Replace <asm/uaccess.h> with <linux/uaccess.h> globally
[linux-2.6/btrfs-unstable.git] / drivers / net / ethernet / chelsio / cxgb3 / sge.c
blobe4b5b057f41786733ea9883de572702aeec78e68
1 /*
2 * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
32 #include <linux/skbuff.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/if_vlan.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/slab.h>
40 #include <linux/prefetch.h>
41 #include <net/arp.h>
42 #include "common.h"
43 #include "regs.h"
44 #include "sge_defs.h"
45 #include "t3_cpl.h"
46 #include "firmware_exports.h"
47 #include "cxgb3_offload.h"
49 #define USE_GTS 0
51 #define SGE_RX_SM_BUF_SIZE 1536
53 #define SGE_RX_COPY_THRES 256
54 #define SGE_RX_PULL_LEN 128
56 #define SGE_PG_RSVD SMP_CACHE_BYTES
58 * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
59 * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs
60 * directly.
62 #define FL0_PG_CHUNK_SIZE 2048
63 #define FL0_PG_ORDER 0
64 #define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER)
65 #define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
66 #define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
67 #define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER)
69 #define SGE_RX_DROP_THRES 16
70 #define RX_RECLAIM_PERIOD (HZ/4)
73 * Max number of Rx buffers we replenish at a time.
75 #define MAX_RX_REFILL 16U
77 * Period of the Tx buffer reclaim timer. This timer does not need to run
78 * frequently as Tx buffers are usually reclaimed by new Tx packets.
80 #define TX_RECLAIM_PERIOD (HZ / 4)
81 #define TX_RECLAIM_TIMER_CHUNK 64U
82 #define TX_RECLAIM_CHUNK 16U
84 /* WR size in bytes */
85 #define WR_LEN (WR_FLITS * 8)
88 * Types of Tx queues in each queue set. Order here matters, do not change.
90 enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
92 /* Values for sge_txq.flags */
93 enum {
94 TXQ_RUNNING = 1 << 0, /* fetch engine is running */
95 TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */
98 struct tx_desc {
99 __be64 flit[TX_DESC_FLITS];
102 struct rx_desc {
103 __be32 addr_lo;
104 __be32 len_gen;
105 __be32 gen2;
106 __be32 addr_hi;
109 struct tx_sw_desc { /* SW state per Tx descriptor */
110 struct sk_buff *skb;
111 u8 eop; /* set if last descriptor for packet */
112 u8 addr_idx; /* buffer index of first SGL entry in descriptor */
113 u8 fragidx; /* first page fragment associated with descriptor */
114 s8 sflit; /* start flit of first SGL entry in descriptor */
117 struct rx_sw_desc { /* SW state per Rx descriptor */
118 union {
119 struct sk_buff *skb;
120 struct fl_pg_chunk pg_chunk;
122 DEFINE_DMA_UNMAP_ADDR(dma_addr);
125 struct rsp_desc { /* response queue descriptor */
126 struct rss_header rss_hdr;
127 __be32 flags;
128 __be32 len_cq;
129 u8 imm_data[47];
130 u8 intr_gen;
134 * Holds unmapping information for Tx packets that need deferred unmapping.
135 * This structure lives at skb->head and must be allocated by callers.
137 struct deferred_unmap_info {
138 struct pci_dev *pdev;
139 dma_addr_t addr[MAX_SKB_FRAGS + 1];
143 * Maps a number of flits to the number of Tx descriptors that can hold them.
144 * The formula is
146 * desc = 1 + (flits - 2) / (WR_FLITS - 1).
148 * HW allows up to 4 descriptors to be combined into a WR.
150 static u8 flit_desc_map[] = {
152 #if SGE_NUM_GENBITS == 1
153 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
154 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
155 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
156 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
157 #elif SGE_NUM_GENBITS == 2
158 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
159 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
160 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
161 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
162 #else
163 # error "SGE_NUM_GENBITS must be 1 or 2"
164 #endif
167 static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
169 return container_of(q, struct sge_qset, fl[qidx]);
172 static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
174 return container_of(q, struct sge_qset, rspq);
177 static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
179 return container_of(q, struct sge_qset, txq[qidx]);
183 * refill_rspq - replenish an SGE response queue
184 * @adapter: the adapter
185 * @q: the response queue to replenish
186 * @credits: how many new responses to make available
188 * Replenishes a response queue by making the supplied number of responses
189 * available to HW.
191 static inline void refill_rspq(struct adapter *adapter,
192 const struct sge_rspq *q, unsigned int credits)
194 rmb();
195 t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
196 V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
200 * need_skb_unmap - does the platform need unmapping of sk_buffs?
202 * Returns true if the platform needs sk_buff unmapping. The compiler
203 * optimizes away unnecessary code if this returns true.
205 static inline int need_skb_unmap(void)
207 #ifdef CONFIG_NEED_DMA_MAP_STATE
208 return 1;
209 #else
210 return 0;
211 #endif
215 * unmap_skb - unmap a packet main body and its page fragments
216 * @skb: the packet
217 * @q: the Tx queue containing Tx descriptors for the packet
218 * @cidx: index of Tx descriptor
219 * @pdev: the PCI device
221 * Unmap the main body of an sk_buff and its page fragments, if any.
222 * Because of the fairly complicated structure of our SGLs and the desire
223 * to conserve space for metadata, the information necessary to unmap an
224 * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
225 * descriptors (the physical addresses of the various data buffers), and
226 * the SW descriptor state (assorted indices). The send functions
227 * initialize the indices for the first packet descriptor so we can unmap
228 * the buffers held in the first Tx descriptor here, and we have enough
229 * information at this point to set the state for the next Tx descriptor.
231 * Note that it is possible to clean up the first descriptor of a packet
232 * before the send routines have written the next descriptors, but this
233 * race does not cause any problem. We just end up writing the unmapping
234 * info for the descriptor first.
236 static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
237 unsigned int cidx, struct pci_dev *pdev)
239 const struct sg_ent *sgp;
240 struct tx_sw_desc *d = &q->sdesc[cidx];
241 int nfrags, frag_idx, curflit, j = d->addr_idx;
243 sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
244 frag_idx = d->fragidx;
246 if (frag_idx == 0 && skb_headlen(skb)) {
247 pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]),
248 skb_headlen(skb), PCI_DMA_TODEVICE);
249 j = 1;
252 curflit = d->sflit + 1 + j;
253 nfrags = skb_shinfo(skb)->nr_frags;
255 while (frag_idx < nfrags && curflit < WR_FLITS) {
256 pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
257 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]),
258 PCI_DMA_TODEVICE);
259 j ^= 1;
260 if (j == 0) {
261 sgp++;
262 curflit++;
264 curflit++;
265 frag_idx++;
268 if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */
269 d = cidx + 1 == q->size ? q->sdesc : d + 1;
270 d->fragidx = frag_idx;
271 d->addr_idx = j;
272 d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
277 * free_tx_desc - reclaims Tx descriptors and their buffers
278 * @adapter: the adapter
279 * @q: the Tx queue to reclaim descriptors from
280 * @n: the number of descriptors to reclaim
282 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
283 * Tx buffers. Called with the Tx queue lock held.
285 static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
286 unsigned int n)
288 struct tx_sw_desc *d;
289 struct pci_dev *pdev = adapter->pdev;
290 unsigned int cidx = q->cidx;
292 const int need_unmap = need_skb_unmap() &&
293 q->cntxt_id >= FW_TUNNEL_SGEEC_START;
295 d = &q->sdesc[cidx];
296 while (n--) {
297 if (d->skb) { /* an SGL is present */
298 if (need_unmap)
299 unmap_skb(d->skb, q, cidx, pdev);
300 if (d->eop) {
301 dev_consume_skb_any(d->skb);
302 d->skb = NULL;
305 ++d;
306 if (++cidx == q->size) {
307 cidx = 0;
308 d = q->sdesc;
311 q->cidx = cidx;
315 * reclaim_completed_tx - reclaims completed Tx descriptors
316 * @adapter: the adapter
317 * @q: the Tx queue to reclaim completed descriptors from
318 * @chunk: maximum number of descriptors to reclaim
320 * Reclaims Tx descriptors that the SGE has indicated it has processed,
321 * and frees the associated buffers if possible. Called with the Tx
322 * queue's lock held.
324 static inline unsigned int reclaim_completed_tx(struct adapter *adapter,
325 struct sge_txq *q,
326 unsigned int chunk)
328 unsigned int reclaim = q->processed - q->cleaned;
330 reclaim = min(chunk, reclaim);
331 if (reclaim) {
332 free_tx_desc(adapter, q, reclaim);
333 q->cleaned += reclaim;
334 q->in_use -= reclaim;
336 return q->processed - q->cleaned;
340 * should_restart_tx - are there enough resources to restart a Tx queue?
341 * @q: the Tx queue
343 * Checks if there are enough descriptors to restart a suspended Tx queue.
345 static inline int should_restart_tx(const struct sge_txq *q)
347 unsigned int r = q->processed - q->cleaned;
349 return q->in_use - r < (q->size >> 1);
352 static void clear_rx_desc(struct pci_dev *pdev, const struct sge_fl *q,
353 struct rx_sw_desc *d)
355 if (q->use_pages && d->pg_chunk.page) {
356 (*d->pg_chunk.p_cnt)--;
357 if (!*d->pg_chunk.p_cnt)
358 pci_unmap_page(pdev,
359 d->pg_chunk.mapping,
360 q->alloc_size, PCI_DMA_FROMDEVICE);
362 put_page(d->pg_chunk.page);
363 d->pg_chunk.page = NULL;
364 } else {
365 pci_unmap_single(pdev, dma_unmap_addr(d, dma_addr),
366 q->buf_size, PCI_DMA_FROMDEVICE);
367 kfree_skb(d->skb);
368 d->skb = NULL;
373 * free_rx_bufs - free the Rx buffers on an SGE free list
374 * @pdev: the PCI device associated with the adapter
375 * @rxq: the SGE free list to clean up
377 * Release the buffers on an SGE free-buffer Rx queue. HW fetching from
378 * this queue should be stopped before calling this function.
380 static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
382 unsigned int cidx = q->cidx;
384 while (q->credits--) {
385 struct rx_sw_desc *d = &q->sdesc[cidx];
388 clear_rx_desc(pdev, q, d);
389 if (++cidx == q->size)
390 cidx = 0;
393 if (q->pg_chunk.page) {
394 __free_pages(q->pg_chunk.page, q->order);
395 q->pg_chunk.page = NULL;
400 * add_one_rx_buf - add a packet buffer to a free-buffer list
401 * @va: buffer start VA
402 * @len: the buffer length
403 * @d: the HW Rx descriptor to write
404 * @sd: the SW Rx descriptor to write
405 * @gen: the generation bit value
406 * @pdev: the PCI device associated with the adapter
408 * Add a buffer of the given length to the supplied HW and SW Rx
409 * descriptors.
411 static inline int add_one_rx_buf(void *va, unsigned int len,
412 struct rx_desc *d, struct rx_sw_desc *sd,
413 unsigned int gen, struct pci_dev *pdev)
415 dma_addr_t mapping;
417 mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
418 if (unlikely(pci_dma_mapping_error(pdev, mapping)))
419 return -ENOMEM;
421 dma_unmap_addr_set(sd, dma_addr, mapping);
423 d->addr_lo = cpu_to_be32(mapping);
424 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
425 dma_wmb();
426 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
427 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
428 return 0;
431 static inline int add_one_rx_chunk(dma_addr_t mapping, struct rx_desc *d,
432 unsigned int gen)
434 d->addr_lo = cpu_to_be32(mapping);
435 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
436 dma_wmb();
437 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
438 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
439 return 0;
442 static int alloc_pg_chunk(struct adapter *adapter, struct sge_fl *q,
443 struct rx_sw_desc *sd, gfp_t gfp,
444 unsigned int order)
446 if (!q->pg_chunk.page) {
447 dma_addr_t mapping;
449 q->pg_chunk.page = alloc_pages(gfp, order);
450 if (unlikely(!q->pg_chunk.page))
451 return -ENOMEM;
452 q->pg_chunk.va = page_address(q->pg_chunk.page);
453 q->pg_chunk.p_cnt = q->pg_chunk.va + (PAGE_SIZE << order) -
454 SGE_PG_RSVD;
455 q->pg_chunk.offset = 0;
456 mapping = pci_map_page(adapter->pdev, q->pg_chunk.page,
457 0, q->alloc_size, PCI_DMA_FROMDEVICE);
458 q->pg_chunk.mapping = mapping;
460 sd->pg_chunk = q->pg_chunk;
462 prefetch(sd->pg_chunk.p_cnt);
464 q->pg_chunk.offset += q->buf_size;
465 if (q->pg_chunk.offset == (PAGE_SIZE << order))
466 q->pg_chunk.page = NULL;
467 else {
468 q->pg_chunk.va += q->buf_size;
469 get_page(q->pg_chunk.page);
472 if (sd->pg_chunk.offset == 0)
473 *sd->pg_chunk.p_cnt = 1;
474 else
475 *sd->pg_chunk.p_cnt += 1;
477 return 0;
480 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
482 if (q->pend_cred >= q->credits / 4) {
483 q->pend_cred = 0;
484 wmb();
485 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
490 * refill_fl - refill an SGE free-buffer list
491 * @adapter: the adapter
492 * @q: the free-list to refill
493 * @n: the number of new buffers to allocate
494 * @gfp: the gfp flags for allocating new buffers
496 * (Re)populate an SGE free-buffer list with up to @n new packet buffers,
497 * allocated with the supplied gfp flags. The caller must assure that
498 * @n does not exceed the queue's capacity.
