handle budget in TPA perhaps
1041 * increase on "end"
1043 if (rx_pkt == budget)
1044 break;
1045 } /* repeat while sw_comp_cons != hw_comp_cons... */
1047 /* Update producers */
1048 qede_update_rx_prod(edev, rxq);
1050 return rx_pkt;
1053 static int qede_poll(struct napi_struct *napi, int budget)
1055 int work_done = 0;
1056 struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1057 napi);
1058 struct qede_dev *edev = fp->edev;
1060 while (1) {
1061 u8 tc;
1063 for (tc = 0; tc < edev->num_tc; tc++)
1064 if (qede_txq_has_work(&fp->txqs[tc]))
1065 qede_tx_int(edev, &fp->txqs[tc]);
1067 if (qede_has_rx_work(fp->rxq)) {
1068 work_done += qede_rx_int(fp, budget - work_done);
1070 /* must not complete if we consumed full budget */
1071 if (work_done >= budget)
1072 break;
1075 /* Fall out from the NAPI loop if needed */
1076 if (!(qede_has_rx_work(fp->rxq) || qede_has_tx_work(fp))) {
1077 qed_sb_update_sb_idx(fp->sb_info);
1078 /* *_has_*_work() reads the status block,
1079 * thus we need to ensure that status block indices
1080 * have been actually read (qed_sb_update_sb_idx)
1081 * prior to this check (*_has_*_work) so that
1082 * we won't write the "newer" value of the status block
1083 * to HW (if there was a DMA right after
1084 * qede_has_rx_work and if there is no rmb, the memory
1085 * reading (qed_sb_update_sb_idx) may be postponed
1086 * to right before *_ack_sb). In this case there
1087 * will never be another interrupt until there is
1088 * another update of the status block, while there
1089 * is still unhandled work.
1091 rmb();
1093 if (!(qede_has_rx_work(fp->rxq) ||
1094 qede_has_tx_work(fp))) {
1095 napi_complete(napi);
1096 /* Update and reenable interrupts */
1097 qed_sb_ack(fp->sb_info, IGU_INT_ENABLE,
1098 1 /*update*/);
1099 break;
1104 return work_done;
1107 static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1109 struct qede_fastpath *fp = fp_cookie;
1111 qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1113 napi_schedule_irqoff(&fp->napi);
1114 return IRQ_HANDLED;
1117 /* -------------------------------------------------------------------------
1118 * END OF FAST-PATH
1119 * -------------------------------------------------------------------------
1122 static int qede_open(struct net_device *ndev);
1123 static int qede_close(struct net_device *ndev);
1124 static int qede_set_mac_addr(struct net_device *ndev, void *p);
1125 static void qede_set_rx_mode(struct net_device *ndev);
1126 static void qede_config_rx_mode(struct net_device *ndev);
1128 static int qede_set_ucast_rx_mac(struct qede_dev *edev,
1129 enum qed_filter_xcast_params_type opcode,
1130 unsigned char mac[ETH_ALEN])
1132 struct qed_filter_params filter_cmd;
1134 memset(&filter_cmd, 0, sizeof(filter_cmd));
1135 filter_cmd.type = QED_FILTER_TYPE_UCAST;
1136 filter_cmd.filter.ucast.type = opcode;
1137 filter_cmd.filter.ucast.mac_valid = 1;
1138 ether_addr_copy(filter_cmd.filter.ucast.mac, mac);
1140 return edev->ops->filter_config(edev->cdev, &filter_cmd);
1143 static int qede_set_ucast_rx_vlan(struct qede_dev *edev,
1144 enum qed_filter_xcast_params_type opcode,
1145 u16 vid)
1147 struct qed_filter_params filter_cmd;
1149 memset(&filter_cmd, 0, sizeof(filter_cmd));
1150 filter_cmd.type = QED_FILTER_TYPE_UCAST;
1151 filter_cmd.filter.ucast.type = opcode;
1152 filter_cmd.filter.ucast.vlan_valid = 1;
1153 filter_cmd.filter.ucast.vlan = vid;
1155 return edev->ops->filter_config(edev->cdev, &filter_cmd);
1158 void qede_fill_by_demand_stats(struct qede_dev *edev)
1160 struct qed_eth_stats stats;
1162 edev->ops->get_vport_stats(edev->cdev, &stats);
1163 edev->stats.no_buff_discards = stats.no_buff_discards;
1164 edev->stats.rx_ucast_bytes = stats.rx_ucast_bytes;
1165 edev->stats.rx_mcast_bytes = stats.rx_mcast_bytes;
1166 edev->stats.rx_bcast_bytes = stats.rx_bcast_bytes;
1167 edev->stats.rx_ucast_pkts = stats.rx_ucast_pkts;
1168 edev->stats.rx_mcast_pkts = stats.rx_mcast_pkts;
1169 edev->stats.rx_bcast_pkts = stats.rx_bcast_pkts;
1170 edev->stats.mftag_filter_discards = stats.mftag_filter_discards;
1171 edev->stats.mac_filter_discards = stats.mac_filter_discards;
1173 edev->stats.tx_ucast_bytes = stats.tx_ucast_bytes;
1174 edev->stats.tx_mcast_bytes = stats.tx_mcast_bytes;
1175 edev->stats.tx_bcast_bytes = stats.tx_bcast_bytes;
1176 edev->stats.tx_ucast_pkts = stats.tx_ucast_pkts;
1177 edev->stats.tx_mcast_pkts = stats.tx_mcast_pkts;
1178 edev->stats.tx_bcast_pkts = stats.tx_bcast_pkts;
1179 edev->stats.tx_err_drop_pkts = stats.tx_err_drop_pkts;
1180 edev->stats.coalesced_pkts = stats.tpa_coalesced_pkts;
1181 edev->stats.coalesced_events = stats.tpa_coalesced_events;
1182 edev->stats.coalesced_aborts_num = stats.tpa_aborts_num;
1183 edev->stats.non_coalesced_pkts = stats.tpa_not_coalesced_pkts;
1184 edev->stats.coalesced_bytes = stats.tpa_coalesced_bytes;
1186 edev->stats.rx_64_byte_packets = stats.rx_64_byte_packets;
1187 edev->stats.rx_127_byte_packets = stats.rx_127_byte_packets;
1188 edev->stats.rx_255_byte_packets = stats.rx_255_byte_packets;
1189 edev->stats.rx_511_byte_packets = stats.rx_511_byte_packets;
1190 edev->stats.rx_1023_byte_packets = stats.rx_1023_byte_packets;
1191 edev->stats.rx_1518_byte_packets = stats.rx_1518_byte_packets;
1192 edev->stats.rx_1522_byte_packets = stats.rx_1522_byte_packets;
1193 edev->stats.rx_2047_byte_packets = stats.rx_2047_byte_packets;
1194 edev->stats.rx_4095_byte_packets = stats.rx_4095_byte_packets;
1195 edev->stats.rx_9216_byte_packets = stats.rx_9216_byte_packets;
1196 edev->stats.rx_16383_byte_packets = stats.rx_16383_byte_packets;
1197 edev->stats.rx_crc_errors = stats.rx_crc_errors;
1198 edev->stats.rx_mac_crtl_frames = stats.rx_mac_crtl_frames;
1199 edev->stats.rx_pause_frames = stats.rx_pause_frames;
1200 edev->stats.rx_pfc_frames = stats.rx_pfc_frames;
1201 edev->stats.rx_align_errors = stats.rx_align_errors;
1202 edev->stats.rx_carrier_errors = stats.rx_carrier_errors;
1203 edev->stats.rx_oversize_packets = stats.rx_oversize_packets;
1204 edev->stats.rx_jabbers = stats.rx_jabbers;
1205 edev->stats.rx_undersize_packets = stats.rx_undersize_packets;
1206 edev->stats.rx_fragments = stats.rx_fragments;
1207 edev->stats.tx_64_byte_packets = stats.tx_64_byte_packets;
1208 edev->stats.tx_65_to_127_byte_packets = stats.tx_65_to_127_byte_packets;
1209 edev->stats.tx_128_to_255_byte_packets =
1210 stats.tx_128_to_255_byte_packets;
