perf, x86: Fix up kmap_atomic() type
[linux-2.6/btrfs-unstable.git] / arch / x86 / kernel / cpu / perf_event.c
blobc1e8c7a5116493568e06ba353dd4150d6c027d9a
1 /*
2 * Performance events x86 architecture code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
12 * For licencing details see kernel-base/COPYING
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/highmem.h>
26 #include <linux/cpu.h>
27 #include <linux/bitops.h>
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/compat.h>
34 #if 0
35 #undef wrmsrl
36 #define wrmsrl(msr, val) \
37 do { \
38 trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
39 (unsigned long)(val)); \
40 native_write_msr((msr), (u32)((u64)(val)), \
41 (u32)((u64)(val) >> 32)); \
42 } while (0)
43 #endif
46 * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
48 static unsigned long
49 copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
51 unsigned long offset, addr = (unsigned long)from;
52 unsigned long size, len = 0;
53 struct page *page;
54 void *map;
55 int ret;
57 do {
58 ret = __get_user_pages_fast(addr, 1, 0, &page);
59 if (!ret)
60 break;
62 offset = addr & (PAGE_SIZE - 1);
63 size = min(PAGE_SIZE - offset, n - len);
65 map = kmap_atomic(page);
66 memcpy(to, map+offset, size);
67 kunmap_atomic(map);
68 put_page(page);
70 len += size;
71 to += size;
72 addr += size;
74 } while (len < n);
76 return len;
79 struct event_constraint {
80 union {
81 unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
82 u64 idxmsk64;
84 u64 code;
85 u64 cmask;
86 int weight;
89 struct amd_nb {
90 int nb_id; /* NorthBridge id */
91 int refcnt; /* reference count */
92 struct perf_event *owners[X86_PMC_IDX_MAX];
93 struct event_constraint event_constraints[X86_PMC_IDX_MAX];
96 #define MAX_LBR_ENTRIES 16
98 struct cpu_hw_events {
100 * Generic x86 PMC bits
102 struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
103 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
104 unsigned long running[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
105 int enabled;
107 int n_events;
108 int n_added;
109 int n_txn;
110 int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
111 u64 tags[X86_PMC_IDX_MAX];
112 struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
114 unsigned int group_flag;
117 * Intel DebugStore bits
119 struct debug_store *ds;
120 u64 pebs_enabled;
123 * Intel LBR bits
125 int lbr_users;
126 void *lbr_context;
127 struct perf_branch_stack lbr_stack;
128 struct perf_branch_entry lbr_entries[MAX_LBR_ENTRIES];
131 * AMD specific bits
133 struct amd_nb *amd_nb;
136 #define __EVENT_CONSTRAINT(c, n, m, w) {\
137 { .idxmsk64 = (n) }, \
138 .code = (c), \
139 .cmask = (m), \
140 .weight = (w), \
143 #define EVENT_CONSTRAINT(c, n, m) \
144 __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
147 * Constraint on the Event code.
149 #define INTEL_EVENT_CONSTRAINT(c, n) \
150 EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT)
153 * Constraint on the Event code + UMask + fixed-mask
155 * filter mask to validate fixed counter events.
156 * the following filters disqualify for fixed counters:
157 * - inv
158 * - edge
159 * - cnt-mask
160 * The other filters are supported by fixed counters.
161 * The any-thread option is supported starting with v3.
163 #define FIXED_EVENT_CONSTRAINT(c, n) \
164 EVENT_CONSTRAINT(c, (1ULL << (32+n)), X86_RAW_EVENT_MASK)
167 * Constraint on the Event code + UMask
169 #define PEBS_EVENT_CONSTRAINT(c, n) \
170 EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
172 #define EVENT_CONSTRAINT_END \
173 EVENT_CONSTRAINT(0, 0, 0)
175 #define for_each_event_constraint(e, c) \
176 for ((e) = (c); (e)->weight; (e)++)
178 union perf_capabilities {
179 struct {
180 u64 lbr_format : 6;
181 u64 pebs_trap : 1;
182 u64 pebs_arch_reg : 1;
183 u64 pebs_format : 4;
184 u64 smm_freeze : 1;
186 u64 capabilities;
190 * struct x86_pmu - generic x86 pmu
192 struct x86_pmu {
194 * Generic x86 PMC bits
196 const char *name;
197 int version;
198 int (*handle_irq)(struct pt_regs *);
199 void (*disable_all)(void);
200 void (*enable_all)(int added);
201 void (*enable)(struct perf_event *);
202 void (*disable)(struct perf_event *);
203 int (*hw_config)(struct perf_event *event);
204 int (*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign);
205 unsigned eventsel;
206 unsigned perfctr;
207 u64 (*event_map)(int);
208 int max_events;
209 int num_counters;
210 int num_counters_fixed;
211 int cntval_bits;
212 u64 cntval_mask;
213 int apic;
214 u64 max_period;
215 struct event_constraint *
216 (*get_event_constraints)(struct cpu_hw_events *cpuc,
217 struct perf_event *event);
219 void (*put_event_constraints)(struct cpu_hw_events *cpuc,
220 struct perf_event *event);
221 struct event_constraint *event_constraints;
222 void (*quirks)(void);
223 int perfctr_second_write;
225 int (*cpu_prepare)(int cpu);
226 void (*cpu_starting)(int cpu);
227 void (*cpu_dying)(int cpu);
228 void (*cpu_dead)(int cpu);
231 * Intel Arch Perfmon v2+
233 u64 intel_ctrl;
234 union perf_capabilities intel_cap;
237 * Intel DebugStore bits
239 int bts, pebs;
240 int pebs_record_size;
241 void (*drain_pebs)(struct pt_regs *regs);
242 struct event_constraint *pebs_constraints;
245 * Intel LBR
247 unsigned long lbr_tos, lbr_from, lbr_to; /* MSR base regs */
248 int lbr_nr; /* hardware stack size */
251 static struct x86_pmu x86_pmu __read_mostly;
253 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
254 .enabled = 1,
257 static int x86_perf_event_set_period(struct perf_event *event);
260 * Generalized hw caching related hw_event table, filled
261 * in on a per model basis. A value of 0 means
262 * 'not supported', -1 means 'hw_event makes no sense on
263 * this CPU', any other value means the raw hw_event
264 * ID.
