spi: txx9: Use devm_ioremap_resource()
[linux-2.6/btrfs-unstable.git] / fs / btrfs / tree-log.c
blob39d83da03e0398db90428e52b98524982da469b5
1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "disk-io.h"
26 #include "locking.h"
27 #include "print-tree.h"
28 #include "backref.h"
29 #include "tree-log.h"
30 #include "hash.h"
32 /* magic values for the inode_only field in btrfs_log_inode:
34 * LOG_INODE_ALL means to log everything
35 * LOG_INODE_EXISTS means to log just enough to recreate the inode
36 * during log replay
38 #define LOG_INODE_ALL 0
39 #define LOG_INODE_EXISTS 1
42 * directory trouble cases
44 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
45 * log, we must force a full commit before doing an fsync of the directory
46 * where the unlink was done.
47 * ---> record transid of last unlink/rename per directory
49 * mkdir foo/some_dir
50 * normal commit
51 * rename foo/some_dir foo2/some_dir
52 * mkdir foo/some_dir
53 * fsync foo/some_dir/some_file
55 * The fsync above will unlink the original some_dir without recording
56 * it in its new location (foo2). After a crash, some_dir will be gone
57 * unless the fsync of some_file forces a full commit
59 * 2) we must log any new names for any file or dir that is in the fsync
60 * log. ---> check inode while renaming/linking.
62 * 2a) we must log any new names for any file or dir during rename
63 * when the directory they are being removed from was logged.
64 * ---> check inode and old parent dir during rename
66 * 2a is actually the more important variant. With the extra logging
67 * a crash might unlink the old name without recreating the new one
69 * 3) after a crash, we must go through any directories with a link count
70 * of zero and redo the rm -rf
72 * mkdir f1/foo
73 * normal commit
74 * rm -rf f1/foo
75 * fsync(f1)
77 * The directory f1 was fully removed from the FS, but fsync was never
78 * called on f1, only its parent dir. After a crash the rm -rf must
79 * be replayed. This must be able to recurse down the entire
80 * directory tree. The inode link count fixup code takes care of the
81 * ugly details.
85 * stages for the tree walking. The first
86 * stage (0) is to only pin down the blocks we find
87 * the second stage (1) is to make sure that all the inodes
88 * we find in the log are created in the subvolume.
90 * The last stage is to deal with directories and links and extents
91 * and all the other fun semantics
93 #define LOG_WALK_PIN_ONLY 0
94 #define LOG_WALK_REPLAY_INODES 1
95 #define LOG_WALK_REPLAY_DIR_INDEX 2
96 #define LOG_WALK_REPLAY_ALL 3
98 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
99 struct btrfs_root *root, struct inode *inode,
100 int inode_only);
101 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
102 struct btrfs_root *root,
103 struct btrfs_path *path, u64 objectid);
104 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
105 struct btrfs_root *root,
106 struct btrfs_root *log,
107 struct btrfs_path *path,
108 u64 dirid, int del_all);
111 * tree logging is a special write ahead log used to make sure that
112 * fsyncs and O_SYNCs can happen without doing full tree commits.
114 * Full tree commits are expensive because they require commonly
115 * modified blocks to be recowed, creating many dirty pages in the
116 * extent tree an 4x-6x higher write load than ext3.
118 * Instead of doing a tree commit on every fsync, we use the
119 * key ranges and transaction ids to find items for a given file or directory
120 * that have changed in this transaction. Those items are copied into
121 * a special tree (one per subvolume root), that tree is written to disk
122 * and then the fsync is considered complete.
124 * After a crash, items are copied out of the log-tree back into the
125 * subvolume tree. Any file data extents found are recorded in the extent
126 * allocation tree, and the log-tree freed.
128 * The log tree is read three times, once to pin down all the extents it is
129 * using in ram and once, once to create all the inodes logged in the tree
130 * and once to do all the other items.
134 * start a sub transaction and setup the log tree
135 * this increments the log tree writer count to make the people
136 * syncing the tree wait for us to finish
138 static int start_log_trans(struct btrfs_trans_handle *trans,
139 struct btrfs_root *root)
141 int ret;
142 int err = 0;
144 mutex_lock(&root->log_mutex);
145 if (root->log_root) {
146 if (!root->log_start_pid) {
147 root->log_start_pid = current->pid;
148 root->log_multiple_pids = false;
149 } else if (root->log_start_pid != current->pid) {
150 root->log_multiple_pids = true;
153 atomic_inc(&root->log_batch);
154 atomic_inc(&root->log_writers);
155 mutex_unlock(&root->log_mutex);
156 return 0;
158 root->log_multiple_pids = false;
159 root->log_start_pid = current->pid;
160 mutex_lock(&root->fs_info->tree_log_mutex);
161 if (!root->fs_info->log_root_tree) {
162 ret = btrfs_init_log_root_tree(trans, root->fs_info);
163 if (ret)
164 err = ret;
166 if (err == 0 && !root->log_root) {
167 ret = btrfs_add_log_tree(trans, root);
168 if (ret)
169 err = ret;
171 mutex_unlock(&root->fs_info->tree_log_mutex);
172 atomic_inc(&root->log_batch);
173 atomic_inc(&root->log_writers);
174 mutex_unlock(&root->log_mutex);
175 return err;
179 * returns 0 if there was a log transaction running and we were able
180 * to join, or returns -ENOENT if there were not transactions
181 * in progress
183 static int join_running_log_trans(struct btrfs_root *root)
185 int ret = -ENOENT;
187 smp_mb();
188 if (!root->log_root)
189 return -ENOENT;
191 mutex_lock(&root->log_mutex);
192 if (root->log_root) {
193 ret = 0;
194 atomic_inc(&root->log_writers);
196 mutex_unlock(&root->log_mutex);
197 return ret;
201 * This either makes the current running log transaction wait
202 * until you call btrfs_end_log_trans() or it makes any future
203 * log transactions wait until you call btrfs_end_log_trans()
205 int btrfs_pin_log_trans(struct btrfs_root *root)
207 int ret = -ENOENT;
209 mutex_lock(&root->log_mutex);
210 atomic_inc(&root->log_writers);
211 mutex_unlock(&root->log_mutex);
212 return ret;
216 * indicate we're done making changes to the log tree
217 * and wake up anyone waiting to do a sync
219 void btrfs_end_log_trans(struct btrfs_root *root)
221 if (atomic_dec_and_test(&root->log_writers)) {
222 smp_mb();
223 if (waitqueue_active(&root->log_writer_wait))
224 wake_up(&root->log_writer_wait);
230 * the walk control struct is used to pass state down the chain when
231 * processing the log tree. The stage field tells us which part
232 * of the log tree processing we are currently doing. The others
233 * are state fields used for that specific part
235 struct walk_control {
236 /* should we free the extent on disk when done? This is used
237 * at transaction commit time while freeing a log tree
239 int free;
241 /* should we write out the extent buffer? This is used
242 * while flushing the log tree to disk during a sync
244 int write;
246 /* should we wait for the extent buffer io to finish? Also used
247 * while flushing the log tree to disk for a sync
249 int wait;
251 /* pin only walk, we record which extents on disk belong to the
252 * log trees
254 int pin;
256 /* what stage of the replay code we're currently in */
257 int stage;
259 /* the root we are currently replaying */
260 struct btrfs_root *replay_dest;
262 /* the trans handle for the current replay */
263 struct btrfs_trans_handle *trans;
265 /* the function that gets used to process blocks we find in the
266 * tree. Note the extent_buffer might not be up to date when it is
267 * passed in, and it must be checked or read if you need the data
268 * inside it
270 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
271 struct walk_control *wc, u64 gen);
275 * process_func used to pin down extents, write them or wait on them
277 static int process_one_buffer(struct btrfs_root *log,
278 struct extent_buffer *eb,
279 struct walk_control *wc, u64 gen)
281 int ret = 0;
284 * If this fs is mixed then we need to be able to process the leaves to
285 * pin down any logged extents, so we have to read the block.
287 if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
288 ret = btrfs_read_buffer(eb, gen);
289 if (ret)
290 return ret;
293 if (wc->pin)
294 ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
295 eb->start, eb->len);
297 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
298 if (wc->pin && btrfs_header_level(eb) == 0)
299 ret = btrfs_exclude_logged_extents(log, eb);
300 if (wc->write)
301 btrfs_write_tree_block(eb);
302 if (wc->wait)
303 btrfs_wait_tree_block_writeback(eb);
305 return ret;
309 * Item overwrite used by replay and tree logging. eb, slot and key all refer
310 * to the src data we are copying out.
312 * root is the tree we are copying into, and path is a scratch
313 * path for use in this function (it should be released on entry and
314 * will be released on exit).
316 * If the key is already in the destination tree the existing item is
317 * overwritten. If the existing item isn't big enough, it is extended.
318 * If it is too large, it is truncated.
320 * If the key isn't in the destination yet, a new item is inserted.
322 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
323 struct btrfs_root *root,
324 struct btrfs_path *path,
325 struct extent_buffer *eb, int slot,
326 struct btrfs_key *key)
328 int ret;
329 u32 item_size;
330 u64 saved_i_size = 0;
331 int save_old_i_size = 0;
332 unsigned long src_ptr;
333 unsigned long dst_ptr;
334 int overwrite_root = 0;
335 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
337 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
338 overwrite_root = 1;
340 item_size = btrfs_item_size_nr(eb, slot);
341 src_ptr = btrfs_item_ptr_offset(eb, slot);
343 /* look for the key in the destination tree */
344 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
345 if (ret < 0)
346 return ret;
348 if (ret == 0) {
349 char *src_copy;
350 char *dst_copy;
351 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
352 path->slots[0]);
353 if (dst_size != item_size)
354 goto insert;
356 if (item_size == 0) {
357 btrfs_release_path(path);
358 return 0;
360 dst_copy = kmalloc(item_size, GFP_NOFS);
361 src_copy = kmalloc(item_size, GFP_NOFS);
362 if (!dst_copy || !src_copy) {
363 btrfs_release_path(path);
364 kfree(dst_copy);
365 kfree(src_copy);
366 return -ENOMEM;
369 read_extent_buffer(eb, src_copy, src_ptr, item_size);
371 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
372 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
373 item_size);
374 ret = memcmp(dst_copy, src_copy, item_size);
376 kfree(dst_copy);
377 kfree(src_copy);
379 * they have the same contents, just return, this saves
380 * us from cowing blocks in the destination tree and doing
381 * extra writes that may not have been done by a previous
382 * sync
384 if (ret == 0) {
385 btrfs_release_path(path);
386 return 0;
390 * We need to load the old nbytes into the inode so when we
391 * replay the extents we've logged we get the right nbytes.
393 if (inode_item) {
394 struct btrfs_inode_item *item;
395 u64 nbytes;
396 u32 mode;
398 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
399 struct btrfs_inode_item);
400 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
401 item = btrfs_item_ptr(eb, slot,
402 struct btrfs_inode_item);
403 btrfs_set_inode_nbytes(eb, item, nbytes);
406 * If this is a directory we need to reset the i_size to
407 * 0 so that we can set it up properly when replaying
408 * the rest of the items in this log.
410 mode = btrfs_inode_mode(eb, item);
411 if (S_ISDIR(mode))
412 btrfs_set_inode_size(eb, item, 0);
414 } else if (inode_item) {
415 struct btrfs_inode_item *item;
416 u32 mode;
419 * New inode, set nbytes to 0 so that the nbytes comes out
420 * properly when we replay the extents.
422 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
423 btrfs_set_inode_nbytes(eb, item, 0);
426 * If this is a directory we need to reset the i_size to 0 so
427 * that we can set it up properly when replaying the rest of
428 * the items in this log.
430 mode = btrfs_inode_mode(eb, item);
431 if (S_ISDIR(mode))
432 btrfs_set_inode_size(eb, item, 0);
434 insert:
435 btrfs_release_path(path);
436 /* try to insert the key into the destination tree */
437 ret = btrfs_insert_empty_item(trans, root, path,
438 key, item_size);
440 /* make sure any existing item is the correct size */
441 if (ret == -EEXIST) {
442 u32 found_size;
443 found_size = btrfs_item_size_nr(path->nodes[0],
444 path->slots[0]);
445 if (found_size > item_size)
446 btrfs_truncate_item(root, path, item_size, 1);
447 else if (found_size < item_size)
448 btrfs_extend_item(root, path,
449 item_size - found_size);
450 } else if (ret) {
451 return ret;
453 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
454 path->slots[0]);
456 /* don't overwrite an existing inode if the generation number
457 * was logged as zero. This is done when the tree logging code
458 * is just logging an inode to make sure it exists after recovery.
460 * Also, don't overwrite i_size on directories during replay.
461 * log replay inserts and removes directory items based on the
462 * state of the tree found in the subvolume, and i_size is modified
463 * as it goes
465 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
466 struct btrfs_inode_item *src_item;
467 struct btrfs_inode_item *dst_item;
469 src_item = (struct btrfs_inode_item *)src_ptr;
470 dst_item = (struct btrfs_inode_item *)dst_ptr;
472 if (btrfs_inode_generation(eb, src_item) == 0)
473 goto no_copy;
475 if (overwrite_root &&
476 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
477 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
478 save_old_i_size = 1;
479 saved_i_size = btrfs_inode_size(path->nodes[0],
480 dst_item);
484 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
485 src_ptr, item_size);
487 if (save_old_i_size) {
488 struct btrfs_inode_item *dst_item;
489 dst_item = (struct btrfs_inode_item *)dst_ptr;
490 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
493 /* make sure the generation is filled in */
494 if (key->type == BTRFS_INODE_ITEM_KEY) {
495 struct btrfs_inode_item *dst_item;
496 dst_item = (struct btrfs_inode_item *)dst_ptr;
497 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
498 btrfs_set_inode_generation(path->nodes[0], dst_item,
499 trans->transid);
502 no_copy:
503 btrfs_mark_buffer_dirty(path->nodes[0]);
504 btrfs_release_path(path);
505 return 0;
509 * simple helper to read an inode off the disk from a given root
510 * This can only be called for subvolume roots and not for the log
512 static noinline struct inode *read_one_inode(struct btrfs_root *root,
513 u64 objectid)
515 struct btrfs_key key;
516 struct inode *inode;
518 key.objectid = objectid;
519 key.type = BTRFS_INODE_ITEM_KEY;
520 key.offset = 0;
521 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
522 if (IS_ERR(inode)) {
523 inode = NULL;
524 } else if (is_bad_inode(inode)) {
525 iput(inode);
526 inode = NULL;
528 return inode;
531 /* replays a single extent in 'eb' at 'slot' with 'key' into the
532 * subvolume 'root'. path is released on entry and should be released
533 * on exit.
535 * extents in the log tree have not been allocated out of the extent
536 * tree yet. So, this completes the allocation, taking a reference
537 * as required if the extent already exists or creating a new extent
538 * if it isn't in the extent allocation tree yet.
540 * The extent is inserted into the file, dropping any existing extents
541 * from the file that overlap the new one.