500 static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
502 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
503 struct rx_desc *d = &q->desc[q->pidx];
504 unsigned int count = 0;
506 while (n--) {
507 dma_addr_t mapping;
508 int err;
510 if (q->use_pages) {
511 if (unlikely(alloc_pg_chunk(adap, q, sd, gfp,
512 q->order))) {
513 nomem: q->alloc_failed++;
514 break;
516 mapping = sd->pg_chunk.mapping + sd->pg_chunk.offset;
517 dma_unmap_addr_set(sd, dma_addr, mapping);
519 add_one_rx_chunk(mapping, d, q->gen);
520 pci_dma_sync_single_for_device(adap->pdev, mapping,
521 q->buf_size - SGE_PG_RSVD,
522 PCI_DMA_FROMDEVICE);
523 } else {
524 void *buf_start;
526 struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
527 if (!skb)
528 goto nomem;
530 sd->skb = skb;
531 buf_start = skb->data;
532 err = add_one_rx_buf(buf_start, q->buf_size, d, sd,
533 q->gen, adap->pdev);
534 if (unlikely(err)) {
535 clear_rx_desc(adap->pdev, q, sd);
536 break;
540 d++;
541 sd++;
542 if (++q->pidx == q->size) {
543 q->pidx = 0;
544 q->gen ^= 1;
545 sd = q->sdesc;
546 d = q->desc;
548 count++;
551 q->credits += count;
552 q->pend_cred += count;
553 ring_fl_db(adap, q);
555 return count;
558 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
560 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits),
561 GFP_ATOMIC | __GFP_COMP);
565 * recycle_rx_buf - recycle a receive buffer
566 * @adapter: the adapter
567 * @q: the SGE free list
568 * @idx: index of buffer to recycle
570 * Recycles the specified buffer on the given free list by adding it at
571 * the next available slot on the list.
573 static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
574 unsigned int idx)
576 struct rx_desc *from = &q->desc[idx];
577 struct rx_desc *to = &q->desc[q->pidx];
579 q->sdesc[q->pidx] = q->sdesc[idx];
580 to->addr_lo = from->addr_lo; /* already big endian */
581 to->addr_hi = from->addr_hi; /* likewise */
582 dma_wmb();
583 to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
584 to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
586 if (++q->pidx == q->size) {
587 q->pidx = 0;
588 q->gen ^= 1;
591 q->credits++;
592 q->pend_cred++;
593 ring_fl_db(adap, q);
597 * alloc_ring - allocate resources for an SGE descriptor ring
598 * @pdev: the PCI device
599 * @nelem: the number of descriptors
600 * @elem_size: the size of each descriptor
601 * @sw_size: the size of the SW state associated with each ring element
602 * @phys: the physical address of the allocated ring
603 * @metadata: address of the array holding the SW state for the ring
605 * Allocates resources for an SGE descriptor ring, such as Tx queues,
606 * free buffer lists, or response queues. Each SGE ring requires
607 * space for its HW descriptors plus, optionally, space for the SW state
608 * associated with each HW entry (the metadata). The function returns
609 * three values: the virtual address for the HW ring (the return value
610 * of the function), the physical address of the HW ring, and the address
611 * of the SW ring.
613 static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
614 size_t sw_size, dma_addr_t * phys, void *metadata)
616 size_t len = nelem * elem_size;
617 void *s = NULL;
618 void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
620 if (!p)
621 return NULL;
622 if (sw_size && metadata) {
623 s = kcalloc(nelem, sw_size, GFP_KERNEL);
625 if (!s) {
626 dma_free_coherent(&pdev->dev, len, p, *phys);
627 return NULL;
629 *(void **)metadata = s;
631 memset(p, 0, len);
632 return p;
636 * t3_reset_qset - reset a sge qset
637 * @q: the queue set
639 * Reset the qset structure.
640 * the NAPI structure is preserved in the event of
641 * the qset's reincarnation, for example during EEH recovery.
643 static void t3_reset_qset(struct sge_qset *q)
645 if (q->adap &&
646 !(q->adap->flags & NAPI_INIT)) {
647 memset(q, 0, sizeof(*q));
648 return;
651 q->adap = NULL;
652 memset(&q->rspq, 0, sizeof(q->rspq));
653 memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET);
654 memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET);
655 q->txq_stopped = 0;
656 q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */
657 q->rx_reclaim_timer.function = NULL;
658 q->nomem = 0;
659 napi_free_frags(&q->napi);
664 * free_qset - free the resources of an SGE queue set
665 * @adapter: the adapter owning the queue set
666 * @q: the queue set
668 * Release the HW and SW resources associated with an SGE queue set, such
669 * as HW contexts, packet buffers, and descriptor rings. Traffic to the
670 * queue set must be quiesced prior to calling this.
672 static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
674 int i;
675 struct pci_dev *pdev = adapter->pdev;
677 for (i = 0; i < SGE_RXQ_PER_SET; ++i)
678 if (q->fl[i].desc) {
679 spin_lock_irq(&adapter->sge.reg_lock);
680 t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
681 spin_unlock_irq(&adapter->sge.reg_lock);
682 free_rx_bufs(pdev, &q->fl[i]);
683 kfree(q->fl[i].sdesc);
684 dma_free_coherent(&pdev->dev,
685 q->fl[i].size *
686 sizeof(struct rx_desc), q->fl[i].desc,
687 q->fl[i].phys_addr);
690 for (i = 0; i < SGE_TXQ_PER_SET; ++i)
691 if (q->txq[i].desc) {
692 spin_lock_irq(&adapter->sge.reg_lock);
693 t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
694 spin_unlock_irq(&adapter->sge.reg_lock);
695 if (q->txq[i].sdesc) {
696 free_tx_desc(adapter, &q->txq[i],
697 q->txq[i].in_use);
698 kfree(q->txq[i].sdesc);
700 dma_free_coherent(&pdev->dev,
701 q->txq[i].size *
702 sizeof(struct tx_desc),
703 q->txq[i].desc, q->txq[i].phys_addr);
704 __skb_queue_purge(&q->txq[i].sendq);
707 if (q->rspq.desc) {
708 spin_lock_irq(&adapter->sge.reg_lock);
709 t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
710 spin_unlock_irq(&adapter->sge.reg_lock);
711 dma_free_coherent(&pdev->dev,
712 q->rspq.size * sizeof(struct rsp_desc),
713 q->rspq.desc, q->rspq.phys_addr);
716 t3_reset_qset(q);
720 * init_qset_cntxt - initialize an SGE queue set context info
721 * @qs: the queue set
722 * @id: the queue set id
724 * Initializes the TIDs and context ids for the queues of a queue set.
726 static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
728 qs->rspq.cntxt_id = id;
729 qs->fl[0].cntxt_id = 2 * id;
730 qs->fl[1].cntxt_id = 2 * id + 1;
731 qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
732 qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
733 qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
734 qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
735 qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
739 * sgl_len - calculates the size of an SGL of the given capacity
740 * @n: the number of SGL entries
742 * Calculates the number of flits needed for a scatter/gather list that
743 * can hold the given number of entries.
745 static inline unsigned int sgl_len(unsigned int n)
747 /* alternatively: 3 * (n / 2) + 2 * (n & 1) */
748 return (3 * n) / 2 + (n & 1);
752 * flits_to_desc - returns the num of Tx descriptors for the given flits
753 * @n: the number of flits
755 * Calculates the number of Tx descriptors needed for the supplied number
756 * of flits.
758 static inline unsigned int flits_to_desc(unsigned int n)
760 BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
761 return flit_desc_map[n];
765 * get_packet - return the next ingress packet buffer from a free list
766 * @adap: the adapter that received the packet
767 * @fl: the SGE free list holding the packet
768 * @len: the packet length including any SGE padding
769 * @drop_thres: # of remaining buffers before we start dropping packets
771 * Get the next packet from a free list and complete setup of the
772 * sk_buff. If the packet is small we make a copy and recycle the
773 * original buffer, otherwise we use the original buffer itself. If a
774 * positive drop threshold is supplied packets are dropped and their
775 * buffers recycled if (a) the number of remaining buffers is under the
776 * threshold and the packet is too big to copy, or (b) the packet should
777 * be copied but there is no memory for the copy.
779 static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
780 unsigned int len, unsigned int drop_thres)
782 struct sk_buff *skb = NULL;
783 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
785 prefetch(sd->skb->data);
786 fl->credits--;
788 if (len <= SGE_RX_COPY_THRES) {
789 skb = alloc_skb(len, GFP_ATOMIC);
790 if (likely(skb != NULL)) {
791 __skb_put(skb, len);
792 pci_dma_sync_single_for_cpu(adap->pdev,
793 dma_unmap_addr(sd, dma_addr), len,
794 PCI_DMA_FROMDEVICE);
795 memcpy(skb->data, sd->skb->data, len);
796 pci_dma_sync_single_for_device(adap->pdev,
797 dma_unmap_addr(sd, dma_addr), len,
798 PCI_DMA_FROMDEVICE);
799 } else if (!drop_thres)
800 goto use_orig_buf;
801 recycle:
802 recycle_rx_buf(adap, fl, fl->cidx);
803 return skb;
806 if (unlikely(fl->credits < drop_thres) &&
807 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1),
808 GFP_ATOMIC | __GFP_COMP) == 0)
809 goto recycle;
811 use_orig_buf:
812 pci_unmap_single(adap->pdev, dma_unmap_addr(sd, dma_addr),
813 fl->buf_size, PCI_DMA_FROMDEVICE);
814 skb = sd->skb;
815 skb_put(skb, len);
816 __refill_fl(adap, fl);
817 return skb;
821 * get_packet_pg - return the next ingress packet buffer from a free list
822 * @adap: the adapter that received the packet
823 * @fl: the SGE free list holding the packet
824 * @len: the packet length including any SGE padding
825 * @drop_thres: # of remaining buffers before we start dropping packets
827 * Get the next packet from a free list populated with page chunks.
828 * If the packet is small we make a copy and recycle the original buffer,
829 * otherwise we attach the original buffer as a page fragment to a fresh
830 * sk_buff. If a positive drop threshold is supplied packets are dropped
831 * and their buffers recycled if (a) the number of remaining buffers is
832 * under the threshold and the packet is too big to copy, or (b) there's
833 * no system memory.
835 * Note: this function is similar to @get_packet but deals with Rx buffers
836 * that are page chunks rather than sk_buffs.