1211 edev->stats.tx_256_to_511_byte_packets =
1212 stats.tx_256_to_511_byte_packets;
1213 edev->stats.tx_512_to_1023_byte_packets =
1214 stats.tx_512_to_1023_byte_packets;
1215 edev->stats.tx_1024_to_1518_byte_packets =
1216 stats.tx_1024_to_1518_byte_packets;
1217 edev->stats.tx_1519_to_2047_byte_packets =
1218 stats.tx_1519_to_2047_byte_packets;
1219 edev->stats.tx_2048_to_4095_byte_packets =
1220 stats.tx_2048_to_4095_byte_packets;
1221 edev->stats.tx_4096_to_9216_byte_packets =
1222 stats.tx_4096_to_9216_byte_packets;
1223 edev->stats.tx_9217_to_16383_byte_packets =
1224 stats.tx_9217_to_16383_byte_packets;
1225 edev->stats.tx_pause_frames = stats.tx_pause_frames;
1226 edev->stats.tx_pfc_frames = stats.tx_pfc_frames;
1227 edev->stats.tx_lpi_entry_count = stats.tx_lpi_entry_count;
1228 edev->stats.tx_total_collisions = stats.tx_total_collisions;
1229 edev->stats.brb_truncates = stats.brb_truncates;
1230 edev->stats.brb_discards = stats.brb_discards;
1231 edev->stats.tx_mac_ctrl_frames = stats.tx_mac_ctrl_frames;
1234 static struct rtnl_link_stats64 *qede_get_stats64(
1235 struct net_device *dev,
1236 struct rtnl_link_stats64 *stats)
1238 struct qede_dev *edev = netdev_priv(dev);
1240 qede_fill_by_demand_stats(edev);
1242 stats->rx_packets = edev->stats.rx_ucast_pkts +
1243 edev->stats.rx_mcast_pkts +
1244 edev->stats.rx_bcast_pkts;
1245 stats->tx_packets = edev->stats.tx_ucast_pkts +
1246 edev->stats.tx_mcast_pkts +
1247 edev->stats.tx_bcast_pkts;
1249 stats->rx_bytes = edev->stats.rx_ucast_bytes +
1250 edev->stats.rx_mcast_bytes +
1251 edev->stats.rx_bcast_bytes;
1253 stats->tx_bytes = edev->stats.tx_ucast_bytes +
1254 edev->stats.tx_mcast_bytes +
1255 edev->stats.tx_bcast_bytes;
1257 stats->tx_errors = edev->stats.tx_err_drop_pkts;
1258 stats->multicast = edev->stats.rx_mcast_pkts +
1259 edev->stats.rx_bcast_pkts;
1261 stats->rx_fifo_errors = edev->stats.no_buff_discards;
1263 stats->collisions = edev->stats.tx_total_collisions;
1264 stats->rx_crc_errors = edev->stats.rx_crc_errors;
1265 stats->rx_frame_errors = edev->stats.rx_align_errors;
1267 return stats;
1270 static void qede_config_accept_any_vlan(struct qede_dev *edev, bool action)
1272 struct qed_update_vport_params params;
1273 int rc;
1275 /* Proceed only if action actually needs to be performed */
1276 if (edev->accept_any_vlan == action)
1277 return;
1279 memset(&params, 0, sizeof(params));
1281 params.vport_id = 0;
1282 params.accept_any_vlan = action;
1283 params.update_accept_any_vlan_flg = 1;
1285 rc = edev->ops->vport_update(edev->cdev, &params);
1286 if (rc) {
1287 DP_ERR(edev, "Failed to %s accept-any-vlan\n",
1288 action ? "enable" : "disable");
1289 } else {
1290 DP_INFO(edev, "%s accept-any-vlan\n",
1291 action ? "enabled" : "disabled");
1292 edev->accept_any_vlan = action;
1296 static int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
1298 struct qede_dev *edev = netdev_priv(dev);
1299 struct qede_vlan *vlan, *tmp;
1300 int rc;
1302 DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan 0x%04x\n", vid);
1304 vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
1305 if (!vlan) {
1306 DP_INFO(edev, "Failed to allocate struct for vlan\n");
1307 return -ENOMEM;
1309 INIT_LIST_HEAD(&vlan->list);
1310 vlan->vid = vid;
1311 vlan->configured = false;
1313 /* Verify vlan isn't already configured */
1314 list_for_each_entry(tmp, &edev->vlan_list, list) {
1315 if (tmp->vid == vlan->vid) {
1316 DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
1317 "vlan already configured\n");
1318 kfree(vlan);
1319 return -EEXIST;
1323 /* If interface is down, cache this VLAN ID and return */
1324 if (edev->state != QEDE_STATE_OPEN) {
1325 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1326 "Interface is down, VLAN %d will be configured when interface is up\n",
1327 vid);
1328 if (vid != 0)
1329 edev->non_configured_vlans++;
1330 list_add(&vlan->list, &edev->vlan_list);
1332 return 0;
1335 /* Check for the filter limit.
1336 * Note - vlan0 has a reserved filter and can be added without
1337 * worrying about quota
1339 if ((edev->configured_vlans < edev->dev_info.num_vlan_filters) ||
1340 (vlan->vid == 0)) {
1341 rc = qede_set_ucast_rx_vlan(edev,
1342 QED_FILTER_XCAST_TYPE_ADD,
1343 vlan->vid);
1344 if (rc) {
1345 DP_ERR(edev, "Failed to configure VLAN %d\n",
1346 vlan->vid);
1347 kfree(vlan);
1348 return -EINVAL;
1350 vlan->configured = true;
1352 /* vlan0 filter isn't consuming out of our quota */
1353 if (vlan->vid != 0)
1354 edev->configured_vlans++;
1355 } else {
1356 /* Out of quota; Activate accept-any-VLAN mode */
1357 if (!edev->non_configured_vlans)
1358 qede_config_accept_any_vlan(edev, true);
1360 edev->non_configured_vlans++;
1363 list_add(&vlan->list, &edev->vlan_list);
1365 return 0;
1368 static void qede_del_vlan_from_list(struct qede_dev *edev,
1369 struct qede_vlan *vlan)
1371 /* vlan0 filter isn't consuming out of our quota */
1372 if (vlan->vid != 0) {
1373 if (vlan->configured)
1374 edev->configured_vlans--;
1375 else
1376 edev->non_configured_vlans--;
1379 list_del(&vlan->list);
1380 kfree(vlan);
1383 static int qede_configure_vlan_filters(struct qede_dev *edev)
1385 int rc = 0, real_rc = 0, accept_any_vlan = 0;
1386 struct qed_dev_eth_info *dev_info;
1387 struct qede_vlan *vlan = NULL;
1389 if (list_empty(&edev->vlan_list))
1390 return 0;
1392 dev_info = &edev->dev_info;
1394 /* Configure non-configured vlans */
1395 list_for_each_entry(vlan, &edev->vlan_list, list) {
1396 if (vlan->configured)
1397 continue;
1399 /* We have used all our credits, now enable accept_any_vlan */
1400 if ((vlan->vid != 0) &&
1401 (edev->configured_vlans == dev_info->num_vlan_filters)) {
1402 accept_any_vlan = 1;
1403 continue;
1406 DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan %d\n", vlan->vid);
1408 rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD,
1409 vlan->vid);
1410 if (rc) {
1411 DP_ERR(edev, "Failed to configure VLAN %u\n",
1412 vlan->vid);
1413 real_rc = rc;
1414 continue;
1417 vlan->configured = true;
1418 /* vlan0 filter doesn't consume our VLAN filter's quota */
1419 if (vlan->vid != 0) {
1420 edev->non_configured_vlans--;
1421 edev->configured_vlans++;
1425 /* enable accept_any_vlan mode if we have more VLANs than credits,
1426 * or remove accept_any_vlan mode if we've actually removed
1427 * a non-configured vlan, and all remaining vlans are truly configured.