543 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
544 struct btrfs_root *root,
545 struct btrfs_path *path,
546 struct extent_buffer *eb, int slot,
547 struct btrfs_key *key)
549 int found_type;
550 u64 extent_end;
551 u64 start = key->offset;
552 u64 nbytes = 0;
553 struct btrfs_file_extent_item *item;
554 struct inode *inode = NULL;
555 unsigned long size;
556 int ret = 0;
558 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
559 found_type = btrfs_file_extent_type(eb, item);
561 if (found_type == BTRFS_FILE_EXTENT_REG ||
562 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
563 nbytes = btrfs_file_extent_num_bytes(eb, item);
564 extent_end = start + nbytes;
567 * We don't add to the inodes nbytes if we are prealloc or a
568 * hole.
570 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
571 nbytes = 0;
572 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
573 size = btrfs_file_extent_inline_len(eb, slot, item);
574 nbytes = btrfs_file_extent_ram_bytes(eb, item);
575 extent_end = ALIGN(start + size, root->sectorsize);
576 } else {
577 ret = 0;
578 goto out;
581 inode = read_one_inode(root, key->objectid);
582 if (!inode) {
583 ret = -EIO;
584 goto out;
588 * first check to see if we already have this extent in the
589 * file. This must be done before the btrfs_drop_extents run
590 * so we don't try to drop this extent.
592 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
593 start, 0);
595 if (ret == 0 &&
596 (found_type == BTRFS_FILE_EXTENT_REG ||
597 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
598 struct btrfs_file_extent_item cmp1;
599 struct btrfs_file_extent_item cmp2;
600 struct btrfs_file_extent_item *existing;
601 struct extent_buffer *leaf;
603 leaf = path->nodes[0];
604 existing = btrfs_item_ptr(leaf, path->slots[0],
605 struct btrfs_file_extent_item);
607 read_extent_buffer(eb, &cmp1, (unsigned long)item,
608 sizeof(cmp1));
609 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
610 sizeof(cmp2));
613 * we already have a pointer to this exact extent,
614 * we don't have to do anything
616 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
617 btrfs_release_path(path);
618 goto out;
621 btrfs_release_path(path);
623 /* drop any overlapping extents */
624 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
625 if (ret)
626 goto out;
628 if (found_type == BTRFS_FILE_EXTENT_REG ||
629 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
630 u64 offset;
631 unsigned long dest_offset;
632 struct btrfs_key ins;
634 ret = btrfs_insert_empty_item(trans, root, path, key,
635 sizeof(*item));
636 if (ret)
637 goto out;
638 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
639 path->slots[0]);
640 copy_extent_buffer(path->nodes[0], eb, dest_offset,
641 (unsigned long)item, sizeof(*item));
643 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
644 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
645 ins.type = BTRFS_EXTENT_ITEM_KEY;
646 offset = key->offset - btrfs_file_extent_offset(eb, item);
648 if (ins.objectid > 0) {
649 u64 csum_start;
650 u64 csum_end;
651 LIST_HEAD(ordered_sums);
653 * is this extent already allocated in the extent
654 * allocation tree? If so, just add a reference
656 ret = btrfs_lookup_extent(root, ins.objectid,
657 ins.offset);
658 if (ret == 0) {
659 ret = btrfs_inc_extent_ref(trans, root,
660 ins.objectid, ins.offset,
661 0, root->root_key.objectid,
662 key->objectid, offset, 0);
663 if (ret)
664 goto out;
665 } else {
667 * insert the extent pointer in the extent
668 * allocation tree
670 ret = btrfs_alloc_logged_file_extent(trans,
671 root, root->root_key.objectid,
672 key->objectid, offset, &ins);
673 if (ret)
674 goto out;
676 btrfs_release_path(path);
678 if (btrfs_file_extent_compression(eb, item)) {
679 csum_start = ins.objectid;
680 csum_end = csum_start + ins.offset;
681 } else {
682 csum_start = ins.objectid +
683 btrfs_file_extent_offset(eb, item);
684 csum_end = csum_start +
685 btrfs_file_extent_num_bytes(eb, item);
688 ret = btrfs_lookup_csums_range(root->log_root,
689 csum_start, csum_end - 1,
690 &ordered_sums, 0);
691 if (ret)
692 goto out;
693 while (!list_empty(&ordered_sums)) {
694 struct btrfs_ordered_sum *sums;
695 sums = list_entry(ordered_sums.next,
696 struct btrfs_ordered_sum,
697 list);
698 if (!ret)
699 ret = btrfs_csum_file_blocks(trans,
700 root->fs_info->csum_root,
701 sums);
702 list_del(&sums->list);
703 kfree(sums);
705 if (ret)
706 goto out;
707 } else {
708 btrfs_release_path(path);
710 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
711 /* inline extents are easy, we just overwrite them */
712 ret = overwrite_item(trans, root, path, eb, slot, key);
713 if (ret)
714 goto out;
717 inode_add_bytes(inode, nbytes);
718 ret = btrfs_update_inode(trans, root, inode);
719 out:
720 if (inode)
721 iput(inode);
722 return ret;
726 * when cleaning up conflicts between the directory names in the
727 * subvolume, directory names in the log and directory names in the
728 * inode back references, we may have to unlink inodes from directories.
730 * This is a helper function to do the unlink of a specific directory
731 * item
733 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
734 struct btrfs_root *root,
735 struct btrfs_path *path,
736 struct inode *dir,
737 struct btrfs_dir_item *di)
739 struct inode *inode;
740 char *name;
741 int name_len;
742 struct extent_buffer *leaf;
743 struct btrfs_key location;
744 int ret;
746 leaf = path->nodes[0];
748 btrfs_dir_item_key_to_cpu(leaf, di, &location);
749 name_len = btrfs_dir_name_len(leaf, di);
750 name = kmalloc(name_len, GFP_NOFS);
751 if (!name)
752 return -ENOMEM;
754 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
755 btrfs_release_path(path);
757 inode = read_one_inode(root, location.objectid);
758 if (!inode) {
759 ret = -EIO;
760 goto out;
763 ret = link_to_fixup_dir(trans, root, path, location.objectid);
764 if (ret)
765 goto out;
767 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
768 if (ret)
769 goto out;
770 else
771 ret = btrfs_run_delayed_items(trans, root);
772 out:
773 kfree(name);
774 iput(inode);
775 return ret;
779 * helper function to see if a given name and sequence number found
780 * in an inode back reference are already in a directory and correctly
781 * point to this inode
783 static noinline int inode_in_dir(struct btrfs_root *root,
784 struct btrfs_path *path,
785 u64 dirid, u64 objectid, u64 index,
786 const char *name, int name_len)
788 struct btrfs_dir_item *di;
789 struct btrfs_key location;
790 int match = 0;
792 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
793 index, name, name_len, 0);
794 if (di && !IS_ERR(di)) {
795 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
796 if (location.objectid != objectid)
797 goto out;
798 } else
799 goto out;
800 btrfs_release_path(path);
802 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
803 if (di && !IS_ERR(di)) {
804 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
805 if (location.objectid != objectid)
806 goto out;
807 } else
808 goto out;
809 match = 1;
810 out:
811 btrfs_release_path(path);
812 return match;
816 * helper function to check a log tree for a named back reference in
817 * an inode. This is used to decide if a back reference that is
818 * found in the subvolume conflicts with what we find in the log.
820 * inode backreferences may have multiple refs in a single item,
821 * during replay we process one reference at a time, and we don't
822 * want to delete valid links to a file from the subvolume if that
823 * link is also in the log.
825 static noinline int backref_in_log(struct btrfs_root *log,
826 struct btrfs_key *key,
827 u64 ref_objectid,
828 char *name, int namelen)
830 struct btrfs_path *path;
831 struct btrfs_inode_ref *ref;
832 unsigned long ptr;
833 unsigned long ptr_end;
834 unsigned long name_ptr;
835 int found_name_len;
836 int item_size;
837 int ret;
838 int match = 0;
840 path = btrfs_alloc_path();
841 if (!path)
842 return -ENOMEM;
844 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
845 if (ret != 0)
846 goto out;
848 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
850 if (key->type == BTRFS_INODE_EXTREF_KEY) {
851 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
852 name, namelen, NULL))
853 match = 1;
855 goto out;
858 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
859 ptr_end = ptr + item_size;
860 while (ptr < ptr_end) {
861 ref = (struct btrfs_inode_ref *)ptr;
862 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
863 if (found_name_len == namelen) {
864 name_ptr = (unsigned long)(ref + 1);
865 ret = memcmp_extent_buffer(path->nodes[0], name,
866 name_ptr, namelen);
867 if (ret == 0) {
868 match = 1;
869 goto out;
872 ptr = (unsigned long)(ref + 1) + found_name_len;
874 out:
875 btrfs_free_path(path);
876 return match;
879 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
880 struct btrfs_root *root,
881 struct btrfs_path *path,
882 struct btrfs_root *log_root,
883 struct inode *dir, struct inode *inode,
884 struct extent_buffer *eb,
885 u64 inode_objectid, u64 parent_objectid,
886 u64 ref_index, char *name, int namelen,
887 int *search_done)
889 int ret;
890 char *victim_name;
891 int victim_name_len;
892 struct extent_buffer *leaf;
893 struct btrfs_dir_item *di;
894 struct btrfs_key search_key;
895 struct btrfs_inode_extref *extref;
897 again:
898 /* Search old style refs */
899 search_key.objectid = inode_objectid;
900 search_key.type = BTRFS_INODE_REF_KEY;
901 search_key.offset = parent_objectid;
902 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
903 if (ret == 0) {
904 struct btrfs_inode_ref *victim_ref;
905 unsigned long ptr;
906 unsigned long ptr_end;
908 leaf = path->nodes[0];
910 /* are we trying to overwrite a back ref for the root directory
911 * if so, just jump out, we're done
913 if (search_key.objectid == search_key.offset)
914 return 1;
916 /* check all the names in this back reference to see
917 * if they are in the log. if so, we allow them to stay
918 * otherwise they must be unlinked as a conflict
920 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
921 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
922 while (ptr < ptr_end) {
923 victim_ref = (struct btrfs_inode_ref *)ptr;
924 victim_name_len = btrfs_inode_ref_name_len(leaf,
925 victim_ref);
926 victim_name = kmalloc(victim_name_len, GFP_NOFS);
927 if (!victim_name)
928 return -ENOMEM;
930 read_extent_buffer(leaf, victim_name,
931 (unsigned long)(victim_ref + 1),
932 victim_name_len);
934 if (!backref_in_log(log_root, &search_key,
935 parent_objectid,
936 victim_name,
937 victim_name_len)) {
938 inc_nlink(inode);
939 btrfs_release_path(path);
941 ret = btrfs_unlink_inode(trans, root, dir,
942 inode, victim_name,
943 victim_name_len);
944 kfree(victim_name);
945 if (ret)
946 return ret;
947 ret = btrfs_run_delayed_items(trans, root);
948 if (ret)
949 return ret;
950 *search_done = 1;
951 goto again;
953 kfree(victim_name);
955 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
959 * NOTE: we have searched root tree and checked the
960 * coresponding ref, it does not need to check again.
962 *search_done = 1;
964 btrfs_release_path(path);
966 /* Same search but for extended refs */
967 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
968 inode_objectid, parent_objectid, 0,
970 if (!IS_ERR_OR_NULL(extref)) {
971 u32 item_size;
972 u32 cur_offset = 0;
973 unsigned long base;
974 struct inode *victim_parent;
976 leaf = path->nodes[0];
978 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
979 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
981 while (cur_offset < item_size) {
982 extref = (struct btrfs_inode_extref *)base + cur_offset;
984 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
986 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
987 goto next;
989 victim_name = kmalloc(victim_name_len, GFP_NOFS);
990 if (!victim_name)
991 return -ENOMEM;
992 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
993 victim_name_len);
995 search_key.objectid = inode_objectid;
996 search_key.type = BTRFS_INODE_EXTREF_KEY;
997 search_key.offset = btrfs_extref_hash(parent_objectid,
998 victim_name,
999 victim_name_len);
1000 ret = 0;
1001 if (!backref_in_log(log_root, &search_key,
1002 parent_objectid, victim_name,
1003 victim_name_len)) {
1004 ret = -ENOENT;
1005 victim_parent = read_one_inode(root,
1006 parent_objectid);
1007 if (victim_parent) {
1008 inc_nlink(inode);
1009 btrfs_release_path(path);
1011 ret = btrfs_unlink_inode(trans, root,
1012 victim_parent,
1013 inode,
1014 victim_name,
1015 victim_name_len);
1016 if (!ret)
1017 ret = btrfs_run_delayed_items(
1018 trans, root);
1020 iput(victim_parent);
1021 kfree(victim_name);
1022 if (ret)
1023 return ret;
1024 *search_done = 1;
1025 goto again;
1027 kfree(victim_name);
1028 if (ret)
1029 return ret;
1030 next:
1031 cur_offset += victim_name_len + sizeof(*extref);
1033 *search_done = 1;
1035 btrfs_release_path(path);
1037 /* look for a conflicting sequence number */
1038 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1039 ref_index, name, namelen, 0);
1040 if (di && !IS_ERR(di)) {
1041 ret = drop_one_dir_item(trans, root, path, dir, di);
1042 if (ret)
1043 return ret;
1045 btrfs_release_path(path);
1047 /* look for a conflicing name */
1048 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1049 name, namelen, 0);
1050 if (di && !IS_ERR(di)) {
1051 ret = drop_one_dir_item(trans, root, path, dir, di);
1052 if (ret)
1053 return ret;
1055 btrfs_release_path(path);
1057 return 0;
1060 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1061 u32 *namelen, char **name, u64 *index,
1062 u64 *parent_objectid)
1064 struct btrfs_inode_extref *extref;
1066 extref = (struct btrfs_inode_extref *)ref_ptr;
1068 *namelen = btrfs_inode_extref_name_len(eb, extref);
1069 *name = kmalloc(*namelen, GFP_NOFS);
1070 if (*name == NULL)
1071 return -ENOMEM;
1073 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1074 *namelen);
1076 *index = btrfs_inode_extref_index(eb, extref);
1077 if (parent_objectid)
1078 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1080 return 0;
1083 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1084 u32 *namelen, char **name, u64 *index)
1086 struct btrfs_inode_ref *ref;
1088 ref = (struct btrfs_inode_ref *)ref_ptr;
1090 *namelen = btrfs_inode_ref_name_len(eb, ref);
1091 *name = kmalloc(*namelen, GFP_NOFS);
1092 if (*name == NULL)
1093 return -ENOMEM;
1095 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1097 *index = btrfs_inode_ref_index(eb, ref);
1099 return 0;
1103 * replay one inode back reference item found in the log tree.
1104 * eb, slot and key refer to the buffer and key found in the log tree.
1105 * root is the destination we are replaying into, and path is for temp
1106 * use by this function. (it should be released on return).