838 static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
839 struct sge_rspq *q, unsigned int len,
840 unsigned int drop_thres)
842 struct sk_buff *newskb, *skb;
843 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
845 dma_addr_t dma_addr = dma_unmap_addr(sd, dma_addr);
847 newskb = skb = q->pg_skb;
848 if (!skb && (len <= SGE_RX_COPY_THRES)) {
849 newskb = alloc_skb(len, GFP_ATOMIC);
850 if (likely(newskb != NULL)) {
851 __skb_put(newskb, len);
852 pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
853 PCI_DMA_FROMDEVICE);
854 memcpy(newskb->data, sd->pg_chunk.va, len);
855 pci_dma_sync_single_for_device(adap->pdev, dma_addr,
856 len,
857 PCI_DMA_FROMDEVICE);
858 } else if (!drop_thres)
859 return NULL;
860 recycle:
861 fl->credits--;
862 recycle_rx_buf(adap, fl, fl->cidx);
863 q->rx_recycle_buf++;
864 return newskb;
867 if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres)))
868 goto recycle;
870 prefetch(sd->pg_chunk.p_cnt);
872 if (!skb)
873 newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
875 if (unlikely(!newskb)) {
876 if (!drop_thres)
877 return NULL;
878 goto recycle;
881 pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
882 PCI_DMA_FROMDEVICE);
883 (*sd->pg_chunk.p_cnt)--;
884 if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
885 pci_unmap_page(adap->pdev,
886 sd->pg_chunk.mapping,
887 fl->alloc_size,
888 PCI_DMA_FROMDEVICE);
889 if (!skb) {
890 __skb_put(newskb, SGE_RX_PULL_LEN);
891 memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
892 skb_fill_page_desc(newskb, 0, sd->pg_chunk.page,
893 sd->pg_chunk.offset + SGE_RX_PULL_LEN,
894 len - SGE_RX_PULL_LEN);
895 newskb->len = len;
896 newskb->data_len = len - SGE_RX_PULL_LEN;
897 newskb->truesize += newskb->data_len;
898 } else {
899 skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags,
900 sd->pg_chunk.page,
901 sd->pg_chunk.offset, len);
902 newskb->len += len;
903 newskb->data_len += len;
904 newskb->truesize += len;
907 fl->credits--;
909 * We do not refill FLs here, we let the caller do it to overlap a
910 * prefetch.
912 return newskb;
916 * get_imm_packet - return the next ingress packet buffer from a response
917 * @resp: the response descriptor containing the packet data
919 * Return a packet containing the immediate data of the given response.
921 static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
923 struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
925 if (skb) {
926 __skb_put(skb, IMMED_PKT_SIZE);
927 skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
929 return skb;
933 * calc_tx_descs - calculate the number of Tx descriptors for a packet
934 * @skb: the packet
936 * Returns the number of Tx descriptors needed for the given Ethernet
937 * packet. Ethernet packets require addition of WR and CPL headers.
939 static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
941 unsigned int flits;
943 if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
944 return 1;
946 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
947 if (skb_shinfo(skb)->gso_size)
948 flits++;
949 return flits_to_desc(flits);
953 * make_sgl - populate a scatter/gather list for a packet
954 * @skb: the packet
955 * @sgp: the SGL to populate
956 * @start: start address of skb main body data to include in the SGL
957 * @len: length of skb main body data to include in the SGL
958 * @pdev: the PCI device
960 * Generates a scatter/gather list for the buffers that make up a packet
961 * and returns the SGL size in 8-byte words. The caller must size the SGL
962 * appropriately.
964 static inline unsigned int make_sgl(const struct sk_buff *skb,
965 struct sg_ent *sgp, unsigned char *start,
966 unsigned int len, struct pci_dev *pdev)
968 dma_addr_t mapping;
969 unsigned int i, j = 0, nfrags;
971 if (len) {
972 mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE);
973 sgp->len[0] = cpu_to_be32(len);
974 sgp->addr[0] = cpu_to_be64(mapping);
975 j = 1;
978 nfrags = skb_shinfo(skb)->nr_frags;
979 for (i = 0; i < nfrags; i++) {
980 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
982 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, skb_frag_size(frag),
983 DMA_TO_DEVICE);
984 sgp->len[j] = cpu_to_be32(skb_frag_size(frag));
985 sgp->addr[j] = cpu_to_be64(mapping);
986 j ^= 1;
987 if (j == 0)
988 ++sgp;
990 if (j)
991 sgp->len[j] = 0;
992 return ((nfrags + (len != 0)) * 3) / 2 + j;
996 * check_ring_tx_db - check and potentially ring a Tx queue's doorbell
997 * @adap: the adapter
998 * @q: the Tx queue
1000 * Ring the doorbel if a Tx queue is asleep. There is a natural race,
1001 * where the HW is going to sleep just after we checked, however,
1002 * then the interrupt handler will detect the outstanding TX packet
1003 * and ring the doorbell for us.
1005 * When GTS is disabled we unconditionally ring the doorbell.
1007 static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
1009 #if USE_GTS
1010 clear_bit(TXQ_LAST_PKT_DB, &q->flags);
1011 if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
1012 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1013 t3_write_reg(adap, A_SG_KDOORBELL,
1014 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1016 #else
1017 wmb(); /* write descriptors before telling HW */
1018 t3_write_reg(adap, A_SG_KDOORBELL,
1019 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1020 #endif
1023 static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
1025 #if SGE_NUM_GENBITS == 2
1026 d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
1027 #endif
1031 * write_wr_hdr_sgl - write a WR header and, optionally, SGL
1032 * @ndesc: number of Tx descriptors spanned by the SGL
1033 * @skb: the packet corresponding to the WR
1034 * @d: first Tx descriptor to be written
1035 * @pidx: index of above descriptors
1036 * @q: the SGE Tx queue
1037 * @sgl: the SGL
1038 * @flits: number of flits to the start of the SGL in the first descriptor
1039 * @sgl_flits: the SGL size in flits
1040 * @gen: the Tx descriptor generation
1041 * @wr_hi: top 32 bits of WR header based on WR type (big endian)
1042 * @wr_lo: low 32 bits of WR header based on WR type (big endian)
1044 * Write a work request header and an associated SGL. If the SGL is
1045 * small enough to fit into one Tx descriptor it has already been written
1046 * and we just need to write the WR header. Otherwise we distribute the
1047 * SGL across the number of descriptors it spans.
1049 static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
1050 struct tx_desc *d, unsigned int pidx,
1051 const struct sge_txq *q,
1052 const struct sg_ent *sgl,
1053 unsigned int flits, unsigned int sgl_flits,
1054 unsigned int gen, __be32 wr_hi,
1055 __be32 wr_lo)
1057 struct work_request_hdr *wrp = (struct work_request_hdr *)d;
1058 struct tx_sw_desc *sd = &q->sdesc[pidx];
1060 sd->skb = skb;
1061 if (need_skb_unmap()) {
1062 sd->fragidx = 0;
1063 sd->addr_idx = 0;
1064 sd->sflit = flits;
1067 if (likely(ndesc == 1)) {
1068 sd->eop = 1;
1069 wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
1070 V_WR_SGLSFLT(flits)) | wr_hi;
1071 dma_wmb();
1072 wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
1073 V_WR_GEN(gen)) | wr_lo;
1074 wr_gen2(d, gen);
1075 } else {
1076 unsigned int ogen = gen;
1077 const u64 *fp = (const u64 *)sgl;
1078 struct work_request_hdr *wp = wrp;
1080 wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
1081 V_WR_SGLSFLT(flits)) | wr_hi;
1083 while (sgl_flits) {
1084 unsigned int avail = WR_FLITS - flits;
1086 if (avail > sgl_flits)
1087 avail = sgl_flits;
1088 memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
1089 sgl_flits -= avail;
1090 ndesc--;
1091 if (!sgl_flits)
1092 break;
1094 fp += avail;
1095 d++;
1096 sd->eop = 0;
1097 sd++;
1098 if (++pidx == q->size) {
1099 pidx = 0;
1100 gen ^= 1;
1101 d = q->desc;
1102 sd = q->sdesc;
1105 sd->skb = skb;
1106 wrp = (struct work_request_hdr *)d;
1107 wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
1108 V_WR_SGLSFLT(1)) | wr_hi;
1109 wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
1110 sgl_flits + 1)) |
1111 V_WR_GEN(gen)) | wr_lo;
1112 wr_gen2(d, gen);
1113 flits = 1;
1115 sd->eop = 1;
1116 wrp->wr_hi |= htonl(F_WR_EOP);
1117 dma_wmb();
1118 wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
1119 wr_gen2((struct tx_desc *)wp, ogen);
1120 WARN_ON(ndesc != 0);
1125 * write_tx_pkt_wr - write a TX_PKT work request
1126 * @adap: the adapter
1127 * @skb: the packet to send
1128 * @pi: the egress interface
1129 * @pidx: index of the first Tx descriptor to write
1130 * @gen: the generation value to use
1131 * @q: the Tx queue
1132 * @ndesc: number of descriptors the packet will occupy
1133 * @compl: the value of the COMPL bit to use
1135 * Generate a TX_PKT work request to send the supplied packet.
1137 static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
1138 const struct port_info *pi,
1139 unsigned int pidx, unsigned int gen,
1140 struct sge_txq *q, unsigned int ndesc,
1141 unsigned int compl)
1143 unsigned int flits, sgl_flits, cntrl, tso_info;
1144 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1145 struct tx_desc *d = &q->desc[pidx];
1146 struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1148 cpl->len = htonl(skb->len);
1149 cntrl = V_TXPKT_INTF(pi->port_id);
1151 if (skb_vlan_tag_present(skb))
1152 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(skb_vlan_tag_get(skb));
1154 tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1155 if (tso_info) {
1156 int eth_type;
1157 struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1159 d->flit[2] = 0;
1160 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1161 hdr->cntrl = htonl(cntrl);
1162 eth_type = skb_network_offset(skb) == ETH_HLEN ?
1163 CPL_ETH_II : CPL_ETH_II_VLAN;
1164 tso_info |= V_LSO_ETH_TYPE(eth_type) |
1165 V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
1166 V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
1167 hdr->lso_info = htonl(tso_info);
1168 flits = 3;
1169 } else {
1170 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1171 cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */
1172 cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1173 cpl->cntrl = htonl(cntrl);
1175 if (skb->len <= WR_LEN - sizeof(*cpl)) {
1176 q->sdesc[pidx].skb = NULL;
1177 if (!skb->data_len)
1178 skb_copy_from_linear_data(skb, &d->flit[2],
1179 skb->len);
1180 else
1181 skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1183 flits = (skb->len + 7) / 8 + 2;
1184 cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1185 V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1186 | F_WR_SOP | F_WR_EOP | compl);
1187 dma_wmb();
1188 cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1189 V_WR_TID(q->token));
1190 wr_gen2(d, gen);
1191 dev_consume_skb_any(skb);
1192 return;
1195 flits = 2;
1198 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1199 sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev);
1201 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1202 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1203 htonl(V_WR_TID(q->token)));
1206 static inline void t3_stop_tx_queue(struct netdev_queue *txq,
1207 struct sge_qset *qs, struct sge_txq *q)
1209 netif_tx_stop_queue(txq);
1210 set_bit(TXQ_ETH, &qs->txq_stopped);
1211 q->stops++;
1215 * eth_xmit - add a packet to the Ethernet Tx queue
1216 * @skb: the packet
1217 * @dev: the egress net device
1219 * Add a packet to an SGE Tx queue. Runs with softirqs disabled.
1221 netdev_tx_t t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1223 int qidx;
1224 unsigned int ndesc, pidx, credits, gen, compl;
1225 const struct port_info *pi = netdev_priv(dev);
1226 struct adapter *adap = pi->adapter;
1227 struct netdev_queue *txq;
1228 struct sge_qset *qs;
1229 struct sge_txq *q;
1232 * The chip min packet length is 9 octets but play safe and reject
1233 * anything shorter than an Ethernet header.
1235 if (unlikely(skb->len < ETH_HLEN)) {
1236 dev_kfree_skb_any(skb);
1237 return NETDEV_TX_OK;
1240 qidx = skb_get_queue_mapping(skb);
1241 qs = &pi->qs[qidx];
1242 q = &qs->txq[TXQ_ETH];
1243 txq = netdev_get_tx_queue(dev, qidx);
1245 reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1247 credits = q->size - q->in_use;
1248 ndesc = calc_tx_descs(skb);
1250 if (unlikely(credits < ndesc)) {
1251 t3_stop_tx_queue(txq, qs, q);
1252 dev_err(&adap->pdev->dev,
1253 "%s: Tx ring %u full while queue awake!\n",
1254 dev->name, q->cntxt_id & 7);
1255 return NETDEV_TX_BUSY;
1258 q->in_use += ndesc;
1259 if (unlikely(credits - ndesc < q->stop_thres)) {
1260 t3_stop_tx_queue(txq, qs, q);
1262 if (should_restart_tx(q) &&
1263 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1264 q->restarts++;
1265 netif_tx_start_queue(txq);
1269 gen = q->gen;
1270 q->unacked += ndesc;
1271 compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1272 q->unacked &= 7;
1273 pidx = q->pidx;
1274 q->pidx += ndesc;
1275 if (q->pidx >= q->size) {
1276 q->pidx -= q->size;
1277 q->gen ^= 1;
1280 /* update port statistics */
1281 if (skb->ip_summed == CHECKSUM_PARTIAL)
1282 qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1283 if (skb_shinfo(skb)->gso_size)
1284 qs->port_stats[SGE_PSTAT_TSO]++;
1285 if (skb_vlan_tag_present(skb))
1286 qs->port_stats[SGE_PSTAT_VLANINS]++;
1289 * We do not use Tx completion interrupts to free DMAd Tx packets.
