mlxsw: spectrum: Implement TC flower offload
[linux-2.6/btrfs-unstable.git] / net / socket.c
blobb7a63d5bc915f83350bf89717021bbb56e4ee34e
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
145 .poll = sock_poll,
146 .unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 .compat_ioctl = compat_sock_ioctl,
149 #endif
150 .mmap = sock_mmap,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
159 * The protocol list. Each protocol is registered in here.
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
166 * Statistics counters of the socket lists
169 static DEFINE_PER_CPU(int, sockets_in_use);
172 * Support routines.
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 return -EINVAL;
192 if (ulen == 0)
193 return 0;
194 if (copy_from_user(kaddr, uaddr, ulen))
195 return -EFAULT;
196 return audit_sockaddr(ulen, kaddr);
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
210 * accessible.
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 void __user *uaddr, int __user *ulen)
219 int err;
220 int len;
222 BUG_ON(klen > sizeof(struct sockaddr_storage));
223 err = get_user(len, ulen);
224 if (err)
225 return err;
226 if (len > klen)
227 len = klen;
228 if (len < 0)
229 return -EINVAL;
230 if (len) {
231 if (audit_sockaddr(klen, kaddr))
232 return -ENOMEM;
233 if (copy_to_user(uaddr, kaddr, len))
234 return -EFAULT;
237 * "fromlen shall refer to the value before truncation.."
238 * 1003.1g
240 return __put_user(klen, ulen);
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
245 static struct inode *sock_alloc_inode(struct super_block *sb)
247 struct socket_alloc *ei;
248 struct socket_wq *wq;
250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 if (!ei)
252 return NULL;
253 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 if (!wq) {
255 kmem_cache_free(sock_inode_cachep, ei);
256 return NULL;
258 init_waitqueue_head(&wq->wait);
259 wq->fasync_list = NULL;
260 wq->flags = 0;
261 RCU_INIT_POINTER(ei->socket.wq, wq);
263 ei->socket.state = SS_UNCONNECTED;
264 ei->socket.flags = 0;
265 ei->socket.ops = NULL;
266 ei->socket.sk = NULL;
267 ei->socket.file = NULL;
269 return &ei->vfs_inode;
272 static void sock_destroy_inode(struct inode *inode)
274 struct socket_alloc *ei;
275 struct socket_wq *wq;
277 ei = container_of(inode, struct socket_alloc, vfs_inode);
278 wq = rcu_dereference_protected(ei->socket.wq, 1);
279 kfree_rcu(wq, rcu);
280 kmem_cache_free(sock_inode_cachep, ei);
283 static void init_once(void *foo)
285 struct socket_alloc *ei = (struct socket_alloc *)foo;
287 inode_init_once(&ei->vfs_inode);
290 static void init_inodecache(void)
292 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc),
295 (SLAB_HWCACHE_ALIGN |
296 SLAB_RECLAIM_ACCOUNT |
297 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298 init_once);
299 BUG_ON(sock_inode_cachep == NULL);
302 static const struct super_operations sockfs_ops = {
303 .alloc_inode = sock_alloc_inode,
304 .destroy_inode = sock_destroy_inode,
305 .statfs = simple_statfs,
309 * sockfs_dname() is called from d_path().
311 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
313 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
314 d_inode(dentry)->i_ino);
317 static const struct dentry_operations sockfs_dentry_operations = {
318 .d_dname = sockfs_dname,
321 static int sockfs_xattr_get(const struct xattr_handler *handler,
322 struct dentry *dentry, struct inode *inode,
323 const char *suffix, void *value, size_t size)
325 if (value) {
326 if (dentry->d_name.len + 1 > size)
327 return -ERANGE;
328 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
330 return dentry->d_name.len + 1;
333 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
334 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
335 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
337 static const struct xattr_handler sockfs_xattr_handler = {
338 .name = XATTR_NAME_SOCKPROTONAME,
339 .get = sockfs_xattr_get,
342 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
343 struct dentry *dentry, struct inode *inode,
344 const char *suffix, const void *value,
345 size_t size, int flags)
347 /* Handled by LSM. */
348 return -EAGAIN;
351 static const struct xattr_handler sockfs_security_xattr_handler = {
352 .prefix = XATTR_SECURITY_PREFIX,
353 .set = sockfs_security_xattr_set,
356 static const struct xattr_handler *sockfs_xattr_handlers[] = {
357 &sockfs_xattr_handler,
358 &sockfs_security_xattr_handler,
359 NULL
362 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
363 int flags, const char *dev_name, void *data)
365 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
366 sockfs_xattr_handlers,
367 &sockfs_dentry_operations, SOCKFS_MAGIC);
370 static struct vfsmount *sock_mnt __read_mostly;
372 static struct file_system_type sock_fs_type = {
373 .name = "sockfs",
374 .mount = sockfs_mount,
375 .kill_sb = kill_anon_super,
379 * Obtains the first available file descriptor and sets it up for use.
381 * These functions create file structures and maps them to fd space
382 * of the current process. On success it returns file descriptor
383 * and file struct implicitly stored in sock->file.
384 * Note that another thread may close file descriptor before we return
385 * from this function. We use the fact that now we do not refer
386 * to socket after mapping. If one day we will need it, this
387 * function will increment ref. count on file by 1.
389 * In any case returned fd MAY BE not valid!
390 * This race condition is unavoidable
391 * with shared fd spaces, we cannot solve it inside kernel,
392 * but we take care of internal coherence yet.
395 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
397 struct qstr name = { .name = "" };
398 struct path path;
399 struct file *file;
401 if (dname) {
402 name.name = dname;
403 name.len = strlen(name.name);
404 } else if (sock->sk) {
405 name.name = sock->sk->sk_prot_creator->name;
406 name.len = strlen(name.name);
408 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
409 if (unlikely(!path.dentry))
410 return ERR_PTR(-ENOMEM);
411 path.mnt = mntget(sock_mnt);
413 d_instantiate(path.dentry, SOCK_INODE(sock));
415 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
416 &socket_file_ops);
417 if (IS_ERR(file)) {
418 /* drop dentry, keep inode */
419 ihold(d_inode(path.dentry));
420 path_put(&path);
421 return file;
424 sock->file = file;
425 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
426 file->private_data = sock;
427 return file;
429 EXPORT_SYMBOL(sock_alloc_file);
431 static int sock_map_fd(struct socket *sock, int flags)
433 struct file *newfile;
434 int fd = get_unused_fd_flags(flags);
435 if (unlikely(fd < 0))
436 return fd;
438 newfile = sock_alloc_file(sock, flags, NULL);
439 if (likely(!IS_ERR(newfile))) {
440 fd_install(fd, newfile);
441 return fd;
444 put_unused_fd(fd);
445 return PTR_ERR(newfile);
448 struct socket *sock_from_file(struct file *file, int *err)
450 if (file->f_op == &socket_file_ops)
451 return file->private_data; /* set in sock_map_fd */
453 *err = -ENOTSOCK;
454 return NULL;
456 EXPORT_SYMBOL(sock_from_file);
459 * sockfd_lookup - Go from a file number to its socket slot
460 * @fd: file handle
461 * @err: pointer to an error code return
463 * The file handle passed in is locked and the socket it is bound
464 * too is returned. If an error occurs the err pointer is overwritten
465 * with a negative errno code and NULL is returned. The function checks
466 * for both invalid handles and passing a handle which is not a socket.
468 * On a success the socket object pointer is returned.
471 struct socket *sockfd_lookup(int fd, int *err)
473 struct file *file;
474 struct socket *sock;
476 file = fget(fd);
477 if (!file) {
478 *err = -EBADF;
479 return NULL;
482 sock = sock_from_file(file, err);
483 if (!sock)
484 fput(file);
485 return sock;
487 EXPORT_SYMBOL(sockfd_lookup);
489 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
491 struct fd f = fdget(fd);
492 struct socket *sock;
494 *err = -EBADF;
495 if (f.file) {
496 sock = sock_from_file(f.file, err);
497 if (likely(sock)) {
498 *fput_needed = f.flags;
499 return sock;
501 fdput(f);
503 return NULL;
506 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
507 size_t size)
509 ssize_t len;
510 ssize_t used = 0;
512 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
513 if (len < 0)
514 return len;
515 used += len;
516 if (buffer) {
517 if (size < used)
518 return -ERANGE;
519 buffer += len;
522 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
523 used += len;
524 if (buffer) {
525 if (size < used)
526 return -ERANGE;
527 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
528 buffer += len;
531 return used;
534 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
536 int err = simple_setattr(dentry, iattr);
538 if (!err && (iattr->ia_valid & ATTR_UID)) {
539 struct socket *sock = SOCKET_I(d_inode(dentry));
541 sock->sk->sk_uid = iattr->ia_uid;
544 return err;
547 static const struct inode_operations sockfs_inode_ops = {
548 .listxattr = sockfs_listxattr,
549 .setattr = sockfs_setattr,
553 * sock_alloc - allocate a socket
555 * Allocate a new inode and socket object. The two are bound together
556 * and initialised. The socket is then returned. If we are out of inodes
557 * NULL is returned.
560 struct socket *sock_alloc(void)
562 struct inode *inode;
563 struct socket *sock;
565 inode = new_inode_pseudo(sock_mnt->mnt_sb);
566 if (!inode)
567 return NULL;
569 sock = SOCKET_I(inode);
571 kmemcheck_annotate_bitfield(sock, type);
572 inode->i_ino = get_next_ino();
573 inode->i_mode = S_IFSOCK | S_IRWXUGO;
574 inode->i_uid = current_fsuid();
575 inode->i_gid = current_fsgid();
576 inode->i_op = &sockfs_inode_ops;
578 this_cpu_add(sockets_in_use, 1);
579 return sock;
581 EXPORT_SYMBOL(sock_alloc);
584 * sock_release - close a socket
585 * @sock: socket to close
587 * The socket is released from the protocol stack if it has a release
588 * callback, and the inode is then released if the socket is bound to
589 * an inode not a file.