267 #define C(x) PERF_COUNT_HW_CACHE_##x
269 static u64 __read_mostly hw_cache_event_ids
270 [PERF_COUNT_HW_CACHE_MAX]
271 [PERF_COUNT_HW_CACHE_OP_MAX]
272 [PERF_COUNT_HW_CACHE_RESULT_MAX];
275 * Propagate event elapsed time into the generic event.
276 * Can only be executed on the CPU where the event is active.
277 * Returns the delta events processed.
279 static u64
280 x86_perf_event_update(struct perf_event *event)
282 struct hw_perf_event *hwc = &event->hw;
283 int shift = 64 - x86_pmu.cntval_bits;
284 u64 prev_raw_count, new_raw_count;
285 int idx = hwc->idx;
286 s64 delta;
288 if (idx == X86_PMC_IDX_FIXED_BTS)
289 return 0;
292 * Careful: an NMI might modify the previous event value.
294 * Our tactic to handle this is to first atomically read and
295 * exchange a new raw count - then add that new-prev delta
296 * count to the generic event atomically:
298 again:
299 prev_raw_count = local64_read(&hwc->prev_count);
300 rdmsrl(hwc->event_base + idx, new_raw_count);
302 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
303 new_raw_count) != prev_raw_count)
304 goto again;
307 * Now we have the new raw value and have updated the prev
308 * timestamp already. We can now calculate the elapsed delta
309 * (event-)time and add that to the generic event.
311 * Careful, not all hw sign-extends above the physical width
312 * of the count.
314 delta = (new_raw_count << shift) - (prev_raw_count << shift);
315 delta >>= shift;
317 local64_add(delta, &event->count);
318 local64_sub(delta, &hwc->period_left);
320 return new_raw_count;
323 static atomic_t active_events;
324 static DEFINE_MUTEX(pmc_reserve_mutex);
326 #ifdef CONFIG_X86_LOCAL_APIC
328 static bool reserve_pmc_hardware(void)
330 int i;
332 if (nmi_watchdog == NMI_LOCAL_APIC)
333 disable_lapic_nmi_watchdog();
335 for (i = 0; i < x86_pmu.num_counters; i++) {
336 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
337 goto perfctr_fail;
340 for (i = 0; i < x86_pmu.num_counters; i++) {
341 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
342 goto eventsel_fail;
345 return true;
347 eventsel_fail:
348 for (i--; i >= 0; i--)
349 release_evntsel_nmi(x86_pmu.eventsel + i);
351 i = x86_pmu.num_counters;
353 perfctr_fail:
354 for (i--; i >= 0; i--)
355 release_perfctr_nmi(x86_pmu.perfctr + i);
357 if (nmi_watchdog == NMI_LOCAL_APIC)
358 enable_lapic_nmi_watchdog();
360 return false;
363 static void release_pmc_hardware(void)
365 int i;
367 for (i = 0; i < x86_pmu.num_counters; i++) {
368 release_perfctr_nmi(x86_pmu.perfctr + i);
369 release_evntsel_nmi(x86_pmu.eventsel + i);
372 if (nmi_watchdog == NMI_LOCAL_APIC)
373 enable_lapic_nmi_watchdog();
376 #else
378 static bool reserve_pmc_hardware(void) { return true; }
379 static void release_pmc_hardware(void) {}
381 #endif
383 static int reserve_ds_buffers(void);
384 static void release_ds_buffers(void);
386 static void hw_perf_event_destroy(struct perf_event *event)
388 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
389 release_pmc_hardware();
390 release_ds_buffers();
391 mutex_unlock(&pmc_reserve_mutex);
395 static inline int x86_pmu_initialized(void)
397 return x86_pmu.handle_irq != NULL;
400 static inline int
401 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
403 unsigned int cache_type, cache_op, cache_result;
404 u64 config, val;
406 config = attr->config;
408 cache_type = (config >> 0) & 0xff;
409 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
410 return -EINVAL;
412 cache_op = (config >> 8) & 0xff;
413 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
414 return -EINVAL;
416 cache_result = (config >> 16) & 0xff;
417 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
418 return -EINVAL;
420 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
422 if (val == 0)
423 return -ENOENT;
425 if (val == -1)
426 return -EINVAL;
428 hwc->config |= val;
430 return 0;
433 static int x86_setup_perfctr(struct perf_event *event)
435 struct perf_event_attr *attr = &event->attr;
436 struct hw_perf_event *hwc = &event->hw;
437 u64 config;
439 if (!hwc->sample_period) {
440 hwc->sample_period = x86_pmu.max_period;
441 hwc->last_period = hwc->sample_period;
442 local64_set(&hwc->period_left, hwc->sample_period);
443 } else {
445 * If we have a PMU initialized but no APIC
446 * interrupts, we cannot sample hardware
447 * events (user-space has to fall back and
448 * sample via a hrtimer based software event):
450 if (!x86_pmu.apic)
451 return -EOPNOTSUPP;
454 if (attr->type == PERF_TYPE_RAW)
455 return 0;
457 if (attr->type == PERF_TYPE_HW_CACHE)
458 return set_ext_hw_attr(hwc, attr);