1290 * This is good for performance but means that we rely on new Tx
1291 * packets arriving to run the destructors of completed packets,
1292 * which open up space in their sockets' send queues. Sometimes
1293 * we do not get such new packets causing Tx to stall. A single
1294 * UDP transmitter is a good example of this situation. We have
1295 * a clean up timer that periodically reclaims completed packets
1296 * but it doesn't run often enough (nor do we want it to) to prevent
1297 * lengthy stalls. A solution to this problem is to run the
1298 * destructor early, after the packet is queued but before it's DMAd.
1299 * A cons is that we lie to socket memory accounting, but the amount
1300 * of extra memory is reasonable (limited by the number of Tx
1301 * descriptors), the packets do actually get freed quickly by new
1302 * packets almost always, and for protocols like TCP that wait for
1303 * acks to really free up the data the extra memory is even less.
1304 * On the positive side we run the destructors on the sending CPU
1305 * rather than on a potentially different completing CPU, usually a
1306 * good thing. We also run them without holding our Tx queue lock,
1307 * unlike what reclaim_completed_tx() would otherwise do.
1309 * Run the destructor before telling the DMA engine about the packet
1310 * to make sure it doesn't complete and get freed prematurely.
1312 if (likely(!skb_shared(skb)))
1313 skb_orphan(skb);
1315 write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl);
1316 check_ring_tx_db(adap, q);
1317 return NETDEV_TX_OK;
1321 * write_imm - write a packet into a Tx descriptor as immediate data
1322 * @d: the Tx descriptor to write
1323 * @skb: the packet
1324 * @len: the length of packet data to write as immediate data
1325 * @gen: the generation bit value to write
1327 * Writes a packet as immediate data into a Tx descriptor. The packet
1328 * contains a work request at its beginning. We must write the packet
1329 * carefully so the SGE doesn't read it accidentally before it's written
1330 * in its entirety.
1332 static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1333 unsigned int len, unsigned int gen)
1335 struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1336 struct work_request_hdr *to = (struct work_request_hdr *)d;
1338 if (likely(!skb->data_len))
1339 memcpy(&to[1], &from[1], len - sizeof(*from));
1340 else
1341 skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1343 to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1344 V_WR_BCNTLFLT(len & 7));
1345 dma_wmb();
1346 to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1347 V_WR_LEN((len + 7) / 8));
1348 wr_gen2(d, gen);
1349 kfree_skb(skb);
1353 * check_desc_avail - check descriptor availability on a send queue
1354 * @adap: the adapter
1355 * @q: the send queue
1356 * @skb: the packet needing the descriptors
1357 * @ndesc: the number of Tx descriptors needed
1358 * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1360 * Checks if the requested number of Tx descriptors is available on an
1361 * SGE send queue. If the queue is already suspended or not enough
1362 * descriptors are available the packet is queued for later transmission.
1363 * Must be called with the Tx queue locked.
1365 * Returns 0 if enough descriptors are available, 1 if there aren't
1366 * enough descriptors and the packet has been queued, and 2 if the caller
1367 * needs to retry because there weren't enough descriptors at the
1368 * beginning of the call but some freed up in the mean time.
1370 static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1371 struct sk_buff *skb, unsigned int ndesc,
1372 unsigned int qid)
1374 if (unlikely(!skb_queue_empty(&q->sendq))) {
1375 addq_exit:__skb_queue_tail(&q->sendq, skb);
1376 return 1;
1378 if (unlikely(q->size - q->in_use < ndesc)) {
1379 struct sge_qset *qs = txq_to_qset(q, qid);
1381 set_bit(qid, &qs->txq_stopped);
1382 smp_mb__after_atomic();
1384 if (should_restart_tx(q) &&
1385 test_and_clear_bit(qid, &qs->txq_stopped))
1386 return 2;
1388 q->stops++;
1389 goto addq_exit;
1391 return 0;
1395 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1396 * @q: the SGE control Tx queue
1398 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1399 * that send only immediate data (presently just the control queues) and
1400 * thus do not have any sk_buffs to release.
1402 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1404 unsigned int reclaim = q->processed - q->cleaned;
1406 q->in_use -= reclaim;
1407 q->cleaned += reclaim;
1410 static inline int immediate(const struct sk_buff *skb)
1412 return skb->len <= WR_LEN;
1416 * ctrl_xmit - send a packet through an SGE control Tx queue
1417 * @adap: the adapter
1418 * @q: the control queue
1419 * @skb: the packet
1421 * Send a packet through an SGE control Tx queue. Packets sent through
1422 * a control queue must fit entirely as immediate data in a single Tx
1423 * descriptor and have no page fragments.
1425 static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1426 struct sk_buff *skb)
1428 int ret;
1429 struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1431 if (unlikely(!immediate(skb))) {
1432 WARN_ON(1);
1433 dev_kfree_skb(skb);
1434 return NET_XMIT_SUCCESS;
1437 wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1438 wrp->wr_lo = htonl(V_WR_TID(q->token));
1440 spin_lock(&q->lock);
1441 again:reclaim_completed_tx_imm(q);
1443 ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1444 if (unlikely(ret)) {
1445 if (ret == 1) {
1446 spin_unlock(&q->lock);
1447 return NET_XMIT_CN;
1449 goto again;
1452 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1454 q->in_use++;
1455 if (++q->pidx >= q->size) {
1456 q->pidx = 0;
1457 q->gen ^= 1;
1459 spin_unlock(&q->lock);
1460 wmb();
1461 t3_write_reg(adap, A_SG_KDOORBELL,
1462 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1463 return NET_XMIT_SUCCESS;
1467 * restart_ctrlq - restart a suspended control queue
1468 * @qs: the queue set cotaining the control queue
1470 * Resumes transmission on a suspended Tx control queue.
1472 static void restart_ctrlq(unsigned long data)
1474 struct sk_buff *skb;
1475 struct sge_qset *qs = (struct sge_qset *)data;
1476 struct sge_txq *q = &qs->txq[TXQ_CTRL];
1478 spin_lock(&q->lock);
1479 again:reclaim_completed_tx_imm(q);
1481 while (q->in_use < q->size &&
1482 (skb = __skb_dequeue(&q->sendq)) != NULL) {
1484 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1486 if (++q->pidx >= q->size) {
1487 q->pidx = 0;
1488 q->gen ^= 1;
1490 q->in_use++;
1493 if (!skb_queue_empty(&q->sendq)) {
1494 set_bit(TXQ_CTRL, &qs->txq_stopped);
1495 smp_mb__after_atomic();
1497 if (should_restart_tx(q) &&
1498 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1499 goto again;
1500 q->stops++;
1503 spin_unlock(&q->lock);
1504 wmb();
1505 t3_write_reg(qs->adap, A_SG_KDOORBELL,
1506 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1510 * Send a management message through control queue 0
1512 int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1514 int ret;
1515 local_bh_disable();
1516 ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1517 local_bh_enable();
1519 return ret;
1523 * deferred_unmap_destructor - unmap a packet when it is freed
1524 * @skb: the packet
1526 * This is the packet destructor used for Tx packets that need to remain
1527 * mapped until they are freed rather than until their Tx descriptors are
1528 * freed.
1530 static void deferred_unmap_destructor(struct sk_buff *skb)
1532 int i;
1533 const dma_addr_t *p;
1534 const struct skb_shared_info *si;
1535 const struct deferred_unmap_info *dui;
1537 dui = (struct deferred_unmap_info *)skb->head;
1538 p = dui->addr;
1540 if (skb_tail_pointer(skb) - skb_transport_header(skb))
1541 pci_unmap_single(dui->pdev, *p++, skb_tail_pointer(skb) -
1542 skb_transport_header(skb), PCI_DMA_TODEVICE);
1544 si = skb_shinfo(skb);
1545 for (i = 0; i < si->nr_frags; i++)
1546 pci_unmap_page(dui->pdev, *p++, skb_frag_size(&si->frags[i]),
1547 PCI_DMA_TODEVICE);
1550 static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1551 const struct sg_ent *sgl, int sgl_flits)
1553 dma_addr_t *p;
1554 struct deferred_unmap_info *dui;
1556 dui = (struct deferred_unmap_info *)skb->head;
1557 dui->pdev = pdev;
1558 for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1559 *p++ = be64_to_cpu(sgl->addr[0]);
1560 *p++ = be64_to_cpu(sgl->addr[1]);
1562 if (sgl_flits)
1563 *p = be64_to_cpu(sgl->addr[0]);
1567 * write_ofld_wr - write an offload work request
1568 * @adap: the adapter
1569 * @skb: the packet to send
1570 * @q: the Tx queue
1571 * @pidx: index of the first Tx descriptor to write
1572 * @gen: the generation value to use
1573 * @ndesc: number of descriptors the packet will occupy
1575 * Write an offload work request to send the supplied packet. The packet
1576 * data already carry the work request with most fields populated.
1578 static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1579 struct sge_txq *q, unsigned int pidx,
1580 unsigned int gen, unsigned int ndesc)
1582 unsigned int sgl_flits, flits;
1583 struct work_request_hdr *from;
1584 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1585 struct tx_desc *d = &q->desc[pidx];
1587 if (immediate(skb)) {
1588 q->sdesc[pidx].skb = NULL;
1589 write_imm(d, skb, skb->len, gen);
1590 return;
1593 /* Only TX_DATA builds SGLs */
1595 from = (struct work_request_hdr *)skb->data;
1596 memcpy(&d->flit[1], &from[1],
1597 skb_transport_offset(skb) - sizeof(*from));
1599 flits = skb_transport_offset(skb) / 8;
1600 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1601 sgl_flits = make_sgl(skb, sgp, skb_transport_header(skb),
1602 skb_tail_pointer(skb) -
1603 skb_transport_header(skb),
1604 adap->pdev);
1605 if (need_skb_unmap()) {
1606 setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1607 skb->destructor = deferred_unmap_destructor;
1610 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1611 gen, from->wr_hi, from->wr_lo);
1615 * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1616 * @skb: the packet
1618 * Returns the number of Tx descriptors needed for the given offload
1619 * packet. These packets are already fully constructed.
1621 static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1623 unsigned int flits, cnt;
1625 if (skb->len <= WR_LEN)
1626 return 1; /* packet fits as immediate data */
1628 flits = skb_transport_offset(skb) / 8; /* headers */
1629 cnt = skb_shinfo(skb)->nr_frags;
1630 if (skb_tail_pointer(skb) != skb_transport_header(skb))
1631 cnt++;
1632 return flits_to_desc(flits + sgl_len(cnt));
1636 * ofld_xmit - send a packet through an offload queue
1637 * @adap: the adapter
1638 * @q: the Tx offload queue
1639 * @skb: the packet
1641 * Send an offload packet through an SGE offload queue.
1643 static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1644 struct sk_buff *skb)
1646 int ret;
1647 unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1649 spin_lock(&q->lock);
1650 again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1652 ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1653 if (unlikely(ret)) {
1654 if (ret == 1) {
1655 skb->priority = ndesc; /* save for restart */
1656 spin_unlock(&q->lock);
1657 return NET_XMIT_CN;
1659 goto again;
1662 gen = q->gen;
1663 q->in_use += ndesc;
1664 pidx = q->pidx;
1665 q->pidx += ndesc;
1666 if (q->pidx >= q->size) {
1667 q->pidx -= q->size;
1668 q->gen ^= 1;
1670 spin_unlock(&q->lock);
1672 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1673 check_ring_tx_db(adap, q);
1674 return NET_XMIT_SUCCESS;
1678 * restart_offloadq - restart a suspended offload queue
1679 * @qs: the queue set cotaining the offload queue
1681 * Resumes transmission on a suspended Tx offload queue.
