Merge branch 'battery' into release
[linux-2.6/btrfs-unstable.git] / drivers / md / raid1.c
blobff7ed33359959e39747509e4a16a24a0c584b292
1 /*
2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/delay.h>
35 #include <linux/blkdev.h>
36 #include <linux/seq_file.h>
37 #include "md.h"
38 #include "raid1.h"
39 #include "bitmap.h"
41 #define DEBUG 0
42 #if DEBUG
43 #define PRINTK(x...) printk(x)
44 #else
45 #define PRINTK(x...)
46 #endif
49 * Number of guaranteed r1bios in case of extreme VM load:
51 #define NR_RAID1_BIOS 256
54 static void unplug_slaves(mddev_t *mddev);
56 static void allow_barrier(conf_t *conf);
57 static void lower_barrier(conf_t *conf);
59 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
61 struct pool_info *pi = data;
62 r1bio_t *r1_bio;
63 int size = offsetof(r1bio_t, bios[pi->raid_disks]);
65 /* allocate a r1bio with room for raid_disks entries in the bios array */
66 r1_bio = kzalloc(size, gfp_flags);
67 if (!r1_bio)
68 unplug_slaves(pi->mddev);
70 return r1_bio;
73 static void r1bio_pool_free(void *r1_bio, void *data)
75 kfree(r1_bio);
78 #define RESYNC_BLOCK_SIZE (64*1024)
79 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
80 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
81 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
82 #define RESYNC_WINDOW (2048*1024)
84 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
86 struct pool_info *pi = data;
87 struct page *page;
88 r1bio_t *r1_bio;
89 struct bio *bio;
90 int i, j;
92 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
93 if (!r1_bio) {
94 unplug_slaves(pi->mddev);
95 return NULL;
99 * Allocate bios : 1 for reading, n-1 for writing
101 for (j = pi->raid_disks ; j-- ; ) {
102 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
103 if (!bio)
104 goto out_free_bio;
105 r1_bio->bios[j] = bio;
108 * Allocate RESYNC_PAGES data pages and attach them to
109 * the first bio.
110 * If this is a user-requested check/repair, allocate
111 * RESYNC_PAGES for each bio.
113 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
114 j = pi->raid_disks;
115 else
116 j = 1;
117 while(j--) {
118 bio = r1_bio->bios[j];
119 for (i = 0; i < RESYNC_PAGES; i++) {
120 page = alloc_page(gfp_flags);
121 if (unlikely(!page))
122 goto out_free_pages;
124 bio->bi_io_vec[i].bv_page = page;
125 bio->bi_vcnt = i+1;
128 /* If not user-requests, copy the page pointers to all bios */
129 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
130 for (i=0; i<RESYNC_PAGES ; i++)
131 for (j=1; j<pi->raid_disks; j++)
132 r1_bio->bios[j]->bi_io_vec[i].bv_page =
133 r1_bio->bios[0]->bi_io_vec[i].bv_page;
136 r1_bio->master_bio = NULL;
138 return r1_bio;
140 out_free_pages:
141 for (j=0 ; j < pi->raid_disks; j++)
142 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
143 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
144 j = -1;
145 out_free_bio:
146 while ( ++j < pi->raid_disks )
147 bio_put(r1_bio->bios[j]);
148 r1bio_pool_free(r1_bio, data);
149 return NULL;
152 static void r1buf_pool_free(void *__r1_bio, void *data)
154 struct pool_info *pi = data;
155 int i,j;
156 r1bio_t *r1bio = __r1_bio;
158 for (i = 0; i < RESYNC_PAGES; i++)
159 for (j = pi->raid_disks; j-- ;) {
160 if (j == 0 ||
161 r1bio->bios[j]->bi_io_vec[i].bv_page !=
162 r1bio->bios[0]->bi_io_vec[i].bv_page)
163 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
165 for (i=0 ; i < pi->raid_disks; i++)
166 bio_put(r1bio->bios[i]);
168 r1bio_pool_free(r1bio, data);
171 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
173 int i;
175 for (i = 0; i < conf->raid_disks; i++) {
176 struct bio **bio = r1_bio->bios + i;
177 if (*bio && *bio != IO_BLOCKED)
178 bio_put(*bio);
179 *bio = NULL;
183 static void free_r1bio(r1bio_t *r1_bio)
185 conf_t *conf = r1_bio->mddev->private;
188 * Wake up any possible resync thread that waits for the device
189 * to go idle.
191 allow_barrier(conf);
193 put_all_bios(conf, r1_bio);
194 mempool_free(r1_bio, conf->r1bio_pool);
197 static void put_buf(r1bio_t *r1_bio)
199 conf_t *conf = r1_bio->mddev->private;
200 int i;
202 for (i=0; i<conf->raid_disks; i++) {
203 struct bio *bio = r1_bio->bios[i];
204 if (bio->bi_end_io)
205 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208 mempool_free(r1_bio, conf->r1buf_pool);
210 lower_barrier(conf);
213 static void reschedule_retry(r1bio_t *r1_bio)
215 unsigned long flags;
216 mddev_t *mddev = r1_bio->mddev;
217 conf_t *conf = mddev->private;
219 spin_lock_irqsave(&conf->device_lock, flags);
220 list_add(&r1_bio->retry_list, &conf->retry_list);
221 conf->nr_queued ++;
222 spin_unlock_irqrestore(&conf->device_lock, flags);
224 wake_up(&conf->wait_barrier);
225 md_wakeup_thread(mddev->thread);
229 * raid_end_bio_io() is called when we have finished servicing a mirrored
230 * operation and are ready to return a success/failure code to the buffer
231 * cache layer.
233 static void raid_end_bio_io(r1bio_t *r1_bio)
235 struct bio *bio = r1_bio->master_bio;
237 /* if nobody has done the final endio yet, do it now */
238 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
239 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
240 (bio_data_dir(bio) == WRITE) ? "write" : "read",
241 (unsigned long long) bio->bi_sector,
242 (unsigned long long) bio->bi_sector +
243 (bio->bi_size >> 9) - 1);
245 bio_endio(bio,
246 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
248 free_r1bio(r1_bio);
252 * Update disk head position estimator based on IRQ completion info.
254 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
256 conf_t *conf = r1_bio->mddev->private;
258 conf->mirrors[disk].head_position =
259 r1_bio->sector + (r1_bio->sectors);
262 static void raid1_end_read_request(struct bio *bio, int error)
264 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
265 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
266 int mirror;
267 conf_t *conf = r1_bio->mddev->private;
269 mirror = r1_bio->read_disk;
271 * this branch is our 'one mirror IO has finished' event handler:
273 update_head_pos(mirror, r1_bio);
275 if (uptodate)
276 set_bit(R1BIO_Uptodate, &r1_bio->state);
277 else {
278 /* If all other devices have failed, we want to return
279 * the error upwards rather than fail the last device.
280 * Here we redefine "uptodate" to mean "Don't want to retry"
282 unsigned long flags;
283 spin_lock_irqsave(&conf->device_lock, flags);
284 if (r1_bio->mddev->degraded == conf->raid_disks ||
285 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
286 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
287 uptodate = 1;
288 spin_unlock_irqrestore(&conf->device_lock, flags);
291 if (uptodate)
292 raid_end_bio_io(r1_bio);
293 else {
295 * oops, read error:
297 char b[BDEVNAME_SIZE];
298 if (printk_ratelimit())
299 printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
300 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
301 reschedule_retry(r1_bio);
304 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
307 static void raid1_end_write_request(struct bio *bio, int error)
309 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
310 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
311 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
312 conf_t *conf = r1_bio->mddev->private;
313 struct bio *to_put = NULL;
316 for (mirror = 0; mirror < conf->raid_disks; mirror++)
317 if (r1_bio->bios[mirror] == bio)
318 break;
320 if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
321 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
322 set_bit(R1BIO_BarrierRetry, &r1_bio->state);
323 r1_bio->mddev->barriers_work = 0;
324 /* Don't rdev_dec_pending in this branch - keep it for the retry */
325 } else {
327 * this branch is our 'one mirror IO has finished' event handler:
329 r1_bio->bios[mirror] = NULL;
330 to_put = bio;
331 if (!uptodate) {
332 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
333 /* an I/O failed, we can't clear the bitmap */
334 set_bit(R1BIO_Degraded, &r1_bio->state);
335 } else
337 * Set R1BIO_Uptodate in our master bio, so that
338 * we will return a good error code for to the higher
339 * levels even if IO on some other mirrored buffer fails.