460 if (attr->config >= x86_pmu.max_events)
461 return -EINVAL;
464 * The generic map:
466 config = x86_pmu.event_map(attr->config);
468 if (config == 0)
469 return -ENOENT;
471 if (config == -1LL)
472 return -EINVAL;
475 * Branch tracing:
477 if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
478 (hwc->sample_period == 1)) {
479 /* BTS is not supported by this architecture. */
480 if (!x86_pmu.bts)
481 return -EOPNOTSUPP;
483 /* BTS is currently only allowed for user-mode. */
484 if (!attr->exclude_kernel)
485 return -EOPNOTSUPP;
488 hwc->config |= config;
490 return 0;
493 static int x86_pmu_hw_config(struct perf_event *event)
495 if (event->attr.precise_ip) {
496 int precise = 0;
498 /* Support for constant skid */
499 if (x86_pmu.pebs)
500 precise++;
502 /* Support for IP fixup */
503 if (x86_pmu.lbr_nr)
504 precise++;
506 if (event->attr.precise_ip > precise)
507 return -EOPNOTSUPP;
511 * Generate PMC IRQs:
512 * (keep 'enabled' bit clear for now)
514 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
517 * Count user and OS events unless requested not to
519 if (!event->attr.exclude_user)
520 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
521 if (!event->attr.exclude_kernel)
522 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
524 if (event->attr.type == PERF_TYPE_RAW)
525 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
527 return x86_setup_perfctr(event);
531 * Setup the hardware configuration for a given attr_type
533 static int __x86_pmu_event_init(struct perf_event *event)
535 int err;
537 if (!x86_pmu_initialized())
538 return -ENODEV;
540 err = 0;
541 if (!atomic_inc_not_zero(&active_events)) {
542 mutex_lock(&pmc_reserve_mutex);
543 if (atomic_read(&active_events) == 0) {
544 if (!reserve_pmc_hardware())
545 err = -EBUSY;
546 else {
547 err = reserve_ds_buffers();
548 if (err)
549 release_pmc_hardware();
552 if (!err)
553 atomic_inc(&active_events);
554 mutex_unlock(&pmc_reserve_mutex);
556 if (err)
557 return err;
559 event->destroy = hw_perf_event_destroy;
561 event->hw.idx = -1;
562 event->hw.last_cpu = -1;
563 event->hw.last_tag = ~0ULL;
565 return x86_pmu.hw_config(event);
568 static void x86_pmu_disable_all(void)
570 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
571 int idx;
573 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
574 u64 val;
576 if (!test_bit(idx, cpuc->active_mask))
577 continue;
578 rdmsrl(x86_pmu.eventsel + idx, val);
579 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
580 continue;
581 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
582 wrmsrl(x86_pmu.eventsel + idx, val);
586 static void x86_pmu_disable(struct pmu *pmu)
588 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
590 if (!x86_pmu_initialized())
591 return;
593 if (!cpuc->enabled)
594 return;
596 cpuc->n_added = 0;
597 cpuc->enabled = 0;
598 barrier();
600 x86_pmu.disable_all();
603 static void x86_pmu_enable_all(int added)
605 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
606 int idx;
608 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
609 struct perf_event *event = cpuc->events[idx];
610 u64 val;
612 if (!test_bit(idx, cpuc->active_mask))
613 continue;
615 val = event->hw.config;
616 val |= ARCH_PERFMON_EVENTSEL_ENABLE;
617 wrmsrl(x86_pmu.eventsel + idx, val);
621 static struct pmu pmu;
623 static inline int is_x86_event(struct perf_event *event)
625 return event->pmu == &pmu;
628 static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
630 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
631 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
632 int i, j, w, wmax, num = 0;
633 struct hw_perf_event *hwc;
635 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
637 for (i = 0; i < n; i++) {
638 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
639 constraints[i] = c;
643 * fastpath, try to reuse previous register
645 for (i = 0; i < n; i++) {
646 hwc = &cpuc->event_list[i]->hw;
647 c = constraints[i];
649 /* never assigned */
650 if (hwc->idx == -1)
651 break;
653 /* constraint still honored */
654 if (!test_bit(hwc->idx, c->idxmsk))
655 break;
657 /* not already used */
658 if (test_bit(hwc->idx, used_mask))
659 break;
661 __set_bit(hwc->idx, used_mask);
662 if (assign)
663 assign[i] = hwc->idx;
665 if (i == n)
666 goto done;
669 * begin slow path
672 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
675 * weight = number of possible counters
677 * 1 = most constrained, only works on one counter
678 * wmax = least constrained, works on any counter
680 * assign events to counters starting with most
681 * constrained events.