592 void sock_release(struct socket *sock)
594 if (sock->ops) {
595 struct module *owner = sock->ops->owner;
597 sock->ops->release(sock);
598 sock->ops = NULL;
599 module_put(owner);
602 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
603 pr_err("%s: fasync list not empty!\n", __func__);
605 this_cpu_sub(sockets_in_use, 1);
606 if (!sock->file) {
607 iput(SOCK_INODE(sock));
608 return;
610 sock->file = NULL;
612 EXPORT_SYMBOL(sock_release);
614 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
616 u8 flags = *tx_flags;
618 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
619 flags |= SKBTX_HW_TSTAMP;
621 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
622 flags |= SKBTX_SW_TSTAMP;
624 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
625 flags |= SKBTX_SCHED_TSTAMP;
627 *tx_flags = flags;
629 EXPORT_SYMBOL(__sock_tx_timestamp);
631 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
633 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
634 BUG_ON(ret == -EIOCBQUEUED);
635 return ret;
638 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
640 int err = security_socket_sendmsg(sock, msg,
641 msg_data_left(msg));
643 return err ?: sock_sendmsg_nosec(sock, msg);
645 EXPORT_SYMBOL(sock_sendmsg);
647 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
648 struct kvec *vec, size_t num, size_t size)
650 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
651 return sock_sendmsg(sock, msg);
653 EXPORT_SYMBOL(kernel_sendmsg);
656 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
658 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
659 struct sk_buff *skb)
661 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
662 struct scm_timestamping tss;
663 int empty = 1;
664 struct skb_shared_hwtstamps *shhwtstamps =
665 skb_hwtstamps(skb);
667 /* Race occurred between timestamp enabling and packet
668 receiving. Fill in the current time for now. */
669 if (need_software_tstamp && skb->tstamp == 0)
670 __net_timestamp(skb);
672 if (need_software_tstamp) {
673 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
674 struct timeval tv;
675 skb_get_timestamp(skb, &tv);
676 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
677 sizeof(tv), &tv);
678 } else {
679 struct timespec ts;
680 skb_get_timestampns(skb, &ts);
681 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
682 sizeof(ts), &ts);
686 memset(&tss, 0, sizeof(tss));
687 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
688 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
689 empty = 0;
690 if (shhwtstamps &&
691 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
692 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
693 empty = 0;
694 if (!empty) {
695 put_cmsg(msg, SOL_SOCKET,
696 SCM_TIMESTAMPING, sizeof(tss), &tss);
698 if (skb->len && (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS))
699 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
700 skb->len, skb->data);
703 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
705 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
706 struct sk_buff *skb)
708 int ack;
710 if (!sock_flag(sk, SOCK_WIFI_STATUS))
711 return;
712 if (!skb->wifi_acked_valid)
713 return;
715 ack = skb->wifi_acked;
717 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
719 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
721 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
722 struct sk_buff *skb)
724 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
725 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
726 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
729 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
730 struct sk_buff *skb)
732 sock_recv_timestamp(msg, sk, skb);
733 sock_recv_drops(msg, sk, skb);
735 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
737 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
738 int flags)
740 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
743 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
745 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
747 return err ?: sock_recvmsg_nosec(sock, msg, flags);
749 EXPORT_SYMBOL(sock_recvmsg);
752 * kernel_recvmsg - Receive a message from a socket (kernel space)
753 * @sock: The socket to receive the message from
754 * @msg: Received message
755 * @vec: Input s/g array for message data
756 * @num: Size of input s/g array
757 * @size: Number of bytes to read
758 * @flags: Message flags (MSG_DONTWAIT, etc...)
760 * On return the msg structure contains the scatter/gather array passed in the
761 * vec argument. The array is modified so that it consists of the unfilled
762 * portion of the original array.
764 * The returned value is the total number of bytes received, or an error.
766 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
767 struct kvec *vec, size_t num, size_t size, int flags)
769 mm_segment_t oldfs = get_fs();
770 int result;
772 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
773 set_fs(KERNEL_DS);
774 result = sock_recvmsg(sock, msg, flags);
775 set_fs(oldfs);
776 return result;
778 EXPORT_SYMBOL(kernel_recvmsg);
780 static ssize_t sock_sendpage(struct file *file, struct page *page,
781 int offset, size_t size, loff_t *ppos, int more)
783 struct socket *sock;
784 int flags;
786 sock = file->private_data;
788 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
789 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
790 flags |= more;
792 return kernel_sendpage(sock, page, offset, size, flags);
795 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
796 struct pipe_inode_info *pipe, size_t len,
797 unsigned int flags)
799 struct socket *sock = file->private_data;
801 if (unlikely(!sock->ops->splice_read))
802 return -EINVAL;
804 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
807 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
809 struct file *file = iocb->ki_filp;
810 struct socket *sock = file->private_data;
811 struct msghdr msg = {.msg_iter = *to,
812 .msg_iocb = iocb};
813 ssize_t res;
815 if (file->f_flags & O_NONBLOCK)
816 msg.msg_flags = MSG_DONTWAIT;
818 if (iocb->ki_pos != 0)
819 return -ESPIPE;
821 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
822 return 0;
824 res = sock_recvmsg(sock, &msg, msg.msg_flags);
825 *to = msg.msg_iter;
826 return res;
829 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
831 struct file *file = iocb->ki_filp;
832 struct socket *sock = file->private_data;
833 struct msghdr msg = {.msg_iter = *from,
834 .msg_iocb = iocb};
835 ssize_t res;
837 if (iocb->ki_pos != 0)
838 return -ESPIPE;
840 if (file->f_flags & O_NONBLOCK)
841 msg.msg_flags = MSG_DONTWAIT;
843 if (sock->type == SOCK_SEQPACKET)
844 msg.msg_flags |= MSG_EOR;
846 res = sock_sendmsg(sock, &msg);
847 *from = msg.msg_iter;
848 return res;
852 * Atomic setting of ioctl hooks to avoid race
853 * with module unload.
856 static DEFINE_MUTEX(br_ioctl_mutex);
857 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
859 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
861 mutex_lock(&br_ioctl_mutex);
862 br_ioctl_hook = hook;
863 mutex_unlock(&br_ioctl_mutex);
865 EXPORT_SYMBOL(brioctl_set);
867 static DEFINE_MUTEX(vlan_ioctl_mutex);
868 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
870 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
872 mutex_lock(&vlan_ioctl_mutex);
873 vlan_ioctl_hook = hook;
874 mutex_unlock(&vlan_ioctl_mutex);
876 EXPORT_SYMBOL(vlan_ioctl_set);
878 static DEFINE_MUTEX(dlci_ioctl_mutex);
879 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
881 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
883 mutex_lock(&dlci_ioctl_mutex);
884 dlci_ioctl_hook = hook;
885 mutex_unlock(&dlci_ioctl_mutex);
887 EXPORT_SYMBOL(dlci_ioctl_set);
889 static long sock_do_ioctl(struct net *net, struct socket *sock,
890 unsigned int cmd, unsigned long arg)
892 int err;
893 void __user *argp = (void __user *)arg;
895 err = sock->ops->ioctl(sock, cmd, arg);
898 * If this ioctl is unknown try to hand it down
899 * to the NIC driver.
901 if (err == -ENOIOCTLCMD)
902 err = dev_ioctl(net, cmd, argp);
904 return err;
908 * With an ioctl, arg may well be a user mode pointer, but we don't know
909 * what to do with it - that's up to the protocol still.
912 static struct ns_common *get_net_ns(struct ns_common *ns)
914 return &get_net(container_of(ns, struct net, ns))->ns;
917 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
919 struct socket *sock;
920 struct sock *sk;
921 void __user *argp = (void __user *)arg;
922 int pid, err;
923 struct net *net;
925 sock = file->private_data;
926 sk = sock->sk;
927 net = sock_net(sk);
928 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
929 err = dev_ioctl(net, cmd, argp);
930 } else
931 #ifdef CONFIG_WEXT_CORE
932 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
933 err = dev_ioctl(net, cmd, argp);
934 } else
935 #endif
936 switch (cmd) {
937 case FIOSETOWN:
938 case SIOCSPGRP:
939 err = -EFAULT;
940 if (get_user(pid, (int __user *)argp))
941 break;
942 f_setown(sock->file, pid, 1);
943 err = 0;
944 break;
945 case FIOGETOWN:
946 case SIOCGPGRP:
947 err = put_user(f_getown(sock->file),
948 (int __user *)argp);
949 break;
950 case SIOCGIFBR:
951 case SIOCSIFBR:
952 case SIOCBRADDBR:
953 case SIOCBRDELBR:
954 err = -ENOPKG;
955 if (!br_ioctl_hook)
956 request_module("bridge");
958 mutex_lock(&br_ioctl_mutex);
959 if (br_ioctl_hook)
960 err = br_ioctl_hook(net, cmd, argp);
961 mutex_unlock(&br_ioctl_mutex);
962 break;
963 case SIOCGIFVLAN:
964 case SIOCSIFVLAN:
965 err = -ENOPKG;
966 if (!vlan_ioctl_hook)
967 request_module("8021q");
969 mutex_lock(&vlan_ioctl_mutex);
970 if (vlan_ioctl_hook)
971 err = vlan_ioctl_hook(net, argp);
972 mutex_unlock(&vlan_ioctl_mutex);
973 break;
974 case SIOCADDDLCI:
975 case SIOCDELDLCI:
976 err = -ENOPKG;
977 if (!dlci_ioctl_hook)
978 request_module("dlci");
980 mutex_lock(&dlci_ioctl_mutex);
981 if (dlci_ioctl_hook)
982 err = dlci_ioctl_hook(cmd, argp);
983 mutex_unlock(&dlci_ioctl_mutex);
984 break;
985 case SIOCGSKNS:
986 err = -EPERM;
987 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
988 break;
990 err = open_related_ns(&net->ns, get_net_ns);
991 break;
992 default:
993 err = sock_do_ioctl(net, sock, cmd, arg);
994 break;
996 return err;
999 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1001 int err;
1002 struct socket *sock = NULL;
1004 err = security_socket_create(family, type, protocol, 1);
1005 if (err)
1006 goto out;
1008 sock = sock_alloc();
1009 if (!sock) {
1010 err = -ENOMEM;
1011 goto out;
1014 sock->type = type;
1015 err = security_socket_post_create(sock, family, type, protocol, 1);
1016 if (err)
1017 goto out_release;
1019 out:
1020 *res = sock;
1021 return err;
1022 out_release:
1023 sock_release(sock);
1024 sock = NULL;
1025 goto out;
1027 EXPORT_SYMBOL(sock_create_lite);
1029 /* No kernel lock held - perfect */
1030 static unsigned int sock_poll(struct file *file, poll_table *wait)
1032 unsigned int busy_flag = 0;
1033 struct socket *sock;
1036 * We can't return errors to poll, so it's either yes or no.