341 * The 'master' represents the composite IO operation to
342 * user-side. So if something waits for IO, then it will
343 * wait for the 'master' bio.
345 set_bit(R1BIO_Uptodate, &r1_bio->state);
347 update_head_pos(mirror, r1_bio);
349 if (behind) {
350 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
351 atomic_dec(&r1_bio->behind_remaining);
353 /* In behind mode, we ACK the master bio once the I/O has safely
354 * reached all non-writemostly disks. Setting the Returned bit
355 * ensures that this gets done only once -- we don't ever want to
356 * return -EIO here, instead we'll wait */
358 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
359 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
360 /* Maybe we can return now */
361 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
362 struct bio *mbio = r1_bio->master_bio;
363 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
364 (unsigned long long) mbio->bi_sector,
365 (unsigned long long) mbio->bi_sector +
366 (mbio->bi_size >> 9) - 1);
367 bio_endio(mbio, 0);
371 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
375 * Let's see if all mirrored write operations have finished
376 * already.
378 if (atomic_dec_and_test(&r1_bio->remaining)) {
379 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
380 reschedule_retry(r1_bio);
381 else {
382 /* it really is the end of this request */
383 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
384 /* free extra copy of the data pages */
385 int i = bio->bi_vcnt;
386 while (i--)
387 safe_put_page(bio->bi_io_vec[i].bv_page);
389 /* clear the bitmap if all writes complete successfully */
390 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
391 r1_bio->sectors,
392 !test_bit(R1BIO_Degraded, &r1_bio->state),
393 behind);
394 md_write_end(r1_bio->mddev);
395 raid_end_bio_io(r1_bio);
399 if (to_put)
400 bio_put(to_put);
405 * This routine returns the disk from which the requested read should
406 * be done. There is a per-array 'next expected sequential IO' sector
407 * number - if this matches on the next IO then we use the last disk.
408 * There is also a per-disk 'last know head position' sector that is
409 * maintained from IRQ contexts, both the normal and the resync IO
410 * completion handlers update this position correctly. If there is no
411 * perfect sequential match then we pick the disk whose head is closest.
413 * If there are 2 mirrors in the same 2 devices, performance degrades
414 * because position is mirror, not device based.
416 * The rdev for the device selected will have nr_pending incremented.
418 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
420 const unsigned long this_sector = r1_bio->sector;
421 int new_disk = conf->last_used, disk = new_disk;
422 int wonly_disk = -1;
423 const int sectors = r1_bio->sectors;
424 sector_t new_distance, current_distance;
425 mdk_rdev_t *rdev;
427 rcu_read_lock();
429 * Check if we can balance. We can balance on the whole
430 * device if no resync is going on, or below the resync window.
431 * We take the first readable disk when above the resync window.
433 retry:
434 if (conf->mddev->recovery_cp < MaxSector &&
435 (this_sector + sectors >= conf->next_resync)) {
436 /* Choose the first operation device, for consistancy */
437 new_disk = 0;
439 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
440 r1_bio->bios[new_disk] == IO_BLOCKED ||
441 !rdev || !test_bit(In_sync, &rdev->flags)
442 || test_bit(WriteMostly, &rdev->flags);
443 rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
445 if (rdev && test_bit(In_sync, &rdev->flags) &&
446 r1_bio->bios[new_disk] != IO_BLOCKED)
447 wonly_disk = new_disk;
449 if (new_disk == conf->raid_disks - 1) {
450 new_disk = wonly_disk;
451 break;
454 goto rb_out;
458 /* make sure the disk is operational */
459 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
460 r1_bio->bios[new_disk] == IO_BLOCKED ||
461 !rdev || !test_bit(In_sync, &rdev->flags) ||
462 test_bit(WriteMostly, &rdev->flags);
463 rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
465 if (rdev && test_bit(In_sync, &rdev->flags) &&
466 r1_bio->bios[new_disk] != IO_BLOCKED)
467 wonly_disk = new_disk;
469 if (new_disk <= 0)
470 new_disk = conf->raid_disks;
471 new_disk--;
472 if (new_disk == disk) {
473 new_disk = wonly_disk;
474 break;
478 if (new_disk < 0)
479 goto rb_out;
481 disk = new_disk;
482 /* now disk == new_disk == starting point for search */
485 * Don't change to another disk for sequential reads:
487 if (conf->next_seq_sect == this_sector)
488 goto rb_out;
489 if (this_sector == conf->mirrors[new_disk].head_position)
490 goto rb_out;
492 current_distance = abs(this_sector - conf->mirrors[disk].head_position);
494 /* Find the disk whose head is closest */
496 do {
497 if (disk <= 0)
498 disk = conf->raid_disks;
499 disk--;
501 rdev = rcu_dereference(conf->mirrors[disk].rdev);
503 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
504 !test_bit(In_sync, &rdev->flags) ||
505 test_bit(WriteMostly, &rdev->flags))
506 continue;
508 if (!atomic_read(&rdev->nr_pending)) {
509 new_disk = disk;
510 break;
512 new_distance = abs(this_sector - conf->mirrors[disk].head_position);
513 if (new_distance < current_distance) {
514 current_distance = new_distance;
515 new_disk = disk;
517 } while (disk != conf->last_used);
519 rb_out:
522 if (new_disk >= 0) {
523 rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
524 if (!rdev)
525 goto retry;
526 atomic_inc(&rdev->nr_pending);
527 if (!test_bit(In_sync, &rdev->flags)) {
528 /* cannot risk returning a device that failed
529 * before we inc'ed nr_pending
531 rdev_dec_pending(rdev, conf->mddev);
532 goto retry;
534 conf->next_seq_sect = this_sector + sectors;
535 conf->last_used = new_disk;
537 rcu_read_unlock();
539 return new_disk;
542 static void unplug_slaves(mddev_t *mddev)
544 conf_t *conf = mddev->private;
545 int i;
547 rcu_read_lock();
548 for (i=0; i<mddev->raid_disks; i++) {
549 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
550 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
551 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
553 atomic_inc(&rdev->nr_pending);
554 rcu_read_unlock();
556 blk_unplug(r_queue);
558 rdev_dec_pending(rdev, mddev);
559 rcu_read_lock();
562 rcu_read_unlock();
565 static void raid1_unplug(struct request_queue *q)
567 mddev_t *mddev = q->queuedata;
569 unplug_slaves(mddev);
570 md_wakeup_thread(mddev->thread);
573 static int raid1_congested(void *data, int bits)
575 mddev_t *mddev = data;
576 conf_t *conf = mddev->private;
577 int i, ret = 0;
579 rcu_read_lock();
580 for (i = 0; i < mddev->raid_disks; i++) {
581 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
582 if (rdev && !test_bit(Faulty, &rdev->flags)) {
583 struct request_queue *q = bdev_get_queue(rdev->bdev);
585 /* Note the '|| 1' - when read_balance prefers
586 * non-congested targets, it can be removed
588 if ((bits & (1<<BDI_async_congested)) || 1)
589 ret |= bdi_congested(&q->backing_dev_info, bits);
590 else
591 ret &= bdi_congested(&q->backing_dev_info, bits);
594 rcu_read_unlock();
595 return ret;
599 static int flush_pending_writes(conf_t *conf)
601 /* Any writes that have been queued but are awaiting
602 * bitmap updates get flushed here.
603 * We return 1 if any requests were actually submitted.
605 int rv = 0;
607 spin_lock_irq(&conf->device_lock);
609 if (conf->pending_bio_list.head) {
610 struct bio *bio;
611 bio = bio_list_get(&conf->pending_bio_list);
612 blk_remove_plug(conf->mddev->queue);
613 spin_unlock_irq(&conf->device_lock);
614 /* flush any pending bitmap writes to
615 * disk before proceeding w/ I/O */
616 bitmap_unplug(conf->mddev->bitmap);
618 while (bio) { /* submit pending writes */
619 struct bio *next = bio->bi_next;
620 bio->bi_next = NULL;
621 generic_make_request(bio);
622 bio = next;
624 rv = 1;
625 } else
626 spin_unlock_irq(&conf->device_lock);
627 return rv;
630 /* Barriers....
631 * Sometimes we need to suspend IO while we do something else,
632 * either some resync/recovery, or reconfigure the array.
633 * To do this we raise a 'barrier'.
634 * The 'barrier' is a counter that can be raised multiple times
635 * to count how many activities are happening which preclude
636 * normal IO.
637 * We can only raise the barrier if there is no pending IO.
638 * i.e. if nr_pending == 0.
