2 * mm/truncate.c - code for taking down pages from address_spaces
4 * Copyright (C) 2002, Linus Torvalds
6 * 10Sep2002 Andrew Morton
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/dax.h>
13 #include <linux/gfp.h>
15 #include <linux/swap.h>
16 #include <linux/export.h>
17 #include <linux/pagemap.h>
18 #include <linux/highmem.h>
19 #include <linux/pagevec.h>
20 #include <linux/task_io_accounting_ops.h>
21 #include <linux/buffer_head.h> /* grr. try_to_release_page,
23 #include <linux/cleancache.h>
24 #include <linux/rmap.h>
27 static void clear_exceptional_entry(struct address_space
*mapping
,
28 pgoff_t index
, void *entry
)
30 struct radix_tree_node
*node
;
33 /* Handled by shmem itself */
34 if (shmem_mapping(mapping
))
37 if (dax_mapping(mapping
)) {
38 dax_delete_mapping_entry(mapping
, index
);
41 spin_lock_irq(&mapping
->tree_lock
);
43 * Regular page slots are stabilized by the page lock even
44 * without the tree itself locked. These unlocked entries
45 * need verification under the tree lock.
47 if (!__radix_tree_lookup(&mapping
->page_tree
, index
, &node
, &slot
))
51 __radix_tree_replace(&mapping
->page_tree
, node
, slot
, NULL
,
52 workingset_update_node
, mapping
);
53 mapping
->nrexceptional
--;
55 spin_unlock_irq(&mapping
->tree_lock
);
59 * do_invalidatepage - invalidate part or all of a page
60 * @page: the page which is affected
61 * @offset: start of the range to invalidate
62 * @length: length of the range to invalidate
64 * do_invalidatepage() is called when all or part of the page has become
65 * invalidated by a truncate operation.
67 * do_invalidatepage() does not have to release all buffers, but it must
68 * ensure that no dirty buffer is left outside @offset and that no I/O
69 * is underway against any of the blocks which are outside the truncation
70 * point. Because the caller is about to free (and possibly reuse) those
73 void do_invalidatepage(struct page
*page
, unsigned int offset
,
76 void (*invalidatepage
)(struct page
*, unsigned int, unsigned int);
78 invalidatepage
= page
->mapping
->a_ops
->invalidatepage
;
81 invalidatepage
= block_invalidatepage
;
84 (*invalidatepage
)(page
, offset
, length
);
88 * If truncate cannot remove the fs-private metadata from the page, the page
89 * becomes orphaned. It will be left on the LRU and may even be mapped into
90 * user pagetables if we're racing with filemap_fault().
92 * We need to bale out if page->mapping is no longer equal to the original
93 * mapping. This happens a) when the VM reclaimed the page while we waited on
94 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
95 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
98 truncate_complete_page(struct address_space
*mapping
, struct page
*page
)
100 if (page
->mapping
!= mapping
)
103 if (page_has_private(page
))
104 do_invalidatepage(page
, 0, PAGE_SIZE
);
107 * Some filesystems seem to re-dirty the page even after
108 * the VM has canceled the dirty bit (eg ext3 journaling).
109 * Hence dirty accounting check is placed after invalidation.
111 cancel_dirty_page(page
);
112 ClearPageMappedToDisk(page
);
113 delete_from_page_cache(page
);
118 * This is for invalidate_mapping_pages(). That function can be called at
119 * any time, and is not supposed to throw away dirty pages. But pages can
120 * be marked dirty at any time too, so use remove_mapping which safely
121 * discards clean, unused pages.
123 * Returns non-zero if the page was successfully invalidated.
126 invalidate_complete_page(struct address_space
*mapping
, struct page
*page
)
130 if (page
->mapping
!= mapping
)
133 if (page_has_private(page
) && !try_to_release_page(page
, 0))
136 ret
= remove_mapping(mapping
, page
);
141 int truncate_inode_page(struct address_space
*mapping
, struct page
*page
)
144 VM_BUG_ON_PAGE(PageTail(page
), page
);
146 holelen
= PageTransHuge(page
) ? HPAGE_PMD_SIZE
: PAGE_SIZE
;
147 if (page_mapped(page
)) {
148 unmap_mapping_range(mapping
,
149 (loff_t
)page
->index
<< PAGE_SHIFT
,
152 return truncate_complete_page(mapping
, page
);
156 * Used to get rid of pages on hardware memory corruption.
158 int generic_error_remove_page(struct address_space
*mapping
, struct page
*page
)
163 * Only punch for normal data pages for now.
164 * Handling other types like directories would need more auditing.