1683 static void restart_offloadq(unsigned long data)
1685 struct sk_buff *skb;
1686 struct sge_qset *qs = (struct sge_qset *)data;
1687 struct sge_txq *q = &qs->txq[TXQ_OFLD];
1688 const struct port_info *pi = netdev_priv(qs->netdev);
1689 struct adapter *adap = pi->adapter;
1691 spin_lock(&q->lock);
1692 again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1694 while ((skb = skb_peek(&q->sendq)) != NULL) {
1695 unsigned int gen, pidx;
1696 unsigned int ndesc = skb->priority;
1698 if (unlikely(q->size - q->in_use < ndesc)) {
1699 set_bit(TXQ_OFLD, &qs->txq_stopped);
1700 smp_mb__after_atomic();
1702 if (should_restart_tx(q) &&
1703 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1704 goto again;
1705 q->stops++;
1706 break;
1709 gen = q->gen;
1710 q->in_use += ndesc;
1711 pidx = q->pidx;
1712 q->pidx += ndesc;
1713 if (q->pidx >= q->size) {
1714 q->pidx -= q->size;
1715 q->gen ^= 1;
1717 __skb_unlink(skb, &q->sendq);
1718 spin_unlock(&q->lock);
1720 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1721 spin_lock(&q->lock);
1723 spin_unlock(&q->lock);
1725 #if USE_GTS
1726 set_bit(TXQ_RUNNING, &q->flags);
1727 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1728 #endif
1729 wmb();
1730 t3_write_reg(adap, A_SG_KDOORBELL,
1731 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1735 * queue_set - return the queue set a packet should use
1736 * @skb: the packet
1738 * Maps a packet to the SGE queue set it should use. The desired queue
1739 * set is carried in bits 1-3 in the packet's priority.
1741 static inline int queue_set(const struct sk_buff *skb)
1743 return skb->priority >> 1;
1747 * is_ctrl_pkt - return whether an offload packet is a control packet
1748 * @skb: the packet
1750 * Determines whether an offload packet should use an OFLD or a CTRL
1751 * Tx queue. This is indicated by bit 0 in the packet's priority.
1753 static inline int is_ctrl_pkt(const struct sk_buff *skb)
1755 return skb->priority & 1;
1759 * t3_offload_tx - send an offload packet
1760 * @tdev: the offload device to send to
1761 * @skb: the packet
1763 * Sends an offload packet. We use the packet priority to select the
1764 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1765 * should be sent as regular or control, bits 1-3 select the queue set.
1767 int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1769 struct adapter *adap = tdev2adap(tdev);
1770 struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1772 if (unlikely(is_ctrl_pkt(skb)))
1773 return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1775 return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1779 * offload_enqueue - add an offload packet to an SGE offload receive queue
1780 * @q: the SGE response queue
1781 * @skb: the packet
1783 * Add a new offload packet to an SGE response queue's offload packet
1784 * queue. If the packet is the first on the queue it schedules the RX
1785 * softirq to process the queue.
1787 static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1789 int was_empty = skb_queue_empty(&q->rx_queue);
1791 __skb_queue_tail(&q->rx_queue, skb);
1793 if (was_empty) {
1794 struct sge_qset *qs = rspq_to_qset(q);
1796 napi_schedule(&qs->napi);
1801 * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1802 * @tdev: the offload device that will be receiving the packets
1803 * @q: the SGE response queue that assembled the bundle
1804 * @skbs: the partial bundle
1805 * @n: the number of packets in the bundle
1807 * Delivers a (partial) bundle of Rx offload packets to an offload device.
1809 static inline void deliver_partial_bundle(struct t3cdev *tdev,
1810 struct sge_rspq *q,
1811 struct sk_buff *skbs[], int n)
1813 if (n) {
1814 q->offload_bundles++;
1815 tdev->recv(tdev, skbs, n);
1820 * ofld_poll - NAPI handler for offload packets in interrupt mode
1821 * @dev: the network device doing the polling
1822 * @budget: polling budget
1824 * The NAPI handler for offload packets when a response queue is serviced
1825 * by the hard interrupt handler, i.e., when it's operating in non-polling
1826 * mode. Creates small packet batches and sends them through the offload
1827 * receive handler. Batches need to be of modest size as we do prefetches
1828 * on the packets in each.
1830 static int ofld_poll(struct napi_struct *napi, int budget)
1832 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
1833 struct sge_rspq *q = &qs->rspq;
1834 struct adapter *adapter = qs->adap;
1835 int work_done = 0;
1837 while (work_done < budget) {
1838 struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE];
1839 struct sk_buff_head queue;
1840 int ngathered;
1842 spin_lock_irq(&q->lock);
1843 __skb_queue_head_init(&queue);
1844 skb_queue_splice_init(&q->rx_queue, &queue);
1845 if (skb_queue_empty(&queue)) {
1846 napi_complete(napi);
1847 spin_unlock_irq(&q->lock);
1848 return work_done;
1850 spin_unlock_irq(&q->lock);
1852 ngathered = 0;
1853 skb_queue_walk_safe(&queue, skb, tmp) {
1854 if (work_done >= budget)
1855 break;
1856 work_done++;
1858 __skb_unlink(skb, &queue);
1859 prefetch(skb->data);
1860 skbs[ngathered] = skb;
1861 if (++ngathered == RX_BUNDLE_SIZE) {
1862 q->offload_bundles++;
1863 adapter->tdev.recv(&adapter->tdev, skbs,
1864 ngathered);
1865 ngathered = 0;
1868 if (!skb_queue_empty(&queue)) {
1869 /* splice remaining packets back onto Rx queue */
1870 spin_lock_irq(&q->lock);
1871 skb_queue_splice(&queue, &q->rx_queue);
1872 spin_unlock_irq(&q->lock);
1874 deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1877 return work_done;
1881 * rx_offload - process a received offload packet
1882 * @tdev: the offload device receiving the packet
1883 * @rq: the response queue that received the packet
1884 * @skb: the packet
1885 * @rx_gather: a gather list of packets if we are building a bundle
1886 * @gather_idx: index of the next available slot in the bundle
1888 * Process an ingress offload pakcet and add it to the offload ingress
1889 * queue. Returns the index of the next available slot in the bundle.
1891 static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1892 struct sk_buff *skb, struct sk_buff *rx_gather[],
1893 unsigned int gather_idx)
1895 skb_reset_mac_header(skb);
1896 skb_reset_network_header(skb);
1897 skb_reset_transport_header(skb);
1899 if (rq->polling) {
1900 rx_gather[gather_idx++] = skb;
1901 if (gather_idx == RX_BUNDLE_SIZE) {
1902 tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1903 gather_idx = 0;
1904 rq->offload_bundles++;
1906 } else
1907 offload_enqueue(rq, skb);
1909 return gather_idx;
1913 * restart_tx - check whether to restart suspended Tx queues
1914 * @qs: the queue set to resume
1916 * Restarts suspended Tx queues of an SGE queue set if they have enough
1917 * free resources to resume operation.
1919 static void restart_tx(struct sge_qset *qs)
1921 if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1922 should_restart_tx(&qs->txq[TXQ_ETH]) &&
1923 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1924 qs->txq[TXQ_ETH].restarts++;
1925 if (netif_running(qs->netdev))
1926 netif_tx_wake_queue(qs->tx_q);
1929 if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1930 should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1931 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
1932 qs->txq[TXQ_OFLD].restarts++;
1933 tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
1935 if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
1936 should_restart_tx(&qs->txq[TXQ_CTRL]) &&
1937 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
1938 qs->txq[TXQ_CTRL].restarts++;
1939 tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
1944 * cxgb3_arp_process - process an ARP request probing a private IP address
1945 * @adapter: the adapter
1946 * @skb: the skbuff containing the ARP request
1948 * Check if the ARP request is probing the private IP address
1949 * dedicated to iSCSI, generate an ARP reply if so.
1951 static void cxgb3_arp_process(struct port_info *pi, struct sk_buff *skb)
1953 struct net_device *dev = skb->dev;
1954 struct arphdr *arp;
1955 unsigned char *arp_ptr;
1956 unsigned char *sha;
1957 __be32 sip, tip;
1959 if (!dev)
1960 return;
1962 skb_reset_network_header(skb);
1963 arp = arp_hdr(skb);
1965 if (arp->ar_op != htons(ARPOP_REQUEST))
1966 return;
1968 arp_ptr = (unsigned char *)(arp + 1);
1969 sha = arp_ptr;
1970 arp_ptr += dev->addr_len;
1971 memcpy(&sip, arp_ptr, sizeof(sip));
1972 arp_ptr += sizeof(sip);
1973 arp_ptr += dev->addr_len;
1974 memcpy(&tip, arp_ptr, sizeof(tip));
1976 if (tip != pi->iscsi_ipv4addr)
1977 return;
1979 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
1980 pi->iscsic.mac_addr, sha);
1984 static inline int is_arp(struct sk_buff *skb)
1986 return skb->protocol == htons(ETH_P_ARP);
1989 static void cxgb3_process_iscsi_prov_pack(struct port_info *pi,
1990 struct sk_buff *skb)
1992 if (is_arp(skb)) {
1993 cxgb3_arp_process(pi, skb);
1994 return;
1997 if (pi->iscsic.recv)
1998 pi->iscsic.recv(pi, skb);
2003 * rx_eth - process an ingress ethernet packet
2004 * @adap: the adapter
2005 * @rq: the response queue that received the packet
2006 * @skb: the packet
2007 * @pad: amount of padding at the start of the buffer
2009 * Process an ingress ethernet pakcet and deliver it to the stack.
2010 * The padding is 2 if the packet was delivered in an Rx buffer and 0
2011 * if it was immediate data in a response.
2013 static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
2014 struct sk_buff *skb, int pad, int lro)
2016 struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
2017 struct sge_qset *qs = rspq_to_qset(rq);
2018 struct port_info *pi;
2020 skb_pull(skb, sizeof(*p) + pad);
2021 skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
2022 pi = netdev_priv(skb->dev);
2023 if ((skb->dev->features & NETIF_F_RXCSUM) && p->csum_valid &&
2024 p->csum == htons(0xffff) && !p->fragment) {
2025 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2026 skb->ip_summed = CHECKSUM_UNNECESSARY;
2027 } else
2028 skb_checksum_none_assert(skb);
2029 skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]);
2031 if (p->vlan_valid) {
2032 qs->port_stats[SGE_PSTAT_VLANEX]++;
2033 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan));
2035 if (rq->polling) {
2036 if (lro)
2037 napi_gro_receive(&qs->napi, skb);
2038 else {
2039 if (unlikely(pi->iscsic.flags))
2040 cxgb3_process_iscsi_prov_pack(pi, skb);
2041 netif_receive_skb(skb);
2043 } else
2044 netif_rx(skb);
2047 static inline int is_eth_tcp(u32 rss)
2049 return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE;
2053 * lro_add_page - add a page chunk to an LRO session
2054 * @adap: the adapter
2055 * @qs: the associated queue set
2056 * @fl: the free list containing the page chunk to add
2057 * @len: packet length
2058 * @complete: Indicates the last fragment of a frame
2060 * Add a received packet contained in a page chunk to an existing LRO
2061 * session.