683 wmax = x86_pmu.num_counters;
686 * when fixed event counters are present,
687 * wmax is incremented by 1 to account
688 * for one more choice
690 if (x86_pmu.num_counters_fixed)
691 wmax++;
693 for (w = 1, num = n; num && w <= wmax; w++) {
694 /* for each event */
695 for (i = 0; num && i < n; i++) {
696 c = constraints[i];
697 hwc = &cpuc->event_list[i]->hw;
699 if (c->weight != w)
700 continue;
702 for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
703 if (!test_bit(j, used_mask))
704 break;
707 if (j == X86_PMC_IDX_MAX)
708 break;
710 __set_bit(j, used_mask);
712 if (assign)
713 assign[i] = j;
714 num--;
717 done:
719 * scheduling failed or is just a simulation,
720 * free resources if necessary
722 if (!assign || num) {
723 for (i = 0; i < n; i++) {
724 if (x86_pmu.put_event_constraints)
725 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
728 return num ? -ENOSPC : 0;
732 * dogrp: true if must collect siblings events (group)
733 * returns total number of events and error code
735 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
737 struct perf_event *event;
738 int n, max_count;
740 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
742 /* current number of events already accepted */
743 n = cpuc->n_events;
745 if (is_x86_event(leader)) {
746 if (n >= max_count)
747 return -ENOSPC;
748 cpuc->event_list[n] = leader;
749 n++;
751 if (!dogrp)
752 return n;
754 list_for_each_entry(event, &leader->sibling_list, group_entry) {
755 if (!is_x86_event(event) ||
756 event->state <= PERF_EVENT_STATE_OFF)
757 continue;
759 if (n >= max_count)
760 return -ENOSPC;
762 cpuc->event_list[n] = event;
763 n++;
765 return n;
768 static inline void x86_assign_hw_event(struct perf_event *event,
769 struct cpu_hw_events *cpuc, int i)
771 struct hw_perf_event *hwc = &event->hw;
773 hwc->idx = cpuc->assign[i];
774 hwc->last_cpu = smp_processor_id();
775 hwc->last_tag = ++cpuc->tags[i];
777 if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
778 hwc->config_base = 0;
779 hwc->event_base = 0;
780 } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
781 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
783 * We set it so that event_base + idx in wrmsr/rdmsr maps to
784 * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
786 hwc->event_base =
787 MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
788 } else {
789 hwc->config_base = x86_pmu.eventsel;
790 hwc->event_base = x86_pmu.perfctr;
794 static inline int match_prev_assignment(struct hw_perf_event *hwc,
795 struct cpu_hw_events *cpuc,
796 int i)
798 return hwc->idx == cpuc->assign[i] &&
799 hwc->last_cpu == smp_processor_id() &&
800 hwc->last_tag == cpuc->tags[i];
803 static void x86_pmu_start(struct perf_event *event, int flags);
804 static void x86_pmu_stop(struct perf_event *event, int flags);
806 static void x86_pmu_enable(struct pmu *pmu)
808 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
809 struct perf_event *event;
810 struct hw_perf_event *hwc;
811 int i, added = cpuc->n_added;
813 if (!x86_pmu_initialized())
814 return;
816 if (cpuc->enabled)
817 return;
819 if (cpuc->n_added) {
820 int n_running = cpuc->n_events - cpuc->n_added;
822 * apply assignment obtained either from
823 * hw_perf_group_sched_in() or x86_pmu_enable()
825 * step1: save events moving to new counters
826 * step2: reprogram moved events into new counters
828 for (i = 0; i < n_running; i++) {
829 event = cpuc->event_list[i];
830 hwc = &event->hw;
833 * we can avoid reprogramming counter if:
834 * - assigned same counter as last time
835 * - running on same CPU as last time
836 * - no other event has used the counter since
838 if (hwc->idx == -1 ||
839 match_prev_assignment(hwc, cpuc, i))
840 continue;
843 * Ensure we don't accidentally enable a stopped
844 * counter simply because we rescheduled.
846 if (hwc->state & PERF_HES_STOPPED)
847 hwc->state |= PERF_HES_ARCH;
849 x86_pmu_stop(event, PERF_EF_UPDATE);
852 for (i = 0; i < cpuc->n_events; i++) {
853 event = cpuc->event_list[i];
854 hwc = &event->hw;
856 if (!match_prev_assignment(hwc, cpuc, i))
857 x86_assign_hw_event(event, cpuc, i);
858 else if (i < n_running)
859 continue;
861 if (hwc->state & PERF_HES_ARCH)
862 continue;
864 x86_pmu_start(event, PERF_EF_RELOAD);
866 cpuc->n_added = 0;
867 perf_events_lapic_init();
870 cpuc->enabled = 1;
871 barrier();
873 x86_pmu.enable_all(added);
876 static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc,
877 u64 enable_mask)
879 wrmsrl(hwc->config_base + hwc->idx, hwc->config | enable_mask);
882 static inline void x86_pmu_disable_event(struct perf_event *event)
884 struct hw_perf_event *hwc = &event->hw;
886 wrmsrl(hwc->config_base + hwc->idx, hwc->config);
889 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
892 * Set the next IRQ period, based on the hwc->period_left value.