166 if (!S_ISREG(mapping
->host
->i_mode
))
168 return truncate_inode_page(mapping
, page
);
170 EXPORT_SYMBOL(generic_error_remove_page
);
173 * Safely invalidate one page from its pagecache mapping.
174 * It only drops clean, unused pages. The page must be locked.
176 * Returns 1 if the page is successfully invalidated, otherwise 0.
178 int invalidate_inode_page(struct page
*page
)
180 struct address_space
*mapping
= page_mapping(page
);
183 if (PageDirty(page
) || PageWriteback(page
))
185 if (page_mapped(page
))
187 return invalidate_complete_page(mapping
, page
);
191 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
192 * @mapping: mapping to truncate
193 * @lstart: offset from which to truncate
194 * @lend: offset to which to truncate (inclusive)
196 * Truncate the page cache, removing the pages that are between
197 * specified offsets (and zeroing out partial pages
198 * if lstart or lend + 1 is not page aligned).
200 * Truncate takes two passes - the first pass is nonblocking. It will not
201 * block on page locks and it will not block on writeback. The second pass
202 * will wait. This is to prevent as much IO as possible in the affected region.
203 * The first pass will remove most pages, so the search cost of the second pass
206 * We pass down the cache-hot hint to the page freeing code. Even if the
207 * mapping is large, it is probably the case that the final pages are the most
208 * recently touched, and freeing happens in ascending file offset order.
210 * Note that since ->invalidatepage() accepts range to invalidate
211 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
212 * page aligned properly.
214 void truncate_inode_pages_range(struct address_space
*mapping
,
215 loff_t lstart
, loff_t lend
)
217 pgoff_t start
; /* inclusive */
218 pgoff_t end
; /* exclusive */
219 unsigned int partial_start
; /* inclusive */
220 unsigned int partial_end
; /* exclusive */
222 pgoff_t indices
[PAGEVEC_SIZE
];
226 cleancache_invalidate_inode(mapping
);
227 if (mapping
->nrpages
== 0 && mapping
->nrexceptional
== 0)
230 /* Offsets within partial pages */
231 partial_start
= lstart
& (PAGE_SIZE
- 1);
232 partial_end
= (lend
+ 1) & (PAGE_SIZE
- 1);
235 * 'start' and 'end' always covers the range of pages to be fully
236 * truncated. Partial pages are covered with 'partial_start' at the
237 * start of the range and 'partial_end' at the end of the range.
238 * Note that 'end' is exclusive while 'lend' is inclusive.
240 start
= (lstart
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
243 * lend == -1 indicates end-of-file so we have to set 'end'
244 * to the highest possible pgoff_t and since the type is
245 * unsigned we're using -1.
249 end
= (lend
+ 1) >> PAGE_SHIFT
;
251 pagevec_init(&pvec
, 0);
253 while (index
< end
&& pagevec_lookup_entries(&pvec
, mapping
, index
,
254 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
256 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
257 struct page
*page
= pvec
.pages
[i
];
259 /* We rely upon deletion not changing page->index */
264 if (radix_tree_exceptional_entry(page
)) {
265 clear_exceptional_entry(mapping
, index
, page
);
269 if (!trylock_page(page
))
271 WARN_ON(page_to_index(page
) != index
);
272 if (PageWriteback(page
)) {
276 truncate_inode_page(mapping
, page
);
279 pagevec_remove_exceptionals(&pvec
);
280 pagevec_release(&pvec
);
286 struct page
*page
= find_lock_page(mapping
, start
- 1);
288 unsigned int top
= PAGE_SIZE
;
290 /* Truncation within a single page */
294 wait_on_page_writeback(page
);
295 zero_user_segment(page
, partial_start
, top
);
296 cleancache_invalidate_page(mapping
, page
);
297 if (page_has_private(page
))
298 do_invalidatepage(page
, partial_start
,
299 top
- partial_start
);
305 struct page
*page
= find_lock_page(mapping
, end
);
307 wait_on_page_writeback(page
);
308 zero_user_segment(page
, 0, partial_end
);
309 cleancache_invalidate_page(mapping
, page
);
310 if (page_has_private(page
))
311 do_invalidatepage(page
, 0,
318 * If the truncation happened within a single page no pages
319 * will be released, just zeroed, so we can bail out now.