2063 static void lro_add_page(struct adapter *adap, struct sge_qset *qs,
2064 struct sge_fl *fl, int len, int complete)
2066 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
2067 struct port_info *pi = netdev_priv(qs->netdev);
2068 struct sk_buff *skb = NULL;
2069 struct cpl_rx_pkt *cpl;
2070 struct skb_frag_struct *rx_frag;
2071 int nr_frags;
2072 int offset = 0;
2074 if (!qs->nomem) {
2075 skb = napi_get_frags(&qs->napi);
2076 qs->nomem = !skb;
2079 fl->credits--;
2081 pci_dma_sync_single_for_cpu(adap->pdev,
2082 dma_unmap_addr(sd, dma_addr),
2083 fl->buf_size - SGE_PG_RSVD,
2084 PCI_DMA_FROMDEVICE);
2086 (*sd->pg_chunk.p_cnt)--;
2087 if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
2088 pci_unmap_page(adap->pdev,
2089 sd->pg_chunk.mapping,
2090 fl->alloc_size,
2091 PCI_DMA_FROMDEVICE);
2093 if (!skb) {
2094 put_page(sd->pg_chunk.page);
2095 if (complete)
2096 qs->nomem = 0;
2097 return;
2100 rx_frag = skb_shinfo(skb)->frags;
2101 nr_frags = skb_shinfo(skb)->nr_frags;
2103 if (!nr_frags) {
2104 offset = 2 + sizeof(struct cpl_rx_pkt);
2105 cpl = qs->lro_va = sd->pg_chunk.va + 2;
2107 if ((qs->netdev->features & NETIF_F_RXCSUM) &&
2108 cpl->csum_valid && cpl->csum == htons(0xffff)) {
2109 skb->ip_summed = CHECKSUM_UNNECESSARY;
2110 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2111 } else
2112 skb->ip_summed = CHECKSUM_NONE;
2113 } else
2114 cpl = qs->lro_va;
2116 len -= offset;
2118 rx_frag += nr_frags;
2119 __skb_frag_set_page(rx_frag, sd->pg_chunk.page);
2120 rx_frag->page_offset = sd->pg_chunk.offset + offset;
2121 skb_frag_size_set(rx_frag, len);
2123 skb->len += len;
2124 skb->data_len += len;
2125 skb->truesize += len;
2126 skb_shinfo(skb)->nr_frags++;
2128 if (!complete)
2129 return;
2131 skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]);
2133 if (cpl->vlan_valid) {
2134 qs->port_stats[SGE_PSTAT_VLANEX]++;
2135 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cpl->vlan));
2137 napi_gro_frags(&qs->napi);
2141 * handle_rsp_cntrl_info - handles control information in a response
2142 * @qs: the queue set corresponding to the response
2143 * @flags: the response control flags
2145 * Handles the control information of an SGE response, such as GTS
2146 * indications and completion credits for the queue set's Tx queues.
2147 * HW coalesces credits, we don't do any extra SW coalescing.
2149 static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
2151 unsigned int credits;
2153 #if USE_GTS
2154 if (flags & F_RSPD_TXQ0_GTS)
2155 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
2156 #endif
2158 credits = G_RSPD_TXQ0_CR(flags);
2159 if (credits)
2160 qs->txq[TXQ_ETH].processed += credits;
2162 credits = G_RSPD_TXQ2_CR(flags);
2163 if (credits)
2164 qs->txq[TXQ_CTRL].processed += credits;
2166 # if USE_GTS
2167 if (flags & F_RSPD_TXQ1_GTS)
2168 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
2169 # endif
2170 credits = G_RSPD_TXQ1_CR(flags);
2171 if (credits)
2172 qs->txq[TXQ_OFLD].processed += credits;
2176 * check_ring_db - check if we need to ring any doorbells
2177 * @adapter: the adapter
2178 * @qs: the queue set whose Tx queues are to be examined
2179 * @sleeping: indicates which Tx queue sent GTS
2181 * Checks if some of a queue set's Tx queues need to ring their doorbells
2182 * to resume transmission after idling while they still have unprocessed
2183 * descriptors.
2185 static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
2186 unsigned int sleeping)
2188 if (sleeping & F_RSPD_TXQ0_GTS) {
2189 struct sge_txq *txq = &qs->txq[TXQ_ETH];
2191 if (txq->cleaned + txq->in_use != txq->processed &&
2192 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2193 set_bit(TXQ_RUNNING, &txq->flags);
2194 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2195 V_EGRCNTX(txq->cntxt_id));
2199 if (sleeping & F_RSPD_TXQ1_GTS) {
2200 struct sge_txq *txq = &qs->txq[TXQ_OFLD];
2202 if (txq->cleaned + txq->in_use != txq->processed &&
2203 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2204 set_bit(TXQ_RUNNING, &txq->flags);
2205 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2206 V_EGRCNTX(txq->cntxt_id));
2212 * is_new_response - check if a response is newly written
2213 * @r: the response descriptor
2214 * @q: the response queue
2216 * Returns true if a response descriptor contains a yet unprocessed
2217 * response.
2219 static inline int is_new_response(const struct rsp_desc *r,
2220 const struct sge_rspq *q)
2222 return (r->intr_gen & F_RSPD_GEN2) == q->gen;
2225 static inline void clear_rspq_bufstate(struct sge_rspq * const q)
2227 q->pg_skb = NULL;
2228 q->rx_recycle_buf = 0;
2231 #define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
2232 #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
2233 V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
2234 V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
2235 V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
2237 /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
2238 #define NOMEM_INTR_DELAY 2500
2241 * process_responses - process responses from an SGE response queue
2242 * @adap: the adapter
2243 * @qs: the queue set to which the response queue belongs
2244 * @budget: how many responses can be processed in this round
2246 * Process responses from an SGE response queue up to the supplied budget.
2247 * Responses include received packets as well as credits and other events
2248 * for the queues that belong to the response queue's queue set.
2249 * A negative budget is effectively unlimited.
2251 * Additionally choose the interrupt holdoff time for the next interrupt
2252 * on this queue. If the system is under memory shortage use a fairly
2253 * long delay to help recovery.
2255 static int process_responses(struct adapter *adap, struct sge_qset *qs,
2256 int budget)
2258 struct sge_rspq *q = &qs->rspq;
2259 struct rsp_desc *r = &q->desc[q->cidx];
2260 int budget_left = budget;
2261 unsigned int sleeping = 0;
2262 struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
2263 int ngathered = 0;
2265 q->next_holdoff = q->holdoff_tmr;
2267 while (likely(budget_left && is_new_response(r, q))) {
2268 int packet_complete, eth, ethpad = 2;
2269 int lro = !!(qs->netdev->features & NETIF_F_GRO);
2270 struct sk_buff *skb = NULL;
2271 u32 len, flags;
2272 __be32 rss_hi, rss_lo;
2274 dma_rmb();
2275 eth = r->rss_hdr.opcode == CPL_RX_PKT;
2276 rss_hi = *(const __be32 *)r;
2277 rss_lo = r->rss_hdr.rss_hash_val;
2278 flags = ntohl(r->flags);
2280 if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
2281 skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
2282 if (!skb)
2283 goto no_mem;
2285 memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE);
2286 skb->data[0] = CPL_ASYNC_NOTIF;
2287 rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
2288 q->async_notif++;
2289 } else if (flags & F_RSPD_IMM_DATA_VALID) {
2290 skb = get_imm_packet(r);
2291 if (unlikely(!skb)) {
2292 no_mem:
2293 q->next_holdoff = NOMEM_INTR_DELAY;
2294 q->nomem++;
2295 /* consume one credit since we tried */
2296 budget_left--;
2297 break;
2299 q->imm_data++;
2300 ethpad = 0;
2301 } else if ((len = ntohl(r->len_cq)) != 0) {
2302 struct sge_fl *fl;
2304 lro &= eth && is_eth_tcp(rss_hi);
2306 fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
2307 if (fl->use_pages) {
2308 void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
2310 prefetch(addr);
2311 #if L1_CACHE_BYTES < 128
2312 prefetch(addr + L1_CACHE_BYTES);
2313 #endif
2314 __refill_fl(adap, fl);
2315 if (lro > 0) {
2316 lro_add_page(adap, qs, fl,
2317 G_RSPD_LEN(len),
2318 flags & F_RSPD_EOP);
2319 goto next_fl;
2322 skb = get_packet_pg(adap, fl, q,
2323 G_RSPD_LEN(len),
2324 eth ?
2325 SGE_RX_DROP_THRES : 0);
2326 q->pg_skb = skb;
2327 } else
2328 skb = get_packet(adap, fl, G_RSPD_LEN(len),
2329 eth ? SGE_RX_DROP_THRES : 0);
2330 if (unlikely(!skb)) {
2331 if (!eth)
2332 goto no_mem;
2333 q->rx_drops++;
2334 } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2335 __skb_pull(skb, 2);
2336 next_fl:
2337 if (++fl->cidx == fl->size)
2338 fl->cidx = 0;
2339 } else
2340 q->pure_rsps++;
2342 if (flags & RSPD_CTRL_MASK) {
2343 sleeping |= flags & RSPD_GTS_MASK;
2344 handle_rsp_cntrl_info(qs, flags);
2347 r++;
2348 if (unlikely(++q->cidx == q->size)) {
2349 q->cidx = 0;
2350 q->gen ^= 1;
2351 r = q->desc;
2353 prefetch(r);
2355 if (++q->credits >= (q->size / 4)) {
2356 refill_rspq(adap, q, q->credits);
2357 q->credits = 0;
2360 packet_complete = flags &
2361 (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID |
2362 F_RSPD_ASYNC_NOTIF);
2364 if (skb != NULL && packet_complete) {
2365 if (eth)
2366 rx_eth(adap, q, skb, ethpad, lro);
2367 else {
2368 q->offload_pkts++;
2369 /* Preserve the RSS info in csum & priority */
2370 skb->csum = rss_hi;
2371 skb->priority = rss_lo;
2372 ngathered = rx_offload(&adap->tdev, q, skb,
2373 offload_skbs,
2374 ngathered);
2377 if (flags & F_RSPD_EOP)
2378 clear_rspq_bufstate(q);
2380 --budget_left;
2383 deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
2385 if (sleeping)
2386 check_ring_db(adap, qs, sleeping);
2388 smp_mb(); /* commit Tx queue .processed updates */
2389 if (unlikely(qs->txq_stopped != 0))
2390 restart_tx(qs);
2392 budget -= budget_left;
2393 return budget;
2396 static inline int is_pure_response(const struct rsp_desc *r)
2398 __be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
2400 return (n | r->len_cq) == 0;
2404 * napi_rx_handler - the NAPI handler for Rx processing
2405 * @napi: the napi instance
2406 * @budget: how many packets we can process in this round
2408 * Handler for new data events when using NAPI.
2410 static int napi_rx_handler(struct napi_struct *napi, int budget)
2412 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2413 struct adapter *adap = qs->adap;
2414 int work_done = process_responses(adap, qs, budget);
2416 if (likely(work_done < budget)) {
2417 napi_complete(napi);
2420 * Because we don't atomically flush the following
2421 * write it is possible that in very rare cases it can
2422 * reach the device in a way that races with a new
2423 * response being written plus an error interrupt
2424 * causing the NAPI interrupt handler below to return
2425 * unhandled status to the OS. To protect against
2426 * this would require flushing the write and doing
2427 * both the write and the flush with interrupts off.
2428 * Way too expensive and unjustifiable given the
2429 * rarity of the race.
2431 * The race cannot happen at all with MSI-X.
2433 t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2434 V_NEWTIMER(qs->rspq.next_holdoff) |
2435 V_NEWINDEX(qs->rspq.cidx));
2437 return work_done;
2441 * Returns true if the device is already scheduled for polling.
2443 static inline int napi_is_scheduled(struct napi_struct *napi)
2445 return test_bit(NAPI_STATE_SCHED, &napi->state);
2449 * process_pure_responses - process pure responses from a response queue
2450 * @adap: the adapter
2451 * @qs: the queue set owning the response queue
2452 * @r: the first pure response to process
2454 * A simpler version of process_responses() that handles only pure (i.e.,
2455 * non data-carrying) responses. Such respones are too light-weight to
2456 * justify calling a softirq under NAPI, so we handle them specially in
2457 * the interrupt handler. The function is called with a pointer to a
2458 * response, which the caller must ensure is a valid pure response.
2460 * Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2462 static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2463 struct rsp_desc *r)
2465 struct sge_rspq *q = &qs->rspq;
2466 unsigned int sleeping = 0;
2468 do {
2469 u32 flags = ntohl(r->flags);
2471 r++;
2472 if (unlikely(++q->cidx == q->size)) {
2473 q->cidx = 0;
2474 q->gen ^= 1;
2475 r = q->desc;
2477 prefetch(r);
2479 if (flags & RSPD_CTRL_MASK) {
2480 sleeping |= flags & RSPD_GTS_MASK;
2481 handle_rsp_cntrl_info(qs, flags);
2484 q->pure_rsps++;
2485 if (++q->credits >= (q->size / 4)) {
2486 refill_rspq(adap, q, q->credits);
2487 q->credits = 0;
2489 if (!is_new_response(r, q))
2490 break;
2491 dma_rmb();
2492 } while (is_pure_response(r));
2494 if (sleeping)
2495 check_ring_db(adap, qs, sleeping);
2497 smp_mb(); /* commit Tx queue .processed updates */
2498 if (unlikely(qs->txq_stopped != 0))
2499 restart_tx(qs);
2501 return is_new_response(r, q);
2505 * handle_responses - decide what to do with new responses in NAPI mode
2506 * @adap: the adapter
2507 * @q: the response queue
2509 * This is used by the NAPI interrupt handlers to decide what to do with
2510 * new SGE responses. If there are no new responses it returns -1. If
2511 * there are new responses and they are pure (i.e., non-data carrying)
2512 * it handles them straight in hard interrupt context as they are very
2513 * cheap and don't deliver any packets. Finally, if there are any data
2514 * signaling responses it schedules the NAPI handler. Returns 1 if it
2515 * schedules NAPI, 0 if all new responses were pure.