1038 sock = file->private_data;
1040 if (sk_can_busy_loop(sock->sk)) {
1041 /* this socket can poll_ll so tell the system call */
1042 busy_flag = POLL_BUSY_LOOP;
1044 /* once, only if requested by syscall */
1045 if (wait && (wait->_key & POLL_BUSY_LOOP))
1046 sk_busy_loop(sock->sk, 1);
1049 return busy_flag | sock->ops->poll(file, sock, wait);
1052 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1054 struct socket *sock = file->private_data;
1056 return sock->ops->mmap(file, sock, vma);
1059 static int sock_close(struct inode *inode, struct file *filp)
1061 sock_release(SOCKET_I(inode));
1062 return 0;
1066 * Update the socket async list
1068 * Fasync_list locking strategy.
1070 * 1. fasync_list is modified only under process context socket lock
1071 * i.e. under semaphore.
1072 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1073 * or under socket lock
1076 static int sock_fasync(int fd, struct file *filp, int on)
1078 struct socket *sock = filp->private_data;
1079 struct sock *sk = sock->sk;
1080 struct socket_wq *wq;
1082 if (sk == NULL)
1083 return -EINVAL;
1085 lock_sock(sk);
1086 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1087 fasync_helper(fd, filp, on, &wq->fasync_list);
1089 if (!wq->fasync_list)
1090 sock_reset_flag(sk, SOCK_FASYNC);
1091 else
1092 sock_set_flag(sk, SOCK_FASYNC);
1094 release_sock(sk);
1095 return 0;
1098 /* This function may be called only under rcu_lock */
1100 int sock_wake_async(struct socket_wq *wq, int how, int band)
1102 if (!wq || !wq->fasync_list)
1103 return -1;
1105 switch (how) {
1106 case SOCK_WAKE_WAITD:
1107 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1108 break;
1109 goto call_kill;
1110 case SOCK_WAKE_SPACE:
1111 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1112 break;
1113 /* fall through */
1114 case SOCK_WAKE_IO:
1115 call_kill:
1116 kill_fasync(&wq->fasync_list, SIGIO, band);
1117 break;
1118 case SOCK_WAKE_URG:
1119 kill_fasync(&wq->fasync_list, SIGURG, band);
1122 return 0;
1124 EXPORT_SYMBOL(sock_wake_async);
1126 int __sock_create(struct net *net, int family, int type, int protocol,
1127 struct socket **res, int kern)
1129 int err;
1130 struct socket *sock;
1131 const struct net_proto_family *pf;
1134 * Check protocol is in range
1136 if (family < 0 || family >= NPROTO)
1137 return -EAFNOSUPPORT;
1138 if (type < 0 || type >= SOCK_MAX)
1139 return -EINVAL;
1141 /* Compatibility.
1143 This uglymoron is moved from INET layer to here to avoid
1144 deadlock in module load.
1146 if (family == PF_INET && type == SOCK_PACKET) {
1147 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1148 current->comm);
1149 family = PF_PACKET;
1152 err = security_socket_create(family, type, protocol, kern);
1153 if (err)
1154 return err;
1157 * Allocate the socket and allow the family to set things up. if
1158 * the protocol is 0, the family is instructed to select an appropriate
1159 * default.
1161 sock = sock_alloc();
1162 if (!sock) {
1163 net_warn_ratelimited("socket: no more sockets\n");
1164 return -ENFILE; /* Not exactly a match, but its the
1165 closest posix thing */
1168 sock->type = type;
1170 #ifdef CONFIG_MODULES
1171 /* Attempt to load a protocol module if the find failed.
1173 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1174 * requested real, full-featured networking support upon configuration.
1175 * Otherwise module support will break!
1177 if (rcu_access_pointer(net_families[family]) == NULL)
1178 request_module("net-pf-%d", family);
1179 #endif
1181 rcu_read_lock();
1182 pf = rcu_dereference(net_families[family]);
1183 err = -EAFNOSUPPORT;
1184 if (!pf)
1185 goto out_release;
1188 * We will call the ->create function, that possibly is in a loadable
1189 * module, so we have to bump that loadable module refcnt first.
1191 if (!try_module_get(pf->owner))
1192 goto out_release;
1194 /* Now protected by module ref count */
1195 rcu_read_unlock();
1197 err = pf->create(net, sock, protocol, kern);
1198 if (err < 0)
1199 goto out_module_put;
1202 * Now to bump the refcnt of the [loadable] module that owns this
1203 * socket at sock_release time we decrement its refcnt.
1205 if (!try_module_get(sock->ops->owner))
1206 goto out_module_busy;
1209 * Now that we're done with the ->create function, the [loadable]
1210 * module can have its refcnt decremented
1212 module_put(pf->owner);
1213 err = security_socket_post_create(sock, family, type, protocol, kern);
1214 if (err)
1215 goto out_sock_release;
1216 *res = sock;
1218 return 0;
1220 out_module_busy:
1221 err = -EAFNOSUPPORT;
1222 out_module_put:
1223 sock->ops = NULL;
1224 module_put(pf->owner);
1225 out_sock_release:
1226 sock_release(sock);
1227 return err;
1229 out_release:
1230 rcu_read_unlock();
1231 goto out_sock_release;
1233 EXPORT_SYMBOL(__sock_create);
1235 int sock_create(int family, int type, int protocol, struct socket **res)
1237 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1239 EXPORT_SYMBOL(sock_create);
1241 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1243 return __sock_create(net, family, type, protocol, res, 1);
1245 EXPORT_SYMBOL(sock_create_kern);
1247 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1249 int retval;
1250 struct socket *sock;
1251 int flags;
1253 /* Check the SOCK_* constants for consistency. */
1254 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1255 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1256 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1257 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1259 flags = type & ~SOCK_TYPE_MASK;
1260 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1261 return -EINVAL;
1262 type &= SOCK_TYPE_MASK;
1264 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1265 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1267 retval = sock_create(family, type, protocol, &sock);
1268 if (retval < 0)
1269 goto out;
1271 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1272 if (retval < 0)
1273 goto out_release;
1275 out:
1276 /* It may be already another descriptor 8) Not kernel problem. */
1277 return retval;
1279 out_release:
1280 sock_release(sock);
1281 return retval;
1285 * Create a pair of connected sockets.
1288 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1289 int __user *, usockvec)
1291 struct socket *sock1, *sock2;
1292 int fd1, fd2, err;
1293 struct file *newfile1, *newfile2;
1294 int flags;
1296 flags = type & ~SOCK_TYPE_MASK;
1297 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1298 return -EINVAL;
1299 type &= SOCK_TYPE_MASK;
1301 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1302 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1305 * Obtain the first socket and check if the underlying protocol
1306 * supports the socketpair call.
1309 err = sock_create(family, type, protocol, &sock1);
1310 if (err < 0)
1311 goto out;
1313 err = sock_create(family, type, protocol, &sock2);
1314 if (err < 0)
1315 goto out_release_1;
1317 err = sock1->ops->socketpair(sock1, sock2);
1318 if (err < 0)
1319 goto out_release_both;
1321 fd1 = get_unused_fd_flags(flags);
1322 if (unlikely(fd1 < 0)) {
1323 err = fd1;
1324 goto out_release_both;
1327 fd2 = get_unused_fd_flags(flags);
1328 if (unlikely(fd2 < 0)) {
1329 err = fd2;
1330 goto out_put_unused_1;
1333 newfile1 = sock_alloc_file(sock1, flags, NULL);
1334 if (IS_ERR(newfile1)) {
1335 err = PTR_ERR(newfile1);
1336 goto out_put_unused_both;
1339 newfile2 = sock_alloc_file(sock2, flags, NULL);
1340 if (IS_ERR(newfile2)) {
1341 err = PTR_ERR(newfile2);
1342 goto out_fput_1;
1345 err = put_user(fd1, &usockvec[0]);
1346 if (err)
1347 goto out_fput_both;
1349 err = put_user(fd2, &usockvec[1]);
1350 if (err)
1351 goto out_fput_both;
1353 audit_fd_pair(fd1, fd2);
1355 fd_install(fd1, newfile1);
1356 fd_install(fd2, newfile2);
1357 /* fd1 and fd2 may be already another descriptors.
1358 * Not kernel problem.
1361 return 0;
1363 out_fput_both:
1364 fput(newfile2);
1365 fput(newfile1);
1366 put_unused_fd(fd2);
1367 put_unused_fd(fd1);
1368 goto out;
1370 out_fput_1:
1371 fput(newfile1);
1372 put_unused_fd(fd2);
1373 put_unused_fd(fd1);
1374 sock_release(sock2);
1375 goto out;
1377 out_put_unused_both:
1378 put_unused_fd(fd2);
1379 out_put_unused_1:
1380 put_unused_fd(fd1);
1381 out_release_both:
1382 sock_release(sock2);
1383 out_release_1:
1384 sock_release(sock1);
1385 out:
1386 return err;
1390 * Bind a name to a socket. Nothing much to do here since it's
1391 * the protocol's responsibility to handle the local address.
