drm/i915: GEN6_RP_INTERRUPT_LIMITS doesn't seem to exist on VLV
[linux-2.6/btrfs-unstable.git] / drivers / net / hippi / rrunner.c
blob3c4d6274bb9b25527aa2af7e1daf4f07fe3a84d0
1 /*
2 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
4 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
6 * Thanks to Essential Communication for providing us with hardware
7 * and very comprehensive documentation without which I would not have
8 * been able to write this driver. A special thank you to John Gibbon
9 * for sorting out the legal issues, with the NDA, allowing the code to
10 * be released under the GPL.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
18 * stupid bugs in my code.
20 * Softnet support and various other patches from Val Henson of
21 * ODS/Essential.
23 * PCI DMA mapping code partly based on work by Francois Romieu.
27 #define DEBUG 1
28 #define RX_DMA_SKBUFF 1
29 #define PKT_COPY_THRESHOLD 512
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/errno.h>
34 #include <linux/ioport.h>
35 #include <linux/pci.h>
36 #include <linux/kernel.h>
37 #include <linux/netdevice.h>
38 #include <linux/hippidevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/init.h>
41 #include <linux/delay.h>
42 #include <linux/mm.h>
43 #include <linux/slab.h>
44 #include <net/sock.h>
46 #include <asm/cache.h>
47 #include <asm/byteorder.h>
48 #include <asm/io.h>
49 #include <asm/irq.h>
50 #include <asm/uaccess.h>
52 #define rr_if_busy(dev) netif_queue_stopped(dev)
53 #define rr_if_running(dev) netif_running(dev)
55 #include "rrunner.h"
57 #define RUN_AT(x) (jiffies + (x))
60 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
61 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
62 MODULE_LICENSE("GPL");
64 static char version[] = "rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n";
67 static const struct net_device_ops rr_netdev_ops = {
68 .ndo_open = rr_open,
69 .ndo_stop = rr_close,
70 .ndo_do_ioctl = rr_ioctl,
71 .ndo_start_xmit = rr_start_xmit,
72 .ndo_change_mtu = hippi_change_mtu,
73 .ndo_set_mac_address = hippi_mac_addr,
77 * Implementation notes:
79 * The DMA engine only allows for DMA within physical 64KB chunks of
80 * memory. The current approach of the driver (and stack) is to use
81 * linear blocks of memory for the skbuffs. However, as the data block
82 * is always the first part of the skb and skbs are 2^n aligned so we
83 * are guarantted to get the whole block within one 64KB align 64KB
84 * chunk.
86 * On the long term, relying on being able to allocate 64KB linear
87 * chunks of memory is not feasible and the skb handling code and the
88 * stack will need to know about I/O vectors or something similar.
91 static int rr_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
93 struct net_device *dev;
94 static int version_disp;
95 u8 pci_latency;
96 struct rr_private *rrpriv;
97 void *tmpptr;
98 dma_addr_t ring_dma;
99 int ret = -ENOMEM;
101 dev = alloc_hippi_dev(sizeof(struct rr_private));
102 if (!dev)
103 goto out3;
105 ret = pci_enable_device(pdev);
106 if (ret) {
107 ret = -ENODEV;
108 goto out2;
111 rrpriv = netdev_priv(dev);
113 SET_NETDEV_DEV(dev, &pdev->dev);
115 ret = pci_request_regions(pdev, "rrunner");
116 if (ret < 0)
117 goto out;
119 pci_set_drvdata(pdev, dev);
121 rrpriv->pci_dev = pdev;
123 spin_lock_init(&rrpriv->lock);
125 dev->netdev_ops = &rr_netdev_ops;
127 /* display version info if adapter is found */
128 if (!version_disp) {
129 /* set display flag to TRUE so that */
130 /* we only display this string ONCE */
131 version_disp = 1;
132 printk(version);
135 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
136 if (pci_latency <= 0x58){
137 pci_latency = 0x58;
138 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
141 pci_set_master(pdev);
143 printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
144 "at 0x%llx, irq %i, PCI latency %i\n", dev->name,
145 (unsigned long long)pci_resource_start(pdev, 0),
146 pdev->irq, pci_latency);
149 * Remap the MMIO regs into kernel space.