1108 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1109 struct btrfs_root *root,
1110 struct btrfs_root *log,
1111 struct btrfs_path *path,
1112 struct extent_buffer *eb, int slot,
1113 struct btrfs_key *key)
1115 struct inode *dir = NULL;
1116 struct inode *inode = NULL;
1117 unsigned long ref_ptr;
1118 unsigned long ref_end;
1119 char *name = NULL;
1120 int namelen;
1121 int ret;
1122 int search_done = 0;
1123 int log_ref_ver = 0;
1124 u64 parent_objectid;
1125 u64 inode_objectid;
1126 u64 ref_index = 0;
1127 int ref_struct_size;
1129 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1130 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1132 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1133 struct btrfs_inode_extref *r;
1135 ref_struct_size = sizeof(struct btrfs_inode_extref);
1136 log_ref_ver = 1;
1137 r = (struct btrfs_inode_extref *)ref_ptr;
1138 parent_objectid = btrfs_inode_extref_parent(eb, r);
1139 } else {
1140 ref_struct_size = sizeof(struct btrfs_inode_ref);
1141 parent_objectid = key->offset;
1143 inode_objectid = key->objectid;
1146 * it is possible that we didn't log all the parent directories
1147 * for a given inode. If we don't find the dir, just don't
1148 * copy the back ref in. The link count fixup code will take
1149 * care of the rest
1151 dir = read_one_inode(root, parent_objectid);
1152 if (!dir) {
1153 ret = -ENOENT;
1154 goto out;
1157 inode = read_one_inode(root, inode_objectid);
1158 if (!inode) {
1159 ret = -EIO;
1160 goto out;
1163 while (ref_ptr < ref_end) {
1164 if (log_ref_ver) {
1165 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1166 &ref_index, &parent_objectid);
1168 * parent object can change from one array
1169 * item to another.
1171 if (!dir)
1172 dir = read_one_inode(root, parent_objectid);
1173 if (!dir) {
1174 ret = -ENOENT;
1175 goto out;
1177 } else {
1178 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1179 &ref_index);
1181 if (ret)
1182 goto out;
1184 /* if we already have a perfect match, we're done */
1185 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1186 ref_index, name, namelen)) {
1188 * look for a conflicting back reference in the
1189 * metadata. if we find one we have to unlink that name
1190 * of the file before we add our new link. Later on, we
1191 * overwrite any existing back reference, and we don't
1192 * want to create dangling pointers in the directory.
1195 if (!search_done) {
1196 ret = __add_inode_ref(trans, root, path, log,
1197 dir, inode, eb,
1198 inode_objectid,
1199 parent_objectid,
1200 ref_index, name, namelen,
1201 &search_done);
1202 if (ret) {
1203 if (ret == 1)
1204 ret = 0;
1205 goto out;
1209 /* insert our name */
1210 ret = btrfs_add_link(trans, dir, inode, name, namelen,
1211 0, ref_index);
1212 if (ret)
1213 goto out;
1215 btrfs_update_inode(trans, root, inode);
1218 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1219 kfree(name);
1220 name = NULL;
1221 if (log_ref_ver) {
1222 iput(dir);
1223 dir = NULL;
1227 /* finally write the back reference in the inode */
1228 ret = overwrite_item(trans, root, path, eb, slot, key);
1229 out:
1230 btrfs_release_path(path);
1231 kfree(name);
1232 iput(dir);
1233 iput(inode);
1234 return ret;
1237 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1238 struct btrfs_root *root, u64 offset)
1240 int ret;
1241 ret = btrfs_find_item(root, NULL, BTRFS_ORPHAN_OBJECTID,
1242 offset, BTRFS_ORPHAN_ITEM_KEY, NULL);
1243 if (ret > 0)
1244 ret = btrfs_insert_orphan_item(trans, root, offset);
1245 return ret;
1248 static int count_inode_extrefs(struct btrfs_root *root,
1249 struct inode *inode, struct btrfs_path *path)
1251 int ret = 0;
1252 int name_len;
1253 unsigned int nlink = 0;
1254 u32 item_size;
1255 u32 cur_offset = 0;
1256 u64 inode_objectid = btrfs_ino(inode);
1257 u64 offset = 0;
1258 unsigned long ptr;
1259 struct btrfs_inode_extref *extref;
1260 struct extent_buffer *leaf;
1262 while (1) {
1263 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1264 &extref, &offset);
1265 if (ret)
1266 break;
1268 leaf = path->nodes[0];
1269 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1270 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1272 while (cur_offset < item_size) {
1273 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1274 name_len = btrfs_inode_extref_name_len(leaf, extref);
1276 nlink++;
1278 cur_offset += name_len + sizeof(*extref);
1281 offset++;
1282 btrfs_release_path(path);
1284 btrfs_release_path(path);
1286 if (ret < 0)
1287 return ret;
1288 return nlink;
1291 static int count_inode_refs(struct btrfs_root *root,
1292 struct inode *inode, struct btrfs_path *path)
1294 int ret;
1295 struct btrfs_key key;
1296 unsigned int nlink = 0;
1297 unsigned long ptr;
1298 unsigned long ptr_end;
1299 int name_len;
1300 u64 ino = btrfs_ino(inode);
1302 key.objectid = ino;
1303 key.type = BTRFS_INODE_REF_KEY;
1304 key.offset = (u64)-1;
1306 while (1) {
1307 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1308 if (ret < 0)
1309 break;
1310 if (ret > 0) {
1311 if (path->slots[0] == 0)
1312 break;
1313 path->slots[0]--;
1315 process_slot:
1316 btrfs_item_key_to_cpu(path->nodes[0], &key,
1317 path->slots[0]);
1318 if (key.objectid != ino ||
1319 key.type != BTRFS_INODE_REF_KEY)
1320 break;
1321 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1322 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1323 path->slots[0]);
1324 while (ptr < ptr_end) {
1325 struct btrfs_inode_ref *ref;
1327 ref = (struct btrfs_inode_ref *)ptr;
1328 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1329 ref);
1330 ptr = (unsigned long)(ref + 1) + name_len;
1331 nlink++;
1334 if (key.offset == 0)
1335 break;
1336 if (path->slots[0] > 0) {
1337 path->slots[0]--;
1338 goto process_slot;
1340 key.offset--;
1341 btrfs_release_path(path);
1343 btrfs_release_path(path);
1345 return nlink;
1349 * There are a few corners where the link count of the file can't
1350 * be properly maintained during replay. So, instead of adding
1351 * lots of complexity to the log code, we just scan the backrefs
1352 * for any file that has been through replay.
1354 * The scan will update the link count on the inode to reflect the
1355 * number of back refs found. If it goes down to zero, the iput
1356 * will free the inode.
1358 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1359 struct btrfs_root *root,
1360 struct inode *inode)
1362 struct btrfs_path *path;
1363 int ret;
1364 u64 nlink = 0;
1365 u64 ino = btrfs_ino(inode);
1367 path = btrfs_alloc_path();
1368 if (!path)
1369 return -ENOMEM;
1371 ret = count_inode_refs(root, inode, path);
1372 if (ret < 0)
1373 goto out;
1375 nlink = ret;
1377 ret = count_inode_extrefs(root, inode, path);
1378 if (ret == -ENOENT)
1379 ret = 0;
1381 if (ret < 0)
1382 goto out;
1384 nlink += ret;
1386 ret = 0;
1388 if (nlink != inode->i_nlink) {
1389 set_nlink(inode, nlink);
1390 btrfs_update_inode(trans, root, inode);
1392 BTRFS_I(inode)->index_cnt = (u64)-1;
1394 if (inode->i_nlink == 0) {
1395 if (S_ISDIR(inode->i_mode)) {
1396 ret = replay_dir_deletes(trans, root, NULL, path,
1397 ino, 1);
1398 if (ret)
1399 goto out;
1401 ret = insert_orphan_item(trans, root, ino);
1404 out:
1405 btrfs_free_path(path);
1406 return ret;
1409 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1410 struct btrfs_root *root,
1411 struct btrfs_path *path)
1413 int ret;
1414 struct btrfs_key key;
1415 struct inode *inode;
1417 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1418 key.type = BTRFS_ORPHAN_ITEM_KEY;
1419 key.offset = (u64)-1;
1420 while (1) {
1421 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1422 if (ret < 0)
1423 break;
1425 if (ret == 1) {
1426 if (path->slots[0] == 0)
1427 break;
1428 path->slots[0]--;
1431 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1432 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1433 key.type != BTRFS_ORPHAN_ITEM_KEY)
1434 break;
1436 ret = btrfs_del_item(trans, root, path);
1437 if (ret)
1438 goto out;
1440 btrfs_release_path(path);
1441 inode = read_one_inode(root, key.offset);
1442 if (!inode)
1443 return -EIO;
1445 ret = fixup_inode_link_count(trans, root, inode);
1446 iput(inode);
1447 if (ret)
1448 goto out;
1451 * fixup on a directory may create new entries,
1452 * make sure we always look for the highset possible
1453 * offset
1455 key.offset = (u64)-1;
1457 ret = 0;
1458 out:
1459 btrfs_release_path(path);
1460 return ret;
1465 * record a given inode in the fixup dir so we can check its link
1466 * count when replay is done. The link count is incremented here
1467 * so the inode won't go away until we check it
1469 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1470 struct btrfs_root *root,
1471 struct btrfs_path *path,
1472 u64 objectid)
1474 struct btrfs_key key;
1475 int ret = 0;
1476 struct inode *inode;
1478 inode = read_one_inode(root, objectid);
1479 if (!inode)
1480 return -EIO;
1482 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1483 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1484 key.offset = objectid;
1486 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1488 btrfs_release_path(path);
1489 if (ret == 0) {
1490 if (!inode->i_nlink)
1491 set_nlink(inode, 1);
1492 else
1493 inc_nlink(inode);
1494 ret = btrfs_update_inode(trans, root, inode);
1495 } else if (ret == -EEXIST) {
1496 ret = 0;
1497 } else {
1498 BUG(); /* Logic Error */
1500 iput(inode);
1502 return ret;
1506 * when replaying the log for a directory, we only insert names
1507 * for inodes that actually exist. This means an fsync on a directory
1508 * does not implicitly fsync all the new files in it
1510 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1511 struct btrfs_root *root,
1512 struct btrfs_path *path,
1513 u64 dirid, u64 index,
1514 char *name, int name_len, u8 type,
1515 struct btrfs_key *location)
1517 struct inode *inode;
1518 struct inode *dir;
1519 int ret;
1521 inode = read_one_inode(root, location->objectid);
1522 if (!inode)
1523 return -ENOENT;
1525 dir = read_one_inode(root, dirid);
1526 if (!dir) {
1527 iput(inode);
1528 return -EIO;
1531 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1533 /* FIXME, put inode into FIXUP list */
1535 iput(inode);
1536 iput(dir);
1537 return ret;
1541 * take a single entry in a log directory item and replay it into
1542 * the subvolume.
1544 * if a conflicting item exists in the subdirectory already,
1545 * the inode it points to is unlinked and put into the link count
1546 * fix up tree.
1548 * If a name from the log points to a file or directory that does
1549 * not exist in the FS, it is skipped. fsyncs on directories
1550 * do not force down inodes inside that directory, just changes to the
1551 * names or unlinks in a directory.
1553 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1554 struct btrfs_root *root,
1555 struct btrfs_path *path,
1556 struct extent_buffer *eb,
1557 struct btrfs_dir_item *di,
1558 struct btrfs_key *key)
1560 char *name;
1561 int name_len;
1562 struct btrfs_dir_item *dst_di;
1563 struct btrfs_key found_key;
1564 struct btrfs_key log_key;
1565 struct inode *dir;
1566 u8 log_type;
1567 int exists;
1568 int ret = 0;
1569 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1571 dir = read_one_inode(root, key->objectid);
1572 if (!dir)
1573 return -EIO;
1575 name_len = btrfs_dir_name_len(eb, di);
1576 name = kmalloc(name_len, GFP_NOFS);
1577 if (!name) {
1578 ret = -ENOMEM;
1579 goto out;
1582 log_type = btrfs_dir_type(eb, di);
1583 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1584 name_len);
1586 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1587 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1588 if (exists == 0)
1589 exists = 1;
1590 else
1591 exists = 0;
1592 btrfs_release_path(path);
1594 if (key->type == BTRFS_DIR_ITEM_KEY) {
1595 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1596 name, name_len, 1);
1597 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1598 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1599 key->objectid,
1600 key->offset, name,
1601 name_len, 1);
1602 } else {
1603 /* Corruption */
1604 ret = -EINVAL;
1605 goto out;
1607 if (IS_ERR_OR_NULL(dst_di)) {
1608 /* we need a sequence number to insert, so we only
1609 * do inserts for the BTRFS_DIR_INDEX_KEY types
1611 if (key->type != BTRFS_DIR_INDEX_KEY)
1612 goto out;
1613 goto insert;
1616 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1617 /* the existing item matches the logged item */
1618 if (found_key.objectid == log_key.objectid &&
1619 found_key.type == log_key.type &&
1620 found_key.offset == log_key.offset &&
1621 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1622 goto out;
1626 * don't drop the conflicting directory entry if the inode
1627 * for the new entry doesn't exist
1629 if (!exists)
1630 goto out;
1632 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1633 if (ret)
1634 goto out;
1636 if (key->type == BTRFS_DIR_INDEX_KEY)
1637 goto insert;
1638 out:
1639 btrfs_release_path(path);
1640 if (!ret && update_size) {
1641 btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1642 ret = btrfs_update_inode(trans, root, dir);
1644 kfree(name);
1645 iput(dir);
1646 return ret;
1648 insert:
1649 btrfs_release_path(path);
1650 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1651 name, name_len, log_type, &log_key);
1652 if (ret && ret != -ENOENT)
1653 goto out;
1654 update_size = false;
1655 ret = 0;
1656 goto out;
1660 * find all the names in a directory item and reconcile them into
1661 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1662 * one name in a directory item, but the same code gets used for
1663 * both directory index types
1665 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1666 struct btrfs_root *root,
1667 struct btrfs_path *path,
1668 struct extent_buffer *eb, int slot,
1669 struct btrfs_key *key)
1671 int ret;
1672 u32 item_size = btrfs_item_size_nr(eb, slot);
1673 struct btrfs_dir_item *di;
1674 int name_len;
1675 unsigned long ptr;
1676 unsigned long ptr_end;
1678 ptr = btrfs_item_ptr_offset(eb, slot);
1679 ptr_end = ptr + item_size;
1680 while (ptr < ptr_end) {
1681 di = (struct btrfs_dir_item *)ptr;
1682 if (verify_dir_item(root, eb, di))
1683 return -EIO;
1684 name_len = btrfs_dir_name_len(eb, di);
1685 ret = replay_one_name(trans, root, path, eb, di, key);
1686 if (ret)
1687 return ret;
1688 ptr = (unsigned long)(di + 1);
1689 ptr += name_len;
1691 return 0;
1695 * directory replay has two parts. There are the standard directory
1696 * items in the log copied from the subvolume, and range items
1697 * created in the log while the subvolume was logged.
1699 * The range items tell us which parts of the key space the log
1700 * is authoritative for. During replay, if a key in the subvolume
1701 * directory is in a logged range item, but not actually in the log
1702 * that means it was deleted from the directory before the fsync
1703 * and should be removed.