1393 * We move the socket address to kernel space before we call
1394 * the protocol layer (having also checked the address is ok).
1397 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1399 struct socket *sock;
1400 struct sockaddr_storage address;
1401 int err, fput_needed;
1403 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1404 if (sock) {
1405 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1406 if (err >= 0) {
1407 err = security_socket_bind(sock,
1408 (struct sockaddr *)&address,
1409 addrlen);
1410 if (!err)
1411 err = sock->ops->bind(sock,
1412 (struct sockaddr *)
1413 &address, addrlen);
1415 fput_light(sock->file, fput_needed);
1417 return err;
1421 * Perform a listen. Basically, we allow the protocol to do anything
1422 * necessary for a listen, and if that works, we mark the socket as
1423 * ready for listening.
1426 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1428 struct socket *sock;
1429 int err, fput_needed;
1430 int somaxconn;
1432 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1433 if (sock) {
1434 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1435 if ((unsigned int)backlog > somaxconn)
1436 backlog = somaxconn;
1438 err = security_socket_listen(sock, backlog);
1439 if (!err)
1440 err = sock->ops->listen(sock, backlog);
1442 fput_light(sock->file, fput_needed);
1444 return err;
1448 * For accept, we attempt to create a new socket, set up the link
1449 * with the client, wake up the client, then return the new
1450 * connected fd. We collect the address of the connector in kernel
1451 * space and move it to user at the very end. This is unclean because
1452 * we open the socket then return an error.
1454 * 1003.1g adds the ability to recvmsg() to query connection pending
1455 * status to recvmsg. We need to add that support in a way thats
1456 * clean when we restucture accept also.
1459 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1460 int __user *, upeer_addrlen, int, flags)
1462 struct socket *sock, *newsock;
1463 struct file *newfile;
1464 int err, len, newfd, fput_needed;
1465 struct sockaddr_storage address;
1467 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1468 return -EINVAL;
1470 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1471 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1473 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1474 if (!sock)
1475 goto out;
1477 err = -ENFILE;
1478 newsock = sock_alloc();
1479 if (!newsock)
1480 goto out_put;
1482 newsock->type = sock->type;
1483 newsock->ops = sock->ops;
1486 * We don't need try_module_get here, as the listening socket (sock)
1487 * has the protocol module (sock->ops->owner) held.
1489 __module_get(newsock->ops->owner);
1491 newfd = get_unused_fd_flags(flags);
1492 if (unlikely(newfd < 0)) {
1493 err = newfd;
1494 sock_release(newsock);
1495 goto out_put;
1497 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1498 if (IS_ERR(newfile)) {
1499 err = PTR_ERR(newfile);
1500 put_unused_fd(newfd);
1501 sock_release(newsock);
1502 goto out_put;
1505 err = security_socket_accept(sock, newsock);
1506 if (err)
1507 goto out_fd;
1509 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1510 if (err < 0)
1511 goto out_fd;
1513 if (upeer_sockaddr) {
1514 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1515 &len, 2) < 0) {
1516 err = -ECONNABORTED;
1517 goto out_fd;
1519 err = move_addr_to_user(&address,
1520 len, upeer_sockaddr, upeer_addrlen);
1521 if (err < 0)
1522 goto out_fd;
1525 /* File flags are not inherited via accept() unlike another OSes. */
1527 fd_install(newfd, newfile);
1528 err = newfd;
1530 out_put:
1531 fput_light(sock->file, fput_needed);
1532 out:
1533 return err;
1534 out_fd:
1535 fput(newfile);
1536 put_unused_fd(newfd);
1537 goto out_put;
1540 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1541 int __user *, upeer_addrlen)
1543 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1547 * Attempt to connect to a socket with the server address. The address
1548 * is in user space so we verify it is OK and move it to kernel space.
1550 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1551 * break bindings
1553 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1554 * other SEQPACKET protocols that take time to connect() as it doesn't
1555 * include the -EINPROGRESS status for such sockets.
1558 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1559 int, addrlen)
1561 struct socket *sock;
1562 struct sockaddr_storage address;
1563 int err, fput_needed;
1565 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1566 if (!sock)
1567 goto out;
1568 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1569 if (err < 0)
1570 goto out_put;
1572 err =
1573 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1574 if (err)
1575 goto out_put;
1577 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1578 sock->file->f_flags);
1579 out_put:
1580 fput_light(sock->file, fput_needed);
1581 out:
1582 return err;
1586 * Get the local address ('name') of a socket object. Move the obtained
1587 * name to user space.
1590 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1591 int __user *, usockaddr_len)
1593 struct socket *sock;
1594 struct sockaddr_storage address;
1595 int len, err, fput_needed;
1597 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1598 if (!sock)
1599 goto out;
1601 err = security_socket_getsockname(sock);
1602 if (err)
1603 goto out_put;
1605 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1606 if (err)
1607 goto out_put;
1608 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1610 out_put:
1611 fput_light(sock->file, fput_needed);
1612 out:
1613 return err;
1617 * Get the remote address ('name') of a socket object. Move the obtained
1618 * name to user space.
1621 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1622 int __user *, usockaddr_len)
1624 struct socket *sock;
1625 struct sockaddr_storage address;
1626 int len, err, fput_needed;
1628 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1629 if (sock != NULL) {
1630 err = security_socket_getpeername(sock);
1631 if (err) {
1632 fput_light(sock->file, fput_needed);
1633 return err;
1636 err =
1637 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1639 if (!err)
1640 err = move_addr_to_user(&address, len, usockaddr,
1641 usockaddr_len);
1642 fput_light(sock->file, fput_needed);
1644 return err;
1648 * Send a datagram to a given address. We move the address into kernel
1649 * space and check the user space data area is readable before invoking
1650 * the protocol.
1653 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1654 unsigned int, flags, struct sockaddr __user *, addr,
1655 int, addr_len)
1657 struct socket *sock;
1658 struct sockaddr_storage address;
1659 int err;
1660 struct msghdr msg;
1661 struct iovec iov;
1662 int fput_needed;
1664 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1665 if (unlikely(err))
1666 return err;
1667 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1668 if (!sock)
1669 goto out;
1671 msg.msg_name = NULL;
1672 msg.msg_control = NULL;
1673 msg.msg_controllen = 0;
1674 msg.msg_namelen = 0;
1675 if (addr) {
1676 err = move_addr_to_kernel(addr, addr_len, &address);
1677 if (err < 0)
1678 goto out_put;
1679 msg.msg_name = (struct sockaddr *)&address;
1680 msg.msg_namelen = addr_len;
1682 if (sock->file->f_flags & O_NONBLOCK)
1683 flags |= MSG_DONTWAIT;
1684 msg.msg_flags = flags;
1685 err = sock_sendmsg(sock, &msg);
1687 out_put:
1688 fput_light(sock->file, fput_needed);
1689 out:
1690 return err;
1694 * Send a datagram down a socket.
1697 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1698 unsigned int, flags)
1700 return sys_sendto(fd, buff, len, flags, NULL, 0);
1704 * Receive a frame from the socket and optionally record the address of the
1705 * sender. We verify the buffers are writable and if needed move the
1706 * sender address from kernel to user space.
1709 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1710 unsigned int, flags, struct sockaddr __user *, addr,
1711 int __user *, addr_len)
1713 struct socket *sock;
1714 struct iovec iov;
1715 struct msghdr msg;
1716 struct sockaddr_storage address;
1717 int err, err2;
1718 int fput_needed;
1720 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1721 if (unlikely(err))
1722 return err;
1723 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1724 if (!sock)
1725 goto out;
1727 msg.msg_control = NULL;
1728 msg.msg_controllen = 0;
1729 /* Save some cycles and don't copy the address if not needed */
1730 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1731 /* We assume all kernel code knows the size of sockaddr_storage */
1732 msg.msg_namelen = 0;
1733 msg.msg_iocb = NULL;
1734 if (sock->file->f_flags & O_NONBLOCK)
1735 flags |= MSG_DONTWAIT;
1736 err = sock_recvmsg(sock, &msg, flags);
1738 if (err >= 0 && addr != NULL) {
1739 err2 = move_addr_to_user(&address,
1740 msg.msg_namelen, addr, addr_len);
1741 if (err2 < 0)
1742 err = err2;
1745 fput_light(sock->file, fput_needed);
1746 out:
1747 return err;
1751 * Receive a datagram from a socket.
1754 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1755 unsigned int, flags)
1757 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1761 * Set a socket option. Because we don't know the option lengths we have
1762 * to pass the user mode parameter for the protocols to sort out.
1765 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1766 char __user *, optval, int, optlen)
1768 int err, fput_needed;
1769 struct socket *sock;
1771 if (optlen < 0)
1772 return -EINVAL;
1774 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1775 if (sock != NULL) {
1776 err = security_socket_setsockopt(sock, level, optname);
1777 if (err)
1778 goto out_put;
1780 if (level == SOL_SOCKET)
1781 err =
1782 sock_setsockopt(sock, level, optname, optval,
1783 optlen);
1784 else
1785 err =
1786 sock->ops->setsockopt(sock, level, optname, optval,
1787 optlen);
1788 out_put:
1789 fput_light(sock->file, fput_needed);
1791 return err;
1795 * Get a socket option. Because we don't know the option lengths we have
1796 * to pass a user mode parameter for the protocols to sort out.
1799 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1800 char __user *, optval, int __user *, optlen)
1802 int err, fput_needed;
1803 struct socket *sock;
1805 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1806 if (sock != NULL) {
1807 err = security_socket_getsockopt(sock, level, optname);
1808 if (err)
1809 goto out_put;
1811 if (level == SOL_SOCKET)
1812 err =
1813 sock_getsockopt(sock, level, optname, optval,
1814 optlen);
1815 else
1816 err =
1817 sock->ops->getsockopt(sock, level, optname, optval,
1818 optlen);
1819 out_put:
1820 fput_light(sock->file, fput_needed);
1822 return err;
1826 * Shutdown a socket.