151 rrpriv->regs = pci_iomap(pdev, 0, 0x1000);
152 if (!rrpriv->regs) {
153 printk(KERN_ERR "%s: Unable to map I/O register, "
154 "RoadRunner will be disabled.\n", dev->name);
155 ret = -EIO;
156 goto out;
159 tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
160 rrpriv->tx_ring = tmpptr;
161 rrpriv->tx_ring_dma = ring_dma;
163 if (!tmpptr) {
164 ret = -ENOMEM;
165 goto out;
168 tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
169 rrpriv->rx_ring = tmpptr;
170 rrpriv->rx_ring_dma = ring_dma;
172 if (!tmpptr) {
173 ret = -ENOMEM;
174 goto out;
177 tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
178 rrpriv->evt_ring = tmpptr;
179 rrpriv->evt_ring_dma = ring_dma;
181 if (!tmpptr) {
182 ret = -ENOMEM;
183 goto out;
187 * Don't access any register before this point!
189 #ifdef __BIG_ENDIAN
190 writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
191 &rrpriv->regs->HostCtrl);
192 #endif
194 * Need to add a case for little-endian 64-bit hosts here.
197 rr_init(dev);
199 ret = register_netdev(dev);
200 if (ret)
201 goto out;
202 return 0;
204 out:
205 if (rrpriv->evt_ring)
206 pci_free_consistent(pdev, EVT_RING_SIZE, rrpriv->evt_ring,
207 rrpriv->evt_ring_dma);
208 if (rrpriv->rx_ring)
209 pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
210 rrpriv->rx_ring_dma);
211 if (rrpriv->tx_ring)
212 pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
213 rrpriv->tx_ring_dma);
214 if (rrpriv->regs)
215 pci_iounmap(pdev, rrpriv->regs);
216 if (pdev) {
217 pci_release_regions(pdev);
218 pci_set_drvdata(pdev, NULL);
220 out2:
221 free_netdev(dev);
222 out3:
223 return ret;
226 static void rr_remove_one(struct pci_dev *pdev)
228 struct net_device *dev = pci_get_drvdata(pdev);
229 struct rr_private *rr = netdev_priv(dev);
231 if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) {
232 printk(KERN_ERR "%s: trying to unload running NIC\n",
233 dev->name);
234 writel(HALT_NIC, &rr->regs->HostCtrl);
237 unregister_netdev(dev);
238 pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
239 rr->evt_ring_dma);
240 pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
241 rr->rx_ring_dma);
242 pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
243 rr->tx_ring_dma);
244 pci_iounmap(pdev, rr->regs);
245 pci_release_regions(pdev);
246 pci_disable_device(pdev);
247 pci_set_drvdata(pdev, NULL);
248 free_netdev(dev);
253 * Commands are considered to be slow, thus there is no reason to
254 * inline this.
256 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
258 struct rr_regs __iomem *regs;
259 u32 idx;
261 regs = rrpriv->regs;
263 * This is temporary - it will go away in the final version.
264 * We probably also want to make this function inline.
266 if (readl(&regs->HostCtrl) & NIC_HALTED){
267 printk("issuing command for halted NIC, code 0x%x, "
268 "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
269 if (readl(&regs->Mode) & FATAL_ERR)
270 printk("error codes Fail1 %02x, Fail2 %02x\n",
271 readl(&regs->Fail1), readl(&regs->Fail2));
274 idx = rrpriv->info->cmd_ctrl.pi;
276 writel(*(u32*)(cmd), &regs->CmdRing[idx]);
277 wmb();
279 idx = (idx - 1) % CMD_RING_ENTRIES;
280 rrpriv->info->cmd_ctrl.pi = idx;
281 wmb();
283 if (readl(&regs->Mode) & FATAL_ERR)
284 printk("error code %02x\n", readl(&regs->Fail1));
289 * Reset the board in a sensible manner. The NIC is already halted
290 * when we get here and a spin-lock is held.