1705 static noinline int find_dir_range(struct btrfs_root *root,
1706 struct btrfs_path *path,
1707 u64 dirid, int key_type,
1708 u64 *start_ret, u64 *end_ret)
1710 struct btrfs_key key;
1711 u64 found_end;
1712 struct btrfs_dir_log_item *item;
1713 int ret;
1714 int nritems;
1716 if (*start_ret == (u64)-1)
1717 return 1;
1719 key.objectid = dirid;
1720 key.type = key_type;
1721 key.offset = *start_ret;
1723 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1724 if (ret < 0)
1725 goto out;
1726 if (ret > 0) {
1727 if (path->slots[0] == 0)
1728 goto out;
1729 path->slots[0]--;
1731 if (ret != 0)
1732 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1734 if (key.type != key_type || key.objectid != dirid) {
1735 ret = 1;
1736 goto next;
1738 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1739 struct btrfs_dir_log_item);
1740 found_end = btrfs_dir_log_end(path->nodes[0], item);
1742 if (*start_ret >= key.offset && *start_ret <= found_end) {
1743 ret = 0;
1744 *start_ret = key.offset;
1745 *end_ret = found_end;
1746 goto out;
1748 ret = 1;
1749 next:
1750 /* check the next slot in the tree to see if it is a valid item */
1751 nritems = btrfs_header_nritems(path->nodes[0]);
1752 if (path->slots[0] >= nritems) {
1753 ret = btrfs_next_leaf(root, path);
1754 if (ret)
1755 goto out;
1756 } else {
1757 path->slots[0]++;
1760 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1762 if (key.type != key_type || key.objectid != dirid) {
1763 ret = 1;
1764 goto out;
1766 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1767 struct btrfs_dir_log_item);
1768 found_end = btrfs_dir_log_end(path->nodes[0], item);
1769 *start_ret = key.offset;
1770 *end_ret = found_end;
1771 ret = 0;
1772 out:
1773 btrfs_release_path(path);
1774 return ret;
1778 * this looks for a given directory item in the log. If the directory
1779 * item is not in the log, the item is removed and the inode it points
1780 * to is unlinked
1782 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1783 struct btrfs_root *root,
1784 struct btrfs_root *log,
1785 struct btrfs_path *path,
1786 struct btrfs_path *log_path,
1787 struct inode *dir,
1788 struct btrfs_key *dir_key)
1790 int ret;
1791 struct extent_buffer *eb;
1792 int slot;
1793 u32 item_size;
1794 struct btrfs_dir_item *di;
1795 struct btrfs_dir_item *log_di;
1796 int name_len;
1797 unsigned long ptr;
1798 unsigned long ptr_end;
1799 char *name;
1800 struct inode *inode;
1801 struct btrfs_key location;
1803 again:
1804 eb = path->nodes[0];
1805 slot = path->slots[0];
1806 item_size = btrfs_item_size_nr(eb, slot);
1807 ptr = btrfs_item_ptr_offset(eb, slot);
1808 ptr_end = ptr + item_size;
1809 while (ptr < ptr_end) {
1810 di = (struct btrfs_dir_item *)ptr;
1811 if (verify_dir_item(root, eb, di)) {
1812 ret = -EIO;
1813 goto out;
1816 name_len = btrfs_dir_name_len(eb, di);
1817 name = kmalloc(name_len, GFP_NOFS);
1818 if (!name) {
1819 ret = -ENOMEM;
1820 goto out;
1822 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1823 name_len);
1824 log_di = NULL;
1825 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1826 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1827 dir_key->objectid,
1828 name, name_len, 0);
1829 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1830 log_di = btrfs_lookup_dir_index_item(trans, log,
1831 log_path,
1832 dir_key->objectid,
1833 dir_key->offset,
1834 name, name_len, 0);
1836 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
1837 btrfs_dir_item_key_to_cpu(eb, di, &location);
1838 btrfs_release_path(path);
1839 btrfs_release_path(log_path);
1840 inode = read_one_inode(root, location.objectid);
1841 if (!inode) {
1842 kfree(name);
1843 return -EIO;
1846 ret = link_to_fixup_dir(trans, root,
1847 path, location.objectid);
1848 if (ret) {
1849 kfree(name);
1850 iput(inode);
1851 goto out;
1854 inc_nlink(inode);
1855 ret = btrfs_unlink_inode(trans, root, dir, inode,
1856 name, name_len);
1857 if (!ret)
1858 ret = btrfs_run_delayed_items(trans, root);
1859 kfree(name);
1860 iput(inode);
1861 if (ret)
1862 goto out;
1864 /* there might still be more names under this key
1865 * check and repeat if required
1867 ret = btrfs_search_slot(NULL, root, dir_key, path,
1868 0, 0);
1869 if (ret == 0)
1870 goto again;
1871 ret = 0;
1872 goto out;
1873 } else if (IS_ERR(log_di)) {
1874 kfree(name);
1875 return PTR_ERR(log_di);
1877 btrfs_release_path(log_path);
1878 kfree(name);
1880 ptr = (unsigned long)(di + 1);
1881 ptr += name_len;
1883 ret = 0;
1884 out:
1885 btrfs_release_path(path);
1886 btrfs_release_path(log_path);
1887 return ret;
1891 * deletion replay happens before we copy any new directory items
1892 * out of the log or out of backreferences from inodes. It
1893 * scans the log to find ranges of keys that log is authoritative for,
1894 * and then scans the directory to find items in those ranges that are
1895 * not present in the log.
1897 * Anything we don't find in the log is unlinked and removed from the
1898 * directory.
1900 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1901 struct btrfs_root *root,
1902 struct btrfs_root *log,
1903 struct btrfs_path *path,
1904 u64 dirid, int del_all)
1906 u64 range_start;
1907 u64 range_end;
1908 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1909 int ret = 0;
1910 struct btrfs_key dir_key;
1911 struct btrfs_key found_key;
1912 struct btrfs_path *log_path;
1913 struct inode *dir;
1915 dir_key.objectid = dirid;
1916 dir_key.type = BTRFS_DIR_ITEM_KEY;
1917 log_path = btrfs_alloc_path();
1918 if (!log_path)
1919 return -ENOMEM;
1921 dir = read_one_inode(root, dirid);
1922 /* it isn't an error if the inode isn't there, that can happen
1923 * because we replay the deletes before we copy in the inode item
1924 * from the log
1926 if (!dir) {
1927 btrfs_free_path(log_path);
1928 return 0;
1930 again:
1931 range_start = 0;
1932 range_end = 0;
1933 while (1) {
1934 if (del_all)
1935 range_end = (u64)-1;
1936 else {
1937 ret = find_dir_range(log, path, dirid, key_type,
1938 &range_start, &range_end);
1939 if (ret != 0)
1940 break;
1943 dir_key.offset = range_start;
1944 while (1) {
1945 int nritems;
1946 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1947 0, 0);
1948 if (ret < 0)
1949 goto out;
1951 nritems = btrfs_header_nritems(path->nodes[0]);
1952 if (path->slots[0] >= nritems) {
1953 ret = btrfs_next_leaf(root, path);
1954 if (ret)
1955 break;
1957 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1958 path->slots[0]);
1959 if (found_key.objectid != dirid ||
1960 found_key.type != dir_key.type)
1961 goto next_type;
1963 if (found_key.offset > range_end)
1964 break;
1966 ret = check_item_in_log(trans, root, log, path,
1967 log_path, dir,
1968 &found_key);
1969 if (ret)
1970 goto out;
1971 if (found_key.offset == (u64)-1)
1972 break;
1973 dir_key.offset = found_key.offset + 1;
1975 btrfs_release_path(path);
1976 if (range_end == (u64)-1)
1977 break;
1978 range_start = range_end + 1;
1981 next_type:
1982 ret = 0;
1983 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1984 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1985 dir_key.type = BTRFS_DIR_INDEX_KEY;
1986 btrfs_release_path(path);
1987 goto again;
1989 out:
1990 btrfs_release_path(path);
1991 btrfs_free_path(log_path);
1992 iput(dir);
1993 return ret;
1997 * the process_func used to replay items from the log tree. This
1998 * gets called in two different stages. The first stage just looks
1999 * for inodes and makes sure they are all copied into the subvolume.
2001 * The second stage copies all the other item types from the log into
2002 * the subvolume. The two stage approach is slower, but gets rid of
2003 * lots of complexity around inodes referencing other inodes that exist
2004 * only in the log (references come from either directory items or inode
2005 * back refs).
2007 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2008 struct walk_control *wc, u64 gen)
2010 int nritems;
2011 struct btrfs_path *path;
2012 struct btrfs_root *root = wc->replay_dest;
2013 struct btrfs_key key;
2014 int level;
2015 int i;
2016 int ret;
2018 ret = btrfs_read_buffer(eb, gen);
2019 if (ret)
2020 return ret;
2022 level = btrfs_header_level(eb);
2024 if (level != 0)
2025 return 0;
2027 path = btrfs_alloc_path();
2028 if (!path)
2029 return -ENOMEM;
2031 nritems = btrfs_header_nritems(eb);
2032 for (i = 0; i < nritems; i++) {
2033 btrfs_item_key_to_cpu(eb, &key, i);
2035 /* inode keys are done during the first stage */
2036 if (key.type == BTRFS_INODE_ITEM_KEY &&
2037 wc->stage == LOG_WALK_REPLAY_INODES) {
2038 struct btrfs_inode_item *inode_item;
2039 u32 mode;
2041 inode_item = btrfs_item_ptr(eb, i,
2042 struct btrfs_inode_item);
2043 mode = btrfs_inode_mode(eb, inode_item);
2044 if (S_ISDIR(mode)) {
2045 ret = replay_dir_deletes(wc->trans,
2046 root, log, path, key.objectid, 0);
2047 if (ret)
2048 break;
2050 ret = overwrite_item(wc->trans, root, path,
2051 eb, i, &key);
2052 if (ret)
2053 break;
2055 /* for regular files, make sure corresponding
2056 * orhpan item exist. extents past the new EOF
2057 * will be truncated later by orphan cleanup.
2059 if (S_ISREG(mode)) {
2060 ret = insert_orphan_item(wc->trans, root,
2061 key.objectid);
2062 if (ret)
2063 break;
2066 ret = link_to_fixup_dir(wc->trans, root,
2067 path, key.objectid);
2068 if (ret)
2069 break;
2072 if (key.type == BTRFS_DIR_INDEX_KEY &&
2073 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2074 ret = replay_one_dir_item(wc->trans, root, path,
2075 eb, i, &key);
2076 if (ret)
2077 break;
2080 if (wc->stage < LOG_WALK_REPLAY_ALL)
2081 continue;
2083 /* these keys are simply copied */
2084 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2085 ret = overwrite_item(wc->trans, root, path,
2086 eb, i, &key);
2087 if (ret)
2088 break;
2089 } else if (key.type == BTRFS_INODE_REF_KEY ||
2090 key.type == BTRFS_INODE_EXTREF_KEY) {
2091 ret = add_inode_ref(wc->trans, root, log, path,
2092 eb, i, &key);
2093 if (ret && ret != -ENOENT)
2094 break;
2095 ret = 0;
2096 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2097 ret = replay_one_extent(wc->trans, root, path,
2098 eb, i, &key);
2099 if (ret)
2100 break;
2101 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2102 ret = replay_one_dir_item(wc->trans, root, path,
2103 eb, i, &key);
2104 if (ret)
2105 break;
2108 btrfs_free_path(path);
2109 return ret;
2112 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2113 struct btrfs_root *root,
2114 struct btrfs_path *path, int *level,
2115 struct walk_control *wc)
2117 u64 root_owner;
2118 u64 bytenr;
2119 u64 ptr_gen;
2120 struct extent_buffer *next;
2121 struct extent_buffer *cur;
2122 struct extent_buffer *parent;
2123 u32 blocksize;
2124 int ret = 0;
2126 WARN_ON(*level < 0);
2127 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2129 while (*level > 0) {
2130 WARN_ON(*level < 0);
2131 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2132 cur = path->nodes[*level];
2134 WARN_ON(btrfs_header_level(cur) != *level);
2136 if (path->slots[*level] >=
2137 btrfs_header_nritems(cur))
2138 break;
2140 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2141 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2142 blocksize = btrfs_level_size(root, *level - 1);
2144 parent = path->nodes[*level];
2145 root_owner = btrfs_header_owner(parent);
2147 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2148 if (!next)
2149 return -ENOMEM;
2151 if (*level == 1) {
2152 ret = wc->process_func(root, next, wc, ptr_gen);
2153 if (ret) {
2154 free_extent_buffer(next);
2155 return ret;
2158 path->slots[*level]++;
2159 if (wc->free) {
2160 ret = btrfs_read_buffer(next, ptr_gen);
2161 if (ret) {
2162 free_extent_buffer(next);
2163 return ret;
2166 if (trans) {
2167 btrfs_tree_lock(next);
2168 btrfs_set_lock_blocking(next);
2169 clean_tree_block(trans, root, next);
2170 btrfs_wait_tree_block_writeback(next);
2171 btrfs_tree_unlock(next);
2174 WARN_ON(root_owner !=
2175 BTRFS_TREE_LOG_OBJECTID);
2176 ret = btrfs_free_and_pin_reserved_extent(root,
2177 bytenr, blocksize);
2178 if (ret) {
2179 free_extent_buffer(next);
2180 return ret;
2183 free_extent_buffer(next);
2184 continue;
2186 ret = btrfs_read_buffer(next, ptr_gen);
2187 if (ret) {
2188 free_extent_buffer(next);
2189 return ret;
2192 WARN_ON(*level <= 0);
2193 if (path->nodes[*level-1])
2194 free_extent_buffer(path->nodes[*level-1]);
2195 path->nodes[*level-1] = next;
2196 *level = btrfs_header_level(next);
2197 path->slots[*level] = 0;
2198 cond_resched();
2200 WARN_ON(*level < 0);
2201 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2203 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2205 cond_resched();
2206 return 0;
2209 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2210 struct btrfs_root *root,
2211 struct btrfs_path *path, int *level,
2212 struct walk_control *wc)
2214 u64 root_owner;
2215 int i;
2216 int slot;
2217 int ret;
2219 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2220 slot = path->slots[i];
2221 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2222 path->slots[i]++;
2223 *level = i;
2224 WARN_ON(*level == 0);
2225 return 0;
2226 } else {
2227 struct extent_buffer *parent;
2228 if (path->nodes[*level] == root->node)
2229 parent = path->nodes[*level];
2230 else
2231 parent = path->nodes[*level + 1];
2233 root_owner = btrfs_header_owner(parent);
2234 ret = wc->process_func(root, path->nodes[*level], wc,
2235 btrfs_header_generation(path->nodes[*level]));
2236 if (ret)
2237 return ret;
2239 if (wc->free) {
2240 struct extent_buffer *next;
2242 next = path->nodes[*level];
2244 if (trans) {
2245 btrfs_tree_lock(next);
2246 btrfs_set_lock_blocking(next);
2247 clean_tree_block(trans, root, next);
2248 btrfs_wait_tree_block_writeback(next);
2249 btrfs_tree_unlock(next);
2252 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2253 ret = btrfs_free_and_pin_reserved_extent(root,
2254 path->nodes[*level]->start,
2255 path->nodes[*level]->len);
2256 if (ret)
2257 return ret;
2259 free_extent_buffer(path->nodes[*level]);
2260 path->nodes[*level] = NULL;
2261 *level = i + 1;
2264 return 1;
2268 * drop the reference count on the tree rooted at 'snap'. This traverses
2269 * the tree freeing any blocks that have a ref count of zero after being
2270 * decremented.