2517 * The caller must ascertain NAPI is not already running.
2519 static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2521 struct sge_qset *qs = rspq_to_qset(q);
2522 struct rsp_desc *r = &q->desc[q->cidx];
2524 if (!is_new_response(r, q))
2525 return -1;
2526 dma_rmb();
2527 if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2528 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2529 V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2530 return 0;
2532 napi_schedule(&qs->napi);
2533 return 1;
2537 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2538 * (i.e., response queue serviced in hard interrupt).
2540 static irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2542 struct sge_qset *qs = cookie;
2543 struct adapter *adap = qs->adap;
2544 struct sge_rspq *q = &qs->rspq;
2546 spin_lock(&q->lock);
2547 if (process_responses(adap, qs, -1) == 0)
2548 q->unhandled_irqs++;
2549 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2550 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2551 spin_unlock(&q->lock);
2552 return IRQ_HANDLED;
2556 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2557 * (i.e., response queue serviced by NAPI polling).
2559 static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
2561 struct sge_qset *qs = cookie;
2562 struct sge_rspq *q = &qs->rspq;
2564 spin_lock(&q->lock);
2566 if (handle_responses(qs->adap, q) < 0)
2567 q->unhandled_irqs++;
2568 spin_unlock(&q->lock);
2569 return IRQ_HANDLED;
2573 * The non-NAPI MSI interrupt handler. This needs to handle data events from
2574 * SGE response queues as well as error and other async events as they all use
2575 * the same MSI vector. We use one SGE response queue per port in this mode
2576 * and protect all response queues with queue 0's lock.
2578 static irqreturn_t t3_intr_msi(int irq, void *cookie)
2580 int new_packets = 0;
2581 struct adapter *adap = cookie;
2582 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2584 spin_lock(&q->lock);
2586 if (process_responses(adap, &adap->sge.qs[0], -1)) {
2587 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2588 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2589 new_packets = 1;
2592 if (adap->params.nports == 2 &&
2593 process_responses(adap, &adap->sge.qs[1], -1)) {
2594 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2596 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2597 V_NEWTIMER(q1->next_holdoff) |
2598 V_NEWINDEX(q1->cidx));
2599 new_packets = 1;
2602 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2603 q->unhandled_irqs++;
2605 spin_unlock(&q->lock);
2606 return IRQ_HANDLED;
2609 static int rspq_check_napi(struct sge_qset *qs)
2611 struct sge_rspq *q = &qs->rspq;
2613 if (!napi_is_scheduled(&qs->napi) &&
2614 is_new_response(&q->desc[q->cidx], q)) {
2615 napi_schedule(&qs->napi);
2616 return 1;
2618 return 0;
2622 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2623 * by NAPI polling). Handles data events from SGE response queues as well as
2624 * error and other async events as they all use the same MSI vector. We use
2625 * one SGE response queue per port in this mode and protect all response
2626 * queues with queue 0's lock.
2628 static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
2630 int new_packets;
2631 struct adapter *adap = cookie;
2632 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2634 spin_lock(&q->lock);
2636 new_packets = rspq_check_napi(&adap->sge.qs[0]);
2637 if (adap->params.nports == 2)
2638 new_packets += rspq_check_napi(&adap->sge.qs[1]);
2639 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2640 q->unhandled_irqs++;
2642 spin_unlock(&q->lock);
2643 return IRQ_HANDLED;
2647 * A helper function that processes responses and issues GTS.
2649 static inline int process_responses_gts(struct adapter *adap,
2650 struct sge_rspq *rq)
2652 int work;
2654 work = process_responses(adap, rspq_to_qset(rq), -1);
2655 t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2656 V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2657 return work;
2661 * The legacy INTx interrupt handler. This needs to handle data events from
2662 * SGE response queues as well as error and other async events as they all use
2663 * the same interrupt pin. We use one SGE response queue per port in this mode
2664 * and protect all response queues with queue 0's lock.
2666 static irqreturn_t t3_intr(int irq, void *cookie)
2668 int work_done, w0, w1;
2669 struct adapter *adap = cookie;
2670 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2671 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2673 spin_lock(&q0->lock);
2675 w0 = is_new_response(&q0->desc[q0->cidx], q0);
2676 w1 = adap->params.nports == 2 &&
2677 is_new_response(&q1->desc[q1->cidx], q1);
2679 if (likely(w0 | w1)) {
2680 t3_write_reg(adap, A_PL_CLI, 0);
2681 t3_read_reg(adap, A_PL_CLI); /* flush */
2683 if (likely(w0))
2684 process_responses_gts(adap, q0);
2686 if (w1)
2687 process_responses_gts(adap, q1);
2689 work_done = w0 | w1;
2690 } else
2691 work_done = t3_slow_intr_handler(adap);
2693 spin_unlock(&q0->lock);
2694 return IRQ_RETVAL(work_done != 0);
2698 * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2699 * Handles data events from SGE response queues as well as error and other
2700 * async events as they all use the same interrupt pin. We use one SGE
2701 * response queue per port in this mode and protect all response queues with
2702 * queue 0's lock.
2704 static irqreturn_t t3b_intr(int irq, void *cookie)
2706 u32 map;
2707 struct adapter *adap = cookie;
2708 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2710 t3_write_reg(adap, A_PL_CLI, 0);
2711 map = t3_read_reg(adap, A_SG_DATA_INTR);
2713 if (unlikely(!map)) /* shared interrupt, most likely */
2714 return IRQ_NONE;
2716 spin_lock(&q0->lock);
2718 if (unlikely(map & F_ERRINTR))
2719 t3_slow_intr_handler(adap);
2721 if (likely(map & 1))
2722 process_responses_gts(adap, q0);
2724 if (map & 2)
2725 process_responses_gts(adap, &adap->sge.qs[1].rspq);
2727 spin_unlock(&q0->lock);
2728 return IRQ_HANDLED;
2732 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2733 * Handles data events from SGE response queues as well as error and other
2734 * async events as they all use the same interrupt pin. We use one SGE
2735 * response queue per port in this mode and protect all response queues with
2736 * queue 0's lock.
2738 static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2740 u32 map;
2741 struct adapter *adap = cookie;
2742 struct sge_qset *qs0 = &adap->sge.qs[0];
2743 struct sge_rspq *q0 = &qs0->rspq;
2745 t3_write_reg(adap, A_PL_CLI, 0);
2746 map = t3_read_reg(adap, A_SG_DATA_INTR);
2748 if (unlikely(!map)) /* shared interrupt, most likely */
2749 return IRQ_NONE;
2751 spin_lock(&q0->lock);
2753 if (unlikely(map & F_ERRINTR))
2754 t3_slow_intr_handler(adap);
2756 if (likely(map & 1))
2757 napi_schedule(&qs0->napi);
2759 if (map & 2)
2760 napi_schedule(&adap->sge.qs[1].napi);
2762 spin_unlock(&q0->lock);
2763 return IRQ_HANDLED;
2767 * t3_intr_handler - select the top-level interrupt handler
2768 * @adap: the adapter
2769 * @polling: whether using NAPI to service response queues
2771 * Selects the top-level interrupt handler based on the type of interrupts
2772 * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2773 * response queues.
2775 irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
2777 if (adap->flags & USING_MSIX)
2778 return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2779 if (adap->flags & USING_MSI)
2780 return polling ? t3_intr_msi_napi : t3_intr_msi;
2781 if (adap->params.rev > 0)
2782 return polling ? t3b_intr_napi : t3b_intr;
2783 return t3_intr;
2786 #define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2787 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2788 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2789 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2790 F_HIRCQPARITYERROR)
2791 #define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2792 #define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2793 F_RSPQDISABLED)
2796 * t3_sge_err_intr_handler - SGE async event interrupt handler
2797 * @adapter: the adapter
2799 * Interrupt handler for SGE asynchronous (non-data) events.
2801 void t3_sge_err_intr_handler(struct adapter *adapter)
2803 unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) &
2804 ~F_FLEMPTY;
2806 if (status & SGE_PARERR)
2807 CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2808 status & SGE_PARERR);
2809 if (status & SGE_FRAMINGERR)
2810 CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2811 status & SGE_FRAMINGERR);
2813 if (status & F_RSPQCREDITOVERFOW)
2814 CH_ALERT(adapter, "SGE response queue credit overflow\n");
2816 if (status & F_RSPQDISABLED) {
2817 v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2819 CH_ALERT(adapter,
2820 "packet delivered to disabled response queue "
2821 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2824 if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
2825 queue_work(cxgb3_wq, &adapter->db_drop_task);
2827 if (status & (F_HIPRIORITYDBFULL | F_LOPRIORITYDBFULL))
2828 queue_work(cxgb3_wq, &adapter->db_full_task);
2830 if (status & (F_HIPRIORITYDBEMPTY | F_LOPRIORITYDBEMPTY))
2831 queue_work(cxgb3_wq, &adapter->db_empty_task);
2833 t3_write_reg(adapter, A_SG_INT_CAUSE, status);
2834 if (status & SGE_FATALERR)
2835 t3_fatal_err(adapter);
2839 * sge_timer_tx - perform periodic maintenance of an SGE qset
2840 * @data: the SGE queue set to maintain
2842 * Runs periodically from a timer to perform maintenance of an SGE queue
2843 * set. It performs two tasks:
2845 * Cleans up any completed Tx descriptors that may still be pending.
2846 * Normal descriptor cleanup happens when new packets are added to a Tx
2847 * queue so this timer is relatively infrequent and does any cleanup only
2848 * if the Tx queue has not seen any new packets in a while. We make a
2849 * best effort attempt to reclaim descriptors, in that we don't wait
2850 * around if we cannot get a queue's lock (which most likely is because
2851 * someone else is queueing new packets and so will also handle the clean
2852 * up). Since control queues use immediate data exclusively we don't
2853 * bother cleaning them up here.
2856 static void sge_timer_tx(unsigned long data)
2858 struct sge_qset *qs = (struct sge_qset *)data;
2859 struct port_info *pi = netdev_priv(qs->netdev);
2860 struct adapter *adap = pi->adapter;
2861 unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0};
2862 unsigned long next_period;
2864 if (__netif_tx_trylock(qs->tx_q)) {
2865 tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH],
2866 TX_RECLAIM_TIMER_CHUNK);
2867 __netif_tx_unlock(qs->tx_q);
2870 if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2871 tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD],
2872 TX_RECLAIM_TIMER_CHUNK);
2873 spin_unlock(&qs->txq[TXQ_OFLD].lock);
2876 next_period = TX_RECLAIM_PERIOD >>
2877 (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) /
2878 TX_RECLAIM_TIMER_CHUNK);
2879 mod_timer(&qs->tx_reclaim_timer, jiffies + next_period);
2883 * sge_timer_rx - perform periodic maintenance of an SGE qset
2884 * @data: the SGE queue set to maintain
2886 * a) Replenishes Rx queues that have run out due to memory shortage.
2887 * Normally new Rx buffers are added when existing ones are consumed but
2888 * when out of memory a queue can become empty. We try to add only a few
2889 * buffers here, the queue will be replenished fully as these new buffers
2890 * are used up if memory shortage has subsided.
2892 * b) Return coalesced response queue credits in case a response queue is
2893 * starved.
2896 static void sge_timer_rx(unsigned long data)
2898 spinlock_t *lock;
2899 struct sge_qset *qs = (struct sge_qset *)data;
2900 struct port_info *pi = netdev_priv(qs->netdev);
2901 struct adapter *adap = pi->adapter;
2902 u32 status;
2904 lock = adap->params.rev > 0 ?
