[media] cec: update log_addr[] before finishing configuration
[linux-2.6/btrfs-unstable.git] / include / linux / ktime.h
blob0fb7ffb1775f117d1ebefd4315d4ca99b03be546
1 /*
2 * include/linux/ktime.h
4 * ktime_t - nanosecond-resolution time format.
6 * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
7 * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
9 * data type definitions, declarations, prototypes and macros.
11 * Started by: Thomas Gleixner and Ingo Molnar
13 * Credits:
15 * Roman Zippel provided the ideas and primary code snippets of
16 * the ktime_t union and further simplifications of the original
17 * code.
19 * For licencing details see kernel-base/COPYING
21 #ifndef _LINUX_KTIME_H
22 #define _LINUX_KTIME_H
24 #include <linux/time.h>
25 #include <linux/jiffies.h>
28 * ktime_t:
30 * A single 64-bit variable is used to store the hrtimers
31 * internal representation of time values in scalar nanoseconds. The
32 * design plays out best on 64-bit CPUs, where most conversions are
33 * NOPs and most arithmetic ktime_t operations are plain arithmetic
34 * operations.
37 union ktime {
38 s64 tv64;
41 typedef union ktime ktime_t; /* Kill this */
43 /**
44 * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value
45 * @secs: seconds to set
46 * @nsecs: nanoseconds to set
48 * Return: The ktime_t representation of the value.
50 static inline ktime_t ktime_set(const s64 secs, const unsigned long nsecs)
52 if (unlikely(secs >= KTIME_SEC_MAX))
53 return (ktime_t){ .tv64 = KTIME_MAX };
55 return (ktime_t) { .tv64 = secs * NSEC_PER_SEC + (s64)nsecs };
58 /* Subtract two ktime_t variables. rem = lhs -rhs: */
59 #define ktime_sub(lhs, rhs) \
60 ({ (ktime_t){ .tv64 = (lhs).tv64 - (rhs).tv64 }; })
62 /* Add two ktime_t variables. res = lhs + rhs: */
63 #define ktime_add(lhs, rhs) \
64 ({ (ktime_t){ .tv64 = (lhs).tv64 + (rhs).tv64 }; })
67 * Same as ktime_add(), but avoids undefined behaviour on overflow; however,
68 * this means that you must check the result for overflow yourself.
70 #define ktime_add_unsafe(lhs, rhs) \
71 ({ (ktime_t){ .tv64 = (u64) (lhs).tv64 + (rhs).tv64 }; })
74 * Add a ktime_t variable and a scalar nanosecond value.
75 * res = kt + nsval:
77 #define ktime_add_ns(kt, nsval) \
78 ({ (ktime_t){ .tv64 = (kt).tv64 + (nsval) }; })
81 * Subtract a scalar nanosecod from a ktime_t variable
82 * res = kt - nsval:
84 #define ktime_sub_ns(kt, nsval) \
85 ({ (ktime_t){ .tv64 = (kt).tv64 - (nsval) }; })
87 /* convert a timespec to ktime_t format: */
88 static inline ktime_t timespec_to_ktime(struct timespec ts)
90 return ktime_set(ts.tv_sec, ts.tv_nsec);
93 /* convert a timespec64 to ktime_t format: */
94 static inline ktime_t timespec64_to_ktime(struct timespec64 ts)
96 return ktime_set(ts.tv_sec, ts.tv_nsec);
99 /* convert a timeval to ktime_t format: */
100 static inline ktime_t timeval_to_ktime(struct timeval tv)
102 return ktime_set(tv.tv_sec, tv.tv_usec * NSEC_PER_USEC);
105 /* Map the ktime_t to timespec conversion to ns_to_timespec function */
106 #define ktime_to_timespec(kt) ns_to_timespec((kt).tv64)
108 /* Map the ktime_t to timespec conversion to ns_to_timespec function */
109 #define ktime_to_timespec64(kt) ns_to_timespec64((kt).tv64)
111 /* Map the ktime_t to timeval conversion to ns_to_timeval function */
112 #define ktime_to_timeval(kt) ns_to_timeval((kt).tv64)
114 /* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */
115 #define ktime_to_ns(kt) ((kt).tv64)
119 * ktime_equal - Compares two ktime_t variables to see if they are equal
120 * @cmp1: comparable1
121 * @cmp2: comparable2
123 * Compare two ktime_t variables.
125 * Return: 1 if equal.
127 static inline int ktime_equal(const ktime_t cmp1, const ktime_t cmp2)
129 return cmp1.tv64 == cmp2.tv64;
133 * ktime_compare - Compares two ktime_t variables for less, greater or equal
134 * @cmp1: comparable1
135 * @cmp2: comparable2
137 * Return: ...
138 * cmp1 < cmp2: return <0
139 * cmp1 == cmp2: return 0
140 * cmp1 > cmp2: return >0
142 static inline int ktime_compare(const ktime_t cmp1, const ktime_t cmp2)
144 if (cmp1.tv64 < cmp2.tv64)
145 return -1;
146 if (cmp1.tv64 > cmp2.tv64)
147 return 1;
148 return 0;
152 * ktime_after - Compare if a ktime_t value is bigger than another one.