1430 if (accept_any_vlan)
1431 qede_config_accept_any_vlan(edev, true);
1432 else if (!edev->non_configured_vlans)
1433 qede_config_accept_any_vlan(edev, false);
1435 return real_rc;
1438 static int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
1440 struct qede_dev *edev = netdev_priv(dev);
1441 struct qede_vlan *vlan = NULL;
1442 int rc;
1444 DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Removing vlan 0x%04x\n", vid);
1446 /* Find whether entry exists */
1447 list_for_each_entry(vlan, &edev->vlan_list, list)
1448 if (vlan->vid == vid)
1449 break;
1451 if (!vlan || (vlan->vid != vid)) {
1452 DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
1453 "Vlan isn't configured\n");
1454 return 0;
1457 if (edev->state != QEDE_STATE_OPEN) {
1458 /* As interface is already down, we don't have a VPORT
1459 * instance to remove vlan filter. So just update vlan list
1461 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1462 "Interface is down, removing VLAN from list only\n");
1463 qede_del_vlan_from_list(edev, vlan);
1464 return 0;
1467 /* Remove vlan */
1468 rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_DEL, vid);
1469 if (rc) {
1470 DP_ERR(edev, "Failed to remove VLAN %d\n", vid);
1471 return -EINVAL;
1474 qede_del_vlan_from_list(edev, vlan);
1476 /* We have removed a VLAN - try to see if we can
1477 * configure non-configured VLAN from the list.
1479 rc = qede_configure_vlan_filters(edev);
1481 return rc;
1484 static void qede_vlan_mark_nonconfigured(struct qede_dev *edev)
1486 struct qede_vlan *vlan = NULL;
1488 if (list_empty(&edev->vlan_list))
1489 return;
1491 list_for_each_entry(vlan, &edev->vlan_list, list) {
1492 if (!vlan->configured)
1493 continue;
1495 vlan->configured = false;
1497 /* vlan0 filter isn't consuming out of our quota */
1498 if (vlan->vid != 0) {
1499 edev->non_configured_vlans++;
1500 edev->configured_vlans--;
1503 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1504 "marked vlan %d as non-configured\n",
1505 vlan->vid);
1508 edev->accept_any_vlan = false;
1511 static const struct net_device_ops qede_netdev_ops = {
1512 .ndo_open = qede_open,
1513 .ndo_stop = qede_close,
1514 .ndo_start_xmit = qede_start_xmit,
1515 .ndo_set_rx_mode = qede_set_rx_mode,
1516 .ndo_set_mac_address = qede_set_mac_addr,
1517 .ndo_validate_addr = eth_validate_addr,
1518 .ndo_change_mtu = qede_change_mtu,
1519 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
1520 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
1521 .ndo_get_stats64 = qede_get_stats64,
1524 /* -------------------------------------------------------------------------
1525 * START OF PROBE / REMOVE
1526 * -------------------------------------------------------------------------
1529 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
1530 struct pci_dev *pdev,
1531 struct qed_dev_eth_info *info,
1532 u32 dp_module,
1533 u8 dp_level)
1535 struct net_device *ndev;
1536 struct qede_dev *edev;
1538 ndev = alloc_etherdev_mqs(sizeof(*edev),
1539 info->num_queues,
1540 info->num_queues);
1541 if (!ndev) {
1542 pr_err("etherdev allocation failed\n");
1543 return NULL;
1546 edev = netdev_priv(ndev);
1547 edev->ndev = ndev;
1548 edev->cdev = cdev;
1549 edev->pdev = pdev;
1550 edev->dp_module = dp_module;
1551 edev->dp_level = dp_level;
1552 edev->ops = qed_ops;
1553 edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
1554 edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
1556 DP_INFO(edev, "Allocated netdev with 64 tx queues and 64 rx queues\n");
1558 SET_NETDEV_DEV(ndev, &pdev->dev);
1560 memset(&edev->stats, 0, sizeof(edev->stats));
1561 memcpy(&edev->dev_info, info, sizeof(*info));
1563 edev->num_tc = edev->dev_info.num_tc;
1565 INIT_LIST_HEAD(&edev->vlan_list);
1567 return edev;
1570 static void qede_init_ndev(struct qede_dev *edev)
1572 struct net_device *ndev = edev->ndev;
1573 struct pci_dev *pdev = edev->pdev;
1574 u32 hw_features;
1576 pci_set_drvdata(pdev, ndev);
1578 ndev->mem_start = edev->dev_info.common.pci_mem_start;
1579 ndev->base_addr = ndev->mem_start;
1580 ndev->mem_end = edev->dev_info.common.pci_mem_end;
1581 ndev->irq = edev->dev_info.common.pci_irq;
1583 ndev->watchdog_timeo = TX_TIMEOUT;
1585 ndev->netdev_ops = &qede_netdev_ops;
1587 qede_set_ethtool_ops(ndev);
1589 /* user-changeble features */
1590 hw_features = NETIF_F_GRO | NETIF_F_SG |
1591 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1592 NETIF_F_TSO | NETIF_F_TSO6;
1594 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
1595 NETIF_F_HIGHDMA;
1596 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
1597 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
1598 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
1600 ndev->hw_features = hw_features;
1602 /* Set network device HW mac */
1603 ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
1606 /* This function converts from 32b param to two params of level and module
1607 * Input 32b decoding:
1608 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
1609 * 'happy' flow, e.g. memory allocation failed.
1610 * b30 - enable all INFO prints. INFO prints are for major steps in the flow
1611 * and provide important parameters.
1612 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
1613 * module. VERBOSE prints are for tracking the specific flow in low level.
1615 * Notice that the level should be that of the lowest required logs.