2905 &qs->rspq.lock : &adap->sge.qs[0].rspq.lock;
2907 if (!spin_trylock_irq(lock))
2908 goto out;
2910 if (napi_is_scheduled(&qs->napi))
2911 goto unlock;
2913 if (adap->params.rev < 4) {
2914 status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2916 if (status & (1 << qs->rspq.cntxt_id)) {
2917 qs->rspq.starved++;
2918 if (qs->rspq.credits) {
2919 qs->rspq.credits--;
2920 refill_rspq(adap, &qs->rspq, 1);
2921 qs->rspq.restarted++;
2922 t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
2923 1 << qs->rspq.cntxt_id);
2928 if (qs->fl[0].credits < qs->fl[0].size)
2929 __refill_fl(adap, &qs->fl[0]);
2930 if (qs->fl[1].credits < qs->fl[1].size)
2931 __refill_fl(adap, &qs->fl[1]);
2933 unlock:
2934 spin_unlock_irq(lock);
2935 out:
2936 mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
2940 * t3_update_qset_coalesce - update coalescing settings for a queue set
2941 * @qs: the SGE queue set
2942 * @p: new queue set parameters
2944 * Update the coalescing settings for an SGE queue set. Nothing is done
2945 * if the queue set is not initialized yet.
2947 void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
2949 qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
2950 qs->rspq.polling = p->polling;
2951 qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
2955 * t3_sge_alloc_qset - initialize an SGE queue set
2956 * @adapter: the adapter
2957 * @id: the queue set id
2958 * @nports: how many Ethernet ports will be using this queue set
2959 * @irq_vec_idx: the IRQ vector index for response queue interrupts
2960 * @p: configuration parameters for this queue set
2961 * @ntxq: number of Tx queues for the queue set
2962 * @netdev: net device associated with this queue set
2963 * @netdevq: net device TX queue associated with this queue set
2965 * Allocate resources and initialize an SGE queue set. A queue set
2966 * comprises a response queue, two Rx free-buffer queues, and up to 3
2967 * Tx queues. The Tx queues are assigned roles in the order Ethernet
2968 * queue, offload queue, and control queue.
2970 int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
2971 int irq_vec_idx, const struct qset_params *p,
2972 int ntxq, struct net_device *dev,
2973 struct netdev_queue *netdevq)
2975 int i, avail, ret = -ENOMEM;
2976 struct sge_qset *q = &adapter->sge.qs[id];
2978 init_qset_cntxt(q, id);
2979 setup_timer(&q->tx_reclaim_timer, sge_timer_tx, (unsigned long)q);
2980 setup_timer(&q->rx_reclaim_timer, sge_timer_rx, (unsigned long)q);
2982 q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
2983 sizeof(struct rx_desc),
2984 sizeof(struct rx_sw_desc),
2985 &q->fl[0].phys_addr, &q->fl[0].sdesc);
2986 if (!q->fl[0].desc)
2987 goto err;
2989 q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
2990 sizeof(struct rx_desc),
2991 sizeof(struct rx_sw_desc),
2992 &q->fl[1].phys_addr, &q->fl[1].sdesc);
2993 if (!q->fl[1].desc)
2994 goto err;
2996 q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
2997 sizeof(struct rsp_desc), 0,
2998 &q->rspq.phys_addr, NULL);
2999 if (!q->rspq.desc)
3000 goto err;
3002 for (i = 0; i < ntxq; ++i) {
3004 * The control queue always uses immediate data so does not
3005 * need to keep track of any sk_buffs.
3007 size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
3009 q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
3010 sizeof(struct tx_desc), sz,
3011 &q->txq[i].phys_addr,
3012 &q->txq[i].sdesc);
3013 if (!q->txq[i].desc)
3014 goto err;
3016 q->txq[i].gen = 1;
3017 q->txq[i].size = p->txq_size[i];
3018 spin_lock_init(&q->txq[i].lock);
3019 skb_queue_head_init(&q->txq[i].sendq);
3022 tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq,
3023 (unsigned long)q);
3024 tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq,
3025 (unsigned long)q);
3027 q->fl[0].gen = q->fl[1].gen = 1;
3028 q->fl[0].size = p->fl_size;
3029 q->fl[1].size = p->jumbo_size;
3031 q->rspq.gen = 1;
3032 q->rspq.size = p->rspq_size;
3033 spin_lock_init(&q->rspq.lock);
3034 skb_queue_head_init(&q->rspq.rx_queue);
3036 q->txq[TXQ_ETH].stop_thres = nports *
3037 flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
3039 #if FL0_PG_CHUNK_SIZE > 0
3040 q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
3041 #else
3042 q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
3043 #endif
3044 #if FL1_PG_CHUNK_SIZE > 0
3045 q->fl[1].buf_size = FL1_PG_CHUNK_SIZE;
3046 #else
3047 q->fl[1].buf_size = is_offload(adapter) ?
3048 (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
3049 MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
3050 #endif
3052 q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
3053 q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0;
3054 q->fl[0].order = FL0_PG_ORDER;
3055 q->fl[1].order = FL1_PG_ORDER;
3056 q->fl[0].alloc_size = FL0_PG_ALLOC_SIZE;
3057 q->fl[1].alloc_size = FL1_PG_ALLOC_SIZE;
3059 spin_lock_irq(&adapter->sge.reg_lock);
3061 /* FL threshold comparison uses < */
3062 ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
3063 q->rspq.phys_addr, q->rspq.size,
3064 q->fl[0].buf_size - SGE_PG_RSVD, 1, 0);
3065 if (ret)
3066 goto err_unlock;
3068 for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
3069 ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
3070 q->fl[i].phys_addr, q->fl[i].size,
3071 q->fl[i].buf_size - SGE_PG_RSVD,
3072 p->cong_thres, 1, 0);
3073 if (ret)
3074 goto err_unlock;
3077 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
3078 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
3079 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
3080 1, 0);
3081 if (ret)
3082 goto err_unlock;
3084 if (ntxq > 1) {
3085 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
3086 USE_GTS, SGE_CNTXT_OFLD, id,
3087 q->txq[TXQ_OFLD].phys_addr,
3088 q->txq[TXQ_OFLD].size, 0, 1, 0);
3089 if (ret)
3090 goto err_unlock;
3093 if (ntxq > 2) {
3094 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
3095 SGE_CNTXT_CTRL, id,
3096 q->txq[TXQ_CTRL].phys_addr,
3097 q->txq[TXQ_CTRL].size,
3098 q->txq[TXQ_CTRL].token, 1, 0);
3099 if (ret)
3100 goto err_unlock;
3103 spin_unlock_irq(&adapter->sge.reg_lock);
3105 q->adap = adapter;
3106 q->netdev = dev;
3107 q->tx_q = netdevq;
3108 t3_update_qset_coalesce(q, p);
3110 avail = refill_fl(adapter, &q->fl[0], q->fl[0].size,
3111 GFP_KERNEL | __GFP_COMP);
3112 if (!avail) {
3113 CH_ALERT(adapter, "free list queue 0 initialization failed\n");
3114 goto err;
3116 if (avail < q->fl[0].size)
3117 CH_WARN(adapter, "free list queue 0 enabled with %d credits\n",
3118 avail);
3120 avail = refill_fl(adapter, &q->fl[1], q->fl[1].size,
3121 GFP_KERNEL | __GFP_COMP);
3122 if (avail < q->fl[1].size)
3123 CH_WARN(adapter, "free list queue 1 enabled with %d credits\n",
3124 avail);
3125 refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
3127 t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
3128 V_NEWTIMER(q->rspq.holdoff_tmr));
3130 return 0;
3132 err_unlock:
3133 spin_unlock_irq(&adapter->sge.reg_lock);
3134 err:
3135 t3_free_qset(adapter, q);
3136 return ret;
3140 * t3_start_sge_timers - start SGE timer call backs
3141 * @adap: the adapter
3143 * Starts each SGE queue set's timer call back
3145 void t3_start_sge_timers(struct adapter *adap)
3147 int i;
3149 for (i = 0; i < SGE_QSETS; ++i) {
3150 struct sge_qset *q = &adap->sge.qs[i];
3152 if (q->tx_reclaim_timer.function)
3153 mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
3155 if (q->rx_reclaim_timer.function)
3156 mod_timer(&q->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
3161 * t3_stop_sge_timers - stop SGE timer call backs
3162 * @adap: the adapter
3164 * Stops each SGE queue set's timer call back
3166 void t3_stop_sge_timers(struct adapter *adap)
3168 int i;
3170 for (i = 0; i < SGE_QSETS; ++i) {
3171 struct sge_qset *q = &adap->sge.qs[i];
3173 if (q->tx_reclaim_timer.function)
3174 del_timer_sync(&q->tx_reclaim_timer);
3175 if (q->rx_reclaim_timer.function)
3176 del_timer_sync(&q->rx_reclaim_timer);
3181 * t3_free_sge_resources - free SGE resources
3182 * @adap: the adapter
3184 * Frees resources used by the SGE queue sets.
3186 void t3_free_sge_resources(struct adapter *adap)
3188 int i;
3190 for (i = 0; i < SGE_QSETS; ++i)
3191 t3_free_qset(adap, &adap->sge.qs[i]);
3195 * t3_sge_start - enable SGE
3196 * @adap: the adapter
3198 * Enables the SGE for DMAs. This is the last step in starting packet
3199 * transfers.
3201 void t3_sge_start(struct adapter *adap)
3203 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
3207 * t3_sge_stop - disable SGE operation
3208 * @adap: the adapter
3210 * Disables the DMA engine. This can be called in emeregencies (e.g.,
3211 * from error interrupts) or from normal process context. In the latter
3212 * case it also disables any pending queue restart tasklets. Note that
3213 * if it is called in interrupt context it cannot disable the restart
3214 * tasklets as it cannot wait, however the tasklets will have no effect
3215 * since the doorbells are disabled and the driver will call this again
3216 * later from process context, at which time the tasklets will be stopped
3217 * if they are still running.
3219 void t3_sge_stop(struct adapter *adap)
3221 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
3222 if (!in_interrupt()) {
3223 int i;
3225 for (i = 0; i < SGE_QSETS; ++i) {
3226 struct sge_qset *qs = &adap->sge.qs[i];
3228 tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
3229 tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
3235 * t3_sge_init - initialize SGE
3236 * @adap: the adapter
3237 * @p: the SGE parameters
3239 * Performs SGE initialization needed every time after a chip reset.
3240 * We do not initialize any of the queue sets here, instead the driver
3241 * top-level must request those individually. We also do not enable DMA
3242 * here, that should be done after the queues have been set up.
3244 void t3_sge_init(struct adapter *adap, struct sge_params *p)
3246 unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
3248 ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
3249 F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
3250 V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
3251 V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
3252 #if SGE_NUM_GENBITS == 1
3253 ctrl |= F_EGRGENCTRL;
3254 #endif
3255 if (adap->params.rev > 0) {
3256 if (!(adap->flags & (USING_MSIX | USING_MSI)))
3257 ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
3259 t3_write_reg(adap, A_SG_CONTROL, ctrl);
3260 t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
3261 V_LORCQDRBTHRSH(512));
3262 t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
3263 t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
3264 V_TIMEOUT(200 * core_ticks_per_usec(adap)));
3265 t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
3266 adap->params.rev < T3_REV_C ? 1000 : 500);
3267 t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
3268 t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
3269 t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
3270 t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
3271 t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
3275 * t3_sge_prep - one-time SGE initialization
3276 * @adap: the associated adapter
3277 * @p: SGE parameters
3279 * Performs one-time initialization of SGE SW state. Includes determining
3280 * defaults for the assorted SGE parameters, which admins can change until
3281 * they are used to initialize the SGE.
3283 void t3_sge_prep(struct adapter *adap, struct sge_params *p)
3285 int i;
3287 p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
3288 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3290 for (i = 0; i < SGE_QSETS; ++i) {
3291 struct qset_params *q = p->qset + i;
3293 q->polling = adap->params.rev > 0;
3294 q->coalesce_usecs = 5;
3295 q->rspq_size = 1024;
3296 q->fl_size = 1024;
3297 q->jumbo_size = 512;
3298 q->txq_size[TXQ_ETH] = 1024;
3299 q->txq_size[TXQ_OFLD] = 1024;
3300 q->txq_size[TXQ_CTRL] = 256;
3301 q->cong_thres = 0;
3304 spin_lock_init(&adap->sge.reg_lock);