893 * To be called with the event disabled in hw:
895 static int
896 x86_perf_event_set_period(struct perf_event *event)
898 struct hw_perf_event *hwc = &event->hw;
899 s64 left = local64_read(&hwc->period_left);
900 s64 period = hwc->sample_period;
901 int ret = 0, idx = hwc->idx;
903 if (idx == X86_PMC_IDX_FIXED_BTS)
904 return 0;
907 * If we are way outside a reasonable range then just skip forward:
909 if (unlikely(left <= -period)) {
910 left = period;
911 local64_set(&hwc->period_left, left);
912 hwc->last_period = period;
913 ret = 1;
916 if (unlikely(left <= 0)) {
917 left += period;
918 local64_set(&hwc->period_left, left);
919 hwc->last_period = period;
920 ret = 1;
923 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
925 if (unlikely(left < 2))
926 left = 2;
928 if (left > x86_pmu.max_period)
929 left = x86_pmu.max_period;
931 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
934 * The hw event starts counting from this event offset,
935 * mark it to be able to extra future deltas:
937 local64_set(&hwc->prev_count, (u64)-left);
939 wrmsrl(hwc->event_base + idx, (u64)(-left) & x86_pmu.cntval_mask);
942 * Due to erratum on certan cpu we need
943 * a second write to be sure the register
944 * is updated properly
946 if (x86_pmu.perfctr_second_write) {
947 wrmsrl(hwc->event_base + idx,
948 (u64)(-left) & x86_pmu.cntval_mask);
951 perf_event_update_userpage(event);
953 return ret;
956 static void x86_pmu_enable_event(struct perf_event *event)
958 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
959 if (cpuc->enabled)
960 __x86_pmu_enable_event(&event->hw,
961 ARCH_PERFMON_EVENTSEL_ENABLE);
965 * Add a single event to the PMU.
967 * The event is added to the group of enabled events
968 * but only if it can be scehduled with existing events.
970 static int x86_pmu_add(struct perf_event *event, int flags)
972 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
973 struct hw_perf_event *hwc;
974 int assign[X86_PMC_IDX_MAX];
975 int n, n0, ret;
977 hwc = &event->hw;
979 perf_pmu_disable(event->pmu);
980 n0 = cpuc->n_events;
981 ret = n = collect_events(cpuc, event, false);
982 if (ret < 0)
983 goto out;
985 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
986 if (!(flags & PERF_EF_START))
987 hwc->state |= PERF_HES_ARCH;
990 * If group events scheduling transaction was started,
991 * skip the schedulability test here, it will be peformed
992 * at commit time (->commit_txn) as a whole
994 if (cpuc->group_flag & PERF_EVENT_TXN)
995 goto done_collect;
997 ret = x86_pmu.schedule_events(cpuc, n, assign);
998 if (ret)
999 goto out;
1001 * copy new assignment, now we know it is possible
1002 * will be used by hw_perf_enable()
1004 memcpy(cpuc->assign, assign, n*sizeof(int));
1006 done_collect:
1007 cpuc->n_events = n;
1008 cpuc->n_added += n - n0;
1009 cpuc->n_txn += n - n0;
1011 ret = 0;
1012 out:
1013 perf_pmu_enable(event->pmu);
1014 return ret;
1017 static void x86_pmu_start(struct perf_event *event, int flags)
1019 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1020 int idx = event->hw.idx;
1022 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1023 return;
1025 if (WARN_ON_ONCE(idx == -1))
1026 return;
1028 if (flags & PERF_EF_RELOAD) {
1029 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1030 x86_perf_event_set_period(event);
1033 event->hw.state = 0;
1035 cpuc->events[idx] = event;
1036 __set_bit(idx, cpuc->active_mask);
1037 __set_bit(idx, cpuc->running);
1038 x86_pmu.enable(event);
1039 perf_event_update_userpage(event);
1042 void perf_event_print_debug(void)
1044 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1045 u64 pebs;
1046 struct cpu_hw_events *cpuc;
1047 unsigned long flags;
1048 int cpu, idx;
1050 if (!x86_pmu.num_counters)
1051 return;
1053 local_irq_save(flags);
1055 cpu = smp_processor_id();
1056 cpuc = &per_cpu(cpu_hw_events, cpu);
1058 if (x86_pmu.version >= 2) {
1059 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1060 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1061 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1062 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1063 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1065 pr_info("\n");
1066 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1067 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1068 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1069 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1070 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1072 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1074 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1075 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1076 rdmsrl(x86_pmu.perfctr + idx, pmc_count);
1078 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1080 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1081 cpu, idx, pmc_ctrl);
1082 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1083 cpu, idx, pmc_count);
1084 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1085 cpu, idx, prev_left);
1087 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1088 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1090 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1091 cpu, idx, pmc_count);
1093 local_irq_restore(flags);
1096 static void x86_pmu_stop(struct perf_event *event, int flags)
1098 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1099 struct hw_perf_event *hwc = &event->hw;
1101 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1102 x86_pmu.disable(event);
1103 cpuc->events[hwc->idx] = NULL;
1104 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1105 hwc->state |= PERF_HES_STOPPED;
1108 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1110 * Drain the remaining delta count out of a event
1111 * that we are disabling:
1113 x86_perf_event_update(event);
1114 hwc->state |= PERF_HES_UPTODATE;
1118 static void x86_pmu_del(struct perf_event *event, int flags)
1120 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1121 int i;
1124 * If we're called during a txn, we don't need to do anything.
1125 * The events never got scheduled and ->cancel_txn will truncate
1126 * the event_list.