292 static int rr_reset(struct net_device *dev)
294 struct rr_private *rrpriv;
295 struct rr_regs __iomem *regs;
296 u32 start_pc;
297 int i;
299 rrpriv = netdev_priv(dev);
300 regs = rrpriv->regs;
302 rr_load_firmware(dev);
304 writel(0x01000000, &regs->TX_state);
305 writel(0xff800000, &regs->RX_state);
306 writel(0, &regs->AssistState);
307 writel(CLEAR_INTA, &regs->LocalCtrl);
308 writel(0x01, &regs->BrkPt);
309 writel(0, &regs->Timer);
310 writel(0, &regs->TimerRef);
311 writel(RESET_DMA, &regs->DmaReadState);
312 writel(RESET_DMA, &regs->DmaWriteState);
313 writel(0, &regs->DmaWriteHostHi);
314 writel(0, &regs->DmaWriteHostLo);
315 writel(0, &regs->DmaReadHostHi);
316 writel(0, &regs->DmaReadHostLo);
317 writel(0, &regs->DmaReadLen);
318 writel(0, &regs->DmaWriteLen);
319 writel(0, &regs->DmaWriteLcl);
320 writel(0, &regs->DmaWriteIPchecksum);
321 writel(0, &regs->DmaReadLcl);
322 writel(0, &regs->DmaReadIPchecksum);
323 writel(0, &regs->PciState);
324 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
325 writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
326 #elif (BITS_PER_LONG == 64)
327 writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
328 #else
329 writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
330 #endif
332 #if 0
334 * Don't worry, this is just black magic.
336 writel(0xdf000, &regs->RxBase);
337 writel(0xdf000, &regs->RxPrd);
338 writel(0xdf000, &regs->RxCon);
339 writel(0xce000, &regs->TxBase);
340 writel(0xce000, &regs->TxPrd);
341 writel(0xce000, &regs->TxCon);
342 writel(0, &regs->RxIndPro);
343 writel(0, &regs->RxIndCon);
344 writel(0, &regs->RxIndRef);
345 writel(0, &regs->TxIndPro);
346 writel(0, &regs->TxIndCon);
347 writel(0, &regs->TxIndRef);
348 writel(0xcc000, &regs->pad10[0]);
349 writel(0, &regs->DrCmndPro);
350 writel(0, &regs->DrCmndCon);
351 writel(0, &regs->DwCmndPro);
352 writel(0, &regs->DwCmndCon);
353 writel(0, &regs->DwCmndRef);
354 writel(0, &regs->DrDataPro);
355 writel(0, &regs->DrDataCon);
356 writel(0, &regs->DrDataRef);
357 writel(0, &regs->DwDataPro);
358 writel(0, &regs->DwDataCon);
359 writel(0, &regs->DwDataRef);
360 #endif
362 writel(0xffffffff, &regs->MbEvent);
363 writel(0, &regs->Event);
365 writel(0, &regs->TxPi);
366 writel(0, &regs->IpRxPi);
368 writel(0, &regs->EvtCon);
369 writel(0, &regs->EvtPrd);
371 rrpriv->info->evt_ctrl.pi = 0;
373 for (i = 0; i < CMD_RING_ENTRIES; i++)
374 writel(0, &regs->CmdRing[i]);
377 * Why 32 ? is this not cache line size dependent?
379 writel(RBURST_64|WBURST_64, &regs->PciState);
380 wmb();
382 start_pc = rr_read_eeprom_word(rrpriv,
383 offsetof(struct eeprom, rncd_info.FwStart));
385 #if (DEBUG > 1)
386 printk("%s: Executing firmware at address 0x%06x\n",
387 dev->name, start_pc);
388 #endif
390 writel(start_pc + 0x800, &regs->Pc);
391 wmb();
392 udelay(5);
394 writel(start_pc, &regs->Pc);
395 wmb();
397 return 0;
402 * Read a string from the EEPROM.