1617 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
1619 *p_dp_level = QED_LEVEL_NOTICE;
1620 *p_dp_module = 0;
1622 if (debug & QED_LOG_VERBOSE_MASK) {
1623 *p_dp_level = QED_LEVEL_VERBOSE;
1624 *p_dp_module = (debug & 0x3FFFFFFF);
1625 } else if (debug & QED_LOG_INFO_MASK) {
1626 *p_dp_level = QED_LEVEL_INFO;
1627 } else if (debug & QED_LOG_NOTICE_MASK) {
1628 *p_dp_level = QED_LEVEL_NOTICE;
1632 static void qede_free_fp_array(struct qede_dev *edev)
1634 if (edev->fp_array) {
1635 struct qede_fastpath *fp;
1636 int i;
1638 for_each_rss(i) {
1639 fp = &edev->fp_array[i];
1641 kfree(fp->sb_info);
1642 kfree(fp->rxq);
1643 kfree(fp->txqs);
1645 kfree(edev->fp_array);
1647 edev->num_rss = 0;
1650 static int qede_alloc_fp_array(struct qede_dev *edev)
1652 struct qede_fastpath *fp;
1653 int i;
1655 edev->fp_array = kcalloc(QEDE_RSS_CNT(edev),
1656 sizeof(*edev->fp_array), GFP_KERNEL);
1657 if (!edev->fp_array) {
1658 DP_NOTICE(edev, "fp array allocation failed\n");
1659 goto err;
1662 for_each_rss(i) {
1663 fp = &edev->fp_array[i];
1665 fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL);
1666 if (!fp->sb_info) {
1667 DP_NOTICE(edev, "sb info struct allocation failed\n");
1668 goto err;
1671 fp->rxq = kcalloc(1, sizeof(*fp->rxq), GFP_KERNEL);
1672 if (!fp->rxq) {
1673 DP_NOTICE(edev, "RXQ struct allocation failed\n");
1674 goto err;
1677 fp->txqs = kcalloc(edev->num_tc, sizeof(*fp->txqs), GFP_KERNEL);
1678 if (!fp->txqs) {
1679 DP_NOTICE(edev, "TXQ array allocation failed\n");
1680 goto err;
1684 return 0;
1685 err:
1686 qede_free_fp_array(edev);
1687 return -ENOMEM;
1690 static void qede_sp_task(struct work_struct *work)
1692 struct qede_dev *edev = container_of(work, struct qede_dev,
1693 sp_task.work);
1694 mutex_lock(&edev->qede_lock);
1696 if (edev->state == QEDE_STATE_OPEN) {
1697 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
1698 qede_config_rx_mode(edev->ndev);
1701 mutex_unlock(&edev->qede_lock);
1704 static void qede_update_pf_params(struct qed_dev *cdev)
1706 struct qed_pf_params pf_params;
1708 /* 16 rx + 16 tx */
1709 memset(&pf_params, 0, sizeof(struct qed_pf_params));
1710 pf_params.eth_pf_params.num_cons = 32;
1711 qed_ops->common->update_pf_params(cdev, &pf_params);
1714 enum qede_probe_mode {
1715 QEDE_PROBE_NORMAL,
1718 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1719 enum qede_probe_mode mode)
1721 struct qed_slowpath_params params;
1722 struct qed_dev_eth_info dev_info;
1723 struct qede_dev *edev;
1724 struct qed_dev *cdev;
1725 int rc;
1727 if (unlikely(dp_level & QED_LEVEL_INFO))
1728 pr_notice("Starting qede probe\n");
1730 cdev = qed_ops->common->probe(pdev, QED_PROTOCOL_ETH,
1731 dp_module, dp_level);
1732 if (!cdev) {
1733 rc = -ENODEV;
1734 goto err0;
1737 qede_update_pf_params(cdev);
1739 /* Start the Slowpath-process */
1740 memset(&params, 0, sizeof(struct qed_slowpath_params));
1741 params.int_mode = QED_INT_MODE_MSIX;
1742 params.drv_major = QEDE_MAJOR_VERSION;
1743 params.drv_minor = QEDE_MINOR_VERSION;
1744 params.drv_rev = QEDE_REVISION_VERSION;
1745 params.drv_eng = QEDE_ENGINEERING_VERSION;
1746 strlcpy(params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1747 rc = qed_ops->common->slowpath_start(cdev, &params);
1748 if (rc) {
1749 pr_notice("Cannot start slowpath\n");
1750 goto err1;
1753 /* Learn information crucial for qede to progress */
1754 rc = qed_ops->fill_dev_info(cdev, &dev_info);
1755 if (rc)
1756 goto err2;
1758 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1759 dp_level);
1760 if (!edev) {
1761 rc = -ENOMEM;
1762 goto err2;
1765 qede_init_ndev(edev);
1767 rc = register_netdev(edev->ndev);
1768 if (rc) {
1769 DP_NOTICE(edev, "Cannot register net-device\n");
1770 goto err3;
1773 edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION);
1775 edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1777 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1778 mutex_init(&edev->qede_lock);
1780 DP_INFO(edev, "Ending successfully qede probe\n");
1782 return 0;
1784 err3:
1785 free_netdev(edev->ndev);
1786 err2:
1787 qed_ops->common->slowpath_stop(cdev);
1788 err1:
1789 qed_ops->common->remove(cdev);
1790 err0:
1791 return rc;
1794 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1796 u32 dp_module = 0;
1797 u8 dp_level = 0;
1799 qede_config_debug(debug, &dp_module, &dp_level);
1801 return __qede_probe(pdev, dp_module, dp_level,
1802 QEDE_PROBE_NORMAL);
1805 enum qede_remove_mode {
1806 QEDE_REMOVE_NORMAL,
1809 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1811 struct net_device *ndev = pci_get_drvdata(pdev);
1812 struct qede_dev *edev = netdev_priv(ndev);
1813 struct qed_dev *cdev = edev->cdev;
1815 DP_INFO(edev, "Starting qede_remove\n");
1817 cancel_delayed_work_sync(&edev->sp_task);
1818 unregister_netdev(ndev);
1820 edev->ops->common->set_power_state(cdev, PCI_D0);
1822 pci_set_drvdata(pdev, NULL);
1824 free_netdev(ndev);
1826 /* Use global ops since we've freed edev */
1827 qed_ops->common->slowpath_stop(cdev);
1828 qed_ops->common->remove(cdev);
1830 pr_notice("Ending successfully qede_remove\n");
1833 static void qede_remove(struct pci_dev *pdev)
1835 __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1838 /* -------------------------------------------------------------------------
1839 * START OF LOAD / UNLOAD
1840 * -------------------------------------------------------------------------
1843 static int qede_set_num_queues(struct qede_dev *edev)
1845 int rc;
1846 u16 rss_num;
1848 /* Setup queues according to possible resources*/
1849 if (edev->req_rss)
1850 rss_num = edev->req_rss;
1851 else
1852 rss_num = netif_get_num_default_rss_queues() *
1853 edev->dev_info.common.num_hwfns;
1855 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1857 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1858 if (rc > 0) {
1859 /* Managed to request interrupts for our queues */
1860 edev->num_rss = rc;
1861 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1862 QEDE_RSS_CNT(edev), rss_num);
1863 rc = 0;
1865 return rc;
1868 static void qede_free_mem_sb(struct qede_dev *edev,
1869 struct qed_sb_info *sb_info)
1871 if (sb_info->sb_virt)
1872 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1873 (void *)sb_info->sb_virt, sb_info->sb_phys);
1876 /* This function allocates fast-path status block memory */
1877 static int qede_alloc_mem_sb(struct qede_dev *edev,
1878 struct qed_sb_info *sb_info,
1879 u16 sb_id)
1881 struct status_block *sb_virt;
1882 dma_addr_t sb_phys;
1883 int rc;
1885 sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1886 sizeof(*sb_virt),
1887 &sb_phys, GFP_KERNEL);
1888 if (!sb_virt) {
1889 DP_ERR(edev, "Status block allocation failed\n");
1890 return -ENOMEM;
1893 rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1894 sb_virt, sb_phys, sb_id,
1895 QED_SB_TYPE_L2_QUEUE);
1896 if (rc) {
1897 DP_ERR(edev, "Status block initialization failed\n");
1898 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1899 sb_virt, sb_phys);
1900 return rc;
1903 return 0;
1906 static void qede_free_rx_buffers(struct qede_dev *edev,
1907 struct qede_rx_queue *rxq)
1909 u16 i;
1911 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1912 struct sw_rx_data *rx_buf;
1913 struct page *data;
1915 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1916 data = rx_buf->data;
1918 dma_unmap_page(&edev->pdev->dev,
1919 rx_buf->mapping,
1920 PAGE_SIZE, DMA_FROM_DEVICE);
1922 rx_buf->data = NULL;
1923 __free_page(data);
1927 static void qede_free_mem_rxq(struct qede_dev *edev,
1928 struct qede_rx_queue *rxq)
1930 /* Free rx buffers */
1931 qede_free_rx_buffers(edev, rxq);
1933 /* Free the parallel SW ring */
1934 kfree(rxq->sw_rx_ring);
1936 /* Free the real RQ ring used by FW */
1937 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1938 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1941 static int qede_alloc_rx_buffer(struct qede_dev *edev,
1942 struct qede_rx_queue *rxq)
1944 struct sw_rx_data *sw_rx_data;
1945 struct eth_rx_bd *rx_bd;
1946 dma_addr_t mapping;
1947 struct page *data;
1948 u16 rx_buf_size;
1950 rx_buf_size = rxq->rx_buf_size;
1952 data = alloc_pages(GFP_ATOMIC, 0);
1953 if (unlikely(!data)) {
1954 DP_NOTICE(edev, "Failed to allocate Rx data [page]\n");
1955 return -ENOMEM;
1958 /* Map the entire page as it would be used
1959 * for multiple RX buffer segment size mapping.