639 * We choose only to raise the barrier if no-one is waiting for the
640 * barrier to go down. This means that as soon as an IO request
641 * is ready, no other operations which require a barrier will start
642 * until the IO request has had a chance.
644 * So: regular IO calls 'wait_barrier'. When that returns there
645 * is no backgroup IO happening, It must arrange to call
646 * allow_barrier when it has finished its IO.
647 * backgroup IO calls must call raise_barrier. Once that returns
648 * there is no normal IO happeing. It must arrange to call
649 * lower_barrier when the particular background IO completes.
651 #define RESYNC_DEPTH 32
653 static void raise_barrier(conf_t *conf)
655 spin_lock_irq(&conf->resync_lock);
657 /* Wait until no block IO is waiting */
658 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
659 conf->resync_lock,
660 raid1_unplug(conf->mddev->queue));
662 /* block any new IO from starting */
663 conf->barrier++;
665 /* No wait for all pending IO to complete */
666 wait_event_lock_irq(conf->wait_barrier,
667 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
668 conf->resync_lock,
669 raid1_unplug(conf->mddev->queue));
671 spin_unlock_irq(&conf->resync_lock);
674 static void lower_barrier(conf_t *conf)
676 unsigned long flags;
677 spin_lock_irqsave(&conf->resync_lock, flags);
678 conf->barrier--;
679 spin_unlock_irqrestore(&conf->resync_lock, flags);
680 wake_up(&conf->wait_barrier);
683 static void wait_barrier(conf_t *conf)
685 spin_lock_irq(&conf->resync_lock);
686 if (conf->barrier) {
687 conf->nr_waiting++;
688 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
689 conf->resync_lock,
690 raid1_unplug(conf->mddev->queue));
691 conf->nr_waiting--;
693 conf->nr_pending++;
694 spin_unlock_irq(&conf->resync_lock);
697 static void allow_barrier(conf_t *conf)
699 unsigned long flags;
700 spin_lock_irqsave(&conf->resync_lock, flags);
701 conf->nr_pending--;
702 spin_unlock_irqrestore(&conf->resync_lock, flags);
703 wake_up(&conf->wait_barrier);
706 static void freeze_array(conf_t *conf)
708 /* stop syncio and normal IO and wait for everything to
709 * go quite.
710 * We increment barrier and nr_waiting, and then
711 * wait until nr_pending match nr_queued+1
712 * This is called in the context of one normal IO request
713 * that has failed. Thus any sync request that might be pending
714 * will be blocked by nr_pending, and we need to wait for
715 * pending IO requests to complete or be queued for re-try.
716 * Thus the number queued (nr_queued) plus this request (1)
717 * must match the number of pending IOs (nr_pending) before
718 * we continue.
720 spin_lock_irq(&conf->resync_lock);
721 conf->barrier++;
722 conf->nr_waiting++;
723 wait_event_lock_irq(conf->wait_barrier,
724 conf->nr_pending == conf->nr_queued+1,
725 conf->resync_lock,
726 ({ flush_pending_writes(conf);
727 raid1_unplug(conf->mddev->queue); }));
728 spin_unlock_irq(&conf->resync_lock);
730 static void unfreeze_array(conf_t *conf)
732 /* reverse the effect of the freeze */
733 spin_lock_irq(&conf->resync_lock);
734 conf->barrier--;
735 conf->nr_waiting--;
736 wake_up(&conf->wait_barrier);
737 spin_unlock_irq(&conf->resync_lock);
741 /* duplicate the data pages for behind I/O */
742 static struct page **alloc_behind_pages(struct bio *bio)
744 int i;
745 struct bio_vec *bvec;
746 struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
747 GFP_NOIO);
748 if (unlikely(!pages))
749 goto do_sync_io;
751 bio_for_each_segment(bvec, bio, i) {
752 pages[i] = alloc_page(GFP_NOIO);
753 if (unlikely(!pages[i]))
754 goto do_sync_io;
755 memcpy(kmap(pages[i]) + bvec->bv_offset,
756 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
757 kunmap(pages[i]);
758 kunmap(bvec->bv_page);
761 return pages;
763 do_sync_io:
764 if (pages)
765 for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
766 put_page(pages[i]);
767 kfree(pages);
768 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
769 return NULL;
772 static int make_request(struct request_queue *q, struct bio * bio)
774 mddev_t *mddev = q->queuedata;
775 conf_t *conf = mddev->private;
776 mirror_info_t *mirror;
777 r1bio_t *r1_bio;
778 struct bio *read_bio;
779 int i, targets = 0, disks;
780 struct bitmap *bitmap;
781 unsigned long flags;
782 struct bio_list bl;
783 struct page **behind_pages = NULL;
784 const int rw = bio_data_dir(bio);
785 const bool do_sync = bio_rw_flagged(bio, BIO_RW_SYNCIO);
786 int cpu;
787 bool do_barriers;
788 mdk_rdev_t *blocked_rdev;
791 * Register the new request and wait if the reconstruction
792 * thread has put up a bar for new requests.
793 * Continue immediately if no resync is active currently.
794 * We test barriers_work *after* md_write_start as md_write_start
795 * may cause the first superblock write, and that will check out
796 * if barriers work.
799 md_write_start(mddev, bio); /* wait on superblock update early */
801 if (unlikely(!mddev->barriers_work &&
802 bio_rw_flagged(bio, BIO_RW_BARRIER))) {
803 if (rw == WRITE)
804 md_write_end(mddev);
805 bio_endio(bio, -EOPNOTSUPP);
806 return 0;
809 wait_barrier(conf);
811 bitmap = mddev->bitmap;
813 cpu = part_stat_lock();
814 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
815 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
816 bio_sectors(bio));
817 part_stat_unlock();
820 * make_request() can abort the operation when READA is being
821 * used and no empty request is available.
824 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
826 r1_bio->master_bio = bio;
827 r1_bio->sectors = bio->bi_size >> 9;
828 r1_bio->state = 0;
829 r1_bio->mddev = mddev;
830 r1_bio->sector = bio->bi_sector;
832 if (rw == READ) {
834 * read balancing logic:
836 int rdisk = read_balance(conf, r1_bio);
838 if (rdisk < 0) {
839 /* couldn't find anywhere to read from */
840 raid_end_bio_io(r1_bio);
841 return 0;
843 mirror = conf->mirrors + rdisk;
845 r1_bio->read_disk = rdisk;
847 read_bio = bio_clone(bio, GFP_NOIO);
849 r1_bio->bios[rdisk] = read_bio;
851 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
852 read_bio->bi_bdev = mirror->rdev->bdev;
853 read_bio->bi_end_io = raid1_end_read_request;
854 read_bio->bi_rw = READ | do_sync;
855 read_bio->bi_private = r1_bio;
857 generic_make_request(read_bio);
858 return 0;
862 * WRITE:
864 /* first select target devices under spinlock and
865 * inc refcount on their rdev. Record them by setting
866 * bios[x] to bio
868 disks = conf->raid_disks;
869 #if 0
870 { static int first=1;
871 if (first) printk("First Write sector %llu disks %d\n",
872 (unsigned long long)r1_bio->sector, disks);
873 first = 0;
875 #endif
876 retry_write:
877 blocked_rdev = NULL;
878 rcu_read_lock();
879 for (i = 0; i < disks; i++) {
880 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
881 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
882 atomic_inc(&rdev->nr_pending);
883 blocked_rdev = rdev;
884 break;
886 if (rdev && !test_bit(Faulty, &rdev->flags)) {
887 atomic_inc(&rdev->nr_pending);
888 if (test_bit(Faulty, &rdev->flags)) {
889 rdev_dec_pending(rdev, mddev);
890 r1_bio->bios[i] = NULL;
891 } else
892 r1_bio->bios[i] = bio;
893 targets++;
894 } else
895 r1_bio->bios[i] = NULL;
897 rcu_read_unlock();
899 if (unlikely(blocked_rdev)) {
900 /* Wait for this device to become unblocked */
901 int j;
903 for (j = 0; j < i; j++)
904 if (r1_bio->bios[j])
905 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
907 allow_barrier(conf);
908 md_wait_for_blocked_rdev(blocked_rdev, mddev);
909 wait_barrier(conf);
910 goto retry_write;
913 BUG_ON(targets == 0); /* we never fail the last device */
915 if (targets < conf->raid_disks) {
916 /* array is degraded, we will not clear the bitmap