2272 static int walk_log_tree(struct btrfs_trans_handle *trans,
2273 struct btrfs_root *log, struct walk_control *wc)
2275 int ret = 0;
2276 int wret;
2277 int level;
2278 struct btrfs_path *path;
2279 int orig_level;
2281 path = btrfs_alloc_path();
2282 if (!path)
2283 return -ENOMEM;
2285 level = btrfs_header_level(log->node);
2286 orig_level = level;
2287 path->nodes[level] = log->node;
2288 extent_buffer_get(log->node);
2289 path->slots[level] = 0;
2291 while (1) {
2292 wret = walk_down_log_tree(trans, log, path, &level, wc);
2293 if (wret > 0)
2294 break;
2295 if (wret < 0) {
2296 ret = wret;
2297 goto out;
2300 wret = walk_up_log_tree(trans, log, path, &level, wc);
2301 if (wret > 0)
2302 break;
2303 if (wret < 0) {
2304 ret = wret;
2305 goto out;
2309 /* was the root node processed? if not, catch it here */
2310 if (path->nodes[orig_level]) {
2311 ret = wc->process_func(log, path->nodes[orig_level], wc,
2312 btrfs_header_generation(path->nodes[orig_level]));
2313 if (ret)
2314 goto out;
2315 if (wc->free) {
2316 struct extent_buffer *next;
2318 next = path->nodes[orig_level];
2320 if (trans) {
2321 btrfs_tree_lock(next);
2322 btrfs_set_lock_blocking(next);
2323 clean_tree_block(trans, log, next);
2324 btrfs_wait_tree_block_writeback(next);
2325 btrfs_tree_unlock(next);
2328 WARN_ON(log->root_key.objectid !=
2329 BTRFS_TREE_LOG_OBJECTID);
2330 ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2331 next->len);
2332 if (ret)
2333 goto out;
2337 out:
2338 btrfs_free_path(path);
2339 return ret;
2343 * helper function to update the item for a given subvolumes log root
2344 * in the tree of log roots
2346 static int update_log_root(struct btrfs_trans_handle *trans,
2347 struct btrfs_root *log)
2349 int ret;
2351 if (log->log_transid == 1) {
2352 /* insert root item on the first sync */
2353 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2354 &log->root_key, &log->root_item);
2355 } else {
2356 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2357 &log->root_key, &log->root_item);
2359 return ret;
2362 static int wait_log_commit(struct btrfs_trans_handle *trans,
2363 struct btrfs_root *root, unsigned long transid)
2365 DEFINE_WAIT(wait);
2366 int index = transid % 2;
2369 * we only allow two pending log transactions at a time,
2370 * so we know that if ours is more than 2 older than the
2371 * current transaction, we're done
2373 do {
2374 prepare_to_wait(&root->log_commit_wait[index],
2375 &wait, TASK_UNINTERRUPTIBLE);
2376 mutex_unlock(&root->log_mutex);
2378 if (root->fs_info->last_trans_log_full_commit !=
2379 trans->transid && root->log_transid < transid + 2 &&
2380 atomic_read(&root->log_commit[index]))
2381 schedule();
2383 finish_wait(&root->log_commit_wait[index], &wait);
2384 mutex_lock(&root->log_mutex);
2385 } while (root->fs_info->last_trans_log_full_commit !=
2386 trans->transid && root->log_transid < transid + 2 &&
2387 atomic_read(&root->log_commit[index]));
2388 return 0;
2391 static void wait_for_writer(struct btrfs_trans_handle *trans,
2392 struct btrfs_root *root)
2394 DEFINE_WAIT(wait);
2395 while (root->fs_info->last_trans_log_full_commit !=
2396 trans->transid && atomic_read(&root->log_writers)) {
2397 prepare_to_wait(&root->log_writer_wait,
2398 &wait, TASK_UNINTERRUPTIBLE);
2399 mutex_unlock(&root->log_mutex);
2400 if (root->fs_info->last_trans_log_full_commit !=
2401 trans->transid && atomic_read(&root->log_writers))
2402 schedule();
2403 mutex_lock(&root->log_mutex);
2404 finish_wait(&root->log_writer_wait, &wait);
2409 * btrfs_sync_log does sends a given tree log down to the disk and
2410 * updates the super blocks to record it. When this call is done,
2411 * you know that any inodes previously logged are safely on disk only
2412 * if it returns 0.
2414 * Any other return value means you need to call btrfs_commit_transaction.
2415 * Some of the edge cases for fsyncing directories that have had unlinks
2416 * or renames done in the past mean that sometimes the only safe
2417 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2418 * that has happened.
2420 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2421 struct btrfs_root *root)
2423 int index1;
2424 int index2;
2425 int mark;
2426 int ret;
2427 struct btrfs_root *log = root->log_root;
2428 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2429 unsigned long log_transid = 0;
2430 struct blk_plug plug;
2432 mutex_lock(&root->log_mutex);
2433 log_transid = root->log_transid;
2434 index1 = root->log_transid % 2;
2435 if (atomic_read(&root->log_commit[index1])) {
2436 wait_log_commit(trans, root, root->log_transid);
2437 mutex_unlock(&root->log_mutex);
2438 return 0;
2440 atomic_set(&root->log_commit[index1], 1);
2442 /* wait for previous tree log sync to complete */
2443 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2444 wait_log_commit(trans, root, root->log_transid - 1);
2445 while (1) {
2446 int batch = atomic_read(&root->log_batch);
2447 /* when we're on an ssd, just kick the log commit out */
2448 if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
2449 mutex_unlock(&root->log_mutex);
2450 schedule_timeout_uninterruptible(1);
2451 mutex_lock(&root->log_mutex);
2453 wait_for_writer(trans, root);
2454 if (batch == atomic_read(&root->log_batch))
2455 break;
2458 /* bail out if we need to do a full commit */
2459 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2460 ret = -EAGAIN;
2461 btrfs_free_logged_extents(log, log_transid);
2462 mutex_unlock(&root->log_mutex);
2463 goto out;
2466 if (log_transid % 2 == 0)
2467 mark = EXTENT_DIRTY;
2468 else
2469 mark = EXTENT_NEW;
2471 /* we start IO on all the marked extents here, but we don't actually
2472 * wait for them until later.
2474 blk_start_plug(&plug);
2475 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2476 if (ret) {
2477 blk_finish_plug(&plug);
2478 btrfs_abort_transaction(trans, root, ret);
2479 btrfs_free_logged_extents(log, log_transid);
2480 mutex_unlock(&root->log_mutex);
2481 goto out;
2484 btrfs_set_root_node(&log->root_item, log->node);
2486 root->log_transid++;
2487 log->log_transid = root->log_transid;
2488 root->log_start_pid = 0;
2489 smp_mb();
2491 * IO has been started, blocks of the log tree have WRITTEN flag set
2492 * in their headers. new modifications of the log will be written to
2493 * new positions. so it's safe to allow log writers to go in.
2495 mutex_unlock(&root->log_mutex);
2497 mutex_lock(&log_root_tree->log_mutex);
2498 atomic_inc(&log_root_tree->log_batch);
2499 atomic_inc(&log_root_tree->log_writers);
2500 mutex_unlock(&log_root_tree->log_mutex);
2502 ret = update_log_root(trans, log);
2504 mutex_lock(&log_root_tree->log_mutex);
2505 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2506 smp_mb();
2507 if (waitqueue_active(&log_root_tree->log_writer_wait))
2508 wake_up(&log_root_tree->log_writer_wait);
2511 if (ret) {
2512 blk_finish_plug(&plug);
2513 if (ret != -ENOSPC) {
2514 btrfs_abort_transaction(trans, root, ret);
2515 mutex_unlock(&log_root_tree->log_mutex);
2516 goto out;
2518 root->fs_info->last_trans_log_full_commit = trans->transid;
2519 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2520 btrfs_free_logged_extents(log, log_transid);
2521 mutex_unlock(&log_root_tree->log_mutex);
2522 ret = -EAGAIN;
2523 goto out;
2526 index2 = log_root_tree->log_transid % 2;
2527 if (atomic_read(&log_root_tree->log_commit[index2])) {
2528 blk_finish_plug(&plug);
2529 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2530 wait_log_commit(trans, log_root_tree,
2531 log_root_tree->log_transid);
2532 btrfs_free_logged_extents(log, log_transid);
2533 mutex_unlock(&log_root_tree->log_mutex);
2534 ret = 0;
2535 goto out;
2537 atomic_set(&log_root_tree->log_commit[index2], 1);
2539 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2540 wait_log_commit(trans, log_root_tree,
2541 log_root_tree->log_transid - 1);
2544 wait_for_writer(trans, log_root_tree);
2547 * now that we've moved on to the tree of log tree roots,
2548 * check the full commit flag again
2550 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2551 blk_finish_plug(&plug);
2552 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2553 btrfs_free_logged_extents(log, log_transid);
2554 mutex_unlock(&log_root_tree->log_mutex);
2555 ret = -EAGAIN;
2556 goto out_wake_log_root;
2559 ret = btrfs_write_marked_extents(log_root_tree,
2560 &log_root_tree->dirty_log_pages,
2561 EXTENT_DIRTY | EXTENT_NEW);
2562 blk_finish_plug(&plug);
2563 if (ret) {
2564 btrfs_abort_transaction(trans, root, ret);
2565 btrfs_free_logged_extents(log, log_transid);
2566 mutex_unlock(&log_root_tree->log_mutex);
2567 goto out_wake_log_root;
2569 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2570 btrfs_wait_marked_extents(log_root_tree,
2571 &log_root_tree->dirty_log_pages,
2572 EXTENT_NEW | EXTENT_DIRTY);
2573 btrfs_wait_logged_extents(log, log_transid);
2575 btrfs_set_super_log_root(root->fs_info->super_for_commit,
2576 log_root_tree->node->start);
2577 btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2578 btrfs_header_level(log_root_tree->node));
2580 log_root_tree->log_transid++;
2581 smp_mb();
2583 mutex_unlock(&log_root_tree->log_mutex);
2586 * nobody else is going to jump in and write the the ctree
2587 * super here because the log_commit atomic below is protecting
2588 * us. We must be called with a transaction handle pinning
2589 * the running transaction open, so a full commit can't hop
2590 * in and cause problems either.
2592 ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2593 if (ret) {
2594 btrfs_abort_transaction(trans, root, ret);
2595 goto out_wake_log_root;
2598 mutex_lock(&root->log_mutex);
2599 if (root->last_log_commit < log_transid)
2600 root->last_log_commit = log_transid;
2601 mutex_unlock(&root->log_mutex);
2603 out_wake_log_root:
2604 atomic_set(&log_root_tree->log_commit[index2], 0);
2605 smp_mb();
2606 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2607 wake_up(&log_root_tree->log_commit_wait[index2]);
2608 out:
2609 atomic_set(&root->log_commit[index1], 0);
2610 smp_mb();
2611 if (waitqueue_active(&root->log_commit_wait[index1]))
2612 wake_up(&root->log_commit_wait[index1]);
2613 return ret;
2616 static void free_log_tree(struct btrfs_trans_handle *trans,
2617 struct btrfs_root *log)
2619 int ret;
2620 u64 start;
2621 u64 end;
2622 struct walk_control wc = {
2623 .free = 1,
2624 .process_func = process_one_buffer
2627 ret = walk_log_tree(trans, log, &wc);
2628 /* I don't think this can happen but just in case */
2629 if (ret)
2630 btrfs_abort_transaction(trans, log, ret);
2632 while (1) {
2633 ret = find_first_extent_bit(&log->dirty_log_pages,
2634 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2635 NULL);
2636 if (ret)
2637 break;
2639 clear_extent_bits(&log->dirty_log_pages, start, end,
2640 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2644 * We may have short-circuited the log tree with the full commit logic
2645 * and left ordered extents on our list, so clear these out to keep us
2646 * from leaking inodes and memory.
2648 btrfs_free_logged_extents(log, 0);
2649 btrfs_free_logged_extents(log, 1);
2651 free_extent_buffer(log->node);
2652 kfree(log);
2656 * free all the extents used by the tree log. This should be called
2657 * at commit time of the full transaction
2659 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2661 if (root->log_root) {
2662 free_log_tree(trans, root->log_root);
2663 root->log_root = NULL;
2665 return 0;
2668 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2669 struct btrfs_fs_info *fs_info)
2671 if (fs_info->log_root_tree) {
2672 free_log_tree(trans, fs_info->log_root_tree);
2673 fs_info->log_root_tree = NULL;
2675 return 0;
2679 * If both a file and directory are logged, and unlinks or renames are
2680 * mixed in, we have a few interesting corners:
2682 * create file X in dir Y
2683 * link file X to X.link in dir Y
2684 * fsync file X
2685 * unlink file X but leave X.link
2686 * fsync dir Y
2688 * After a crash we would expect only X.link to exist. But file X
2689 * didn't get fsync'd again so the log has back refs for X and X.link.
2691 * We solve this by removing directory entries and inode backrefs from the
2692 * log when a file that was logged in the current transaction is
2693 * unlinked. Any later fsync will include the updated log entries, and
2694 * we'll be able to reconstruct the proper directory items from backrefs.
2696 * This optimizations allows us to avoid relogging the entire inode
2697 * or the entire directory.