1961 mapping = dma_map_page(&edev->pdev->dev, data, 0,
1962 PAGE_SIZE, DMA_FROM_DEVICE);
1963 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
1964 __free_page(data);
1965 DP_NOTICE(edev, "Failed to map Rx buffer\n");
1966 return -ENOMEM;
1969 sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
1970 sw_rx_data->page_offset = 0;
1971 sw_rx_data->data = data;
1972 sw_rx_data->mapping = mapping;
1974 /* Advance PROD and get BD pointer */
1975 rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
1976 WARN_ON(!rx_bd);
1977 rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
1978 rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping));
1980 rxq->sw_rx_prod++;
1982 return 0;
1985 /* This function allocates all memory needed per Rx queue */
1986 static int qede_alloc_mem_rxq(struct qede_dev *edev,
1987 struct qede_rx_queue *rxq)
1989 int i, rc, size, num_allocated;
1991 rxq->num_rx_buffers = edev->q_num_rx_buffers;
1993 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD +
1994 edev->ndev->mtu;
1995 if (rxq->rx_buf_size > PAGE_SIZE)
1996 rxq->rx_buf_size = PAGE_SIZE;
1998 /* Segment size to spilt a page in multiple equal parts */
1999 rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
2001 /* Allocate the parallel driver ring for Rx buffers */
2002 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
2003 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
2004 if (!rxq->sw_rx_ring) {
2005 DP_ERR(edev, "Rx buffers ring allocation failed\n");
2006 goto err;
2009 /* Allocate FW Rx ring */
2010 rc = edev->ops->common->chain_alloc(edev->cdev,
2011 QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2012 QED_CHAIN_MODE_NEXT_PTR,
2013 RX_RING_SIZE,
2014 sizeof(struct eth_rx_bd),
2015 &rxq->rx_bd_ring);
2017 if (rc)
2018 goto err;
2020 /* Allocate FW completion ring */
2021 rc = edev->ops->common->chain_alloc(edev->cdev,
2022 QED_CHAIN_USE_TO_CONSUME,
2023 QED_CHAIN_MODE_PBL,
2024 RX_RING_SIZE,
2025 sizeof(union eth_rx_cqe),
2026 &rxq->rx_comp_ring);
2027 if (rc)
2028 goto err;
2030 /* Allocate buffers for the Rx ring */
2031 for (i = 0; i < rxq->num_rx_buffers; i++) {
2032 rc = qede_alloc_rx_buffer(edev, rxq);
2033 if (rc)
2034 break;
2036 num_allocated = i;
2037 if (!num_allocated) {
2038 DP_ERR(edev, "Rx buffers allocation failed\n");
2039 goto err;
2040 } else if (num_allocated < rxq->num_rx_buffers) {
2041 DP_NOTICE(edev,
2042 "Allocated less buffers than desired (%d allocated)\n",
2043 num_allocated);
2046 return 0;
2048 err:
2049 qede_free_mem_rxq(edev, rxq);
2050 return -ENOMEM;
2053 static void qede_free_mem_txq(struct qede_dev *edev,
2054 struct qede_tx_queue *txq)
2056 /* Free the parallel SW ring */
2057 kfree(txq->sw_tx_ring);
2059 /* Free the real RQ ring used by FW */
2060 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
2063 /* This function allocates all memory needed per Tx queue */
2064 static int qede_alloc_mem_txq(struct qede_dev *edev,
2065 struct qede_tx_queue *txq)
2067 int size, rc;
2068 union eth_tx_bd_types *p_virt;
2070 txq->num_tx_buffers = edev->q_num_tx_buffers;
2072 /* Allocate the parallel driver ring for Tx buffers */
2073 size = sizeof(*txq->sw_tx_ring) * NUM_TX_BDS_MAX;
2074 txq->sw_tx_ring = kzalloc(size, GFP_KERNEL);
2075 if (!txq->sw_tx_ring) {
2076 DP_NOTICE(edev, "Tx buffers ring allocation failed\n");
2077 goto err;
2080 rc = edev->ops->common->chain_alloc(edev->cdev,
2081 QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2082 QED_CHAIN_MODE_PBL,
2083 NUM_TX_BDS_MAX,
2084 sizeof(*p_virt),
2085 &txq->tx_pbl);
2086 if (rc)
2087 goto err;
2089 return 0;
2091 err:
2092 qede_free_mem_txq(edev, txq);
2093 return -ENOMEM;
2096 /* This function frees all memory of a single fp */
2097 static void qede_free_mem_fp(struct qede_dev *edev,
2098 struct qede_fastpath *fp)
2100 int tc;
2102 qede_free_mem_sb(edev, fp->sb_info);
2104 qede_free_mem_rxq(edev, fp->rxq);
2106 for (tc = 0; tc < edev->num_tc; tc++)
2107 qede_free_mem_txq(edev, &fp->txqs[tc]);
2110 /* This function allocates all memory needed for a single fp (i.e. an entity
2111 * which contains status block, one rx queue and multiple per-TC tx queues.
2113 static int qede_alloc_mem_fp(struct qede_dev *edev,
2114 struct qede_fastpath *fp)
2116 int rc, tc;
2118 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->rss_id);
2119 if (rc)
2120 goto err;
2122 rc = qede_alloc_mem_rxq(edev, fp->rxq);
2123 if (rc)
2124 goto err;
2126 for (tc = 0; tc < edev->num_tc; tc++) {
2127 rc = qede_alloc_mem_txq(edev, &fp->txqs[tc]);
2128 if (rc)
2129 goto err;
2132 return 0;
2134 err:
2135 qede_free_mem_fp(edev, fp);
2136 return -ENOMEM;
2139 static void qede_free_mem_load(struct qede_dev *edev)
2141 int i;
2143 for_each_rss(i) {
2144 struct qede_fastpath *fp = &edev->fp_array[i];
2146 qede_free_mem_fp(edev, fp);
2150 /* This function allocates all qede memory at NIC load. */
2151 static int qede_alloc_mem_load(struct qede_dev *edev)
2153 int rc = 0, rss_id;
2155 for (rss_id = 0; rss_id < QEDE_RSS_CNT(edev); rss_id++) {
2156 struct qede_fastpath *fp = &edev->fp_array[rss_id];
2158 rc = qede_alloc_mem_fp(edev, fp);
2159 if (rc)
2160 break;
2163 if (rss_id != QEDE_RSS_CNT(edev)) {
2164 /* Failed allocating memory for all the queues */
2165 if (!rss_id) {
2166 DP_ERR(edev,
2167 "Failed to allocate memory for the leading queue\n");
2168 rc = -ENOMEM;
2169 } else {
2170 DP_NOTICE(edev,
2171 "Failed to allocate memory for all of RSS queues\n Desired: %d queues, allocated: %d queues\n",
2172 QEDE_RSS_CNT(edev), rss_id);
2174 edev->num_rss = rss_id;
2177 return 0;
2180 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
2181 static void qede_init_fp(struct qede_dev *edev)
2183 int rss_id, txq_index, tc;
2184 struct qede_fastpath *fp;
2186 for_each_rss(rss_id) {
2187 fp = &edev->fp_array[rss_id];
2189 fp->edev = edev;
2190 fp->rss_id = rss_id;
2192 memset((void *)&fp->napi, 0, sizeof(fp->napi));
2194 memset((void *)fp->sb_info, 0, sizeof(*fp->sb_info));
2196 memset((void *)fp->rxq, 0, sizeof(*fp->rxq));
2197 fp->rxq->rxq_id = rss_id;
2199 memset((void *)fp->txqs, 0, (edev->num_tc * sizeof(*fp->txqs)));
2200 for (tc = 0; tc < edev->num_tc; tc++) {
2201 txq_index = tc * QEDE_RSS_CNT(edev) + rss_id;
2202 fp->txqs[tc].index = txq_index;
2205 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
2206 edev->ndev->name, rss_id);
2210 static int qede_set_real_num_queues(struct qede_dev *edev)
2212 int rc = 0;
2214 rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_CNT(edev));