404 static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
405 unsigned long offset,
406 unsigned char *buf,
407 unsigned long length)
409 struct rr_regs __iomem *regs = rrpriv->regs;
410 u32 misc, io, host, i;
412 io = readl(&regs->ExtIo);
413 writel(0, &regs->ExtIo);
414 misc = readl(&regs->LocalCtrl);
415 writel(0, &regs->LocalCtrl);
416 host = readl(&regs->HostCtrl);
417 writel(host | HALT_NIC, &regs->HostCtrl);
418 mb();
420 for (i = 0; i < length; i++){
421 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
422 mb();
423 buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
424 mb();
427 writel(host, &regs->HostCtrl);
428 writel(misc, &regs->LocalCtrl);
429 writel(io, &regs->ExtIo);
430 mb();
431 return i;
436 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
437 * it to our CPU byte-order.
439 static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
440 size_t offset)
442 __be32 word;
444 if ((rr_read_eeprom(rrpriv, offset,
445 (unsigned char *)&word, 4) == 4))
446 return be32_to_cpu(word);
447 return 0;
452 * Write a string to the EEPROM.
454 * This is only called when the firmware is not running.
456 static unsigned int write_eeprom(struct rr_private *rrpriv,
457 unsigned long offset,
458 unsigned char *buf,
459 unsigned long length)
461 struct rr_regs __iomem *regs = rrpriv->regs;
462 u32 misc, io, data, i, j, ready, error = 0;
464 io = readl(&regs->ExtIo);
465 writel(0, &regs->ExtIo);
466 misc = readl(&regs->LocalCtrl);
467 writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
468 mb();
470 for (i = 0; i < length; i++){
471 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
472 mb();
473 data = buf[i] << 24;
475 * Only try to write the data if it is not the same
476 * value already.
478 if ((readl(&regs->WinData) & 0xff000000) != data){
479 writel(data, &regs->WinData);
480 ready = 0;
481 j = 0;
482 mb();
483 while(!ready){
484 udelay(20);
485 if ((readl(&regs->WinData) & 0xff000000) ==
486 data)
487 ready = 1;
488 mb();
489 if (j++ > 5000){
490 printk("data mismatch: %08x, "
491 "WinData %08x\n", data,
492 readl(&regs->WinData));
493 ready = 1;
494 error = 1;
500 writel(misc, &regs->LocalCtrl);
501 writel(io, &regs->ExtIo);
502 mb();
504 return error;
508 static int rr_init(struct net_device *dev)
510 struct rr_private *rrpriv;
511 struct rr_regs __iomem *regs;
512 u32 sram_size, rev;
514 rrpriv = netdev_priv(dev);
515 regs = rrpriv->regs;
517 rev = readl(&regs->FwRev);
518 rrpriv->fw_rev = rev;
519 if (rev > 0x00020024)
520 printk(" Firmware revision: %i.%i.%i\n", (rev >> 16),
521 ((rev >> 8) & 0xff), (rev & 0xff));
522 else if (rev >= 0x00020000) {
523 printk(" Firmware revision: %i.%i.%i (2.0.37 or "
524 "later is recommended)\n", (rev >> 16),
525 ((rev >> 8) & 0xff), (rev & 0xff));
526 }else{
527 printk(" Firmware revision too old: %i.%i.%i, please "
528 "upgrade to 2.0.37 or later.\n",
529 (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
532 #if (DEBUG > 2)
533 printk(" Maximum receive rings %i\n", readl(&regs->MaxRxRng));
534 #endif
537 * Read the hardware address from the eeprom. The HW address
538 * is not really necessary for HIPPI but awfully convenient.
