Replace <asm/uaccess.h> with <linux/uaccess.h> globally
[linux-2.6/btrfs-unstable.git] / arch / x86 / kernel / process.c
blobb615a1113f58241bb4dcf0b5cc544b743df24752
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/export.h>
12 #include <linux/pm.h>
13 #include <linux/tick.h>
14 #include <linux/random.h>
15 #include <linux/user-return-notifier.h>
16 #include <linux/dmi.h>
17 #include <linux/utsname.h>
18 #include <linux/stackprotector.h>
19 #include <linux/tick.h>
20 #include <linux/cpuidle.h>
21 #include <trace/events/power.h>
22 #include <linux/hw_breakpoint.h>
23 #include <asm/cpu.h>
24 #include <asm/apic.h>
25 #include <asm/syscalls.h>
26 #include <linux/uaccess.h>
27 #include <asm/mwait.h>
28 #include <asm/fpu/internal.h>
29 #include <asm/debugreg.h>
30 #include <asm/nmi.h>
31 #include <asm/tlbflush.h>
32 #include <asm/mce.h>
33 #include <asm/vm86.h>
34 #include <asm/switch_to.h>
37 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
38 * no more per-task TSS's. The TSS size is kept cacheline-aligned
39 * so they are allowed to end up in the .data..cacheline_aligned
40 * section. Since TSS's are completely CPU-local, we want them
41 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
43 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
44 .x86_tss = {
45 .sp0 = TOP_OF_INIT_STACK,
46 #ifdef CONFIG_X86_32
47 .ss0 = __KERNEL_DS,
48 .ss1 = __KERNEL_CS,
49 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
50 #endif
52 #ifdef CONFIG_X86_32
54 * Note that the .io_bitmap member must be extra-big. This is because
55 * the CPU will access an additional byte beyond the end of the IO
56 * permission bitmap. The extra byte must be all 1 bits, and must
57 * be within the limit.
59 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
60 #endif
61 #ifdef CONFIG_X86_32
62 .SYSENTER_stack_canary = STACK_END_MAGIC,
63 #endif
65 EXPORT_PER_CPU_SYMBOL(cpu_tss);
68 * this gets called so that we can store lazy state into memory and copy the
69 * current task into the new thread.
71 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
73 memcpy(dst, src, arch_task_struct_size);
74 #ifdef CONFIG_VM86
75 dst->thread.vm86 = NULL;
76 #endif
78 return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
82 * Free current thread data structures etc..
84 void exit_thread(struct task_struct *tsk)
86 struct thread_struct *t = &tsk->thread;
87 unsigned long *bp = t->io_bitmap_ptr;
88 struct fpu *fpu = &t->fpu;
90 if (bp) {
91 struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
93 t->io_bitmap_ptr = NULL;
94 clear_thread_flag(TIF_IO_BITMAP);
96 * Careful, clear this in the TSS too:
98 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
99 t->io_bitmap_max = 0;
100 put_cpu();
101 kfree(bp);
104 free_vm86(t);
106 fpu__drop(fpu);
109 void flush_thread(void)
111 struct task_struct *tsk = current;
113 flush_ptrace_hw_breakpoint(tsk);
114 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
116 fpu__clear(&tsk->thread.fpu);
119 static void hard_disable_TSC(void)
121 cr4_set_bits(X86_CR4_TSD);
124 void disable_TSC(void)
126 preempt_disable();
127 if (!test_and_set_thread_flag(TIF_NOTSC))
129 * Must flip the CPU state synchronously with
130 * TIF_NOTSC in the current running context.
132 hard_disable_TSC();
133 preempt_enable();
136 static void hard_enable_TSC(void)
138 cr4_clear_bits(X86_CR4_TSD);
141 static void enable_TSC(void)
143 preempt_disable();
144 if (test_and_clear_thread_flag(TIF_NOTSC))
146 * Must flip the CPU state synchronously with
147 * TIF_NOTSC in the current running context.