2699 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2700 struct btrfs_root *root,
2701 const char *name, int name_len,
2702 struct inode *dir, u64 index)
2704 struct btrfs_root *log;
2705 struct btrfs_dir_item *di;
2706 struct btrfs_path *path;
2707 int ret;
2708 int err = 0;
2709 int bytes_del = 0;
2710 u64 dir_ino = btrfs_ino(dir);
2712 if (BTRFS_I(dir)->logged_trans < trans->transid)
2713 return 0;
2715 ret = join_running_log_trans(root);
2716 if (ret)
2717 return 0;
2719 mutex_lock(&BTRFS_I(dir)->log_mutex);
2721 log = root->log_root;
2722 path = btrfs_alloc_path();
2723 if (!path) {
2724 err = -ENOMEM;
2725 goto out_unlock;
2728 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2729 name, name_len, -1);
2730 if (IS_ERR(di)) {
2731 err = PTR_ERR(di);
2732 goto fail;
2734 if (di) {
2735 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2736 bytes_del += name_len;
2737 if (ret) {
2738 err = ret;
2739 goto fail;
2742 btrfs_release_path(path);
2743 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2744 index, name, name_len, -1);
2745 if (IS_ERR(di)) {
2746 err = PTR_ERR(di);
2747 goto fail;
2749 if (di) {
2750 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2751 bytes_del += name_len;
2752 if (ret) {
2753 err = ret;
2754 goto fail;
2758 /* update the directory size in the log to reflect the names
2759 * we have removed
2761 if (bytes_del) {
2762 struct btrfs_key key;
2764 key.objectid = dir_ino;
2765 key.offset = 0;
2766 key.type = BTRFS_INODE_ITEM_KEY;
2767 btrfs_release_path(path);
2769 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2770 if (ret < 0) {
2771 err = ret;
2772 goto fail;
2774 if (ret == 0) {
2775 struct btrfs_inode_item *item;
2776 u64 i_size;
2778 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2779 struct btrfs_inode_item);
2780 i_size = btrfs_inode_size(path->nodes[0], item);
2781 if (i_size > bytes_del)
2782 i_size -= bytes_del;
2783 else
2784 i_size = 0;
2785 btrfs_set_inode_size(path->nodes[0], item, i_size);
2786 btrfs_mark_buffer_dirty(path->nodes[0]);
2787 } else
2788 ret = 0;
2789 btrfs_release_path(path);
2791 fail:
2792 btrfs_free_path(path);
2793 out_unlock:
2794 mutex_unlock(&BTRFS_I(dir)->log_mutex);
2795 if (ret == -ENOSPC) {
2796 root->fs_info->last_trans_log_full_commit = trans->transid;
2797 ret = 0;
2798 } else if (ret < 0)
2799 btrfs_abort_transaction(trans, root, ret);
2801 btrfs_end_log_trans(root);
2803 return err;
2806 /* see comments for btrfs_del_dir_entries_in_log */
2807 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2808 struct btrfs_root *root,
2809 const char *name, int name_len,
2810 struct inode *inode, u64 dirid)
2812 struct btrfs_root *log;
2813 u64 index;
2814 int ret;
2816 if (BTRFS_I(inode)->logged_trans < trans->transid)
2817 return 0;
2819 ret = join_running_log_trans(root);
2820 if (ret)
2821 return 0;
2822 log = root->log_root;
2823 mutex_lock(&BTRFS_I(inode)->log_mutex);
2825 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2826 dirid, &index);
2827 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2828 if (ret == -ENOSPC) {
2829 root->fs_info->last_trans_log_full_commit = trans->transid;
2830 ret = 0;
2831 } else if (ret < 0 && ret != -ENOENT)
2832 btrfs_abort_transaction(trans, root, ret);
2833 btrfs_end_log_trans(root);
2835 return ret;
2839 * creates a range item in the log for 'dirid'. first_offset and
2840 * last_offset tell us which parts of the key space the log should
2841 * be considered authoritative for.
2843 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2844 struct btrfs_root *log,
2845 struct btrfs_path *path,
2846 int key_type, u64 dirid,
2847 u64 first_offset, u64 last_offset)
2849 int ret;
2850 struct btrfs_key key;
2851 struct btrfs_dir_log_item *item;
2853 key.objectid = dirid;
2854 key.offset = first_offset;
2855 if (key_type == BTRFS_DIR_ITEM_KEY)
2856 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2857 else
2858 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2859 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2860 if (ret)
2861 return ret;
2863 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2864 struct btrfs_dir_log_item);
2865 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2866 btrfs_mark_buffer_dirty(path->nodes[0]);
2867 btrfs_release_path(path);
2868 return 0;
2872 * log all the items included in the current transaction for a given
2873 * directory. This also creates the range items in the log tree required
2874 * to replay anything deleted before the fsync
2876 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2877 struct btrfs_root *root, struct inode *inode,
2878 struct btrfs_path *path,
2879 struct btrfs_path *dst_path, int key_type,
2880 u64 min_offset, u64 *last_offset_ret)
2882 struct btrfs_key min_key;
2883 struct btrfs_root *log = root->log_root;
2884 struct extent_buffer *src;
2885 int err = 0;
2886 int ret;
2887 int i;
2888 int nritems;
2889 u64 first_offset = min_offset;
2890 u64 last_offset = (u64)-1;
2891 u64 ino = btrfs_ino(inode);
2893 log = root->log_root;
2895 min_key.objectid = ino;
2896 min_key.type = key_type;
2897 min_key.offset = min_offset;
2899 path->keep_locks = 1;
2901 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
2904 * we didn't find anything from this transaction, see if there
2905 * is anything at all
2907 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2908 min_key.objectid = ino;
2909 min_key.type = key_type;
2910 min_key.offset = (u64)-1;
2911 btrfs_release_path(path);
2912 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2913 if (ret < 0) {
2914 btrfs_release_path(path);
2915 return ret;
2917 ret = btrfs_previous_item(root, path, ino, key_type);
2919 /* if ret == 0 there are items for this type,
2920 * create a range to tell us the last key of this type.
2921 * otherwise, there are no items in this directory after
2922 * *min_offset, and we create a range to indicate that.
2924 if (ret == 0) {
2925 struct btrfs_key tmp;
2926 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2927 path->slots[0]);
2928 if (key_type == tmp.type)
2929 first_offset = max(min_offset, tmp.offset) + 1;
2931 goto done;
2934 /* go backward to find any previous key */
2935 ret = btrfs_previous_item(root, path, ino, key_type);
2936 if (ret == 0) {
2937 struct btrfs_key tmp;
2938 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2939 if (key_type == tmp.type) {
2940 first_offset = tmp.offset;
2941 ret = overwrite_item(trans, log, dst_path,
2942 path->nodes[0], path->slots[0],
2943 &tmp);
2944 if (ret) {
2945 err = ret;
2946 goto done;
2950 btrfs_release_path(path);
2952 /* find the first key from this transaction again */
2953 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2954 if (WARN_ON(ret != 0))
2955 goto done;
2958 * we have a block from this transaction, log every item in it
2959 * from our directory
2961 while (1) {
2962 struct btrfs_key tmp;
2963 src = path->nodes[0];
2964 nritems = btrfs_header_nritems(src);
2965 for (i = path->slots[0]; i < nritems; i++) {
2966 btrfs_item_key_to_cpu(src, &min_key, i);
2968 if (min_key.objectid != ino || min_key.type != key_type)
2969 goto done;
2970 ret = overwrite_item(trans, log, dst_path, src, i,
2971 &min_key);
2972 if (ret) {
2973 err = ret;
2974 goto done;
2977 path->slots[0] = nritems;
2980 * look ahead to the next item and see if it is also
2981 * from this directory and from this transaction
2983 ret = btrfs_next_leaf(root, path);
2984 if (ret == 1) {
2985 last_offset = (u64)-1;
2986 goto done;
2988 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2989 if (tmp.objectid != ino || tmp.type != key_type) {
2990 last_offset = (u64)-1;
2991 goto done;
2993 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2994 ret = overwrite_item(trans, log, dst_path,
2995 path->nodes[0], path->slots[0],
2996 &tmp);
2997 if (ret)
2998 err = ret;
2999 else
3000 last_offset = tmp.offset;
3001 goto done;
3004 done:
3005 btrfs_release_path(path);
3006 btrfs_release_path(dst_path);
3008 if (err == 0) {
3009 *last_offset_ret = last_offset;
3011 * insert the log range keys to indicate where the log
3012 * is valid
3014 ret = insert_dir_log_key(trans, log, path, key_type,
3015 ino, first_offset, last_offset);
3016 if (ret)
3017 err = ret;
3019 return err;
3023 * logging directories is very similar to logging inodes, We find all the items
3024 * from the current transaction and write them to the log.
3026 * The recovery code scans the directory in the subvolume, and if it finds a
3027 * key in the range logged that is not present in the log tree, then it means
3028 * that dir entry was unlinked during the transaction.
3030 * In order for that scan to work, we must include one key smaller than
3031 * the smallest logged by this transaction and one key larger than the largest
3032 * key logged by this transaction.
3034 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3035 struct btrfs_root *root, struct inode *inode,
3036 struct btrfs_path *path,
3037 struct btrfs_path *dst_path)
3039 u64 min_key;
3040 u64 max_key;
3041 int ret;
3042 int key_type = BTRFS_DIR_ITEM_KEY;
3044 again:
3045 min_key = 0;
3046 max_key = 0;
3047 while (1) {
3048 ret = log_dir_items(trans, root, inode, path,
3049 dst_path, key_type, min_key,
3050 &max_key);
3051 if (ret)
3052 return ret;
3053 if (max_key == (u64)-1)
3054 break;
3055 min_key = max_key + 1;
3058 if (key_type == BTRFS_DIR_ITEM_KEY) {
3059 key_type = BTRFS_DIR_INDEX_KEY;
3060 goto again;
3062 return 0;
3066 * a helper function to drop items from the log before we relog an
3067 * inode. max_key_type indicates the highest item type to remove.
3068 * This cannot be run for file data extents because it does not
3069 * free the extents they point to.
3071 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3072 struct btrfs_root *log,
3073 struct btrfs_path *path,
3074 u64 objectid, int max_key_type)
3076 int ret;
3077 struct btrfs_key key;
3078 struct btrfs_key found_key;
3079 int start_slot;
3081 key.objectid = objectid;
3082 key.type = max_key_type;
3083 key.offset = (u64)-1;
3085 while (1) {
3086 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3087 BUG_ON(ret == 0); /* Logic error */
3088 if (ret < 0)
3089 break;
3091 if (path->slots[0] == 0)
3092 break;
3094 path->slots[0]--;
3095 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3096 path->slots[0]);
3098 if (found_key.objectid != objectid)
3099 break;
3101 found_key.offset = 0;
3102 found_key.type = 0;
3103 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3104 &start_slot);
3106 ret = btrfs_del_items(trans, log, path, start_slot,
3107 path->slots[0] - start_slot + 1);
3109 * If start slot isn't 0 then we don't need to re-search, we've
3110 * found the last guy with the objectid in this tree.
3112 if (ret || start_slot != 0)
3113 break;
3114 btrfs_release_path(path);
3116 btrfs_release_path(path);
3117 if (ret > 0)
3118 ret = 0;
3119 return ret;
3122 static void fill_inode_item(struct btrfs_trans_handle *trans,
3123 struct extent_buffer *leaf,
3124 struct btrfs_inode_item *item,
3125 struct inode *inode, int log_inode_only)
3127 struct btrfs_map_token token;
3129 btrfs_init_map_token(&token);
3131 if (log_inode_only) {
3132 /* set the generation to zero so the recover code
3133 * can tell the difference between an logging
3134 * just to say 'this inode exists' and a logging
3135 * to say 'update this inode with these values'
3137 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3138 btrfs_set_token_inode_size(leaf, item, 0, &token);
3139 } else {
3140 btrfs_set_token_inode_generation(leaf, item,
3141 BTRFS_I(inode)->generation,
3142 &token);
3143 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3146 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3147 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3148 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3149 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3151 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3152 inode->i_atime.tv_sec, &token);
3153 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3154 inode->i_atime.tv_nsec, &token);
3156 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3157 inode->i_mtime.tv_sec, &token);
3158 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3159 inode->i_mtime.tv_nsec, &token);
3161 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3162 inode->i_ctime.tv_sec, &token);
3163 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3164 inode->i_ctime.tv_nsec, &token);
3166 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3167 &token);
3169 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3170 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3171 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3172 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3173 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3176 static int log_inode_item(struct btrfs_trans_handle *trans,
3177 struct btrfs_root *log, struct btrfs_path *path,
3178 struct inode *inode)
3180 struct btrfs_inode_item *inode_item;
3181 int ret;
3183 ret = btrfs_insert_empty_item(trans, log, path,
3184 &BTRFS_I(inode)->location,
3185 sizeof(*inode_item));
3186 if (ret && ret != -EEXIST)
3187 return ret;
3188 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3189 struct btrfs_inode_item);
3190 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
3191 btrfs_release_path(path);
3192 return 0;
3195 static noinline int copy_items(struct btrfs_trans_handle *trans,
3196 struct inode *inode,
3197 struct btrfs_path *dst_path,
3198 struct btrfs_path *src_path, u64 *last_extent,
3199 int start_slot, int nr, int inode_only)
3201 unsigned long src_offset;
3202 unsigned long dst_offset;
3203 struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3204 struct btrfs_file_extent_item *extent;
3205 struct btrfs_inode_item *inode_item;
3206 struct extent_buffer *src = src_path->nodes[0];
3207 struct btrfs_key first_key, last_key, key;
3208 int ret;
3209 struct btrfs_key *ins_keys;
3210 u32 *ins_sizes;
3211 char *ins_data;
3212 int i;
3213 struct list_head ordered_sums;
3214 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3215 bool has_extents = false;
3216 bool need_find_last_extent = (*last_extent == 0);
3217 bool done = false;
3219 INIT_LIST_HEAD(&ordered_sums);
3221 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3222 nr * sizeof(u32), GFP_NOFS);
3223 if (!ins_data)
3224 return -ENOMEM;
3226 first_key.objectid = (u64)-1;
3228 ins_sizes = (u32 *)ins_data;
3229 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3231 for (i = 0; i < nr; i++) {
3232 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3233 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3235 ret = btrfs_insert_empty_items(trans, log, dst_path,
3236 ins_keys, ins_sizes, nr);
3237 if (ret) {
3238 kfree(ins_data);
3239 return ret;
3242 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3243 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3244 dst_path->slots[0]);
3246 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3248 if ((i == (nr - 1)))
3249 last_key = ins_keys[i];
3251 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3252 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3253 dst_path->slots[0],
3254 struct btrfs_inode_item);
3255 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3256 inode, inode_only == LOG_INODE_EXISTS);
3257 } else {
3258 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3259 src_offset, ins_sizes[i]);
3263 * We set need_find_last_extent here in case we know we were
3264 * processing other items and then walk into the first extent in
3265 * the inode. If we don't hit an extent then nothing changes,
3266 * we'll do the last search the next time around.
3268 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3269 has_extents = true;
3270 if (need_find_last_extent &&
3271 first_key.objectid == (u64)-1)
3272 first_key = ins_keys[i];
3273 } else {
3274 need_find_last_extent = false;
3277 /* take a reference on file data extents so that truncates
3278 * or deletes of this inode don't have to relog the inode
3279 * again
3281 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY &&
3282 !skip_csum) {
3283 int found_type;
3284 extent = btrfs_item_ptr(src, start_slot + i,
3285 struct btrfs_file_extent_item);
3287 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3288 continue;
3290 found_type = btrfs_file_extent_type(src, extent);
3291 if (found_type == BTRFS_FILE_EXTENT_REG) {
3292 u64 ds, dl, cs, cl;
3293 ds = btrfs_file_extent_disk_bytenr(src,
3294 extent);
3295 /* ds == 0 is a hole */
3296 if (ds == 0)
3297 continue;
3299 dl = btrfs_file_extent_disk_num_bytes(src,
3300 extent);
3301 cs = btrfs_file_extent_offset(src, extent);
3302 cl = btrfs_file_extent_num_bytes(src,
3303 extent);
3304 if (btrfs_file_extent_compression(src,
3305 extent)) {
3306 cs = 0;
3307 cl = dl;
3310 ret = btrfs_lookup_csums_range(
3311 log->fs_info->csum_root,
3312 ds + cs, ds + cs + cl - 1,
3313 &ordered_sums, 0);
3314 if (ret) {
3315 btrfs_release_path(dst_path);
3316 kfree(ins_data);
3317 return ret;
3323 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3324 btrfs_release_path(dst_path);
3325 kfree(ins_data);
3328 * we have to do this after the loop above to avoid changing the
3329 * log tree while trying to change the log tree.