917 * on I/O completion (see raid1_end_write_request) */
918 set_bit(R1BIO_Degraded, &r1_bio->state);
921 /* do behind I/O ? */
922 if (bitmap &&
923 atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
924 (behind_pages = alloc_behind_pages(bio)) != NULL)
925 set_bit(R1BIO_BehindIO, &r1_bio->state);
927 atomic_set(&r1_bio->remaining, 0);
928 atomic_set(&r1_bio->behind_remaining, 0);
930 do_barriers = bio_rw_flagged(bio, BIO_RW_BARRIER);
931 if (do_barriers)
932 set_bit(R1BIO_Barrier, &r1_bio->state);
934 bio_list_init(&bl);
935 for (i = 0; i < disks; i++) {
936 struct bio *mbio;
937 if (!r1_bio->bios[i])
938 continue;
940 mbio = bio_clone(bio, GFP_NOIO);
941 r1_bio->bios[i] = mbio;
943 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
944 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
945 mbio->bi_end_io = raid1_end_write_request;
946 mbio->bi_rw = WRITE | do_barriers | do_sync;
947 mbio->bi_private = r1_bio;
949 if (behind_pages) {
950 struct bio_vec *bvec;
951 int j;
953 /* Yes, I really want the '__' version so that
954 * we clear any unused pointer in the io_vec, rather
955 * than leave them unchanged. This is important
956 * because when we come to free the pages, we won't
957 * know the originial bi_idx, so we just free
958 * them all
960 __bio_for_each_segment(bvec, mbio, j, 0)
961 bvec->bv_page = behind_pages[j];
962 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
963 atomic_inc(&r1_bio->behind_remaining);
966 atomic_inc(&r1_bio->remaining);
968 bio_list_add(&bl, mbio);
970 kfree(behind_pages); /* the behind pages are attached to the bios now */
972 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
973 test_bit(R1BIO_BehindIO, &r1_bio->state));
974 spin_lock_irqsave(&conf->device_lock, flags);
975 bio_list_merge(&conf->pending_bio_list, &bl);
976 bio_list_init(&bl);
978 blk_plug_device(mddev->queue);
979 spin_unlock_irqrestore(&conf->device_lock, flags);
981 /* In case raid1d snuck into freeze_array */
982 wake_up(&conf->wait_barrier);
984 if (do_sync)
985 md_wakeup_thread(mddev->thread);
986 #if 0
987 while ((bio = bio_list_pop(&bl)) != NULL)
988 generic_make_request(bio);
989 #endif
991 return 0;
994 static void status(struct seq_file *seq, mddev_t *mddev)
996 conf_t *conf = mddev->private;
997 int i;
999 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1000 conf->raid_disks - mddev->degraded);
1001 rcu_read_lock();
1002 for (i = 0; i < conf->raid_disks; i++) {
1003 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1004 seq_printf(seq, "%s",
1005 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1007 rcu_read_unlock();
1008 seq_printf(seq, "]");
1012 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1014 char b[BDEVNAME_SIZE];
1015 conf_t *conf = mddev->private;
1018 * If it is not operational, then we have already marked it as dead
1019 * else if it is the last working disks, ignore the error, let the
1020 * next level up know.
1021 * else mark the drive as failed
1023 if (test_bit(In_sync, &rdev->flags)
1024 && (conf->raid_disks - mddev->degraded) == 1) {
1026 * Don't fail the drive, act as though we were just a
1027 * normal single drive.
1028 * However don't try a recovery from this drive as
1029 * it is very likely to fail.
1031 mddev->recovery_disabled = 1;
1032 return;
1034 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1035 unsigned long flags;
1036 spin_lock_irqsave(&conf->device_lock, flags);
1037 mddev->degraded++;
1038 set_bit(Faulty, &rdev->flags);
1039 spin_unlock_irqrestore(&conf->device_lock, flags);
1041 * if recovery is running, make sure it aborts.
1043 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1044 } else
1045 set_bit(Faulty, &rdev->flags);
1046 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1047 printk(KERN_ALERT "raid1: Disk failure on %s, disabling device.\n"
1048 "raid1: Operation continuing on %d devices.\n",
1049 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1052 static void print_conf(conf_t *conf)
1054 int i;
1056 printk("RAID1 conf printout:\n");
1057 if (!conf) {
1058 printk("(!conf)\n");
1059 return;
1061 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1062 conf->raid_disks);
1064 rcu_read_lock();
1065 for (i = 0; i < conf->raid_disks; i++) {
1066 char b[BDEVNAME_SIZE];
1067 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1068 if (rdev)
1069 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1070 i, !test_bit(In_sync, &rdev->flags),
1071 !test_bit(Faulty, &rdev->flags),
1072 bdevname(rdev->bdev,b));
1074 rcu_read_unlock();
1077 static void close_sync(conf_t *conf)
1079 wait_barrier(conf);
1080 allow_barrier(conf);
1082 mempool_destroy(conf->r1buf_pool);
1083 conf->r1buf_pool = NULL;
1086 static int raid1_spare_active(mddev_t *mddev)
1088 int i;
1089 conf_t *conf = mddev->private;
1092 * Find all failed disks within the RAID1 configuration
1093 * and mark them readable.
1094 * Called under mddev lock, so rcu protection not needed.
1096 for (i = 0; i < conf->raid_disks; i++) {
1097 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1098 if (rdev
1099 && !test_bit(Faulty, &rdev->flags)
1100 && !test_and_set_bit(In_sync, &rdev->flags)) {
1101 unsigned long flags;
1102 spin_lock_irqsave(&conf->device_lock, flags);
1103 mddev->degraded--;
1104 spin_unlock_irqrestore(&conf->device_lock, flags);
1108 print_conf(conf);
1109 return 0;
1113 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1115 conf_t *conf = mddev->private;
1116 int err = -EEXIST;
1117 int mirror = 0;
1118 mirror_info_t *p;
1119 int first = 0;
1120 int last = mddev->raid_disks - 1;
1122 if (rdev->raid_disk >= 0)
1123 first = last = rdev->raid_disk;
1125 for (mirror = first; mirror <= last; mirror++)
1126 if ( !(p=conf->mirrors+mirror)->rdev) {
1128 disk_stack_limits(mddev->gendisk, rdev->bdev,
1129 rdev->data_offset << 9);
1130 /* as we don't honour merge_bvec_fn, we must never risk
1131 * violating it, so limit ->max_sector to one PAGE, as
1132 * a one page request is never in violation.
1134 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1135 queue_max_sectors(mddev->queue) > (PAGE_SIZE>>9))
1136 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1138 p->head_position = 0;
1139 rdev->raid_disk = mirror;
1140 err = 0;
1141 /* As all devices are equivalent, we don't need a full recovery
1142 * if this was recently any drive of the array
1144 if (rdev->saved_raid_disk < 0)
1145 conf->fullsync = 1;
1146 rcu_assign_pointer(p->rdev, rdev);
1147 break;
1149 md_integrity_add_rdev(rdev, mddev);
1150 print_conf(conf);
1151 return err;
1154 static int raid1_remove_disk(mddev_t *mddev, int number)
1156 conf_t *conf = mddev->private;
1157 int err = 0;
1158 mdk_rdev_t *rdev;
1159 mirror_info_t *p = conf->mirrors+ number;
1161 print_conf(conf);
1162 rdev = p->rdev;
1163 if (rdev) {
1164 if (test_bit(In_sync, &rdev->flags) ||
1165 atomic_read(&rdev->nr_pending)) {
1166 err = -EBUSY;
1167 goto abort;
1169 /* Only remove non-faulty devices is recovery
1170 * is not possible.
1172 if (!test_bit(Faulty, &rdev->flags) &&
1173 mddev->degraded < conf->raid_disks) {
1174 err = -EBUSY;
1175 goto abort;
1177 p->rdev = NULL;
1178 synchronize_rcu();
1179 if (atomic_read(&rdev->nr_pending)) {
1180 /* lost the race, try later */
1181 err = -EBUSY;
1182 p->rdev = rdev;
1183 goto abort;
1185 md_integrity_register(mddev);
1187 abort:
1189 print_conf(conf);
1190 return err;
1194 static void end_sync_read(struct bio *bio, int error)
1196 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1197 int i;
1199 for (i=r1_bio->mddev->raid_disks; i--; )
1200 if (r1_bio->bios[i] == bio)
1201 break;
1202 BUG_ON(i < 0);
1203 update_head_pos(i, r1_bio);
1205 * we have read a block, now it needs to be re-written,
1206 * or re-read if the read failed.