149 hard_enable_TSC();
150 preempt_enable();
153 int get_tsc_mode(unsigned long adr)
155 unsigned int val;
157 if (test_thread_flag(TIF_NOTSC))
158 val = PR_TSC_SIGSEGV;
159 else
160 val = PR_TSC_ENABLE;
162 return put_user(val, (unsigned int __user *)adr);
165 int set_tsc_mode(unsigned int val)
167 if (val == PR_TSC_SIGSEGV)
168 disable_TSC();
169 else if (val == PR_TSC_ENABLE)
170 enable_TSC();
171 else
172 return -EINVAL;
174 return 0;
177 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
178 struct tss_struct *tss)
180 struct thread_struct *prev, *next;
182 prev = &prev_p->thread;
183 next = &next_p->thread;
185 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
186 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
187 unsigned long debugctl = get_debugctlmsr();
189 debugctl &= ~DEBUGCTLMSR_BTF;
190 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
191 debugctl |= DEBUGCTLMSR_BTF;
193 update_debugctlmsr(debugctl);
196 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
197 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
198 /* prev and next are different */
199 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
200 hard_disable_TSC();
201 else
202 hard_enable_TSC();
205 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
207 * Copy the relevant range of the IO bitmap.
208 * Normally this is 128 bytes or less:
210 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
211 max(prev->io_bitmap_max, next->io_bitmap_max));
212 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
214 * Clear any possible leftover bits:
216 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
218 propagate_user_return_notify(prev_p, next_p);
222 * Idle related variables and functions
224 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
225 EXPORT_SYMBOL(boot_option_idle_override);
227 static void (*x86_idle)(void);
229 #ifndef CONFIG_SMP
230 static inline void play_dead(void)
232 BUG();
234 #endif
236 void arch_cpu_idle_enter(void)
238 tsc_verify_tsc_adjust(false);
239 local_touch_nmi();
242 void arch_cpu_idle_dead(void)
244 play_dead();
248 * Called from the generic idle code.
250 void arch_cpu_idle(void)
252 x86_idle();
256 * We use this if we don't have any better idle routine..
258 void __cpuidle default_idle(void)
260 trace_cpu_idle_rcuidle(1, smp_processor_id());
261 safe_halt();
262 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
264 #ifdef CONFIG_APM_MODULE
265 EXPORT_SYMBOL(default_idle);
266 #endif
268 #ifdef CONFIG_XEN
269 bool xen_set_default_idle(void)
271 bool ret = !!x86_idle;
273 x86_idle = default_idle;
275 return ret;
277 #endif
278 void stop_this_cpu(void *dummy)
280 local_irq_disable();
282 * Remove this CPU:
284 set_cpu_online(smp_processor_id(), false);
285 disable_local_APIC();
286 mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
288 for (;;)
289 halt();
293 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
294 * states (local apic timer and TSC stop).
296 static void amd_e400_idle(void)
299 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
300 * gets set after static_cpu_has() places have been converted via
301 * alternatives.
303 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
304 default_idle();
305 return;
308 tick_broadcast_enter();
310 default_idle();
313 * The switch back from broadcast mode needs to be called with
314 * interrupts disabled.
316 local_irq_disable();
317 tick_broadcast_exit();
318 local_irq_enable();
322 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
323 * We can't rely on cpuidle installing MWAIT, because it will not load
324 * on systems that support only C1 -- so the boot default must be MWAIT.
326 * Some AMD machines are the opposite, they depend on using HALT.
328 * So for default C1, which is used during boot until cpuidle loads,
329 * use MWAIT-C1 on Intel HW that has it, else use HALT.
331 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
333 if (c->x86_vendor != X86_VENDOR_INTEL)
334 return 0;
336 if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
337 return 0;
339 return 1;
343 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
344 * with interrupts enabled and no flags, which is backwards compatible with the
345 * original MWAIT implementation.