3331 ret = 0;
3332 while (!list_empty(&ordered_sums)) {
3333 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3334 struct btrfs_ordered_sum,
3335 list);
3336 if (!ret)
3337 ret = btrfs_csum_file_blocks(trans, log, sums);
3338 list_del(&sums->list);
3339 kfree(sums);
3342 if (!has_extents)
3343 return ret;
3346 * Because we use btrfs_search_forward we could skip leaves that were
3347 * not modified and then assume *last_extent is valid when it really
3348 * isn't. So back up to the previous leaf and read the end of the last
3349 * extent before we go and fill in holes.
3351 if (need_find_last_extent) {
3352 u64 len;
3354 ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3355 if (ret < 0)
3356 return ret;
3357 if (ret)
3358 goto fill_holes;
3359 if (src_path->slots[0])
3360 src_path->slots[0]--;
3361 src = src_path->nodes[0];
3362 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3363 if (key.objectid != btrfs_ino(inode) ||
3364 key.type != BTRFS_EXTENT_DATA_KEY)
3365 goto fill_holes;
3366 extent = btrfs_item_ptr(src, src_path->slots[0],
3367 struct btrfs_file_extent_item);
3368 if (btrfs_file_extent_type(src, extent) ==
3369 BTRFS_FILE_EXTENT_INLINE) {
3370 len = btrfs_file_extent_inline_len(src,
3371 src_path->slots[0],
3372 extent);
3373 *last_extent = ALIGN(key.offset + len,
3374 log->sectorsize);
3375 } else {
3376 len = btrfs_file_extent_num_bytes(src, extent);
3377 *last_extent = key.offset + len;
3380 fill_holes:
3381 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3382 * things could have happened
3384 * 1) A merge could have happened, so we could currently be on a leaf
3385 * that holds what we were copying in the first place.
3386 * 2) A split could have happened, and now not all of the items we want
3387 * are on the same leaf.
3389 * So we need to adjust how we search for holes, we need to drop the
3390 * path and re-search for the first extent key we found, and then walk
3391 * forward until we hit the last one we copied.
3393 if (need_find_last_extent) {
3394 /* btrfs_prev_leaf could return 1 without releasing the path */
3395 btrfs_release_path(src_path);
3396 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3397 src_path, 0, 0);
3398 if (ret < 0)
3399 return ret;
3400 ASSERT(ret == 0);
3401 src = src_path->nodes[0];
3402 i = src_path->slots[0];
3403 } else {
3404 i = start_slot;
3408 * Ok so here we need to go through and fill in any holes we may have
3409 * to make sure that holes are punched for those areas in case they had
3410 * extents previously.
3412 while (!done) {
3413 u64 offset, len;
3414 u64 extent_end;
3416 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3417 ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3418 if (ret < 0)
3419 return ret;
3420 ASSERT(ret == 0);
3421 src = src_path->nodes[0];
3422 i = 0;
3425 btrfs_item_key_to_cpu(src, &key, i);
3426 if (!btrfs_comp_cpu_keys(&key, &last_key))
3427 done = true;
3428 if (key.objectid != btrfs_ino(inode) ||
3429 key.type != BTRFS_EXTENT_DATA_KEY) {
3430 i++;
3431 continue;
3433 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3434 if (btrfs_file_extent_type(src, extent) ==
3435 BTRFS_FILE_EXTENT_INLINE) {
3436 len = btrfs_file_extent_inline_len(src, i, extent);
3437 extent_end = ALIGN(key.offset + len, log->sectorsize);
3438 } else {
3439 len = btrfs_file_extent_num_bytes(src, extent);
3440 extent_end = key.offset + len;
3442 i++;
3444 if (*last_extent == key.offset) {
3445 *last_extent = extent_end;
3446 continue;
3448 offset = *last_extent;
3449 len = key.offset - *last_extent;
3450 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3451 offset, 0, 0, len, 0, len, 0,
3452 0, 0);
3453 if (ret)
3454 break;
3455 *last_extent = offset + len;
3458 * Need to let the callers know we dropped the path so they should
3459 * re-search.
3461 if (!ret && need_find_last_extent)
3462 ret = 1;
3463 return ret;
3466 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3468 struct extent_map *em1, *em2;
3470 em1 = list_entry(a, struct extent_map, list);
3471 em2 = list_entry(b, struct extent_map, list);
3473 if (em1->start < em2->start)
3474 return -1;
3475 else if (em1->start > em2->start)
3476 return 1;
3477 return 0;
3480 static int log_one_extent(struct btrfs_trans_handle *trans,
3481 struct inode *inode, struct btrfs_root *root,
3482 struct extent_map *em, struct btrfs_path *path)
3484 struct btrfs_root *log = root->log_root;
3485 struct btrfs_file_extent_item *fi;
3486 struct extent_buffer *leaf;
3487 struct btrfs_ordered_extent *ordered;
3488 struct list_head ordered_sums;
3489 struct btrfs_map_token token;
3490 struct btrfs_key key;
3491 u64 mod_start = em->mod_start;
3492 u64 mod_len = em->mod_len;
3493 u64 csum_offset;
3494 u64 csum_len;
3495 u64 extent_offset = em->start - em->orig_start;
3496 u64 block_len;
3497 int ret;
3498 int index = log->log_transid % 2;
3499 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3500 int extent_inserted = 0;
3502 INIT_LIST_HEAD(&ordered_sums);
3503 btrfs_init_map_token(&token);
3505 ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3506 em->start + em->len, NULL, 0, 1,
3507 sizeof(*fi), &extent_inserted);
3508 if (ret)
3509 return ret;
3511 if (!extent_inserted) {
3512 key.objectid = btrfs_ino(inode);
3513 key.type = BTRFS_EXTENT_DATA_KEY;
3514 key.offset = em->start;
3516 ret = btrfs_insert_empty_item(trans, log, path, &key,
3517 sizeof(*fi));
3518 if (ret)
3519 return ret;
3521 leaf = path->nodes[0];
3522 fi = btrfs_item_ptr(leaf, path->slots[0],
3523 struct btrfs_file_extent_item);
3525 btrfs_set_token_file_extent_generation(leaf, fi, em->generation,
3526 &token);
3527 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3528 skip_csum = true;
3529 btrfs_set_token_file_extent_type(leaf, fi,
3530 BTRFS_FILE_EXTENT_PREALLOC,
3531 &token);
3532 } else {
3533 btrfs_set_token_file_extent_type(leaf, fi,
3534 BTRFS_FILE_EXTENT_REG,
3535 &token);
3536 if (em->block_start == EXTENT_MAP_HOLE)
3537 skip_csum = true;
3540 block_len = max(em->block_len, em->orig_block_len);
3541 if (em->compress_type != BTRFS_COMPRESS_NONE) {
3542 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3543 em->block_start,
3544 &token);
3545 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3546 &token);
3547 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
3548 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3549 em->block_start -
3550 extent_offset, &token);
3551 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3552 &token);
3553 } else {
3554 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3555 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3556 &token);
3559 btrfs_set_token_file_extent_offset(leaf, fi,
3560 em->start - em->orig_start,
3561 &token);
3562 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
3563 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
3564 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3565 &token);
3566 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3567 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
3568 btrfs_mark_buffer_dirty(leaf);
3570 btrfs_release_path(path);
3571 if (ret) {
3572 return ret;
3575 if (skip_csum)
3576 return 0;
3579 * First check and see if our csums are on our outstanding ordered
3580 * extents.
3582 again:
3583 spin_lock_irq(&log->log_extents_lock[index]);
3584 list_for_each_entry(ordered, &log->logged_list[index], log_list) {
3585 struct btrfs_ordered_sum *sum;
3587 if (!mod_len)
3588 break;
3590 if (ordered->inode != inode)
3591 continue;
3593 if (ordered->file_offset + ordered->len <= mod_start ||
3594 mod_start + mod_len <= ordered->file_offset)
3595 continue;
3598 * We are going to copy all the csums on this ordered extent, so
3599 * go ahead and adjust mod_start and mod_len in case this
3600 * ordered extent has already been logged.
3602 if (ordered->file_offset > mod_start) {
3603 if (ordered->file_offset + ordered->len >=
3604 mod_start + mod_len)
3605 mod_len = ordered->file_offset - mod_start;
3607 * If we have this case
3609 * |--------- logged extent ---------|
3610 * |----- ordered extent ----|
3612 * Just don't mess with mod_start and mod_len, we'll
3613 * just end up logging more csums than we need and it
3614 * will be ok.
3616 } else {
3617 if (ordered->file_offset + ordered->len <
3618 mod_start + mod_len) {
3619 mod_len = (mod_start + mod_len) -
3620 (ordered->file_offset + ordered->len);
3621 mod_start = ordered->file_offset +
3622 ordered->len;
3623 } else {
3624 mod_len = 0;
3629 * To keep us from looping for the above case of an ordered
3630 * extent that falls inside of the logged extent.
3632 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3633 &ordered->flags))
3634 continue;
3635 atomic_inc(&ordered->refs);
3636 spin_unlock_irq(&log->log_extents_lock[index]);
3638 * we've dropped the lock, we must either break or
3639 * start over after this.
3642 if (ordered->csum_bytes_left) {
3643 btrfs_start_ordered_extent(inode, ordered, 0);
3644 wait_event(ordered->wait,
3645 ordered->csum_bytes_left == 0);
3648 list_for_each_entry(sum, &ordered->list, list) {
3649 ret = btrfs_csum_file_blocks(trans, log, sum);
3650 if (ret) {
3651 btrfs_put_ordered_extent(ordered);
3652 goto unlocked;
3655 btrfs_put_ordered_extent(ordered);
3656 goto again;
3659 spin_unlock_irq(&log->log_extents_lock[index]);
3660 unlocked:
3662 if (!mod_len || ret)
3663 return ret;
3665 if (em->compress_type) {
3666 csum_offset = 0;
3667 csum_len = block_len;
3668 } else {
3669 csum_offset = mod_start - em->start;
3670 csum_len = mod_len;
3673 /* block start is already adjusted for the file extent offset. */
3674 ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3675 em->block_start + csum_offset,
3676 em->block_start + csum_offset +
3677 csum_len - 1, &ordered_sums, 0);
3678 if (ret)
3679 return ret;
3681 while (!list_empty(&ordered_sums)) {
3682 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3683 struct btrfs_ordered_sum,
3684 list);
3685 if (!ret)
3686 ret = btrfs_csum_file_blocks(trans, log, sums);
3687 list_del(&sums->list);
3688 kfree(sums);
3691 return ret;
3694 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3695 struct btrfs_root *root,
3696 struct inode *inode,
3697 struct btrfs_path *path)
3699 struct extent_map *em, *n;
3700 struct list_head extents;
3701 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3702 u64 test_gen;
3703 int ret = 0;
3704 int num = 0;
3706 INIT_LIST_HEAD(&extents);
3708 write_lock(&tree->lock);
3709 test_gen = root->fs_info->last_trans_committed;
3711 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3712 list_del_init(&em->list);
3715 * Just an arbitrary number, this can be really CPU intensive
3716 * once we start getting a lot of extents, and really once we
3717 * have a bunch of extents we just want to commit since it will
3718 * be faster.
3720 if (++num > 32768) {
3721 list_del_init(&tree->modified_extents);
3722 ret = -EFBIG;
3723 goto process;
3726 if (em->generation <= test_gen)
3727 continue;
3728 /* Need a ref to keep it from getting evicted from cache */
3729 atomic_inc(&em->refs);
3730 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
3731 list_add_tail(&em->list, &extents);
3732 num++;
3735 list_sort(NULL, &extents, extent_cmp);
3737 process:
3738 while (!list_empty(&extents)) {
3739 em = list_entry(extents.next, struct extent_map, list);
3741 list_del_init(&em->list);
3744 * If we had an error we just need to delete everybody from our
3745 * private list.
3747 if (ret) {
3748 clear_em_logging(tree, em);
3749 free_extent_map(em);
3750 continue;
3753 write_unlock(&tree->lock);
3755 ret = log_one_extent(trans, inode, root, em, path);
3756 write_lock(&tree->lock);
3757 clear_em_logging(tree, em);
3758 free_extent_map(em);
3760 WARN_ON(!list_empty(&extents));
3761 write_unlock(&tree->lock);
3763 btrfs_release_path(path);
3764 return ret;
3767 /* log a single inode in the tree log.
3768 * At least one parent directory for this inode must exist in the tree
3769 * or be logged already.
3771 * Any items from this inode changed by the current transaction are copied
3772 * to the log tree. An extra reference is taken on any extents in this
3773 * file, allowing us to avoid a whole pile of corner cases around logging
3774 * blocks that have been removed from the tree.
3776 * See LOG_INODE_ALL and related defines for a description of what inode_only
3777 * does.
3779 * This handles both files and directories.
3781 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
3782 struct btrfs_root *root, struct inode *inode,
3783 int inode_only)
3785 struct btrfs_path *path;
3786 struct btrfs_path *dst_path;
3787 struct btrfs_key min_key;
3788 struct btrfs_key max_key;
3789 struct btrfs_root *log = root->log_root;
3790 struct extent_buffer *src = NULL;
3791 u64 last_extent = 0;
3792 int err = 0;
3793 int ret;
3794 int nritems;
3795 int ins_start_slot = 0;
3796 int ins_nr;
3797 bool fast_search = false;
3798 u64 ino = btrfs_ino(inode);
3800 path = btrfs_alloc_path();
3801 if (!path)
3802 return -ENOMEM;
3803 dst_path = btrfs_alloc_path();
3804 if (!dst_path) {
3805 btrfs_free_path(path);
3806 return -ENOMEM;
3809 min_key.objectid = ino;
3810 min_key.type = BTRFS_INODE_ITEM_KEY;
3811 min_key.offset = 0;
3813 max_key.objectid = ino;
3816 /* today the code can only do partial logging of directories */
3817 if (S_ISDIR(inode->i_mode) ||
3818 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3819 &BTRFS_I(inode)->runtime_flags) &&
3820 inode_only == LOG_INODE_EXISTS))
3821 max_key.type = BTRFS_XATTR_ITEM_KEY;
3822 else
3823 max_key.type = (u8)-1;
3824 max_key.offset = (u64)-1;
3826 /* Only run delayed items if we are a dir or a new file */
3827 if (S_ISDIR(inode->i_mode) ||
3828 BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
3829 ret = btrfs_commit_inode_delayed_items(trans, inode);
3830 if (ret) {
3831 btrfs_free_path(path);
3832 btrfs_free_path(dst_path);
3833 return ret;
3837 mutex_lock(&BTRFS_I(inode)->log_mutex);
3839 btrfs_get_logged_extents(log, inode);
3842 * a brute force approach to making sure we get the most uptodate
3843 * copies of everything.