153 * @cmp1: comparable1
154 * @cmp2: comparable2
156 * Return: true if cmp1 happened after cmp2.
158 static inline bool ktime_after(const ktime_t cmp1, const ktime_t cmp2)
160 return ktime_compare(cmp1, cmp2) > 0;
164 * ktime_before - Compare if a ktime_t value is smaller than another one.
165 * @cmp1: comparable1
166 * @cmp2: comparable2
168 * Return: true if cmp1 happened before cmp2.
170 static inline bool ktime_before(const ktime_t cmp1, const ktime_t cmp2)
172 return ktime_compare(cmp1, cmp2) < 0;
175 #if BITS_PER_LONG < 64
176 extern s64 __ktime_divns(const ktime_t kt, s64 div);
177 static inline s64 ktime_divns(const ktime_t kt, s64 div)
180 * Negative divisors could cause an inf loop,
181 * so bug out here.
183 BUG_ON(div < 0);
184 if (__builtin_constant_p(div) && !(div >> 32)) {
185 s64 ns = kt.tv64;
186 u64 tmp = ns < 0 ? -ns : ns;
188 do_div(tmp, div);
189 return ns < 0 ? -tmp : tmp;
190 } else {
191 return __ktime_divns(kt, div);
194 #else /* BITS_PER_LONG < 64 */
195 static inline s64 ktime_divns(const ktime_t kt, s64 div)
198 * 32-bit implementation cannot handle negative divisors,
199 * so catch them on 64bit as well.
201 WARN_ON(div < 0);
202 return kt.tv64 / div;
204 #endif
206 static inline s64 ktime_to_us(const ktime_t kt)
208 return ktime_divns(kt, NSEC_PER_USEC);
211 static inline s64 ktime_to_ms(const ktime_t kt)
213 return ktime_divns(kt, NSEC_PER_MSEC);
216 static inline s64 ktime_us_delta(const ktime_t later, const ktime_t earlier)
218 return ktime_to_us(ktime_sub(later, earlier));
221 static inline s64 ktime_ms_delta(const ktime_t later, const ktime_t earlier)
223 return ktime_to_ms(ktime_sub(later, earlier));
226 static inline ktime_t ktime_add_us(const ktime_t kt, const u64 usec)
228 return ktime_add_ns(kt, usec * NSEC_PER_USEC);
231 static inline ktime_t ktime_add_ms(const ktime_t kt, const u64 msec)
233 return ktime_add_ns(kt, msec * NSEC_PER_MSEC);
236 static inline ktime_t ktime_sub_us(const ktime_t kt, const u64 usec)
238 return ktime_sub_ns(kt, usec * NSEC_PER_USEC);
241 static inline ktime_t ktime_sub_ms(const ktime_t kt, const u64 msec)
243 return ktime_sub_ns(kt, msec * NSEC_PER_MSEC);
246 extern ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs);
249 * ktime_to_timespec_cond - convert a ktime_t variable to timespec
250 * format only if the variable contains data
251 * @kt: the ktime_t variable to convert
252 * @ts: the timespec variable to store the result in
254 * Return: %true if there was a successful conversion, %false if kt was 0.
256 static inline __must_check bool ktime_to_timespec_cond(const ktime_t kt,
257 struct timespec *ts)
259 if (kt.tv64) {
260 *ts = ktime_to_timespec(kt);
261 return true;
262 } else {
263 return false;
268 * ktime_to_timespec64_cond - convert a ktime_t variable to timespec64
269 * format only if the variable contains data
270 * @kt: the ktime_t variable to convert
271 * @ts: the timespec variable to store the result in
273 * Return: %true if there was a successful conversion, %false if kt was 0.
275 static inline __must_check bool ktime_to_timespec64_cond(const ktime_t kt,
276 struct timespec64 *ts)
278 if (kt.tv64) {
279 *ts = ktime_to_timespec64(kt);
280 return true;
281 } else {
282 return false;
287 * The resolution of the clocks. The resolution value is returned in
288 * the clock_getres() system call to give application programmers an
289 * idea of the (in)accuracy of timers. Timer values are rounded up to
290 * this resolution values.
292 #define LOW_RES_NSEC TICK_NSEC
293 #define KTIME_LOW_RES (ktime_t){ .tv64 = LOW_RES_NSEC }
295 static inline ktime_t ns_to_ktime(u64 ns)
297 static const ktime_t ktime_zero = { .tv64 = 0 };
299 return ktime_add_ns(ktime_zero, ns);
302 static inline ktime_t ms_to_ktime(u64 ms)
304 static const ktime_t ktime_zero = { .tv64 = 0 };
306 return ktime_add_ms(ktime_zero, ms);
309 # include <linux/timekeeping.h>
311 #endif