1128 if (cpuc->group_flag & PERF_EVENT_TXN)
1129 return;
1131 x86_pmu_stop(event, PERF_EF_UPDATE);
1133 for (i = 0; i < cpuc->n_events; i++) {
1134 if (event == cpuc->event_list[i]) {
1136 if (x86_pmu.put_event_constraints)
1137 x86_pmu.put_event_constraints(cpuc, event);
1139 while (++i < cpuc->n_events)
1140 cpuc->event_list[i-1] = cpuc->event_list[i];
1142 --cpuc->n_events;
1143 break;
1146 perf_event_update_userpage(event);
1149 static int x86_pmu_handle_irq(struct pt_regs *regs)
1151 struct perf_sample_data data;
1152 struct cpu_hw_events *cpuc;
1153 struct perf_event *event;
1154 int idx, handled = 0;
1155 u64 val;
1157 perf_sample_data_init(&data, 0);
1159 cpuc = &__get_cpu_var(cpu_hw_events);
1161 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1162 if (!test_bit(idx, cpuc->active_mask)) {
1164 * Though we deactivated the counter some cpus
1165 * might still deliver spurious interrupts still
1166 * in flight. Catch them:
1168 if (__test_and_clear_bit(idx, cpuc->running))
1169 handled++;
1170 continue;
1173 event = cpuc->events[idx];
1175 val = x86_perf_event_update(event);
1176 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1177 continue;
1180 * event overflow
1182 handled++;
1183 data.period = event->hw.last_period;
1185 if (!x86_perf_event_set_period(event))
1186 continue;
1188 if (perf_event_overflow(event, 1, &data, regs))
1189 x86_pmu_stop(event, 0);
1192 if (handled)
1193 inc_irq_stat(apic_perf_irqs);
1195 return handled;
1198 void perf_events_lapic_init(void)
1200 if (!x86_pmu.apic || !x86_pmu_initialized())
1201 return;
1204 * Always use NMI for PMU
1206 apic_write(APIC_LVTPC, APIC_DM_NMI);
1209 struct pmu_nmi_state {
1210 unsigned int marked;
1211 int handled;
1214 static DEFINE_PER_CPU(struct pmu_nmi_state, pmu_nmi);
1216 static int __kprobes
1217 perf_event_nmi_handler(struct notifier_block *self,
1218 unsigned long cmd, void *__args)
1220 struct die_args *args = __args;
1221 unsigned int this_nmi;
1222 int handled;
1224 if (!atomic_read(&active_events))
1225 return NOTIFY_DONE;
1227 switch (cmd) {
1228 case DIE_NMI:
1229 case DIE_NMI_IPI:
1230 break;
1231 case DIE_NMIUNKNOWN:
1232 this_nmi = percpu_read(irq_stat.__nmi_count);
1233 if (this_nmi != __get_cpu_var(pmu_nmi).marked)
1234 /* let the kernel handle the unknown nmi */
1235 return NOTIFY_DONE;
1237 * This one is a PMU back-to-back nmi. Two events
1238 * trigger 'simultaneously' raising two back-to-back
1239 * NMIs. If the first NMI handles both, the latter
1240 * will be empty and daze the CPU. So, we drop it to
1241 * avoid false-positive 'unknown nmi' messages.
1243 return NOTIFY_STOP;
1244 default:
1245 return NOTIFY_DONE;
1248 apic_write(APIC_LVTPC, APIC_DM_NMI);
1250 handled = x86_pmu.handle_irq(args->regs);
1251 if (!handled)
1252 return NOTIFY_DONE;
1254 this_nmi = percpu_read(irq_stat.__nmi_count);
1255 if ((handled > 1) ||
1256 /* the next nmi could be a back-to-back nmi */
1257 ((__get_cpu_var(pmu_nmi).marked == this_nmi) &&
1258 (__get_cpu_var(pmu_nmi).handled > 1))) {
1260 * We could have two subsequent back-to-back nmis: The
1261 * first handles more than one counter, the 2nd
1262 * handles only one counter and the 3rd handles no
1263 * counter.
1265 * This is the 2nd nmi because the previous was
1266 * handling more than one counter. We will mark the
1267 * next (3rd) and then drop it if unhandled.