1207 * We don't do much here, just schedule handling by raid1d
1209 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1210 set_bit(R1BIO_Uptodate, &r1_bio->state);
1212 if (atomic_dec_and_test(&r1_bio->remaining))
1213 reschedule_retry(r1_bio);
1216 static void end_sync_write(struct bio *bio, int error)
1218 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1219 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1220 mddev_t *mddev = r1_bio->mddev;
1221 conf_t *conf = mddev->private;
1222 int i;
1223 int mirror=0;
1225 for (i = 0; i < conf->raid_disks; i++)
1226 if (r1_bio->bios[i] == bio) {
1227 mirror = i;
1228 break;
1230 if (!uptodate) {
1231 int sync_blocks = 0;
1232 sector_t s = r1_bio->sector;
1233 long sectors_to_go = r1_bio->sectors;
1234 /* make sure these bits doesn't get cleared. */
1235 do {
1236 bitmap_end_sync(mddev->bitmap, s,
1237 &sync_blocks, 1);
1238 s += sync_blocks;
1239 sectors_to_go -= sync_blocks;
1240 } while (sectors_to_go > 0);
1241 md_error(mddev, conf->mirrors[mirror].rdev);
1244 update_head_pos(mirror, r1_bio);
1246 if (atomic_dec_and_test(&r1_bio->remaining)) {
1247 sector_t s = r1_bio->sectors;
1248 put_buf(r1_bio);
1249 md_done_sync(mddev, s, uptodate);
1253 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1255 conf_t *conf = mddev->private;
1256 int i;
1257 int disks = conf->raid_disks;
1258 struct bio *bio, *wbio;
1260 bio = r1_bio->bios[r1_bio->read_disk];
1263 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1264 /* We have read all readable devices. If we haven't
1265 * got the block, then there is no hope left.
1266 * If we have, then we want to do a comparison
1267 * and skip the write if everything is the same.
1268 * If any blocks failed to read, then we need to
1269 * attempt an over-write
1271 int primary;
1272 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1273 for (i=0; i<mddev->raid_disks; i++)
1274 if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1275 md_error(mddev, conf->mirrors[i].rdev);
1277 md_done_sync(mddev, r1_bio->sectors, 1);
1278 put_buf(r1_bio);
1279 return;
1281 for (primary=0; primary<mddev->raid_disks; primary++)
1282 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1283 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1284 r1_bio->bios[primary]->bi_end_io = NULL;
1285 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1286 break;
1288 r1_bio->read_disk = primary;
1289 for (i=0; i<mddev->raid_disks; i++)
1290 if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
1291 int j;
1292 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1293 struct bio *pbio = r1_bio->bios[primary];
1294 struct bio *sbio = r1_bio->bios[i];
1296 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1297 for (j = vcnt; j-- ; ) {
1298 struct page *p, *s;
1299 p = pbio->bi_io_vec[j].bv_page;
1300 s = sbio->bi_io_vec[j].bv_page;
1301 if (memcmp(page_address(p),
1302 page_address(s),
1303 PAGE_SIZE))
1304 break;
1306 } else
1307 j = 0;
1308 if (j >= 0)
1309 mddev->resync_mismatches += r1_bio->sectors;
1310 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1311 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1312 sbio->bi_end_io = NULL;
1313 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1314 } else {
1315 /* fixup the bio for reuse */
1316 int size;
1317 sbio->bi_vcnt = vcnt;
1318 sbio->bi_size = r1_bio->sectors << 9;
1319 sbio->bi_idx = 0;
1320 sbio->bi_phys_segments = 0;
1321 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1322 sbio->bi_flags |= 1 << BIO_UPTODATE;
1323 sbio->bi_next = NULL;
1324 sbio->bi_sector = r1_bio->sector +
1325 conf->mirrors[i].rdev->data_offset;
1326 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1327 size = sbio->bi_size;
1328 for (j = 0; j < vcnt ; j++) {
1329 struct bio_vec *bi;
1330 bi = &sbio->bi_io_vec[j];
1331 bi->bv_offset = 0;
1332 if (size > PAGE_SIZE)
1333 bi->bv_len = PAGE_SIZE;
1334 else
1335 bi->bv_len = size;
1336 size -= PAGE_SIZE;
1337 memcpy(page_address(bi->bv_page),
1338 page_address(pbio->bi_io_vec[j].bv_page),
1339 PAGE_SIZE);
1345 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1346 /* ouch - failed to read all of that.
1347 * Try some synchronous reads of other devices to get
1348 * good data, much like with normal read errors. Only
1349 * read into the pages we already have so we don't
1350 * need to re-issue the read request.
1351 * We don't need to freeze the array, because being in an
1352 * active sync request, there is no normal IO, and
1353 * no overlapping syncs.
1355 sector_t sect = r1_bio->sector;
1356 int sectors = r1_bio->sectors;
1357 int idx = 0;
1359 while(sectors) {
1360 int s = sectors;
1361 int d = r1_bio->read_disk;
1362 int success = 0;
1363 mdk_rdev_t *rdev;
1365 if (s > (PAGE_SIZE>>9))
1366 s = PAGE_SIZE >> 9;
1367 do {
1368 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1369 /* No rcu protection needed here devices
1370 * can only be removed when no resync is
1371 * active, and resync is currently active
1373 rdev = conf->mirrors[d].rdev;
1374 if (sync_page_io(rdev->bdev,
1375 sect + rdev->data_offset,
1376 s<<9,
1377 bio->bi_io_vec[idx].bv_page,
1378 READ)) {
1379 success = 1;
1380 break;
1383 d++;
1384 if (d == conf->raid_disks)
1385 d = 0;
1386 } while (!success && d != r1_bio->read_disk);
1388 if (success) {
1389 int start = d;
1390 /* write it back and re-read */
1391 set_bit(R1BIO_Uptodate, &r1_bio->state);
1392 while (d != r1_bio->read_disk) {
1393 if (d == 0)
1394 d = conf->raid_disks;
1395 d--;
1396 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1397 continue;
1398 rdev = conf->mirrors[d].rdev;
1399 atomic_add(s, &rdev->corrected_errors);
1400 if (sync_page_io(rdev->bdev,
1401 sect + rdev->data_offset,
1402 s<<9,
1403 bio->bi_io_vec[idx].bv_page,
1404 WRITE) == 0)
1405 md_error(mddev, rdev);
1407 d = start;
1408 while (d != r1_bio->read_disk) {
1409 if (d == 0)
1410 d = conf->raid_disks;
1411 d--;
1412 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1413 continue;
1414 rdev = conf->mirrors[d].rdev;
1415 if (sync_page_io(rdev->bdev,
1416 sect + rdev->data_offset,
1417 s<<9,
1418 bio->bi_io_vec[idx].bv_page,
1419 READ) == 0)
1420 md_error(mddev, rdev);
1422 } else {
1423 char b[BDEVNAME_SIZE];
1424 /* Cannot read from anywhere, array is toast */
1425 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1426 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1427 " for block %llu\n",
1428 bdevname(bio->bi_bdev,b),
1429 (unsigned long long)r1_bio->sector);
1430 md_done_sync(mddev, r1_bio->sectors, 0);
1431 put_buf(r1_bio);
1432 return;
1434 sectors -= s;
1435 sect += s;
1436 idx ++;
1441 * schedule writes
1443 atomic_set(&r1_bio->remaining, 1);
1444 for (i = 0; i < disks ; i++) {
1445 wbio = r1_bio->bios[i];
1446 if (wbio->bi_end_io == NULL ||
1447 (wbio->bi_end_io == end_sync_read &&
1448 (i == r1_bio->read_disk ||
1449 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1450 continue;
1452 wbio->bi_rw = WRITE;
1453 wbio->bi_end_io = end_sync_write;
1454 atomic_inc(&r1_bio->remaining);
1455 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1457 generic_make_request(wbio);
1460 if (atomic_dec_and_test(&r1_bio->remaining)) {
1461 /* if we're here, all write(s) have completed, so clean up */
1462 md_done_sync(mddev, r1_bio->sectors, 1);
1463 put_buf(r1_bio);
1468 * This is a kernel thread which:
1470 * 1. Retries failed read operations on working mirrors.
1471 * 2. Updates the raid superblock when problems encounter.
1472 * 3. Performs writes following reads for array syncronising.
1475 static void fix_read_error(conf_t *conf, int read_disk,
1476 sector_t sect, int sectors)
1478 mddev_t *mddev = conf->mddev;
1479 while(sectors) {
1480 int s = sectors;
1481 int d = read_disk;
1482 int success = 0;
1483 int start;
1484 mdk_rdev_t *rdev;
1486 if (s > (PAGE_SIZE>>9))
1487 s = PAGE_SIZE >> 9;
1489 do {
1490 /* Note: no rcu protection needed here
1491 * as this is synchronous in the raid1d thread
1492 * which is the thread that might remove
1493 * a device. If raid1d ever becomes multi-threaded....