2215 if (rc) {
2216 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
2217 return rc;
2219 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_CNT(edev));
2220 if (rc) {
2221 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
2222 return rc;
2225 return 0;
2228 static void qede_napi_disable_remove(struct qede_dev *edev)
2230 int i;
2232 for_each_rss(i) {
2233 napi_disable(&edev->fp_array[i].napi);
2235 netif_napi_del(&edev->fp_array[i].napi);
2239 static void qede_napi_add_enable(struct qede_dev *edev)
2241 int i;
2243 /* Add NAPI objects */
2244 for_each_rss(i) {
2245 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
2246 qede_poll, NAPI_POLL_WEIGHT);
2247 napi_enable(&edev->fp_array[i].napi);
2251 static void qede_sync_free_irqs(struct qede_dev *edev)
2253 int i;
2255 for (i = 0; i < edev->int_info.used_cnt; i++) {
2256 if (edev->int_info.msix_cnt) {
2257 synchronize_irq(edev->int_info.msix[i].vector);
2258 free_irq(edev->int_info.msix[i].vector,
2259 &edev->fp_array[i]);
2260 } else {
2261 edev->ops->common->simd_handler_clean(edev->cdev, i);
2265 edev->int_info.used_cnt = 0;
2268 static int qede_req_msix_irqs(struct qede_dev *edev)
2270 int i, rc;
2272 /* Sanitize number of interrupts == number of prepared RSS queues */
2273 if (QEDE_RSS_CNT(edev) > edev->int_info.msix_cnt) {
2274 DP_ERR(edev,
2275 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
2276 QEDE_RSS_CNT(edev), edev->int_info.msix_cnt);
2277 return -EINVAL;
2280 for (i = 0; i < QEDE_RSS_CNT(edev); i++) {
2281 rc = request_irq(edev->int_info.msix[i].vector,
2282 qede_msix_fp_int, 0, edev->fp_array[i].name,
2283 &edev->fp_array[i]);
2284 if (rc) {
2285 DP_ERR(edev, "Request fp %d irq failed\n", i);
2286 qede_sync_free_irqs(edev);
2287 return rc;
2289 DP_VERBOSE(edev, NETIF_MSG_INTR,
2290 "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
2291 edev->fp_array[i].name, i,
2292 &edev->fp_array[i]);
2293 edev->int_info.used_cnt++;
2296 return 0;
2299 static void qede_simd_fp_handler(void *cookie)
2301 struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
2303 napi_schedule_irqoff(&fp->napi);
2306 static int qede_setup_irqs(struct qede_dev *edev)
2308 int i, rc = 0;
2310 /* Learn Interrupt configuration */
2311 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
2312 if (rc)
2313 return rc;
2315 if (edev->int_info.msix_cnt) {
2316 rc = qede_req_msix_irqs(edev);
2317 if (rc)
2318 return rc;
2319 edev->ndev->irq = edev->int_info.msix[0].vector;
2320 } else {
2321 const struct qed_common_ops *ops;
2323 /* qed should learn receive the RSS ids and callbacks */
2324 ops = edev->ops->common;
2325 for (i = 0; i < QEDE_RSS_CNT(edev); i++)
2326 ops->simd_handler_config(edev->cdev,
2327 &edev->fp_array[i], i,
2328 qede_simd_fp_handler);
2329 edev->int_info.used_cnt = QEDE_RSS_CNT(edev);
2331 return 0;
2334 static int qede_drain_txq(struct qede_dev *edev,
2335 struct qede_tx_queue *txq,
2336 bool allow_drain)
2338 int rc, cnt = 1000;
2340 while (txq->sw_tx_cons != txq->sw_tx_prod) {
2341 if (!cnt) {
2342 if (allow_drain) {
2343 DP_NOTICE(edev,
2344 "Tx queue[%d] is stuck, requesting MCP to drain\n",
2345 txq->index);
2346 rc = edev->ops->common->drain(edev->cdev);
2347 if (rc)
2348 return rc;
2349 return qede_drain_txq(edev, txq, false);
2351 DP_NOTICE(edev,
2352 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
2353 txq->index, txq->sw_tx_prod,
2354 txq->sw_tx_cons);
2355 return -ENODEV;
2357 cnt--;
2358 usleep_range(1000, 2000);
2359 barrier();
2362 /* FW finished processing, wait for HW to transmit all tx packets */
2363 usleep_range(1000, 2000);
2365 return 0;
2368 static int qede_stop_queues(struct qede_dev *edev)
2370 struct qed_update_vport_params vport_update_params;
2371 struct qed_dev *cdev = edev->cdev;
2372 int rc, tc, i;
2374 /* Disable the vport */
2375 memset(&vport_update_params, 0, sizeof(vport_update_params));
2376 vport_update_params.vport_id = 0;
2377 vport_update_params.update_vport_active_flg = 1;
2378 vport_update_params.vport_active_flg = 0;
2379 vport_update_params.update_rss_flg = 0;
2381 rc = edev->ops->vport_update(cdev, &vport_update_params);
2382 if (rc) {
2383 DP_ERR(edev, "Failed to update vport\n");
2384 return rc;
2387 /* Flush Tx queues. If needed, request drain from MCP */
2388 for_each_rss(i) {
2389 struct qede_fastpath *fp = &edev->fp_array[i];
2391 for (tc = 0; tc < edev->num_tc; tc++) {
2392 struct qede_tx_queue *txq = &fp->txqs[tc];
2394 rc = qede_drain_txq(edev, txq, true);
2395 if (rc)
2396 return rc;
2400 /* Stop all Queues in reverse order*/
2401 for (i = QEDE_RSS_CNT(edev) - 1; i >= 0; i--) {
2402 struct qed_stop_rxq_params rx_params;
2404 /* Stop the Tx Queue(s)*/
2405 for (tc = 0; tc < edev->num_tc; tc++) {
2406 struct qed_stop_txq_params tx_params;
2408 tx_params.rss_id = i;
2409 tx_params.tx_queue_id = tc * QEDE_RSS_CNT(edev) + i;
2410 rc = edev->ops->q_tx_stop(cdev, &tx_params);
2411 if (rc) {
2412 DP_ERR(edev, "Failed to stop TXQ #%d\n",
2413 tx_params.tx_queue_id);
2414 return rc;
2418 /* Stop the Rx Queue*/
2419 memset(&rx_params, 0, sizeof(rx_params));
2420 rx_params.rss_id = i;
2421 rx_params.rx_queue_id = i;
2423 rc = edev->ops->q_rx_stop(cdev, &rx_params);
2424 if (rc) {
2425 DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2426 return rc;
2430 /* Stop the vport */
2431 rc = edev->ops->vport_stop(cdev, 0);
2432 if (rc)
2433 DP_ERR(edev, "Failed to stop VPORT\n");
2435 return rc;
2438 static int qede_start_queues(struct qede_dev *edev)
2440 int rc, tc, i;
2441 int vport_id = 0, drop_ttl0_flg = 1, vlan_removal_en = 1;
2442 struct qed_dev *cdev = edev->cdev;
2443 struct qed_update_vport_rss_params *rss_params = &edev->rss_params;
2444 struct qed_update_vport_params vport_update_params;
2445 struct qed_queue_start_common_params q_params;
2447 if (!edev->num_rss) {
2448 DP_ERR(edev,
2449 "Cannot update V-VPORT as active as there are no Rx queues\n");
2450 return -EINVAL;
2453 rc = edev->ops->vport_start(cdev, vport_id,
2454 edev->ndev->mtu,
2455 drop_ttl0_flg,
2456 vlan_removal_en);
2458 if (rc) {
2459 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2460 return rc;
2463 DP_VERBOSE(edev, NETIF_MSG_IFUP,
2464 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2465 vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2467 for_each_rss(i) {
2468 struct qede_fastpath *fp = &edev->fp_array[i];
2469 dma_addr_t phys_table = fp->rxq->rx_comp_ring.pbl.p_phys_table;