327 if (!pagevec_lookup_entries(&pvec
, mapping
, index
,
328 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
), indices
)) {
329 /* If all gone from start onwards, we're done */
332 /* Otherwise restart to make sure all gone */
336 if (index
== start
&& indices
[0] >= end
) {
337 /* All gone out of hole to be punched, we're done */
338 pagevec_remove_exceptionals(&pvec
);
339 pagevec_release(&pvec
);
342 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
343 struct page
*page
= pvec
.pages
[i
];
345 /* We rely upon deletion not changing page->index */
348 /* Restart punch to make sure all gone */
353 if (radix_tree_exceptional_entry(page
)) {
354 clear_exceptional_entry(mapping
, index
, page
);
359 WARN_ON(page_to_index(page
) != index
);
360 wait_on_page_writeback(page
);
361 truncate_inode_page(mapping
, page
);
364 pagevec_remove_exceptionals(&pvec
);
365 pagevec_release(&pvec
);
368 cleancache_invalidate_inode(mapping
);
370 EXPORT_SYMBOL(truncate_inode_pages_range
);
373 * truncate_inode_pages - truncate *all* the pages from an offset
374 * @mapping: mapping to truncate
375 * @lstart: offset from which to truncate
377 * Called under (and serialised by) inode->i_mutex.
379 * Note: When this function returns, there can be a page in the process of
380 * deletion (inside __delete_from_page_cache()) in the specified range. Thus
381 * mapping->nrpages can be non-zero when this function returns even after
382 * truncation of the whole mapping.
384 void truncate_inode_pages(struct address_space
*mapping
, loff_t lstart
)
386 truncate_inode_pages_range(mapping
, lstart
, (loff_t
)-1);
388 EXPORT_SYMBOL(truncate_inode_pages
);
391 * truncate_inode_pages_final - truncate *all* pages before inode dies
392 * @mapping: mapping to truncate
394 * Called under (and serialized by) inode->i_mutex.
396 * Filesystems have to use this in the .evict_inode path to inform the
397 * VM that this is the final truncate and the inode is going away.
399 void truncate_inode_pages_final(struct address_space
*mapping
)
401 unsigned long nrexceptional
;
402 unsigned long nrpages
;
405 * Page reclaim can not participate in regular inode lifetime
406 * management (can't call iput()) and thus can race with the
407 * inode teardown. Tell it when the address space is exiting,
408 * so that it does not install eviction information after the
409 * final truncate has begun.
411 mapping_set_exiting(mapping
);
414 * When reclaim installs eviction entries, it increases
415 * nrexceptional first, then decreases nrpages. Make sure we see
416 * this in the right order or we might miss an entry.
418 nrpages
= mapping
->nrpages
;
420 nrexceptional
= mapping
->nrexceptional
;
422 if (nrpages
|| nrexceptional
) {
424 * As truncation uses a lockless tree lookup, cycle
425 * the tree lock to make sure any ongoing tree
426 * modification that does not see AS_EXITING is
427 * completed before starting the final truncate.
429 spin_lock_irq(&mapping
->tree_lock
);
430 spin_unlock_irq(&mapping
->tree_lock
);
432 truncate_inode_pages(mapping
, 0);
435 EXPORT_SYMBOL(truncate_inode_pages_final
);
438 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
439 * @mapping: the address_space which holds the pages to invalidate
440 * @start: the offset 'from' which to invalidate
441 * @end: the offset 'to' which to invalidate (inclusive)
443 * This function only removes the unlocked pages, if you want to
444 * remove all the pages of one inode, you must call truncate_inode_pages.
446 * invalidate_mapping_pages() will not block on IO activity. It will not
447 * invalidate pages which are dirty, locked, under writeback or mapped into
450 unsigned long invalidate_mapping_pages(struct address_space
*mapping
,
451 pgoff_t start
, pgoff_t end
)
453 pgoff_t indices
[PAGEVEC_SIZE
];
455 pgoff_t index
= start
;
457 unsigned long count
= 0;
460 pagevec_init(&pvec
, 0);
461 while (index
<= end
&& pagevec_lookup_entries(&pvec
, mapping
, index
,
462 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
- 1) + 1,
464 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
465 struct page
*page
= pvec
.pages
[i
];
467 /* We rely upon deletion not changing page->index */
472 if (radix_tree_exceptional_entry(page
)) {
473 clear_exceptional_entry(mapping
, index
, page
);
477 if (!trylock_page(page
))
480 WARN_ON(page_to_index(page
) != index
);
482 /* Middle of THP: skip */
483 if (PageTransTail(page
)) {
486 } else if (PageTransHuge(page
)) {
487 index
+= HPAGE_PMD_NR
- 1;
488 i
+= HPAGE_PMD_NR
- 1;
489 /* 'end' is in the middle of THP */
490 if (index
== round_down(end
, HPAGE_PMD_NR
))
494 ret
= invalidate_inode_page(page
);
497 * Invalidation is a hint that the page is no longer
498 * of interest and try to speed up its reclaim.