1495 rdev = conf->mirrors[d].rdev;
1496 if (rdev &&
1497 test_bit(In_sync, &rdev->flags) &&
1498 sync_page_io(rdev->bdev,
1499 sect + rdev->data_offset,
1500 s<<9,
1501 conf->tmppage, READ))
1502 success = 1;
1503 else {
1504 d++;
1505 if (d == conf->raid_disks)
1506 d = 0;
1508 } while (!success && d != read_disk);
1510 if (!success) {
1511 /* Cannot read from anywhere -- bye bye array */
1512 md_error(mddev, conf->mirrors[read_disk].rdev);
1513 break;
1515 /* write it back and re-read */
1516 start = d;
1517 while (d != read_disk) {
1518 if (d==0)
1519 d = conf->raid_disks;
1520 d--;
1521 rdev = conf->mirrors[d].rdev;
1522 if (rdev &&
1523 test_bit(In_sync, &rdev->flags)) {
1524 if (sync_page_io(rdev->bdev,
1525 sect + rdev->data_offset,
1526 s<<9, conf->tmppage, WRITE)
1527 == 0)
1528 /* Well, this device is dead */
1529 md_error(mddev, rdev);
1532 d = start;
1533 while (d != read_disk) {
1534 char b[BDEVNAME_SIZE];
1535 if (d==0)
1536 d = conf->raid_disks;
1537 d--;
1538 rdev = conf->mirrors[d].rdev;
1539 if (rdev &&
1540 test_bit(In_sync, &rdev->flags)) {
1541 if (sync_page_io(rdev->bdev,
1542 sect + rdev->data_offset,
1543 s<<9, conf->tmppage, READ)
1544 == 0)
1545 /* Well, this device is dead */
1546 md_error(mddev, rdev);
1547 else {
1548 atomic_add(s, &rdev->corrected_errors);
1549 printk(KERN_INFO
1550 "raid1:%s: read error corrected "
1551 "(%d sectors at %llu on %s)\n",
1552 mdname(mddev), s,
1553 (unsigned long long)(sect +
1554 rdev->data_offset),
1555 bdevname(rdev->bdev, b));
1559 sectors -= s;
1560 sect += s;
1564 static void raid1d(mddev_t *mddev)
1566 r1bio_t *r1_bio;
1567 struct bio *bio;
1568 unsigned long flags;
1569 conf_t *conf = mddev->private;
1570 struct list_head *head = &conf->retry_list;
1571 int unplug=0;
1572 mdk_rdev_t *rdev;
1574 md_check_recovery(mddev);
1576 for (;;) {
1577 char b[BDEVNAME_SIZE];
1579 unplug += flush_pending_writes(conf);
1581 spin_lock_irqsave(&conf->device_lock, flags);
1582 if (list_empty(head)) {
1583 spin_unlock_irqrestore(&conf->device_lock, flags);
1584 break;
1586 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1587 list_del(head->prev);
1588 conf->nr_queued--;
1589 spin_unlock_irqrestore(&conf->device_lock, flags);
1591 mddev = r1_bio->mddev;
1592 conf = mddev->private;
1593 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1594 sync_request_write(mddev, r1_bio);
1595 unplug = 1;
1596 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1597 /* some requests in the r1bio were BIO_RW_BARRIER
1598 * requests which failed with -EOPNOTSUPP. Hohumm..
1599 * Better resubmit without the barrier.
1600 * We know which devices to resubmit for, because
1601 * all others have had their bios[] entry cleared.
1602 * We already have a nr_pending reference on these rdevs.
1604 int i;
1605 const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO);
1606 clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1607 clear_bit(R1BIO_Barrier, &r1_bio->state);
1608 for (i=0; i < conf->raid_disks; i++)
1609 if (r1_bio->bios[i])
1610 atomic_inc(&r1_bio->remaining);
1611 for (i=0; i < conf->raid_disks; i++)
1612 if (r1_bio->bios[i]) {
1613 struct bio_vec *bvec;
1614 int j;
1616 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1617 /* copy pages from the failed bio, as
1618 * this might be a write-behind device */
1619 __bio_for_each_segment(bvec, bio, j, 0)
1620 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1621 bio_put(r1_bio->bios[i]);
1622 bio->bi_sector = r1_bio->sector +
1623 conf->mirrors[i].rdev->data_offset;
1624 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1625 bio->bi_end_io = raid1_end_write_request;
1626 bio->bi_rw = WRITE | do_sync;
1627 bio->bi_private = r1_bio;
1628 r1_bio->bios[i] = bio;
1629 generic_make_request(bio);
1631 } else {
1632 int disk;
1634 /* we got a read error. Maybe the drive is bad. Maybe just
1635 * the block and we can fix it.
1636 * We freeze all other IO, and try reading the block from
1637 * other devices. When we find one, we re-write
1638 * and check it that fixes the read error.
1639 * This is all done synchronously while the array is
1640 * frozen
1642 if (mddev->ro == 0) {
1643 freeze_array(conf);
1644 fix_read_error(conf, r1_bio->read_disk,
1645 r1_bio->sector,
1646 r1_bio->sectors);
1647 unfreeze_array(conf);
1650 bio = r1_bio->bios[r1_bio->read_disk];
1651 if ((disk=read_balance(conf, r1_bio)) == -1 ||
1652 disk == r1_bio->read_disk) {
1653 printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1654 " read error for block %llu\n",
1655 bdevname(bio->bi_bdev,b),
1656 (unsigned long long)r1_bio->sector);
1657 raid_end_bio_io(r1_bio);
1658 } else {
1659 const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO);
1660 r1_bio->bios[r1_bio->read_disk] =
1661 mddev->ro ? IO_BLOCKED : NULL;
1662 r1_bio->read_disk = disk;
1663 bio_put(bio);
1664 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1665 r1_bio->bios[r1_bio->read_disk] = bio;
1666 rdev = conf->mirrors[disk].rdev;
1667 if (printk_ratelimit())
1668 printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1669 " another mirror\n",
1670 bdevname(rdev->bdev,b),
1671 (unsigned long long)r1_bio->sector);
1672 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1673 bio->bi_bdev = rdev->bdev;
1674 bio->bi_end_io = raid1_end_read_request;
1675 bio->bi_rw = READ | do_sync;
1676 bio->bi_private = r1_bio;
1677 unplug = 1;
1678 generic_make_request(bio);
1682 if (unplug)
1683 unplug_slaves(mddev);
1687 static int init_resync(conf_t *conf)
1689 int buffs;
1691 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1692 BUG_ON(conf->r1buf_pool);
1693 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1694 conf->poolinfo);
1695 if (!conf->r1buf_pool)
1696 return -ENOMEM;
1697 conf->next_resync = 0;
1698 return 0;
1702 * perform a "sync" on one "block"
1704 * We need to make sure that no normal I/O request - particularly write
1705 * requests - conflict with active sync requests.
1707 * This is achieved by tracking pending requests and a 'barrier' concept
1708 * that can be installed to exclude normal IO requests.
1711 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1713 conf_t *conf = mddev->private;
1714 r1bio_t *r1_bio;
1715 struct bio *bio;
1716 sector_t max_sector, nr_sectors;
1717 int disk = -1;
1718 int i;
1719 int wonly = -1;
1720 int write_targets = 0, read_targets = 0;
1721 int sync_blocks;
1722 int still_degraded = 0;
1724 if (!conf->r1buf_pool)
1727 printk("sync start - bitmap %p\n", mddev->bitmap);
1729 if (init_resync(conf))
1730 return 0;
1733 max_sector = mddev->dev_sectors;
1734 if (sector_nr >= max_sector) {
1735 /* If we aborted, we need to abort the
1736 * sync on the 'current' bitmap chunk (there will
1737 * only be one in raid1 resync.
1738 * We can find the current addess in mddev->curr_resync
1740 if (mddev->curr_resync < max_sector) /* aborted */
1741 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1742 &sync_blocks, 1);
1743 else /* completed sync */
1744 conf->fullsync = 0;
1746 bitmap_close_sync(mddev->bitmap);
1747 close_sync(conf);
1748 return 0;
1751 if (mddev->bitmap == NULL &&
1752 mddev->recovery_cp == MaxSector &&
1753 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1754 conf->fullsync == 0) {
1755 *skipped = 1;
1756 return max_sector - sector_nr;
1758 /* before building a request, check if we can skip these blocks..