3845 if (S_ISDIR(inode->i_mode)) {
3846 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3848 if (inode_only == LOG_INODE_EXISTS)
3849 max_key_type = BTRFS_XATTR_ITEM_KEY;
3850 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
3851 } else {
3852 if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3853 &BTRFS_I(inode)->runtime_flags)) {
3854 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3855 &BTRFS_I(inode)->runtime_flags);
3856 ret = btrfs_truncate_inode_items(trans, log,
3857 inode, 0, 0);
3858 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3859 &BTRFS_I(inode)->runtime_flags) ||
3860 inode_only == LOG_INODE_EXISTS) {
3861 if (inode_only == LOG_INODE_ALL)
3862 fast_search = true;
3863 max_key.type = BTRFS_XATTR_ITEM_KEY;
3864 ret = drop_objectid_items(trans, log, path, ino,
3865 max_key.type);
3866 } else {
3867 if (inode_only == LOG_INODE_ALL)
3868 fast_search = true;
3869 ret = log_inode_item(trans, log, dst_path, inode);
3870 if (ret) {
3871 err = ret;
3872 goto out_unlock;
3874 goto log_extents;
3878 if (ret) {
3879 err = ret;
3880 goto out_unlock;
3882 path->keep_locks = 1;
3884 while (1) {
3885 ins_nr = 0;
3886 ret = btrfs_search_forward(root, &min_key,
3887 path, trans->transid);
3888 if (ret != 0)
3889 break;
3890 again:
3891 /* note, ins_nr might be > 0 here, cleanup outside the loop */
3892 if (min_key.objectid != ino)
3893 break;
3894 if (min_key.type > max_key.type)
3895 break;
3897 src = path->nodes[0];
3898 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
3899 ins_nr++;
3900 goto next_slot;
3901 } else if (!ins_nr) {
3902 ins_start_slot = path->slots[0];
3903 ins_nr = 1;
3904 goto next_slot;
3907 ret = copy_items(trans, inode, dst_path, path, &last_extent,
3908 ins_start_slot, ins_nr, inode_only);
3909 if (ret < 0) {
3910 err = ret;
3911 goto out_unlock;
3912 } if (ret) {
3913 ins_nr = 0;
3914 btrfs_release_path(path);
3915 continue;
3917 ins_nr = 1;
3918 ins_start_slot = path->slots[0];
3919 next_slot:
3921 nritems = btrfs_header_nritems(path->nodes[0]);
3922 path->slots[0]++;
3923 if (path->slots[0] < nritems) {
3924 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
3925 path->slots[0]);
3926 goto again;
3928 if (ins_nr) {
3929 ret = copy_items(trans, inode, dst_path, path,
3930 &last_extent, ins_start_slot,
3931 ins_nr, inode_only);
3932 if (ret < 0) {
3933 err = ret;
3934 goto out_unlock;
3936 ret = 0;
3937 ins_nr = 0;
3939 btrfs_release_path(path);
3941 if (min_key.offset < (u64)-1) {
3942 min_key.offset++;
3943 } else if (min_key.type < max_key.type) {
3944 min_key.type++;
3945 min_key.offset = 0;
3946 } else {
3947 break;
3950 if (ins_nr) {
3951 ret = copy_items(trans, inode, dst_path, path, &last_extent,
3952 ins_start_slot, ins_nr, inode_only);
3953 if (ret < 0) {
3954 err = ret;
3955 goto out_unlock;
3957 ret = 0;
3958 ins_nr = 0;
3961 log_extents:
3962 btrfs_release_path(path);
3963 btrfs_release_path(dst_path);
3964 if (fast_search) {
3965 ret = btrfs_log_changed_extents(trans, root, inode, dst_path);
3966 if (ret) {
3967 err = ret;
3968 goto out_unlock;
3970 } else if (inode_only == LOG_INODE_ALL) {
3971 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3972 struct extent_map *em, *n;
3974 write_lock(&tree->lock);
3975 list_for_each_entry_safe(em, n, &tree->modified_extents, list)
3976 list_del_init(&em->list);
3977 write_unlock(&tree->lock);
3980 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
3981 ret = log_directory_changes(trans, root, inode, path, dst_path);
3982 if (ret) {
3983 err = ret;
3984 goto out_unlock;
3987 BTRFS_I(inode)->logged_trans = trans->transid;
3988 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
3989 out_unlock:
3990 if (err)
3991 btrfs_free_logged_extents(log, log->log_transid);
3992 mutex_unlock(&BTRFS_I(inode)->log_mutex);
3994 btrfs_free_path(path);
3995 btrfs_free_path(dst_path);
3996 return err;
4000 * follow the dentry parent pointers up the chain and see if any
4001 * of the directories in it require a full commit before they can
4002 * be logged. Returns zero if nothing special needs to be done or 1 if
4003 * a full commit is required.
4005 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
4006 struct inode *inode,
4007 struct dentry *parent,
4008 struct super_block *sb,
4009 u64 last_committed)
4011 int ret = 0;
4012 struct btrfs_root *root;
4013 struct dentry *old_parent = NULL;
4014 struct inode *orig_inode = inode;
4017 * for regular files, if its inode is already on disk, we don't
4018 * have to worry about the parents at all. This is because
4019 * we can use the last_unlink_trans field to record renames
4020 * and other fun in this file.
4022 if (S_ISREG(inode->i_mode) &&
4023 BTRFS_I(inode)->generation <= last_committed &&
4024 BTRFS_I(inode)->last_unlink_trans <= last_committed)
4025 goto out;
4027 if (!S_ISDIR(inode->i_mode)) {
4028 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4029 goto out;
4030 inode = parent->d_inode;
4033 while (1) {
4035 * If we are logging a directory then we start with our inode,
4036 * not our parents inode, so we need to skipp setting the
4037 * logged_trans so that further down in the log code we don't
4038 * think this inode has already been logged.
4040 if (inode != orig_inode)
4041 BTRFS_I(inode)->logged_trans = trans->transid;
4042 smp_mb();
4044 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
4045 root = BTRFS_I(inode)->root;
4048 * make sure any commits to the log are forced
4049 * to be full commits
4051 root->fs_info->last_trans_log_full_commit =
4052 trans->transid;
4053 ret = 1;
4054 break;
4057 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4058 break;
4060 if (IS_ROOT(parent))
4061 break;
4063 parent = dget_parent(parent);
4064 dput(old_parent);
4065 old_parent = parent;
4066 inode = parent->d_inode;
4069 dput(old_parent);
4070 out:
4071 return ret;
4075 * helper function around btrfs_log_inode to make sure newly created
4076 * parent directories also end up in the log. A minimal inode and backref
4077 * only logging is done of any parent directories that are older than
4078 * the last committed transaction
4080 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
4081 struct btrfs_root *root, struct inode *inode,
4082 struct dentry *parent, int exists_only)
4084 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
4085 struct super_block *sb;
4086 struct dentry *old_parent = NULL;
4087 int ret = 0;
4088 u64 last_committed = root->fs_info->last_trans_committed;
4090 sb = inode->i_sb;
4092 if (btrfs_test_opt(root, NOTREELOG)) {
4093 ret = 1;
4094 goto end_no_trans;
4097 if (root->fs_info->last_trans_log_full_commit >
4098 root->fs_info->last_trans_committed) {
4099 ret = 1;
4100 goto end_no_trans;
4103 if (root != BTRFS_I(inode)->root ||
4104 btrfs_root_refs(&root->root_item) == 0) {
4105 ret = 1;
4106 goto end_no_trans;
4109 ret = check_parent_dirs_for_sync(trans, inode, parent,
4110 sb, last_committed);
4111 if (ret)
4112 goto end_no_trans;
4114 if (btrfs_inode_in_log(inode, trans->transid)) {
4115 ret = BTRFS_NO_LOG_SYNC;
4116 goto end_no_trans;
4119 ret = start_log_trans(trans, root);
4120 if (ret)
4121 goto end_trans;
4123 ret = btrfs_log_inode(trans, root, inode, inode_only);
4124 if (ret)
4125 goto end_trans;
4128 * for regular files, if its inode is already on disk, we don't
4129 * have to worry about the parents at all. This is because
4130 * we can use the last_unlink_trans field to record renames
4131 * and other fun in this file.
4133 if (S_ISREG(inode->i_mode) &&
4134 BTRFS_I(inode)->generation <= last_committed &&
4135 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
4136 ret = 0;
4137 goto end_trans;
4140 inode_only = LOG_INODE_EXISTS;
4141 while (1) {
4142 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4143 break;
4145 inode = parent->d_inode;
4146 if (root != BTRFS_I(inode)->root)
4147 break;
4149 if (BTRFS_I(inode)->generation >
4150 root->fs_info->last_trans_committed) {
4151 ret = btrfs_log_inode(trans, root, inode, inode_only);
4152 if (ret)
4153 goto end_trans;
4155 if (IS_ROOT(parent))
4156 break;
4158 parent = dget_parent(parent);
4159 dput(old_parent);
4160 old_parent = parent;
4162 ret = 0;
4163 end_trans:
4164 dput(old_parent);
4165 if (ret < 0) {
4166 root->fs_info->last_trans_log_full_commit = trans->transid;
4167 ret = 1;
4169 btrfs_end_log_trans(root);
4170 end_no_trans:
4171 return ret;
4175 * it is not safe to log dentry if the chunk root has added new
4176 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
4177 * If this returns 1, you must commit the transaction to safely get your
4178 * data on disk.
4180 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
4181 struct btrfs_root *root, struct dentry *dentry)
4183 struct dentry *parent = dget_parent(dentry);
4184 int ret;
4186 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
4187 dput(parent);
4189 return ret;
4193 * should be called during mount to recover any replay any log trees
4194 * from the FS
4196 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
4198 int ret;
4199 struct btrfs_path *path;
4200 struct btrfs_trans_handle *trans;
4201 struct btrfs_key key;
4202 struct btrfs_key found_key;
4203 struct btrfs_key tmp_key;
4204 struct btrfs_root *log;
4205 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
4206 struct walk_control wc = {
4207 .process_func = process_one_buffer,
4208 .stage = 0,
4211 path = btrfs_alloc_path();
4212 if (!path)
4213 return -ENOMEM;
4215 fs_info->log_root_recovering = 1;
4217 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4218 if (IS_ERR(trans)) {
4219 ret = PTR_ERR(trans);
4220 goto error;
4223 wc.trans = trans;
4224 wc.pin = 1;
4226 ret = walk_log_tree(trans, log_root_tree, &wc);
4227 if (ret) {
4228 btrfs_error(fs_info, ret, "Failed to pin buffers while "
4229 "recovering log root tree.");
4230 goto error;
4233 again:
4234 key.objectid = BTRFS_TREE_LOG_OBJECTID;
4235 key.offset = (u64)-1;
4236 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
4238 while (1) {
4239 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
4241 if (ret < 0) {
4242 btrfs_error(fs_info, ret,
4243 "Couldn't find tree log root.");
4244 goto error;
4246 if (ret > 0) {
4247 if (path->slots[0] == 0)
4248 break;
4249 path->slots[0]--;
4251 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4252 path->slots[0]);
4253 btrfs_release_path(path);
4254 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4255 break;
4257 log = btrfs_read_fs_root(log_root_tree, &found_key);
4258 if (IS_ERR(log)) {
4259 ret = PTR_ERR(log);
4260 btrfs_error(fs_info, ret,
4261 "Couldn't read tree log root.");
4262 goto error;
4265 tmp_key.objectid = found_key.offset;
4266 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4267 tmp_key.offset = (u64)-1;
4269 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
4270 if (IS_ERR(wc.replay_dest)) {
4271 ret = PTR_ERR(wc.replay_dest);
4272 free_extent_buffer(log->node);
4273 free_extent_buffer(log->commit_root);
4274 kfree(log);
4275 btrfs_error(fs_info, ret, "Couldn't read target root "
4276 "for tree log recovery.");
4277 goto error;
4280 wc.replay_dest->log_root = log;
4281 btrfs_record_root_in_trans(trans, wc.replay_dest);
4282 ret = walk_log_tree(trans, log, &wc);
4284 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
4285 ret = fixup_inode_link_counts(trans, wc.replay_dest,
4286 path);
4289 key.offset = found_key.offset - 1;
4290 wc.replay_dest->log_root = NULL;
4291 free_extent_buffer(log->node);
4292 free_extent_buffer(log->commit_root);
4293 kfree(log);
4295 if (ret)
4296 goto error;
4298 if (found_key.offset == 0)
4299 break;
4301 btrfs_release_path(path);
4303 /* step one is to pin it all, step two is to replay just inodes */
4304 if (wc.pin) {
4305 wc.pin = 0;
4306 wc.process_func = replay_one_buffer;
4307 wc.stage = LOG_WALK_REPLAY_INODES;
4308 goto again;
4310 /* step three is to replay everything */
4311 if (wc.stage < LOG_WALK_REPLAY_ALL) {
4312 wc.stage++;
4313 goto again;
4316 btrfs_free_path(path);
4318 /* step 4: commit the transaction, which also unpins the blocks */
4319 ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4320 if (ret)
4321 return ret;
4323 free_extent_buffer(log_root_tree->node);
4324 log_root_tree->log_root = NULL;
4325 fs_info->log_root_recovering = 0;
4326 kfree(log_root_tree);
4328 return 0;
4329 error:
4330 if (wc.trans)
4331 btrfs_end_transaction(wc.trans, fs_info->tree_root);
4332 btrfs_free_path(path);
4333 return ret;
4337 * there are some corner cases where we want to force a full
4338 * commit instead of allowing a directory to be logged.
4340 * They revolve around files there were unlinked from the directory, and
4341 * this function updates the parent directory so that a full commit is
4342 * properly done if it is fsync'd later after the unlinks are done.
4344 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4345 struct inode *dir, struct inode *inode,
4346 int for_rename)
4349 * when we're logging a file, if it hasn't been renamed
4350 * or unlinked, and its inode is fully committed on disk,
4351 * we don't have to worry about walking up the directory chain
4352 * to log its parents.
4354 * So, we use the last_unlink_trans field to put this transid
4355 * into the file. When the file is logged we check it and
4356 * don't log the parents if the file is fully on disk.
4358 if (S_ISREG(inode->i_mode))
4359 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4362 * if this directory was already logged any new
4363 * names for this file/dir will get recorded
4365 smp_mb();
4366 if (BTRFS_I(dir)->logged_trans == trans->transid)
4367 return;
4370 * if the inode we're about to unlink was logged,
4371 * the log will be properly updated for any new names
4373 if (BTRFS_I(inode)->logged_trans == trans->transid)
4374 return;
4377 * when renaming files across directories, if the directory
4378 * there we're unlinking from gets fsync'd later on, there's
4379 * no way to find the destination directory later and fsync it
4380 * properly. So, we have to be conservative and force commits
4381 * so the new name gets discovered.
4383 if (for_rename)
4384 goto record;
4386 /* we can safely do the unlink without any special recording */
4387 return;
4389 record:
4390 BTRFS_I(dir)->last_unlink_trans = trans->transid;
4394 * Call this after adding a new name for a file and it will properly
4395 * update the log to reflect the new name.
4397 * It will return zero if all goes well, and it will return 1 if a
4398 * full transaction commit is required.
4400 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4401 struct inode *inode, struct inode *old_dir,
4402 struct dentry *parent)
4404 struct btrfs_root * root = BTRFS_I(inode)->root;
4407 * this will force the logging code to walk the dentry chain
4408 * up for the file
4410 if (S_ISREG(inode->i_mode))
4411 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4414 * if this inode hasn't been logged and directory we're renaming it
4415 * from hasn't been logged, we don't need to log it
4417 if (BTRFS_I(inode)->logged_trans <=
4418 root->fs_info->last_trans_committed &&
4419 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4420 root->fs_info->last_trans_committed))
4421 return 0;
4423 return btrfs_log_inode_parent(trans, root, inode, parent, 1);