1269 __get_cpu_var(pmu_nmi).marked = this_nmi + 1;
1270 __get_cpu_var(pmu_nmi).handled = handled;
1273 return NOTIFY_STOP;
1276 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1277 .notifier_call = perf_event_nmi_handler,
1278 .next = NULL,
1279 .priority = 1
1282 static struct event_constraint unconstrained;
1283 static struct event_constraint emptyconstraint;
1285 static struct event_constraint *
1286 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1288 struct event_constraint *c;
1290 if (x86_pmu.event_constraints) {
1291 for_each_event_constraint(c, x86_pmu.event_constraints) {
1292 if ((event->hw.config & c->cmask) == c->code)
1293 return c;
1297 return &unconstrained;
1300 #include "perf_event_amd.c"
1301 #include "perf_event_p6.c"
1302 #include "perf_event_p4.c"
1303 #include "perf_event_intel_lbr.c"
1304 #include "perf_event_intel_ds.c"
1305 #include "perf_event_intel.c"
1307 static int __cpuinit
1308 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1310 unsigned int cpu = (long)hcpu;
1311 int ret = NOTIFY_OK;
1313 switch (action & ~CPU_TASKS_FROZEN) {
1314 case CPU_UP_PREPARE:
1315 if (x86_pmu.cpu_prepare)
1316 ret = x86_pmu.cpu_prepare(cpu);
1317 break;
1319 case CPU_STARTING:
1320 if (x86_pmu.cpu_starting)
1321 x86_pmu.cpu_starting(cpu);
1322 break;
1324 case CPU_DYING:
1325 if (x86_pmu.cpu_dying)
1326 x86_pmu.cpu_dying(cpu);
1327 break;
1329 case CPU_UP_CANCELED:
1330 case CPU_DEAD:
1331 if (x86_pmu.cpu_dead)
1332 x86_pmu.cpu_dead(cpu);
1333 break;
1335 default:
1336 break;
1339 return ret;
1342 static void __init pmu_check_apic(void)
1344 if (cpu_has_apic)
1345 return;
1347 x86_pmu.apic = 0;
1348 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1349 pr_info("no hardware sampling interrupt available.\n");
1352 void __init init_hw_perf_events(void)
1354 struct event_constraint *c;
1355 int err;
1357 pr_info("Performance Events: ");
1359 switch (boot_cpu_data.x86_vendor) {
1360 case X86_VENDOR_INTEL:
1361 err = intel_pmu_init();
1362 break;
1363 case X86_VENDOR_AMD:
1364 err = amd_pmu_init();
1365 break;
1366 default:
1367 return;
1369 if (err != 0) {
1370 pr_cont("no PMU driver, software events only.\n");
1371 return;
1374 pmu_check_apic();
1376 pr_cont("%s PMU driver.\n", x86_pmu.name);
1378 if (x86_pmu.quirks)
1379 x86_pmu.quirks();
1381 if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1382 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1383 x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1384 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1386 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1388 if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1389 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1390 x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1391 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1394 x86_pmu.intel_ctrl |=
1395 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1397 perf_events_lapic_init();
1398 register_die_notifier(&perf_event_nmi_notifier);
1400 unconstrained = (struct event_constraint)
1401 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1402 0, x86_pmu.num_counters);
1404 if (x86_pmu.event_constraints) {
1405 for_each_event_constraint(c, x86_pmu.event_constraints) {
1406 if (c->cmask != X86_RAW_EVENT_MASK)
1407 continue;
1409 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
1410 c->weight += x86_pmu.num_counters;
1414 pr_info("... version: %d\n", x86_pmu.version);
1415 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1416 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1417 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1418 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1419 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1420 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1422 perf_pmu_register(&pmu);
1423 perf_cpu_notifier(x86_pmu_notifier);
1426 static inline void x86_pmu_read(struct perf_event *event)
1428 x86_perf_event_update(event);
1432 * Start group events scheduling transaction
1433 * Set the flag to make pmu::enable() not perform the
1434 * schedulability test, it will be performed at commit time
1436 static void x86_pmu_start_txn(struct pmu *pmu)
1438 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1440 perf_pmu_disable(pmu);
1441 cpuc->group_flag |= PERF_EVENT_TXN;
1442 cpuc->n_txn = 0;
1446 * Stop group events scheduling transaction
1447 * Clear the flag and pmu::enable() will perform the
1448 * schedulability test.
1450 static void x86_pmu_cancel_txn(struct pmu *pmu)
1452 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1454 cpuc->group_flag &= ~PERF_EVENT_TXN;
1456 * Truncate the collected events.
1458 cpuc->n_added -= cpuc->n_txn;
1459 cpuc->n_events -= cpuc->n_txn;
1460 perf_pmu_enable(pmu);
1464 * Commit group events scheduling transaction
1465 * Perform the group schedulability test as a whole
1466 * Return 0 if success
1468 static int x86_pmu_commit_txn(struct pmu *pmu)
1470 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1471 int assign[X86_PMC_IDX_MAX];
1472 int n, ret;
1474 n = cpuc->n_events;
1476 if (!x86_pmu_initialized())
1477 return -EAGAIN;
1479 ret = x86_pmu.schedule_events(cpuc, n, assign);
1480 if (ret)
1481 return ret;
1484 * copy new assignment, now we know it is possible
1485 * will be used by hw_perf_enable()
1487 memcpy(cpuc->assign, assign, n*sizeof(int));
1489 cpuc->group_flag &= ~PERF_EVENT_TXN;
1490 perf_pmu_enable(pmu);
1491 return 0;
1495 * validate that we can schedule this event
1497 static int validate_event(struct perf_event *event)
1499 struct cpu_hw_events *fake_cpuc;
1500 struct event_constraint *c;
1501 int ret = 0;
1503 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1504 if (!fake_cpuc)
1505 return -ENOMEM;
1507 c = x86_pmu.get_event_constraints(fake_cpuc, event);
1509 if (!c || !c->weight)
1510 ret = -ENOSPC;
1512 if (x86_pmu.put_event_constraints)
1513 x86_pmu.put_event_constraints(fake_cpuc, event);
1515 kfree(fake_cpuc);
1517 return ret;
1521 * validate a single event group
1523 * validation include:
1524 * - check events are compatible which each other
1525 * - events do not compete for the same counter
1526 * - number of events <= number of counters
1528 * validation ensures the group can be loaded onto the
1529 * PMU if it was the only group available.