1759 * This call the bitmap_start_sync doesn't actually record anything
1761 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1762 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1763 /* We can skip this block, and probably several more */
1764 *skipped = 1;
1765 return sync_blocks;
1768 * If there is non-resync activity waiting for a turn,
1769 * and resync is going fast enough,
1770 * then let it though before starting on this new sync request.
1772 if (!go_faster && conf->nr_waiting)
1773 msleep_interruptible(1000);
1775 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1776 raise_barrier(conf);
1778 conf->next_resync = sector_nr;
1780 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1781 rcu_read_lock();
1783 * If we get a correctably read error during resync or recovery,
1784 * we might want to read from a different device. So we
1785 * flag all drives that could conceivably be read from for READ,
1786 * and any others (which will be non-In_sync devices) for WRITE.
1787 * If a read fails, we try reading from something else for which READ
1788 * is OK.
1791 r1_bio->mddev = mddev;
1792 r1_bio->sector = sector_nr;
1793 r1_bio->state = 0;
1794 set_bit(R1BIO_IsSync, &r1_bio->state);
1796 for (i=0; i < conf->raid_disks; i++) {
1797 mdk_rdev_t *rdev;
1798 bio = r1_bio->bios[i];
1800 /* take from bio_init */
1801 bio->bi_next = NULL;
1802 bio->bi_flags |= 1 << BIO_UPTODATE;
1803 bio->bi_rw = READ;
1804 bio->bi_vcnt = 0;
1805 bio->bi_idx = 0;
1806 bio->bi_phys_segments = 0;
1807 bio->bi_size = 0;
1808 bio->bi_end_io = NULL;
1809 bio->bi_private = NULL;
1811 rdev = rcu_dereference(conf->mirrors[i].rdev);
1812 if (rdev == NULL ||
1813 test_bit(Faulty, &rdev->flags)) {
1814 still_degraded = 1;
1815 continue;
1816 } else if (!test_bit(In_sync, &rdev->flags)) {
1817 bio->bi_rw = WRITE;
1818 bio->bi_end_io = end_sync_write;
1819 write_targets ++;
1820 } else {
1821 /* may need to read from here */
1822 bio->bi_rw = READ;
1823 bio->bi_end_io = end_sync_read;
1824 if (test_bit(WriteMostly, &rdev->flags)) {
1825 if (wonly < 0)
1826 wonly = i;
1827 } else {
1828 if (disk < 0)
1829 disk = i;
1831 read_targets++;
1833 atomic_inc(&rdev->nr_pending);
1834 bio->bi_sector = sector_nr + rdev->data_offset;
1835 bio->bi_bdev = rdev->bdev;
1836 bio->bi_private = r1_bio;
1838 rcu_read_unlock();
1839 if (disk < 0)
1840 disk = wonly;
1841 r1_bio->read_disk = disk;
1843 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1844 /* extra read targets are also write targets */
1845 write_targets += read_targets-1;
1847 if (write_targets == 0 || read_targets == 0) {
1848 /* There is nowhere to write, so all non-sync
1849 * drives must be failed - so we are finished
1851 sector_t rv = max_sector - sector_nr;
1852 *skipped = 1;
1853 put_buf(r1_bio);
1854 return rv;
1857 if (max_sector > mddev->resync_max)
1858 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1859 nr_sectors = 0;
1860 sync_blocks = 0;
1861 do {
1862 struct page *page;
1863 int len = PAGE_SIZE;
1864 if (sector_nr + (len>>9) > max_sector)
1865 len = (max_sector - sector_nr) << 9;
1866 if (len == 0)
1867 break;
1868 if (sync_blocks == 0) {
1869 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1870 &sync_blocks, still_degraded) &&
1871 !conf->fullsync &&
1872 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1873 break;
1874 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1875 if (len > (sync_blocks<<9))
1876 len = sync_blocks<<9;
1879 for (i=0 ; i < conf->raid_disks; i++) {
1880 bio = r1_bio->bios[i];
1881 if (bio->bi_end_io) {
1882 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1883 if (bio_add_page(bio, page, len, 0) == 0) {
1884 /* stop here */
1885 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1886 while (i > 0) {
1887 i--;
1888 bio = r1_bio->bios[i];
1889 if (bio->bi_end_io==NULL)
1890 continue;
1891 /* remove last page from this bio */
1892 bio->bi_vcnt--;
1893 bio->bi_size -= len;
1894 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1896 goto bio_full;
1900 nr_sectors += len>>9;
1901 sector_nr += len>>9;
1902 sync_blocks -= (len>>9);
1903 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1904 bio_full:
1905 r1_bio->sectors = nr_sectors;
1907 /* For a user-requested sync, we read all readable devices and do a
1908 * compare
1910 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1911 atomic_set(&r1_bio->remaining, read_targets);
1912 for (i=0; i<conf->raid_disks; i++) {
1913 bio = r1_bio->bios[i];
1914 if (bio->bi_end_io == end_sync_read) {
1915 md_sync_acct(bio->bi_bdev, nr_sectors);
1916 generic_make_request(bio);
1919 } else {
1920 atomic_set(&r1_bio->remaining, 1);
1921 bio = r1_bio->bios[r1_bio->read_disk];
1922 md_sync_acct(bio->bi_bdev, nr_sectors);
1923 generic_make_request(bio);
1926 return nr_sectors;
1929 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
1931 if (sectors)
1932 return sectors;
1934 return mddev->dev_sectors;
1937 static int run(mddev_t *mddev)
1939 conf_t *conf;
1940 int i, j, disk_idx;
1941 mirror_info_t *disk;
1942 mdk_rdev_t *rdev;
1944 if (mddev->level != 1) {
1945 printk("raid1: %s: raid level not set to mirroring (%d)\n",
1946 mdname(mddev), mddev->level);
1947 goto out;
1949 if (mddev->reshape_position != MaxSector) {
1950 printk("raid1: %s: reshape_position set but not supported\n",
1951 mdname(mddev));
1952 goto out;
1955 * copy the already verified devices into our private RAID1
1956 * bookkeeping area. [whatever we allocate in run(),
1957 * should be freed in stop()]
1959 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1960 mddev->private = conf;
1961 if (!conf)
1962 goto out_no_mem;
1964 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1965 GFP_KERNEL);
1966 if (!conf->mirrors)
1967 goto out_no_mem;
1969 conf->tmppage = alloc_page(GFP_KERNEL);
1970 if (!conf->tmppage)
1971 goto out_no_mem;
1973 conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1974 if (!conf->poolinfo)
1975 goto out_no_mem;
1976 conf->poolinfo->mddev = mddev;
1977 conf->poolinfo->raid_disks = mddev->raid_disks;
1978 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1979 r1bio_pool_free,
1980 conf->poolinfo);
1981 if (!conf->r1bio_pool)
1982 goto out_no_mem;
1984 spin_lock_init(&conf->device_lock);
1985 mddev->queue->queue_lock = &conf->device_lock;
1987 list_for_each_entry(rdev, &mddev->disks, same_set) {
1988 disk_idx = rdev->raid_disk;
1989 if (disk_idx >= mddev->raid_disks
1990 || disk_idx < 0)
1991 continue;
1992 disk = conf->mirrors + disk_idx;
1994 disk->rdev = rdev;
1995 disk_stack_limits(mddev->gendisk, rdev->bdev,
1996 rdev->data_offset << 9);
1997 /* as we don't honour merge_bvec_fn, we must never risk
1998 * violating it, so limit ->max_sector to one PAGE, as
1999 * a one page request is never in violation.
2001 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2002 queue_max_sectors(mddev->queue) > (PAGE_SIZE>>9))
2003 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
2005 disk->head_position = 0;
2007 conf->raid_disks = mddev->raid_disks;
2008 conf->mddev = mddev;
2009 INIT_LIST_HEAD(&conf->retry_list);
2011 spin_lock_init(&conf->resync_lock);
2012 init_waitqueue_head(&conf->wait_barrier);
2014 bio_list_init(&conf->pending_bio_list);
2015 bio_list_init(&conf->flushing_bio_list);
2018 mddev->degraded = 0;
2019 for (i = 0; i < conf->raid_disks; i++) {
2021 disk = conf->mirrors + i;
2023 if (!disk->rdev ||
2024 !test_bit(In_sync, &disk->rdev->flags)) {
2025 disk->head_position = 0;
2026 mddev->degraded++;
2027 if (disk->rdev)
2028 conf->fullsync = 1;
2031 if (mddev->degraded == conf->raid_disks) {
2032 printk(KERN_ERR "raid1: no operational mirrors for %s\n",
2033 mdname(mddev));
2034 goto out_free_conf;
2036 if (conf->raid_disks - mddev->degraded == 1)
2037 mddev->recovery_cp = MaxSector;
2040 * find the first working one and use it as a starting point
2041 * to read balancing.