501 deactivate_file_page(page
);
504 pagevec_remove_exceptionals(&pvec
);
505 pagevec_release(&pvec
);
511 EXPORT_SYMBOL(invalidate_mapping_pages
);
514 * This is like invalidate_complete_page(), except it ignores the page's
515 * refcount. We do this because invalidate_inode_pages2() needs stronger
516 * invalidation guarantees, and cannot afford to leave pages behind because
517 * shrink_page_list() has a temp ref on them, or because they're transiently
518 * sitting in the lru_cache_add() pagevecs.
521 invalidate_complete_page2(struct address_space
*mapping
, struct page
*page
)
525 if (page
->mapping
!= mapping
)
528 if (page_has_private(page
) && !try_to_release_page(page
, GFP_KERNEL
))
531 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
535 BUG_ON(page_has_private(page
));
536 __delete_from_page_cache(page
, NULL
);
537 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
539 if (mapping
->a_ops
->freepage
)
540 mapping
->a_ops
->freepage(page
);
542 put_page(page
); /* pagecache ref */
545 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
549 static int do_launder_page(struct address_space
*mapping
, struct page
*page
)
551 if (!PageDirty(page
))
553 if (page
->mapping
!= mapping
|| mapping
->a_ops
->launder_page
== NULL
)
555 return mapping
->a_ops
->launder_page(page
);
559 * invalidate_inode_pages2_range - remove range of pages from an address_space
560 * @mapping: the address_space
561 * @start: the page offset 'from' which to invalidate
562 * @end: the page offset 'to' which to invalidate (inclusive)
564 * Any pages which are found to be mapped into pagetables are unmapped prior to
567 * Returns -EBUSY if any pages could not be invalidated.
569 int invalidate_inode_pages2_range(struct address_space
*mapping
,
570 pgoff_t start
, pgoff_t end
)
572 pgoff_t indices
[PAGEVEC_SIZE
];
578 int did_range_unmap
= 0;
580 cleancache_invalidate_inode(mapping
);
581 pagevec_init(&pvec
, 0);
583 while (index
<= end
&& pagevec_lookup_entries(&pvec
, mapping
, index
,
584 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
- 1) + 1,
586 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
587 struct page
*page
= pvec
.pages
[i
];
589 /* We rely upon deletion not changing page->index */
594 if (radix_tree_exceptional_entry(page
)) {
595 clear_exceptional_entry(mapping
, index
, page
);
600 WARN_ON(page_to_index(page
) != index
);
601 if (page
->mapping
!= mapping
) {
605 wait_on_page_writeback(page
);
606 if (page_mapped(page
)) {
607 if (!did_range_unmap
) {
609 * Zap the rest of the file in one hit.
611 unmap_mapping_range(mapping
,
612 (loff_t
)index
<< PAGE_SHIFT
,
613 (loff_t
)(1 + end
- index
)
621 unmap_mapping_range(mapping
,
622 (loff_t
)index
<< PAGE_SHIFT
,
626 BUG_ON(page_mapped(page
));
627 ret2
= do_launder_page(mapping
, page
);
629 if (!invalidate_complete_page2(mapping
, page
))
636 pagevec_remove_exceptionals(&pvec
);
637 pagevec_release(&pvec
);
641 cleancache_invalidate_inode(mapping
);
644 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range
);
647 * invalidate_inode_pages2 - remove all pages from an address_space
648 * @mapping: the address_space
650 * Any pages which are found to be mapped into pagetables are unmapped prior to
653 * Returns -EBUSY if any pages could not be invalidated.
655 int invalidate_inode_pages2(struct address_space
*mapping
)
657 return invalidate_inode_pages2_range(mapping
, 0, -1);
659 EXPORT_SYMBOL_GPL(invalidate_inode_pages2
);
662 * truncate_pagecache - unmap and remove pagecache that has been truncated
664 * @newsize: new file size
666 * inode's new i_size must already be written before truncate_pagecache
669 * This function should typically be called before the filesystem
670 * releases resources associated with the freed range (eg. deallocates
671 * blocks). This way, pagecache will always stay logically coherent
672 * with on-disk format, and the filesystem would not have to deal with
673 * situations such as writepage being called for a page that has already
674 * had its underlying blocks deallocated.
676 void truncate_pagecache(struct inode
*inode
, loff_t newsize
)
678 struct address_space
*mapping
= inode
->i_mapping
;
679 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
682 * unmap_mapping_range is called twice, first simply for
683 * efficiency so that truncate_inode_pages does fewer
684 * single-page unmaps. However after this first call, and
685 * before truncate_inode_pages finishes, it is possible for
686 * private pages to be COWed, which remain after
687 * truncate_inode_pages finishes, hence the second
688 * unmap_mapping_range call must be made for correctness.