2471 memset(&q_params, 0, sizeof(q_params));
2472 q_params.rss_id = i;
2473 q_params.queue_id = i;
2474 q_params.vport_id = 0;
2475 q_params.sb = fp->sb_info->igu_sb_id;
2476 q_params.sb_idx = RX_PI;
2478 rc = edev->ops->q_rx_start(cdev, &q_params,
2479 fp->rxq->rx_buf_size,
2480 fp->rxq->rx_bd_ring.p_phys_addr,
2481 phys_table,
2482 fp->rxq->rx_comp_ring.page_cnt,
2483 &fp->rxq->hw_rxq_prod_addr);
2484 if (rc) {
2485 DP_ERR(edev, "Start RXQ #%d failed %d\n", i, rc);
2486 return rc;
2489 fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI];
2491 qede_update_rx_prod(edev, fp->rxq);
2493 for (tc = 0; tc < edev->num_tc; tc++) {
2494 struct qede_tx_queue *txq = &fp->txqs[tc];
2495 int txq_index = tc * QEDE_RSS_CNT(edev) + i;
2497 memset(&q_params, 0, sizeof(q_params));
2498 q_params.rss_id = i;
2499 q_params.queue_id = txq_index;
2500 q_params.vport_id = 0;
2501 q_params.sb = fp->sb_info->igu_sb_id;
2502 q_params.sb_idx = TX_PI(tc);
2504 rc = edev->ops->q_tx_start(cdev, &q_params,
2505 txq->tx_pbl.pbl.p_phys_table,
2506 txq->tx_pbl.page_cnt,
2507 &txq->doorbell_addr);
2508 if (rc) {
2509 DP_ERR(edev, "Start TXQ #%d failed %d\n",
2510 txq_index, rc);
2511 return rc;
2514 txq->hw_cons_ptr =
2515 &fp->sb_info->sb_virt->pi_array[TX_PI(tc)];
2516 SET_FIELD(txq->tx_db.data.params,
2517 ETH_DB_DATA_DEST, DB_DEST_XCM);
2518 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
2519 DB_AGG_CMD_SET);
2520 SET_FIELD(txq->tx_db.data.params,
2521 ETH_DB_DATA_AGG_VAL_SEL,
2522 DQ_XCM_ETH_TX_BD_PROD_CMD);
2524 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2528 /* Prepare and send the vport enable */
2529 memset(&vport_update_params, 0, sizeof(vport_update_params));
2530 vport_update_params.vport_id = vport_id;
2531 vport_update_params.update_vport_active_flg = 1;
2532 vport_update_params.vport_active_flg = 1;
2534 /* Fill struct with RSS params */
2535 if (QEDE_RSS_CNT(edev) > 1) {
2536 vport_update_params.update_rss_flg = 1;
2537 for (i = 0; i < 128; i++)
2538 rss_params->rss_ind_table[i] =
2539 ethtool_rxfh_indir_default(i, QEDE_RSS_CNT(edev));
2540 netdev_rss_key_fill(rss_params->rss_key,
2541 sizeof(rss_params->rss_key));
2542 } else {
2543 memset(rss_params, 0, sizeof(*rss_params));
2545 memcpy(&vport_update_params.rss_params, rss_params,
2546 sizeof(*rss_params));
2548 rc = edev->ops->vport_update(cdev, &vport_update_params);
2549 if (rc) {
2550 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2551 return rc;
2554 return 0;
2557 static int qede_set_mcast_rx_mac(struct qede_dev *edev,
2558 enum qed_filter_xcast_params_type opcode,
2559 unsigned char *mac, int num_macs)
2561 struct qed_filter_params filter_cmd;
2562 int i;
2564 memset(&filter_cmd, 0, sizeof(filter_cmd));
2565 filter_cmd.type = QED_FILTER_TYPE_MCAST;
2566 filter_cmd.filter.mcast.type = opcode;
2567 filter_cmd.filter.mcast.num = num_macs;
2569 for (i = 0; i < num_macs; i++, mac += ETH_ALEN)
2570 ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac);
2572 return edev->ops->filter_config(edev->cdev, &filter_cmd);
2575 enum qede_unload_mode {
2576 QEDE_UNLOAD_NORMAL,
2579 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode)
2581 struct qed_link_params link_params;
2582 int rc;
2584 DP_INFO(edev, "Starting qede unload\n");
2586 mutex_lock(&edev->qede_lock);
2587 edev->state = QEDE_STATE_CLOSED;
2589 /* Close OS Tx */
2590 netif_tx_disable(edev->ndev);
2591 netif_carrier_off(edev->ndev);
2593 /* Reset the link */
2594 memset(&link_params, 0, sizeof(link_params));
2595 link_params.link_up = false;
2596 edev->ops->common->set_link(edev->cdev, &link_params);
2597 rc = qede_stop_queues(edev);
2598 if (rc) {
2599 qede_sync_free_irqs(edev);
2600 goto out;
2603 DP_INFO(edev, "Stopped Queues\n");
2605 qede_vlan_mark_nonconfigured(edev);
2606 edev->ops->fastpath_stop(edev->cdev);
2608 /* Release the interrupts */
2609 qede_sync_free_irqs(edev);
2610 edev->ops->common->set_fp_int(edev->cdev, 0);
2612 qede_napi_disable_remove(edev);
2614 qede_free_mem_load(edev);
2615 qede_free_fp_array(edev);
2617 out:
2618 mutex_unlock(&edev->qede_lock);
2619 DP_INFO(edev, "Ending qede unload\n");
2622 enum qede_load_mode {
2623 QEDE_LOAD_NORMAL,
2626 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode)
2628 struct qed_link_params link_params;
2629 struct qed_link_output link_output;
2630 int rc;
2632 DP_INFO(edev, "Starting qede load\n");
2634 rc = qede_set_num_queues(edev);
2635 if (rc)
2636 goto err0;
2638 rc = qede_alloc_fp_array(edev);
2639 if (rc)
2640 goto err0;
2642 qede_init_fp(edev);
2644 rc = qede_alloc_mem_load(edev);
2645 if (rc)
2646 goto err1;
2647 DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n",
2648 QEDE_RSS_CNT(edev), edev->num_tc);
2650 rc = qede_set_real_num_queues(edev);
2651 if (rc)
2652 goto err2;
2654 qede_napi_add_enable(edev);
2655 DP_INFO(edev, "Napi added and enabled\n");
2657 rc = qede_setup_irqs(edev);
2658 if (rc)
2659 goto err3;
2660 DP_INFO(edev, "Setup IRQs succeeded\n");
2662 rc = qede_start_queues(edev);
2663 if (rc)
2664 goto err4;
2665 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2667 /* Add primary mac and set Rx filters */
2668 ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr);
2670 mutex_lock(&edev->qede_lock);
2671 edev->state = QEDE_STATE_OPEN;
2672 mutex_unlock(&edev->qede_lock);
2674 /* Program un-configured VLANs */
2675 qede_configure_vlan_filters(edev);
2677 /* Ask for link-up using current configuration */
2678 memset(&link_params, 0, sizeof(link_params));
2679 link_params.link_up = true;
2680 edev->ops->common->set_link(edev->cdev, &link_params);
2682 /* Query whether link is already-up */
2683 memset(&link_output, 0, sizeof(link_output));
2684 edev->ops->common->get_link(edev->cdev, &link_output);
2685 qede_link_update(edev, &link_output);
2687 DP_INFO(edev, "Ending successfully qede load\n");
2689 return 0;
2691 err4:
2692 qede_sync_free_irqs(edev);
2693 memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2694 err3:
2695 qede_napi_disable_remove(edev);
2696 err2:
2697 qede_free_mem_load(edev);
2698 err1:
2699 edev->ops->common->set_fp_int(edev->cdev, 0);
2700 qede_free_fp_array(edev);
2701 edev->num_rss = 0;
2702 err0:
2703 return rc;
2706 void qede_reload(struct qede_dev *edev,
2707 void (*func)(struct qede_dev *, union qede_reload_args *),
2708 union qede_reload_args *args)
2710 qede_unload(edev, QEDE_UNLOAD_NORMAL);
2711 /* Call function handler to update parameters
2712 * needed for function load.