1829 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1831 int err, fput_needed;
1832 struct socket *sock;
1834 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1835 if (sock != NULL) {
1836 err = security_socket_shutdown(sock, how);
1837 if (!err)
1838 err = sock->ops->shutdown(sock, how);
1839 fput_light(sock->file, fput_needed);
1841 return err;
1844 /* A couple of helpful macros for getting the address of the 32/64 bit
1845 * fields which are the same type (int / unsigned) on our platforms.
1847 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1848 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1849 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1851 struct used_address {
1852 struct sockaddr_storage name;
1853 unsigned int name_len;
1856 static int copy_msghdr_from_user(struct msghdr *kmsg,
1857 struct user_msghdr __user *umsg,
1858 struct sockaddr __user **save_addr,
1859 struct iovec **iov)
1861 struct sockaddr __user *uaddr;
1862 struct iovec __user *uiov;
1863 size_t nr_segs;
1864 ssize_t err;
1866 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1867 __get_user(uaddr, &umsg->msg_name) ||
1868 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1869 __get_user(uiov, &umsg->msg_iov) ||
1870 __get_user(nr_segs, &umsg->msg_iovlen) ||
1871 __get_user(kmsg->msg_control, &umsg->msg_control) ||
1872 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1873 __get_user(kmsg->msg_flags, &umsg->msg_flags))
1874 return -EFAULT;
1876 if (!uaddr)
1877 kmsg->msg_namelen = 0;
1879 if (kmsg->msg_namelen < 0)
1880 return -EINVAL;
1882 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1883 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1885 if (save_addr)
1886 *save_addr = uaddr;
1888 if (uaddr && kmsg->msg_namelen) {
1889 if (!save_addr) {
1890 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1891 kmsg->msg_name);
1892 if (err < 0)
1893 return err;
1895 } else {
1896 kmsg->msg_name = NULL;
1897 kmsg->msg_namelen = 0;
1900 if (nr_segs > UIO_MAXIOV)
1901 return -EMSGSIZE;
1903 kmsg->msg_iocb = NULL;
1905 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1906 UIO_FASTIOV, iov, &kmsg->msg_iter);
1909 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1910 struct msghdr *msg_sys, unsigned int flags,
1911 struct used_address *used_address,
1912 unsigned int allowed_msghdr_flags)
1914 struct compat_msghdr __user *msg_compat =
1915 (struct compat_msghdr __user *)msg;
1916 struct sockaddr_storage address;
1917 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1918 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1919 __aligned(sizeof(__kernel_size_t));
1920 /* 20 is size of ipv6_pktinfo */
1921 unsigned char *ctl_buf = ctl;
1922 int ctl_len;
1923 ssize_t err;
1925 msg_sys->msg_name = &address;
1927 if (MSG_CMSG_COMPAT & flags)
1928 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1929 else
1930 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1931 if (err < 0)
1932 return err;
1934 err = -ENOBUFS;
1936 if (msg_sys->msg_controllen > INT_MAX)
1937 goto out_freeiov;
1938 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1939 ctl_len = msg_sys->msg_controllen;
1940 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1941 err =
1942 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1943 sizeof(ctl));
1944 if (err)
1945 goto out_freeiov;
1946 ctl_buf = msg_sys->msg_control;
1947 ctl_len = msg_sys->msg_controllen;
1948 } else if (ctl_len) {
1949 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
1950 CMSG_ALIGN(sizeof(struct cmsghdr)));
1951 if (ctl_len > sizeof(ctl)) {
1952 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1953 if (ctl_buf == NULL)
1954 goto out_freeiov;
1956 err = -EFAULT;
1958 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1959 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1960 * checking falls down on this.
1962 if (copy_from_user(ctl_buf,
1963 (void __user __force *)msg_sys->msg_control,
1964 ctl_len))
1965 goto out_freectl;
1966 msg_sys->msg_control = ctl_buf;
1968 msg_sys->msg_flags = flags;
1970 if (sock->file->f_flags & O_NONBLOCK)
1971 msg_sys->msg_flags |= MSG_DONTWAIT;
1973 * If this is sendmmsg() and current destination address is same as
1974 * previously succeeded address, omit asking LSM's decision.
1975 * used_address->name_len is initialized to UINT_MAX so that the first
1976 * destination address never matches.
1978 if (used_address && msg_sys->msg_name &&
1979 used_address->name_len == msg_sys->msg_namelen &&
1980 !memcmp(&used_address->name, msg_sys->msg_name,
1981 used_address->name_len)) {
1982 err = sock_sendmsg_nosec(sock, msg_sys);
1983 goto out_freectl;
1985 err = sock_sendmsg(sock, msg_sys);
1987 * If this is sendmmsg() and sending to current destination address was
1988 * successful, remember it.
1990 if (used_address && err >= 0) {
1991 used_address->name_len = msg_sys->msg_namelen;
1992 if (msg_sys->msg_name)
1993 memcpy(&used_address->name, msg_sys->msg_name,
1994 used_address->name_len);
1997 out_freectl:
1998 if (ctl_buf != ctl)
1999 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2000 out_freeiov:
2001 kfree(iov);
2002 return err;
2006 * BSD sendmsg interface
2009 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2011 int fput_needed, err;
2012 struct msghdr msg_sys;
2013 struct socket *sock;
2015 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2016 if (!sock)
2017 goto out;
2019 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2021 fput_light(sock->file, fput_needed);
2022 out:
2023 return err;
2026 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2028 if (flags & MSG_CMSG_COMPAT)
2029 return -EINVAL;
2030 return __sys_sendmsg(fd, msg, flags);
2034 * Linux sendmmsg interface
2037 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2038 unsigned int flags)
2040 int fput_needed, err, datagrams;
2041 struct socket *sock;
2042 struct mmsghdr __user *entry;
2043 struct compat_mmsghdr __user *compat_entry;
2044 struct msghdr msg_sys;
2045 struct used_address used_address;
2046 unsigned int oflags = flags;
2048 if (vlen > UIO_MAXIOV)
2049 vlen = UIO_MAXIOV;
2051 datagrams = 0;
2053 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2054 if (!sock)
2055 return err;
2057 used_address.name_len = UINT_MAX;
2058 entry = mmsg;
2059 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2060 err = 0;
2061 flags |= MSG_BATCH;
2063 while (datagrams < vlen) {
2064 if (datagrams == vlen - 1)
2065 flags = oflags;
2067 if (MSG_CMSG_COMPAT & flags) {
2068 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2069 &msg_sys, flags, &used_address, MSG_EOR);
2070 if (err < 0)
2071 break;
2072 err = __put_user(err, &compat_entry->msg_len);
2073 ++compat_entry;
2074 } else {
2075 err = ___sys_sendmsg(sock,
2076 (struct user_msghdr __user *)entry,
2077 &msg_sys, flags, &used_address, MSG_EOR);
2078 if (err < 0)
2079 break;
2080 err = put_user(err, &entry->msg_len);
2081 ++entry;
2084 if (err)
2085 break;
2086 ++datagrams;
2087 if (msg_data_left(&msg_sys))
2088 break;
2089 cond_resched();
2092 fput_light(sock->file, fput_needed);
2094 /* We only return an error if no datagrams were able to be sent */
2095 if (datagrams != 0)
2096 return datagrams;
2098 return err;
2101 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2102 unsigned int, vlen, unsigned int, flags)
2104 if (flags & MSG_CMSG_COMPAT)
2105 return -EINVAL;
2106 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2109 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2110 struct msghdr *msg_sys, unsigned int flags, int nosec)
2112 struct compat_msghdr __user *msg_compat =
2113 (struct compat_msghdr __user *)msg;
2114 struct iovec iovstack[UIO_FASTIOV];
2115 struct iovec *iov = iovstack;
2116 unsigned long cmsg_ptr;
2117 int len;
2118 ssize_t err;
2120 /* kernel mode address */
2121 struct sockaddr_storage addr;
2123 /* user mode address pointers */
2124 struct sockaddr __user *uaddr;
2125 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2127 msg_sys->msg_name = &addr;
2129 if (MSG_CMSG_COMPAT & flags)
2130 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2131 else
2132 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2133 if (err < 0)
2134 return err;
2136 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2137 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2139 /* We assume all kernel code knows the size of sockaddr_storage */
2140 msg_sys->msg_namelen = 0;
2142 if (sock->file->f_flags & O_NONBLOCK)
2143 flags |= MSG_DONTWAIT;
2144 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2145 if (err < 0)
2146 goto out_freeiov;
2147 len = err;
2149 if (uaddr != NULL) {
2150 err = move_addr_to_user(&addr,
2151 msg_sys->msg_namelen, uaddr,
2152 uaddr_len);
2153 if (err < 0)
2154 goto out_freeiov;
2156 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2157 COMPAT_FLAGS(msg));
2158 if (err)
2159 goto out_freeiov;
2160 if (MSG_CMSG_COMPAT & flags)
2161 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2162 &msg_compat->msg_controllen);
2163 else
2164 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2165 &msg->msg_controllen);
2166 if (err)
2167 goto out_freeiov;
2168 err = len;
2170 out_freeiov:
2171 kfree(iov);
2172 return err;
2176 * BSD recvmsg interface
2179 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2181 int fput_needed, err;
2182 struct msghdr msg_sys;
2183 struct socket *sock;
2185 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2186 if (!sock)
2187 goto out;
2189 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2191 fput_light(sock->file, fput_needed);
2192 out:
2193 return err;
2196 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2197 unsigned int, flags)
2199 if (flags & MSG_CMSG_COMPAT)
2200 return -EINVAL;
2201 return __sys_recvmsg(fd, msg, flags);
2205 * Linux recvmmsg interface
2208 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2209 unsigned int flags, struct timespec *timeout)
2211 int fput_needed, err, datagrams;
2212 struct socket *sock;
2213 struct mmsghdr __user *entry;
2214 struct compat_mmsghdr __user *compat_entry;
2215 struct msghdr msg_sys;
2216 struct timespec64 end_time;
2217 struct timespec64 timeout64;
2219 if (timeout &&
2220 poll_select_set_timeout(&end_time, timeout->tv_sec,
2221 timeout->tv_nsec))
2222 return -EINVAL;
2224 datagrams = 0;
2226 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2227 if (!sock)
2228 return err;
2230 err = sock_error(sock->sk);
2231 if (err)
2232 goto out_put;
2234 entry = mmsg;
2235 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2237 while (datagrams < vlen) {
2239 * No need to ask LSM for more than the first datagram.