690 unmap_mapping_range(mapping
, holebegin
, 0, 1);
691 truncate_inode_pages(mapping
, newsize
);
692 unmap_mapping_range(mapping
, holebegin
, 0, 1);
694 EXPORT_SYMBOL(truncate_pagecache
);
697 * truncate_setsize - update inode and pagecache for a new file size
699 * @newsize: new file size
701 * truncate_setsize updates i_size and performs pagecache truncation (if
702 * necessary) to @newsize. It will be typically be called from the filesystem's
703 * setattr function when ATTR_SIZE is passed in.
705 * Must be called with a lock serializing truncates and writes (generally
706 * i_mutex but e.g. xfs uses a different lock) and before all filesystem
707 * specific block truncation has been performed.
709 void truncate_setsize(struct inode
*inode
, loff_t newsize
)
711 loff_t oldsize
= inode
->i_size
;
713 i_size_write(inode
, newsize
);
714 if (newsize
> oldsize
)
715 pagecache_isize_extended(inode
, oldsize
, newsize
);
716 truncate_pagecache(inode
, newsize
);
718 EXPORT_SYMBOL(truncate_setsize
);
721 * pagecache_isize_extended - update pagecache after extension of i_size
722 * @inode: inode for which i_size was extended
723 * @from: original inode size
724 * @to: new inode size
726 * Handle extension of inode size either caused by extending truncate or by
727 * write starting after current i_size. We mark the page straddling current
728 * i_size RO so that page_mkwrite() is called on the nearest write access to
729 * the page. This way filesystem can be sure that page_mkwrite() is called on
730 * the page before user writes to the page via mmap after the i_size has been
733 * The function must be called after i_size is updated so that page fault
734 * coming after we unlock the page will already see the new i_size.
735 * The function must be called while we still hold i_mutex - this not only
736 * makes sure i_size is stable but also that userspace cannot observe new
737 * i_size value before we are prepared to store mmap writes at new inode size.
739 void pagecache_isize_extended(struct inode
*inode
, loff_t from
, loff_t to
)
741 int bsize
= 1 << inode
->i_blkbits
;
746 WARN_ON(to
> inode
->i_size
);
748 if (from
>= to
|| bsize
== PAGE_SIZE
)
750 /* Page straddling @from will not have any hole block created? */
751 rounded_from
= round_up(from
, bsize
);
752 if (to
<= rounded_from
|| !(rounded_from
& (PAGE_SIZE
- 1)))
755 index
= from
>> PAGE_SHIFT
;
756 page
= find_lock_page(inode
->i_mapping
, index
);
757 /* Page not cached? Nothing to do */
761 * See clear_page_dirty_for_io() for details why set_page_dirty()
764 if (page_mkclean(page
))
765 set_page_dirty(page
);
769 EXPORT_SYMBOL(pagecache_isize_extended
);
772 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
774 * @lstart: offset of beginning of hole
775 * @lend: offset of last byte of hole
777 * This function should typically be called before the filesystem
778 * releases resources associated with the freed range (eg. deallocates
779 * blocks). This way, pagecache will always stay logically coherent
780 * with on-disk format, and the filesystem would not have to deal with
781 * situations such as writepage being called for a page that has already
782 * had its underlying blocks deallocated.
784 void truncate_pagecache_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
786 struct address_space
*mapping
= inode
->i_mapping
;
787 loff_t unmap_start
= round_up(lstart
, PAGE_SIZE
);
788 loff_t unmap_end
= round_down(1 + lend
, PAGE_SIZE
) - 1;
790 * This rounding is currently just for example: unmap_mapping_range
791 * expands its hole outwards, whereas we want it to contract the hole
792 * inwards. However, existing callers of truncate_pagecache_range are
793 * doing their own page rounding first. Note that unmap_mapping_range
794 * allows holelen 0 for all, and we allow lend -1 for end of file.
798 * Unlike in truncate_pagecache, unmap_mapping_range is called only
799 * once (before truncating pagecache), and without "even_cows" flag:
800 * hole-punching should not remove private COWed pages from the hole.
802 if ((u64
)unmap_end
> (u64
)unmap_start
)
803 unmap_mapping_range(mapping
, unmap_start
,
804 1 + unmap_end
- unmap_start
, 0);
805 truncate_inode_pages_range(mapping
, lstart
, lend
);
807 EXPORT_SYMBOL(truncate_pagecache_range
);