347 static __cpuidle void mwait_idle(void)
349 if (!current_set_polling_and_test()) {
350 trace_cpu_idle_rcuidle(1, smp_processor_id());
351 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
352 mb(); /* quirk */
353 clflush((void *)&current_thread_info()->flags);
354 mb(); /* quirk */
357 __monitor((void *)&current_thread_info()->flags, 0, 0);
358 if (!need_resched())
359 __sti_mwait(0, 0);
360 else
361 local_irq_enable();
362 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
363 } else {
364 local_irq_enable();
366 __current_clr_polling();
369 void select_idle_routine(const struct cpuinfo_x86 *c)
371 #ifdef CONFIG_SMP
372 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
373 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
374 #endif
375 if (x86_idle || boot_option_idle_override == IDLE_POLL)
376 return;
378 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
379 pr_info("using AMD E400 aware idle routine\n");
380 x86_idle = amd_e400_idle;
381 } else if (prefer_mwait_c1_over_halt(c)) {
382 pr_info("using mwait in idle threads\n");
383 x86_idle = mwait_idle;
384 } else
385 x86_idle = default_idle;
388 void amd_e400_c1e_apic_setup(void)
390 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
391 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
392 local_irq_disable();
393 tick_broadcast_force();
394 local_irq_enable();
398 void __init arch_post_acpi_subsys_init(void)
400 u32 lo, hi;
402 if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
403 return;
406 * AMD E400 detection needs to happen after ACPI has been enabled. If
407 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
408 * MSR_K8_INT_PENDING_MSG.
410 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
411 if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
412 return;
414 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
416 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
417 mark_tsc_unstable("TSC halt in AMD C1E");
418 pr_info("System has AMD C1E enabled\n");
421 static int __init idle_setup(char *str)
423 if (!str)
424 return -EINVAL;
426 if (!strcmp(str, "poll")) {
427 pr_info("using polling idle threads\n");
428 boot_option_idle_override = IDLE_POLL;
429 cpu_idle_poll_ctrl(true);
430 } else if (!strcmp(str, "halt")) {
432 * When the boot option of idle=halt is added, halt is
433 * forced to be used for CPU idle. In such case CPU C2/C3
434 * won't be used again.
435 * To continue to load the CPU idle driver, don't touch
436 * the boot_option_idle_override.
438 x86_idle = default_idle;
439 boot_option_idle_override = IDLE_HALT;
440 } else if (!strcmp(str, "nomwait")) {
442 * If the boot option of "idle=nomwait" is added,
443 * it means that mwait will be disabled for CPU C2/C3
444 * states. In such case it won't touch the variable
445 * of boot_option_idle_override.
447 boot_option_idle_override = IDLE_NOMWAIT;
448 } else
449 return -1;
451 return 0;
453 early_param("idle", idle_setup);
455 unsigned long arch_align_stack(unsigned long sp)
457 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
458 sp -= get_random_int() % 8192;
459 return sp & ~0xf;
462 unsigned long arch_randomize_brk(struct mm_struct *mm)
464 return randomize_page(mm->brk, 0x02000000);
468 * Return saved PC of a blocked thread.
469 * What is this good for? it will be always the scheduler or ret_from_fork.
471 unsigned long thread_saved_pc(struct task_struct *tsk)
473 struct inactive_task_frame *frame =
474 (struct inactive_task_frame *) READ_ONCE(tsk->thread.sp);
475 return READ_ONCE_NOCHECK(frame->ret_addr);
479 * Called from fs/proc with a reference on @p to find the function
480 * which called into schedule(). This needs to be done carefully
481 * because the task might wake up and we might look at a stack
482 * changing under us.
484 unsigned long get_wchan(struct task_struct *p)
486 unsigned long start, bottom, top, sp, fp, ip, ret = 0;
487 int count = 0;
489 if (!p || p == current || p->state == TASK_RUNNING)
490 return 0;
492 if (!try_get_task_stack(p))
493 return 0;
495 start = (unsigned long)task_stack_page(p);
496 if (!start)
497 goto out;
500 * Layout of the stack page:
502 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
503 * PADDING
504 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
505 * stack
506 * ----------- bottom = start
508 * The tasks stack pointer points at the location where the
509 * framepointer is stored. The data on the stack is:
510 * ... IP FP ... IP FP
512 * We need to read FP and IP, so we need to adjust the upper
513 * bound by another unsigned long.
515 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
516 top -= 2 * sizeof(unsigned long);
517 bottom = start;
519 sp = READ_ONCE(p->thread.sp);
520 if (sp < bottom || sp > top)
521 goto out;
523 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
524 do {
525 if (fp < bottom || fp > top)
526 goto out;
527 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
528 if (!in_sched_functions(ip)) {
529 ret = ip;
530 goto out;
532 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
533 } while (count++ < 16 && p->state != TASK_RUNNING);
535 out:
536 put_task_stack(p);
537 return ret;