2714 if (func)
2715 func(edev, args);
2717 qede_load(edev, QEDE_LOAD_NORMAL);
2719 mutex_lock(&edev->qede_lock);
2720 qede_config_rx_mode(edev->ndev);
2721 mutex_unlock(&edev->qede_lock);
2724 /* called with rtnl_lock */
2725 static int qede_open(struct net_device *ndev)
2727 struct qede_dev *edev = netdev_priv(ndev);
2729 netif_carrier_off(ndev);
2731 edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2733 return qede_load(edev, QEDE_LOAD_NORMAL);
2736 static int qede_close(struct net_device *ndev)
2738 struct qede_dev *edev = netdev_priv(ndev);
2740 qede_unload(edev, QEDE_UNLOAD_NORMAL);
2742 return 0;
2745 static void qede_link_update(void *dev, struct qed_link_output *link)
2747 struct qede_dev *edev = dev;
2749 if (!netif_running(edev->ndev)) {
2750 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
2751 return;
2754 if (link->link_up) {
2755 DP_NOTICE(edev, "Link is up\n");
2756 netif_tx_start_all_queues(edev->ndev);
2757 netif_carrier_on(edev->ndev);
2758 } else {
2759 DP_NOTICE(edev, "Link is down\n");
2760 netif_tx_disable(edev->ndev);
2761 netif_carrier_off(edev->ndev);
2765 static int qede_set_mac_addr(struct net_device *ndev, void *p)
2767 struct qede_dev *edev = netdev_priv(ndev);
2768 struct sockaddr *addr = p;
2769 int rc;
2771 ASSERT_RTNL(); /* @@@TBD To be removed */
2773 DP_INFO(edev, "Set_mac_addr called\n");
2775 if (!is_valid_ether_addr(addr->sa_data)) {
2776 DP_NOTICE(edev, "The MAC address is not valid\n");
2777 return -EFAULT;
2780 ether_addr_copy(ndev->dev_addr, addr->sa_data);
2782 if (!netif_running(ndev)) {
2783 DP_NOTICE(edev, "The device is currently down\n");
2784 return 0;
2787 /* Remove the previous primary mac */
2788 rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
2789 edev->primary_mac);
2790 if (rc)
2791 return rc;
2793 /* Add MAC filter according to the new unicast HW MAC address */
2794 ether_addr_copy(edev->primary_mac, ndev->dev_addr);
2795 return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
2796 edev->primary_mac);
2799 static int
2800 qede_configure_mcast_filtering(struct net_device *ndev,
2801 enum qed_filter_rx_mode_type *accept_flags)
2803 struct qede_dev *edev = netdev_priv(ndev);
2804 unsigned char *mc_macs, *temp;
2805 struct netdev_hw_addr *ha;
2806 int rc = 0, mc_count;
2807 size_t size;
2809 size = 64 * ETH_ALEN;
2811 mc_macs = kzalloc(size, GFP_KERNEL);
2812 if (!mc_macs) {
2813 DP_NOTICE(edev,
2814 "Failed to allocate memory for multicast MACs\n");
2815 rc = -ENOMEM;
2816 goto exit;
2819 temp = mc_macs;
2821 /* Remove all previously configured MAC filters */
2822 rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
2823 mc_macs, 1);
2824 if (rc)
2825 goto exit;
2827 netif_addr_lock_bh(ndev);
2829 mc_count = netdev_mc_count(ndev);
2830 if (mc_count < 64) {
2831 netdev_for_each_mc_addr(ha, ndev) {
2832 ether_addr_copy(temp, ha->addr);
2833 temp += ETH_ALEN;
2837 netif_addr_unlock_bh(ndev);
2839 /* Check for all multicast @@@TBD resource allocation */
2840 if ((ndev->flags & IFF_ALLMULTI) ||
2841 (mc_count > 64)) {
2842 if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR)
2843 *accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
2844 } else {
2845 /* Add all multicast MAC filters */
2846 rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
2847 mc_macs, mc_count);
2850 exit:
2851 kfree(mc_macs);
2852 return rc;
2855 static void qede_set_rx_mode(struct net_device *ndev)
2857 struct qede_dev *edev = netdev_priv(ndev);
2859 DP_INFO(edev, "qede_set_rx_mode called\n");
2861 if (edev->state != QEDE_STATE_OPEN) {
2862 DP_INFO(edev,
2863 "qede_set_rx_mode called while interface is down\n");
2864 } else {
2865 set_bit(QEDE_SP_RX_MODE, &edev->sp_flags);
2866 schedule_delayed_work(&edev->sp_task, 0);
2870 /* Must be called with qede_lock held */
2871 static void qede_config_rx_mode(struct net_device *ndev)
2873 enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST;
2874 struct qede_dev *edev = netdev_priv(ndev);
2875 struct qed_filter_params rx_mode;
2876 unsigned char *uc_macs, *temp;
2877 struct netdev_hw_addr *ha;
2878 int rc, uc_count;
2879 size_t size;
2881 netif_addr_lock_bh(ndev);
2883 uc_count = netdev_uc_count(ndev);
2884 size = uc_count * ETH_ALEN;
2886 uc_macs = kzalloc(size, GFP_ATOMIC);
2887 if (!uc_macs) {
2888 DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n");
2889 netif_addr_unlock_bh(ndev);
2890 return;
2893 temp = uc_macs;
2894 netdev_for_each_uc_addr(ha, ndev) {
2895 ether_addr_copy(temp, ha->addr);
2896 temp += ETH_ALEN;
2899 netif_addr_unlock_bh(ndev);
2901 /* Configure the struct for the Rx mode */
2902 memset(&rx_mode, 0, sizeof(struct qed_filter_params));
2903 rx_mode.type = QED_FILTER_TYPE_RX_MODE;
2905 /* Remove all previous unicast secondary macs and multicast macs
2906 * (configrue / leave the primary mac)
2908 rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE,
2909 edev->primary_mac);
2910 if (rc)
2911 goto out;
2913 /* Check for promiscuous */
2914 if ((ndev->flags & IFF_PROMISC) ||
2915 (uc_count > 15)) { /* @@@TBD resource allocation - 1 */
2916 accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
2917 } else {
2918 /* Add MAC filters according to the unicast secondary macs */
2919 int i;
2921 temp = uc_macs;
2922 for (i = 0; i < uc_count; i++) {
2923 rc = qede_set_ucast_rx_mac(edev,
2924 QED_FILTER_XCAST_TYPE_ADD,
2925 temp);
2926 if (rc)
2927 goto out;
2929 temp += ETH_ALEN;
2932 rc = qede_configure_mcast_filtering(ndev, &accept_flags);
2933 if (rc)
2934 goto out;
2937 /* take care of VLAN mode */
2938 if (ndev->flags & IFF_PROMISC) {
2939 qede_config_accept_any_vlan(edev, true);
2940 } else if (!edev->non_configured_vlans) {
2941 /* It's possible that accept_any_vlan mode is set due to a
2942 * previous setting of IFF_PROMISC. If vlan credits are
2943 * sufficient, disable accept_any_vlan.
2945 qede_config_accept_any_vlan(edev, false);
2948 rx_mode.filter.accept_flags = accept_flags;
2949 edev->ops->filter_config(edev->cdev, &rx_mode);
2950 out:
2951 kfree(uc_macs);