2241 if (MSG_CMSG_COMPAT & flags) {
2242 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2243 &msg_sys, flags & ~MSG_WAITFORONE,
2244 datagrams);
2245 if (err < 0)
2246 break;
2247 err = __put_user(err, &compat_entry->msg_len);
2248 ++compat_entry;
2249 } else {
2250 err = ___sys_recvmsg(sock,
2251 (struct user_msghdr __user *)entry,
2252 &msg_sys, flags & ~MSG_WAITFORONE,
2253 datagrams);
2254 if (err < 0)
2255 break;
2256 err = put_user(err, &entry->msg_len);
2257 ++entry;
2260 if (err)
2261 break;
2262 ++datagrams;
2264 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2265 if (flags & MSG_WAITFORONE)
2266 flags |= MSG_DONTWAIT;
2268 if (timeout) {
2269 ktime_get_ts64(&timeout64);
2270 *timeout = timespec64_to_timespec(
2271 timespec64_sub(end_time, timeout64));
2272 if (timeout->tv_sec < 0) {
2273 timeout->tv_sec = timeout->tv_nsec = 0;
2274 break;
2277 /* Timeout, return less than vlen datagrams */
2278 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2279 break;
2282 /* Out of band data, return right away */
2283 if (msg_sys.msg_flags & MSG_OOB)
2284 break;
2285 cond_resched();
2288 if (err == 0)
2289 goto out_put;
2291 if (datagrams == 0) {
2292 datagrams = err;
2293 goto out_put;
2297 * We may return less entries than requested (vlen) if the
2298 * sock is non block and there aren't enough datagrams...
2300 if (err != -EAGAIN) {
2302 * ... or if recvmsg returns an error after we
2303 * received some datagrams, where we record the
2304 * error to return on the next call or if the
2305 * app asks about it using getsockopt(SO_ERROR).
2307 sock->sk->sk_err = -err;
2309 out_put:
2310 fput_light(sock->file, fput_needed);
2312 return datagrams;
2315 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2316 unsigned int, vlen, unsigned int, flags,
2317 struct timespec __user *, timeout)
2319 int datagrams;
2320 struct timespec timeout_sys;
2322 if (flags & MSG_CMSG_COMPAT)
2323 return -EINVAL;
2325 if (!timeout)
2326 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2328 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2329 return -EFAULT;
2331 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2333 if (datagrams > 0 &&
2334 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2335 datagrams = -EFAULT;
2337 return datagrams;
2340 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2341 /* Argument list sizes for sys_socketcall */
2342 #define AL(x) ((x) * sizeof(unsigned long))
2343 static const unsigned char nargs[21] = {
2344 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2345 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2346 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2347 AL(4), AL(5), AL(4)
2350 #undef AL
2353 * System call vectors.
2355 * Argument checking cleaned up. Saved 20% in size.
2356 * This function doesn't need to set the kernel lock because
2357 * it is set by the callees.
2360 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2362 unsigned long a[AUDITSC_ARGS];
2363 unsigned long a0, a1;
2364 int err;
2365 unsigned int len;
2367 if (call < 1 || call > SYS_SENDMMSG)
2368 return -EINVAL;
2370 len = nargs[call];
2371 if (len > sizeof(a))
2372 return -EINVAL;
2374 /* copy_from_user should be SMP safe. */
2375 if (copy_from_user(a, args, len))
2376 return -EFAULT;
2378 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2379 if (err)
2380 return err;
2382 a0 = a[0];
2383 a1 = a[1];
2385 switch (call) {
2386 case SYS_SOCKET:
2387 err = sys_socket(a0, a1, a[2]);
2388 break;
2389 case SYS_BIND:
2390 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2391 break;
2392 case SYS_CONNECT:
2393 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2394 break;
2395 case SYS_LISTEN:
2396 err = sys_listen(a0, a1);
2397 break;
2398 case SYS_ACCEPT:
2399 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2400 (int __user *)a[2], 0);
2401 break;
2402 case SYS_GETSOCKNAME:
2403 err =
2404 sys_getsockname(a0, (struct sockaddr __user *)a1,
2405 (int __user *)a[2]);
2406 break;
2407 case SYS_GETPEERNAME:
2408 err =
2409 sys_getpeername(a0, (struct sockaddr __user *)a1,
2410 (int __user *)a[2]);
2411 break;
2412 case SYS_SOCKETPAIR:
2413 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2414 break;
2415 case SYS_SEND:
2416 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2417 break;
2418 case SYS_SENDTO:
2419 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2420 (struct sockaddr __user *)a[4], a[5]);
2421 break;
2422 case SYS_RECV:
2423 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2424 break;
2425 case SYS_RECVFROM:
2426 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2427 (struct sockaddr __user *)a[4],
2428 (int __user *)a[5]);
2429 break;
2430 case SYS_SHUTDOWN:
2431 err = sys_shutdown(a0, a1);
2432 break;
2433 case SYS_SETSOCKOPT:
2434 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2435 break;
2436 case SYS_GETSOCKOPT:
2437 err =
2438 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2439 (int __user *)a[4]);
2440 break;
2441 case SYS_SENDMSG:
2442 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2443 break;
2444 case SYS_SENDMMSG:
2445 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2446 break;
2447 case SYS_RECVMSG:
2448 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2449 break;
2450 case SYS_RECVMMSG:
2451 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2452 (struct timespec __user *)a[4]);
2453 break;
2454 case SYS_ACCEPT4:
2455 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2456 (int __user *)a[2], a[3]);
2457 break;
2458 default:
2459 err = -EINVAL;
2460 break;
2462 return err;
2465 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2468 * sock_register - add a socket protocol handler
2469 * @ops: description of protocol
2471 * This function is called by a protocol handler that wants to
2472 * advertise its address family, and have it linked into the
2473 * socket interface. The value ops->family corresponds to the
2474 * socket system call protocol family.
2476 int sock_register(const struct net_proto_family *ops)
2478 int err;
2480 if (ops->family >= NPROTO) {
2481 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2482 return -ENOBUFS;
2485 spin_lock(&net_family_lock);
2486 if (rcu_dereference_protected(net_families[ops->family],
2487 lockdep_is_held(&net_family_lock)))
2488 err = -EEXIST;
2489 else {
2490 rcu_assign_pointer(net_families[ops->family], ops);
2491 err = 0;
2493 spin_unlock(&net_family_lock);
2495 pr_info("NET: Registered protocol family %d\n", ops->family);
2496 return err;
2498 EXPORT_SYMBOL(sock_register);
2501 * sock_unregister - remove a protocol handler
2502 * @family: protocol family to remove
2504 * This function is called by a protocol handler that wants to
2505 * remove its address family, and have it unlinked from the
2506 * new socket creation.
2508 * If protocol handler is a module, then it can use module reference
2509 * counts to protect against new references. If protocol handler is not
2510 * a module then it needs to provide its own protection in
2511 * the ops->create routine.
2513 void sock_unregister(int family)
2515 BUG_ON(family < 0 || family >= NPROTO);
2517 spin_lock(&net_family_lock);
2518 RCU_INIT_POINTER(net_families[family], NULL);
2519 spin_unlock(&net_family_lock);
2521 synchronize_rcu();
2523 pr_info("NET: Unregistered protocol family %d\n", family);
2525 EXPORT_SYMBOL(sock_unregister);
2527 static int __init sock_init(void)
2529 int err;
2531 * Initialize the network sysctl infrastructure.
2533 err = net_sysctl_init();
2534 if (err)
2535 goto out;
2538 * Initialize skbuff SLAB cache
2540 skb_init();
2543 * Initialize the protocols module.
2546 init_inodecache();
2548 err = register_filesystem(&sock_fs_type);
2549 if (err)
2550 goto out_fs;
2551 sock_mnt = kern_mount(&sock_fs_type);
2552 if (IS_ERR(sock_mnt)) {
2553 err = PTR_ERR(sock_mnt);
2554 goto out_mount;
2557 /* The real protocol initialization is performed in later initcalls.