2043 for (j = 0; j < conf->raid_disks &&
2044 (!conf->mirrors[j].rdev ||
2045 !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++)
2046 /* nothing */;
2047 conf->last_used = j;
2050 mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
2051 if (!mddev->thread) {
2052 printk(KERN_ERR
2053 "raid1: couldn't allocate thread for %s\n",
2054 mdname(mddev));
2055 goto out_free_conf;
2058 if (mddev->recovery_cp != MaxSector)
2059 printk(KERN_NOTICE "raid1: %s is not clean"
2060 " -- starting background reconstruction\n",
2061 mdname(mddev));
2062 printk(KERN_INFO
2063 "raid1: raid set %s active with %d out of %d mirrors\n",
2064 mdname(mddev), mddev->raid_disks - mddev->degraded,
2065 mddev->raid_disks);
2067 * Ok, everything is just fine now
2069 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2071 mddev->queue->unplug_fn = raid1_unplug;
2072 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2073 mddev->queue->backing_dev_info.congested_data = mddev;
2074 md_integrity_register(mddev);
2075 return 0;
2077 out_no_mem:
2078 printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
2079 mdname(mddev));
2081 out_free_conf:
2082 if (conf) {
2083 if (conf->r1bio_pool)
2084 mempool_destroy(conf->r1bio_pool);
2085 kfree(conf->mirrors);
2086 safe_put_page(conf->tmppage);
2087 kfree(conf->poolinfo);
2088 kfree(conf);
2089 mddev->private = NULL;
2091 out:
2092 return -EIO;
2095 static int stop(mddev_t *mddev)
2097 conf_t *conf = mddev->private;
2098 struct bitmap *bitmap = mddev->bitmap;
2099 int behind_wait = 0;
2101 /* wait for behind writes to complete */
2102 while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2103 behind_wait++;
2104 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
2105 set_current_state(TASK_UNINTERRUPTIBLE);
2106 schedule_timeout(HZ); /* wait a second */
2107 /* need to kick something here to make sure I/O goes? */
2110 raise_barrier(conf);
2111 lower_barrier(conf);
2113 md_unregister_thread(mddev->thread);
2114 mddev->thread = NULL;
2115 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2116 if (conf->r1bio_pool)
2117 mempool_destroy(conf->r1bio_pool);
2118 kfree(conf->mirrors);
2119 kfree(conf->poolinfo);
2120 kfree(conf);
2121 mddev->private = NULL;
2122 return 0;
2125 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2127 /* no resync is happening, and there is enough space
2128 * on all devices, so we can resize.
2129 * We need to make sure resync covers any new space.
2130 * If the array is shrinking we should possibly wait until
2131 * any io in the removed space completes, but it hardly seems
2132 * worth it.
2134 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2135 if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2136 return -EINVAL;
2137 set_capacity(mddev->gendisk, mddev->array_sectors);
2138 mddev->changed = 1;
2139 revalidate_disk(mddev->gendisk);
2140 if (sectors > mddev->dev_sectors &&
2141 mddev->recovery_cp == MaxSector) {
2142 mddev->recovery_cp = mddev->dev_sectors;
2143 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2145 mddev->dev_sectors = sectors;
2146 mddev->resync_max_sectors = sectors;
2147 return 0;
2150 static int raid1_reshape(mddev_t *mddev)
2152 /* We need to:
2153 * 1/ resize the r1bio_pool
2154 * 2/ resize conf->mirrors
2156 * We allocate a new r1bio_pool if we can.
2157 * Then raise a device barrier and wait until all IO stops.
2158 * Then resize conf->mirrors and swap in the new r1bio pool.
2160 * At the same time, we "pack" the devices so that all the missing
2161 * devices have the higher raid_disk numbers.
2163 mempool_t *newpool, *oldpool;
2164 struct pool_info *newpoolinfo;
2165 mirror_info_t *newmirrors;
2166 conf_t *conf = mddev->private;
2167 int cnt, raid_disks;
2168 unsigned long flags;
2169 int d, d2, err;
2171 /* Cannot change chunk_size, layout, or level */
2172 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2173 mddev->layout != mddev->new_layout ||
2174 mddev->level != mddev->new_level) {
2175 mddev->new_chunk_sectors = mddev->chunk_sectors;
2176 mddev->new_layout = mddev->layout;
2177 mddev->new_level = mddev->level;
2178 return -EINVAL;
2181 err = md_allow_write(mddev);
2182 if (err)
2183 return err;
2185 raid_disks = mddev->raid_disks + mddev->delta_disks;
2187 if (raid_disks < conf->raid_disks) {
2188 cnt=0;
2189 for (d= 0; d < conf->raid_disks; d++)
2190 if (conf->mirrors[d].rdev)
2191 cnt++;
2192 if (cnt > raid_disks)
2193 return -EBUSY;
2196 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2197 if (!newpoolinfo)
2198 return -ENOMEM;
2199 newpoolinfo->mddev = mddev;
2200 newpoolinfo->raid_disks = raid_disks;
2202 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2203 r1bio_pool_free, newpoolinfo);
2204 if (!newpool) {
2205 kfree(newpoolinfo);
2206 return -ENOMEM;
2208 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2209 if (!newmirrors) {
2210 kfree(newpoolinfo);
2211 mempool_destroy(newpool);
2212 return -ENOMEM;
2215 raise_barrier(conf);
2217 /* ok, everything is stopped */
2218 oldpool = conf->r1bio_pool;
2219 conf->r1bio_pool = newpool;
2221 for (d = d2 = 0; d < conf->raid_disks; d++) {
2222 mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2223 if (rdev && rdev->raid_disk != d2) {
2224 char nm[20];
2225 sprintf(nm, "rd%d", rdev->raid_disk);
2226 sysfs_remove_link(&mddev->kobj, nm);
2227 rdev->raid_disk = d2;
2228 sprintf(nm, "rd%d", rdev->raid_disk);
2229 sysfs_remove_link(&mddev->kobj, nm);
2230 if (sysfs_create_link(&mddev->kobj,
2231 &rdev->kobj, nm))
2232 printk(KERN_WARNING
2233 "md/raid1: cannot register "
2234 "%s for %s\n",
2235 nm, mdname(mddev));
2237 if (rdev)
2238 newmirrors[d2++].rdev = rdev;
2240 kfree(conf->mirrors);
2241 conf->mirrors = newmirrors;
2242 kfree(conf->poolinfo);
2243 conf->poolinfo = newpoolinfo;
2245 spin_lock_irqsave(&conf->device_lock, flags);
2246 mddev->degraded += (raid_disks - conf->raid_disks);
2247 spin_unlock_irqrestore(&conf->device_lock, flags);
2248 conf->raid_disks = mddev->raid_disks = raid_disks;
2249 mddev->delta_disks = 0;
2251 conf->last_used = 0; /* just make sure it is in-range */
2252 lower_barrier(conf);
2254 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2255 md_wakeup_thread(mddev->thread);
2257 mempool_destroy(oldpool);
2258 return 0;
2261 static void raid1_quiesce(mddev_t *mddev, int state)
2263 conf_t *conf = mddev->private;
2265 switch(state) {
2266 case 1:
2267 raise_barrier(conf);
2268 break;
2269 case 0:
2270 lower_barrier(conf);
2271 break;
2276 static struct mdk_personality raid1_personality =
2278 .name = "raid1",
2279 .level = 1,
2280 .owner = THIS_MODULE,
2281 .make_request = make_request,
2282 .run = run,
2283 .stop = stop,
2284 .status = status,
2285 .error_handler = error,
2286 .hot_add_disk = raid1_add_disk,
2287 .hot_remove_disk= raid1_remove_disk,
2288 .spare_active = raid1_spare_active,
2289 .sync_request = sync_request,
2290 .resize = raid1_resize,
2291 .size = raid1_size,
2292 .check_reshape = raid1_reshape,
2293 .quiesce = raid1_quiesce,
2296 static int __init raid_init(void)
2298 return register_md_personality(&raid1_personality);
2301 static void raid_exit(void)
2303 unregister_md_personality(&raid1_personality);
2306 module_init(raid_init);
2307 module_exit(raid_exit);
2308 MODULE_LICENSE("GPL");
2309 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2310 MODULE_ALIAS("md-raid1");
2311 MODULE_ALIAS("md-level-1");