1531 static int validate_group(struct perf_event *event)
1533 struct perf_event *leader = event->group_leader;
1534 struct cpu_hw_events *fake_cpuc;
1535 int ret, n;
1537 ret = -ENOMEM;
1538 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1539 if (!fake_cpuc)
1540 goto out;
1543 * the event is not yet connected with its
1544 * siblings therefore we must first collect
1545 * existing siblings, then add the new event
1546 * before we can simulate the scheduling
1548 ret = -ENOSPC;
1549 n = collect_events(fake_cpuc, leader, true);
1550 if (n < 0)
1551 goto out_free;
1553 fake_cpuc->n_events = n;
1554 n = collect_events(fake_cpuc, event, false);
1555 if (n < 0)
1556 goto out_free;
1558 fake_cpuc->n_events = n;
1560 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1562 out_free:
1563 kfree(fake_cpuc);
1564 out:
1565 return ret;
1568 int x86_pmu_event_init(struct perf_event *event)
1570 struct pmu *tmp;
1571 int err;
1573 switch (event->attr.type) {
1574 case PERF_TYPE_RAW:
1575 case PERF_TYPE_HARDWARE:
1576 case PERF_TYPE_HW_CACHE:
1577 break;
1579 default:
1580 return -ENOENT;
1583 err = __x86_pmu_event_init(event);
1584 if (!err) {
1586 * we temporarily connect event to its pmu
1587 * such that validate_group() can classify
1588 * it as an x86 event using is_x86_event()
1590 tmp = event->pmu;
1591 event->pmu = &pmu;
1593 if (event->group_leader != event)
1594 err = validate_group(event);
1595 else
1596 err = validate_event(event);
1598 event->pmu = tmp;
1600 if (err) {
1601 if (event->destroy)
1602 event->destroy(event);
1605 return err;
1608 static struct pmu pmu = {
1609 .pmu_enable = x86_pmu_enable,
1610 .pmu_disable = x86_pmu_disable,
1612 .event_init = x86_pmu_event_init,
1614 .add = x86_pmu_add,
1615 .del = x86_pmu_del,
1616 .start = x86_pmu_start,
1617 .stop = x86_pmu_stop,
1618 .read = x86_pmu_read,
1620 .start_txn = x86_pmu_start_txn,
1621 .cancel_txn = x86_pmu_cancel_txn,
1622 .commit_txn = x86_pmu_commit_txn,
1626 * callchain support
1629 static void
1630 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1632 /* Ignore warnings */
1635 static void backtrace_warning(void *data, char *msg)
1637 /* Ignore warnings */
1640 static int backtrace_stack(void *data, char *name)
1642 return 0;
1645 static void backtrace_address(void *data, unsigned long addr, int reliable)
1647 struct perf_callchain_entry *entry = data;
1649 perf_callchain_store(entry, addr);
1652 static const struct stacktrace_ops backtrace_ops = {
1653 .warning = backtrace_warning,
1654 .warning_symbol = backtrace_warning_symbol,
1655 .stack = backtrace_stack,
1656 .address = backtrace_address,
1657 .walk_stack = print_context_stack_bp,
1660 void
1661 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1663 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1664 /* TODO: We don't support guest os callchain now */
1665 return;
1668 perf_callchain_store(entry, regs->ip);
1670 dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
1673 #ifdef CONFIG_COMPAT
1674 static inline int
1675 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1677 /* 32-bit process in 64-bit kernel. */
1678 struct stack_frame_ia32 frame;
1679 const void __user *fp;
1681 if (!test_thread_flag(TIF_IA32))
1682 return 0;
1684 fp = compat_ptr(regs->bp);
1685 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1686 unsigned long bytes;
1687 frame.next_frame = 0;
1688 frame.return_address = 0;
1690 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1691 if (bytes != sizeof(frame))
1692 break;
1694 if (fp < compat_ptr(regs->sp))
1695 break;
1697 perf_callchain_store(entry, frame.return_address);
1698 fp = compat_ptr(frame.next_frame);
1700 return 1;
1702 #else
1703 static inline int
1704 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1706 return 0;
1708 #endif
1710 void
1711 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1713 struct stack_frame frame;
1714 const void __user *fp;
1716 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1717 /* TODO: We don't support guest os callchain now */
1718 return;
1721 fp = (void __user *)regs->bp;
1723 perf_callchain_store(entry, regs->ip);
1725 if (perf_callchain_user32(regs, entry))
1726 return;
1728 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1729 unsigned long bytes;
1730 frame.next_frame = NULL;
1731 frame.return_address = 0;
1733 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1734 if (bytes != sizeof(frame))
1735 break;
1737 if ((unsigned long)fp < regs->sp)
1738 break;
1740 perf_callchain_store(entry, frame.return_address);
1741 fp = frame.next_frame;
1745 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1747 unsigned long ip;
1749 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1750 ip = perf_guest_cbs->get_guest_ip();
1751 else
1752 ip = instruction_pointer(regs);
1754 return ip;
1757 unsigned long perf_misc_flags(struct pt_regs *regs)
1759 int misc = 0;
1761 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1762 if (perf_guest_cbs->is_user_mode())
1763 misc |= PERF_RECORD_MISC_GUEST_USER;
1764 else
1765 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1766 } else {
1767 if (user_mode(regs))
1768 misc |= PERF_RECORD_MISC_USER;
1769 else
1770 misc |= PERF_RECORD_MISC_KERNEL;
1773 if (regs->flags & PERF_EFLAGS_EXACT)
1774 misc |= PERF_RECORD_MISC_EXACT_IP;
1776 return misc;