2560 #ifdef CONFIG_NETFILTER
2561 err = netfilter_init();
2562 if (err)
2563 goto out;
2564 #endif
2566 ptp_classifier_init();
2568 out:
2569 return err;
2571 out_mount:
2572 unregister_filesystem(&sock_fs_type);
2573 out_fs:
2574 goto out;
2577 core_initcall(sock_init); /* early initcall */
2579 #ifdef CONFIG_PROC_FS
2580 void socket_seq_show(struct seq_file *seq)
2582 int cpu;
2583 int counter = 0;
2585 for_each_possible_cpu(cpu)
2586 counter += per_cpu(sockets_in_use, cpu);
2588 /* It can be negative, by the way. 8) */
2589 if (counter < 0)
2590 counter = 0;
2592 seq_printf(seq, "sockets: used %d\n", counter);
2594 #endif /* CONFIG_PROC_FS */
2596 #ifdef CONFIG_COMPAT
2597 static int do_siocgstamp(struct net *net, struct socket *sock,
2598 unsigned int cmd, void __user *up)
2600 mm_segment_t old_fs = get_fs();
2601 struct timeval ktv;
2602 int err;
2604 set_fs(KERNEL_DS);
2605 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2606 set_fs(old_fs);
2607 if (!err)
2608 err = compat_put_timeval(&ktv, up);
2610 return err;
2613 static int do_siocgstampns(struct net *net, struct socket *sock,
2614 unsigned int cmd, void __user *up)
2616 mm_segment_t old_fs = get_fs();
2617 struct timespec kts;
2618 int err;
2620 set_fs(KERNEL_DS);
2621 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2622 set_fs(old_fs);
2623 if (!err)
2624 err = compat_put_timespec(&kts, up);
2626 return err;
2629 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2631 struct ifreq __user *uifr;
2632 int err;
2634 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2635 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2636 return -EFAULT;
2638 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2639 if (err)
2640 return err;
2642 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2643 return -EFAULT;
2645 return 0;
2648 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2650 struct compat_ifconf ifc32;
2651 struct ifconf ifc;
2652 struct ifconf __user *uifc;
2653 struct compat_ifreq __user *ifr32;
2654 struct ifreq __user *ifr;
2655 unsigned int i, j;
2656 int err;
2658 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2659 return -EFAULT;
2661 memset(&ifc, 0, sizeof(ifc));
2662 if (ifc32.ifcbuf == 0) {
2663 ifc32.ifc_len = 0;
2664 ifc.ifc_len = 0;
2665 ifc.ifc_req = NULL;
2666 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2667 } else {
2668 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2669 sizeof(struct ifreq);
2670 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2671 ifc.ifc_len = len;
2672 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2673 ifr32 = compat_ptr(ifc32.ifcbuf);
2674 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2675 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2676 return -EFAULT;
2677 ifr++;
2678 ifr32++;
2681 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2682 return -EFAULT;
2684 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2685 if (err)
2686 return err;
2688 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2689 return -EFAULT;
2691 ifr = ifc.ifc_req;
2692 ifr32 = compat_ptr(ifc32.ifcbuf);
2693 for (i = 0, j = 0;
2694 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2695 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2696 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2697 return -EFAULT;
2698 ifr32++;
2699 ifr++;
2702 if (ifc32.ifcbuf == 0) {
2703 /* Translate from 64-bit structure multiple to
2704 * a 32-bit one.
2706 i = ifc.ifc_len;
2707 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2708 ifc32.ifc_len = i;
2709 } else {
2710 ifc32.ifc_len = i;
2712 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2713 return -EFAULT;
2715 return 0;
2718 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2720 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2721 bool convert_in = false, convert_out = false;
2722 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2723 struct ethtool_rxnfc __user *rxnfc;
2724 struct ifreq __user *ifr;
2725 u32 rule_cnt = 0, actual_rule_cnt;
2726 u32 ethcmd;
2727 u32 data;
2728 int ret;
2730 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2731 return -EFAULT;
2733 compat_rxnfc = compat_ptr(data);
2735 if (get_user(ethcmd, &compat_rxnfc->cmd))
2736 return -EFAULT;
2738 /* Most ethtool structures are defined without padding.
2739 * Unfortunately struct ethtool_rxnfc is an exception.
2741 switch (ethcmd) {
2742 default:
2743 break;
2744 case ETHTOOL_GRXCLSRLALL:
2745 /* Buffer size is variable */
2746 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2747 return -EFAULT;
2748 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2749 return -ENOMEM;
2750 buf_size += rule_cnt * sizeof(u32);
2751 /* fall through */
2752 case ETHTOOL_GRXRINGS:
2753 case ETHTOOL_GRXCLSRLCNT:
2754 case ETHTOOL_GRXCLSRULE:
2755 case ETHTOOL_SRXCLSRLINS:
2756 convert_out = true;
2757 /* fall through */
2758 case ETHTOOL_SRXCLSRLDEL:
2759 buf_size += sizeof(struct ethtool_rxnfc);
2760 convert_in = true;
2761 break;
2764 ifr = compat_alloc_user_space(buf_size);
2765 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2767 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2768 return -EFAULT;
2770 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2771 &ifr->ifr_ifru.ifru_data))
2772 return -EFAULT;
2774 if (convert_in) {
2775 /* We expect there to be holes between fs.m_ext and
2776 * fs.ring_cookie and at the end of fs, but nowhere else.
2778 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2779 sizeof(compat_rxnfc->fs.m_ext) !=
2780 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2781 sizeof(rxnfc->fs.m_ext));
2782 BUILD_BUG_ON(
2783 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2784 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2785 offsetof(struct ethtool_rxnfc, fs.location) -
2786 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2788 if (copy_in_user(rxnfc, compat_rxnfc,
2789 (void __user *)(&rxnfc->fs.m_ext + 1) -
2790 (void __user *)rxnfc) ||
2791 copy_in_user(&rxnfc->fs.ring_cookie,
2792 &compat_rxnfc->fs.ring_cookie,
2793 (void __user *)(&rxnfc->fs.location + 1) -
2794 (void __user *)&rxnfc->fs.ring_cookie) ||
2795 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2796 sizeof(rxnfc->rule_cnt)))
2797 return -EFAULT;
2800 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2801 if (ret)
2802 return ret;
2804 if (convert_out) {
2805 if (copy_in_user(compat_rxnfc, rxnfc,
2806 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2807 (const void __user *)rxnfc) ||
2808 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2809 &rxnfc->fs.ring_cookie,
2810 (const void __user *)(&rxnfc->fs.location + 1) -
2811 (const void __user *)&rxnfc->fs.ring_cookie) ||
2812 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2813 sizeof(rxnfc->rule_cnt)))
2814 return -EFAULT;
2816 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2817 /* As an optimisation, we only copy the actual
2818 * number of rules that the underlying
2819 * function returned. Since Mallory might
2820 * change the rule count in user memory, we
2821 * check that it is less than the rule count
2822 * originally given (as the user buffer size),
2823 * which has been range-checked.
2825 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2826 return -EFAULT;
2827 if (actual_rule_cnt < rule_cnt)
2828 rule_cnt = actual_rule_cnt;
2829 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2830 &rxnfc->rule_locs[0],
2831 rule_cnt * sizeof(u32)))
2832 return -EFAULT;
2836 return 0;
2839 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2841 void __user *uptr;
2842 compat_uptr_t uptr32;
2843 struct ifreq __user *uifr;
2845 uifr = compat_alloc_user_space(sizeof(*uifr));
2846 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2847 return -EFAULT;
2849 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2850 return -EFAULT;
2852 uptr = compat_ptr(uptr32);
2854 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2855 return -EFAULT;
2857 return dev_ioctl(net, SIOCWANDEV, uifr);
2860 static int bond_ioctl(struct net *net, unsigned int cmd,
2861 struct compat_ifreq __user *ifr32)
2863 struct ifreq kifr;
2864 mm_segment_t old_fs;
2865 int err;
2867 switch (cmd) {
2868 case SIOCBONDENSLAVE:
2869 case SIOCBONDRELEASE:
2870 case SIOCBONDSETHWADDR:
2871 case SIOCBONDCHANGEACTIVE:
2872 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2873 return -EFAULT;
2875 old_fs = get_fs();
2876 set_fs(KERNEL_DS);
2877 err = dev_ioctl(net, cmd,
2878 (struct ifreq __user __force *) &kifr);
2879 set_fs(old_fs);
2881 return err;
2882 default:
2883 return -ENOIOCTLCMD;
2887 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2888 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2889 struct compat_ifreq __user *u_ifreq32)
2891 struct ifreq __user *u_ifreq64;
2892 char tmp_buf[IFNAMSIZ];
2893 void __user *data64;
2894 u32 data32;
2896 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2897 IFNAMSIZ))
2898 return -EFAULT;
2899 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2900 return -EFAULT;
2901 data64 = compat_ptr(data32);
2903 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2905 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2906 IFNAMSIZ))
2907 return -EFAULT;
2908 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2909 return -EFAULT;
2911 return dev_ioctl(net, cmd, u_ifreq64);
2914 static int dev_ifsioc(struct net *net, struct socket *sock,
2915 unsigned int cmd, struct compat_ifreq __user *uifr32)
2917 struct ifreq __user *uifr;
2918 int err;
2920 uifr = compat_alloc_user_space(sizeof(*uifr));
2921 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2922 return -EFAULT;
2924 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2926 if (!err) {
2927 switch (cmd) {
2928 case SIOCGIFFLAGS:
2929 case SIOCGIFMETRIC:
2930 case SIOCGIFMTU:
2931 case SIOCGIFMEM:
2932 case SIOCGIFHWADDR:
2933 case SIOCGIFINDEX:
2934 case SIOCGIFADDR:
2935 case SIOCGIFBRDADDR:
2936 case SIOCGIFDSTADDR:
2937 case SIOCGIFNETMASK:
2938 case SIOCGIFPFLAGS:
2939 case SIOCGIFTXQLEN:
2940 case SIOCGMIIPHY:
2941 case SIOCGMIIREG:
2942 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2943 err = -EFAULT;
2944 break;
2947 return err;
2950 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2951 struct compat_ifreq __user *uifr32)
2953 struct ifreq ifr;
2954 struct compat_ifmap __user *uifmap32;
2955 mm_segment_t old_fs;
2956 int err;
2958 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2959 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2960 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2961 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2962 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2963 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2964 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2965 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2966 if (err)
2967 return -EFAULT;
2969 old_fs = get_fs();
2970 set_fs(KERNEL_DS);
2971 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
2972 set_fs(old_fs);
2974 if (cmd == SIOCGIFMAP && !err) {
2975 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2976 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2977 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2978 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2979 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2980 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2981 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2982 if (err)
2983 err = -EFAULT;
2985 return err;
2988 struct rtentry32 {
2989 u32 rt_pad1;
2990 struct sockaddr rt_dst; /* target address */
2991 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2992 struct sockaddr rt_genmask; /* target network mask (IP) */
2993 unsigned short rt_flags;
2994 short rt_pad2;
2995 u32 rt_pad3;
2996 unsigned char rt_tos;
2997 unsigned char rt_class;
2998 short rt_pad4;
2999 short rt_metric; /* +1 for binary compatibility! */
3000 /* char * */ u32 rt_dev; /* forcing the device at add */
3001 u32 rt_mtu; /* per route MTU/Window */
3002 u32 rt_window; /* Window clamping */
3003 unsigned short rt_irtt; /* Initial RTT */
3006 struct in6_rtmsg32 {
3007 struct in6_addr rtmsg_dst;
3008 struct in6_addr rtmsg_src;
3009 struct in6_addr rtmsg_gateway;
3010 u32 rtmsg_type;
3011 u16 rtmsg_dst_len;
3012 u16 rtmsg_src_len;
3013 u32 rtmsg_metric;
3014 u32 rtmsg_info;
3015 u32 rtmsg_flags;
3016 s32 rtmsg_ifindex;
3019 static int routing_ioctl(struct net *net, struct socket *sock,
3020 unsigned int cmd, void __user *argp)
3022 int ret;
3023 void *r = NULL;
3024 struct in6_rtmsg r6;
3025 struct rtentry r4;
3026 char devname[16];
3027 u32 rtdev;
3028 mm_segment_t old_fs = get_fs();
3030 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3031 struct in6_rtmsg32 __user *ur6 = argp;
3032 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3033 3 * sizeof(struct in6_addr));
3034 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3035 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3036 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3037 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3038 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3039 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3040 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3042 r = (void *) &r6;
3043 } else { /* ipv4 */
3044 struct rtentry32 __user *ur4 = argp;
3045 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3046 3 * sizeof(struct sockaddr));
3047 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3048 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3049 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3050 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3051 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3052 ret |= get_user(rtdev, &(ur4->rt_dev));
3053 if (rtdev) {
3054 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3055 r4.rt_dev = (char __user __force *)devname;
3056 devname[15] = 0;
3057 } else
3058 r4.rt_dev = NULL;
3060 r = (void *) &r4;
3063 if (ret) {
3064 ret = -EFAULT;
3065 goto out;
3068 set_fs(KERNEL_DS);
3069 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3070 set_fs(old_fs);
3072 out:
3073 return ret;
3076 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3077 * for some operations; this forces use of the newer bridge-utils that
3078 * use compatible ioctls
3080 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3082 compat_ulong_t tmp;
3084 if (get_user(tmp, argp))
3085 return -EFAULT;
3086 if (tmp == BRCTL_GET_VERSION)
3087 return BRCTL_VERSION + 1;
3088 return -EINVAL;
3091 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3092 unsigned int cmd, unsigned long arg)
3094 void __user *argp = compat_ptr(arg);
3095 struct sock *sk = sock->sk;
3096 struct net *net = sock_net(sk);
3098 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3099 return compat_ifr_data_ioctl(net, cmd, argp);
3101 switch (cmd) {
3102 case SIOCSIFBR:
3103 case SIOCGIFBR:
3104 return old_bridge_ioctl(argp);
3105 case SIOCGIFNAME:
3106 return dev_ifname32(net, argp);
3107 case SIOCGIFCONF:
3108 return dev_ifconf(net, argp);
3109 case SIOCETHTOOL:
3110 return ethtool_ioctl(net, argp);
3111 case SIOCWANDEV:
3112 return compat_siocwandev(net, argp);
3113 case SIOCGIFMAP:
3114 case SIOCSIFMAP:
3115 return compat_sioc_ifmap(net, cmd, argp);
3116 case SIOCBONDENSLAVE:
3117 case SIOCBONDRELEASE:
3118 case SIOCBONDSETHWADDR:
3119 case SIOCBONDCHANGEACTIVE:
3120 return bond_ioctl(net, cmd, argp);
3121 case SIOCADDRT:
3122 case SIOCDELRT:
3123 return routing_ioctl(net, sock, cmd, argp);
3124 case SIOCGSTAMP:
3125 return do_siocgstamp(net, sock, cmd, argp);
3126 case SIOCGSTAMPNS:
3127 return do_siocgstampns(net, sock, cmd, argp);
3128 case SIOCBONDSLAVEINFOQUERY:
3129 case SIOCBONDINFOQUERY:
3130 case SIOCSHWTSTAMP:
3131 case SIOCGHWTSTAMP:
3132 return compat_ifr_data_ioctl(net, cmd, argp);
3134 case FIOSETOWN:
3135 case SIOCSPGRP:
3136 case FIOGETOWN:
3137 case SIOCGPGRP:
3138 case SIOCBRADDBR:
3139 case SIOCBRDELBR:
3140 case SIOCGIFVLAN:
3141 case SIOCSIFVLAN:
3142 case SIOCADDDLCI:
3143 case SIOCDELDLCI:
3144 case SIOCGSKNS:
3145 return sock_ioctl(file, cmd, arg);
3147 case SIOCGIFFLAGS:
3148 case SIOCSIFFLAGS:
3149 case SIOCGIFMETRIC:
3150 case SIOCSIFMETRIC:
3151 case SIOCGIFMTU:
3152 case SIOCSIFMTU:
3153 case SIOCGIFMEM:
3154 case SIOCSIFMEM:
3155 case SIOCGIFHWADDR:
3156 case SIOCSIFHWADDR:
3157 case SIOCADDMULTI:
3158 case SIOCDELMULTI:
3159 case SIOCGIFINDEX:
3160 case SIOCGIFADDR:
3161 case SIOCSIFADDR:
3162 case SIOCSIFHWBROADCAST:
3163 case SIOCDIFADDR:
3164 case SIOCGIFBRDADDR:
3165 case SIOCSIFBRDADDR:
3166 case SIOCGIFDSTADDR:
3167 case SIOCSIFDSTADDR:
3168 case SIOCGIFNETMASK:
3169 case SIOCSIFNETMASK:
3170 case SIOCSIFPFLAGS:
3171 case SIOCGIFPFLAGS:
3172 case SIOCGIFTXQLEN:
3173 case SIOCSIFTXQLEN:
3174 case SIOCBRADDIF:
3175 case SIOCBRDELIF:
3176 case SIOCSIFNAME:
3177 case SIOCGMIIPHY:
3178 case SIOCGMIIREG:
3179 case SIOCSMIIREG:
3180 return dev_ifsioc(net, sock, cmd, argp);
3182 case SIOCSARP:
3183 case SIOCGARP:
3184 case SIOCDARP:
3185 case SIOCATMARK:
3186 return sock_do_ioctl(net, sock, cmd, arg);
3189 return -ENOIOCTLCMD;
3192 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3193 unsigned long arg)
3195 struct socket *sock = file->private_data;
3196 int ret = -ENOIOCTLCMD;
3197 struct sock *sk;
3198 struct net *net;
3200 sk = sock->sk;
3201 net = sock_net(sk);
3203 if (sock->ops->compat_ioctl)
3204 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3206 if (ret == -ENOIOCTLCMD &&
3207 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3208 ret = compat_wext_handle_ioctl(net, cmd, arg);
3210 if (ret == -ENOIOCTLCMD)
3211 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3213 return ret;
3215 #endif
3217 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3219 return sock->ops->bind(sock, addr, addrlen);
3221 EXPORT_SYMBOL(kernel_bind);
3223 int kernel_listen(struct socket *sock, int backlog)
3225 return sock->ops->listen(sock, backlog);
3227 EXPORT_SYMBOL(kernel_listen);
3229 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3231 struct sock *sk = sock->sk;
3232 int err;
3234 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3235 newsock);
3236 if (err < 0)
3237 goto done;
3239 err = sock->ops->accept(sock, *newsock, flags);
3240 if (err < 0) {
3241 sock_release(*newsock);
3242 *newsock = NULL;
3243 goto done;
3246 (*newsock)->ops = sock->ops;
3247 __module_get((*newsock)->ops->owner);
3249 done:
3250 return err;
3252 EXPORT_SYMBOL(kernel_accept);
3254 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3255 int flags)
3257 return sock->ops->connect(sock, addr, addrlen, flags);
3259 EXPORT_SYMBOL(kernel_connect);
3261 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3262 int *addrlen)
3264 return sock->ops->getname(sock, addr, addrlen, 0);
3266 EXPORT_SYMBOL(kernel_getsockname);
3268 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3269 int *addrlen)
3271 return sock->ops->getname(sock, addr, addrlen, 1);
3273 EXPORT_SYMBOL(kernel_getpeername);
3275 int kernel_getsockopt(struct socket *sock, int level, int optname,
3276 char *optval, int *optlen)
3278 mm_segment_t oldfs = get_fs();
3279 char __user *uoptval;
3280 int __user *uoptlen;
3281 int err;
3283 uoptval = (char __user __force *) optval;
3284 uoptlen = (int __user __force *) optlen;
3286 set_fs(KERNEL_DS);
3287 if (level == SOL_SOCKET)
3288 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3289 else
3290 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3291 uoptlen);
3292 set_fs(oldfs);
3293 return err;
3295 EXPORT_SYMBOL(kernel_getsockopt);
3297 int kernel_setsockopt(struct socket *sock, int level, int optname,
3298 char *optval, unsigned int optlen)
3300 mm_segment_t oldfs = get_fs();
3301 char __user *uoptval;
3302 int err;
3304 uoptval = (char __user __force *) optval;
3306 set_fs(KERNEL_DS);
3307 if (level == SOL_SOCKET)
3308 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3309 else
3310 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3311 optlen);
3312 set_fs(oldfs);
3313 return err;
3315 EXPORT_SYMBOL(kernel_setsockopt);
3317 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3318 size_t size, int flags)
3320 if (sock->ops->sendpage)
3321 return sock->ops->sendpage(sock, page, offset, size, flags);
3323 return sock_no_sendpage(sock, page, offset, size, flags);
3325 EXPORT_SYMBOL(kernel_sendpage);
3327 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3329 mm_segment_t oldfs = get_fs();
3330 int err;
3332 set_fs(KERNEL_DS);
3333 err = sock->ops->ioctl(sock, cmd, arg);
3334 set_fs(oldfs);
3336 return err;
3338 EXPORT_SYMBOL(kernel_sock_ioctl);
3340 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3342 return sock->ops->shutdown(sock, how);
3344 EXPORT_SYMBOL(kernel_sock_shutdown);