539 * The pointer arithmetic to put it in dev_addr is ugly, but
540 * Donald Becker does it this way for the GigE version of this
541 * card and it's shorter and more portable than any
542 * other method I've seen. -VAL
545 *(__be16 *)(dev->dev_addr) =
546 htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
547 *(__be32 *)(dev->dev_addr+2) =
548 htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
550 printk(" MAC: %pM\n", dev->dev_addr);
552 sram_size = rr_read_eeprom_word(rrpriv, 8);
553 printk(" SRAM size 0x%06x\n", sram_size);
555 return 0;
559 static int rr_init1(struct net_device *dev)
561 struct rr_private *rrpriv;
562 struct rr_regs __iomem *regs;
563 unsigned long myjif, flags;
564 struct cmd cmd;
565 u32 hostctrl;
566 int ecode = 0;
567 short i;
569 rrpriv = netdev_priv(dev);
570 regs = rrpriv->regs;
572 spin_lock_irqsave(&rrpriv->lock, flags);
574 hostctrl = readl(&regs->HostCtrl);
575 writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
576 wmb();
578 if (hostctrl & PARITY_ERR){
579 printk("%s: Parity error halting NIC - this is serious!\n",
580 dev->name);
581 spin_unlock_irqrestore(&rrpriv->lock, flags);
582 ecode = -EFAULT;
583 goto error;
586 set_rxaddr(regs, rrpriv->rx_ctrl_dma);
587 set_infoaddr(regs, rrpriv->info_dma);
589 rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
590 rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
591 rrpriv->info->evt_ctrl.mode = 0;
592 rrpriv->info->evt_ctrl.pi = 0;
593 set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
595 rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
596 rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
597 rrpriv->info->cmd_ctrl.mode = 0;
598 rrpriv->info->cmd_ctrl.pi = 15;
600 for (i = 0; i < CMD_RING_ENTRIES; i++) {
601 writel(0, &regs->CmdRing[i]);
604 for (i = 0; i < TX_RING_ENTRIES; i++) {
605 rrpriv->tx_ring[i].size = 0;
606 set_rraddr(&rrpriv->tx_ring[i].addr, 0);
607 rrpriv->tx_skbuff[i] = NULL;
609 rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
610 rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
611 rrpriv->info->tx_ctrl.mode = 0;
612 rrpriv->info->tx_ctrl.pi = 0;
613 set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
616 * Set dirty_tx before we start receiving interrupts, otherwise
617 * the interrupt handler might think it is supposed to process
618 * tx ints before we are up and running, which may cause a null
619 * pointer access in the int handler.
621 rrpriv->tx_full = 0;
622 rrpriv->cur_rx = 0;
623 rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
625 rr_reset(dev);
627 /* Tuning values */
628 writel(0x5000, &regs->ConRetry);
629 writel(0x100, &regs->ConRetryTmr);
630 writel(0x500000, &regs->ConTmout);
631 writel(0x60, &regs->IntrTmr);
632 writel(0x500000, &regs->TxDataMvTimeout);
633 writel(0x200000, &regs->RxDataMvTimeout);
634 writel(0x80, &regs->WriteDmaThresh);
635 writel(0x80, &regs->ReadDmaThresh);
637 rrpriv->fw_running = 0;
638 wmb();
640 hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
641 writel(hostctrl, &regs->HostCtrl);
642 wmb();
644 spin_unlock_irqrestore(&rrpriv->lock, flags);
646 for (i = 0; i < RX_RING_ENTRIES; i++) {
647 struct sk_buff *skb;
648 dma_addr_t addr;
650 rrpriv->rx_ring[i].mode = 0;
651 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
652 if (!skb) {
653 printk(KERN_WARNING "%s: Unable to allocate memory "
654 "for receive ring - halting NIC\n", dev->name);
655 ecode = -ENOMEM;
656 goto error;
658 rrpriv->rx_skbuff[i] = skb;
659 addr = pci_map_single(rrpriv->pci_dev, skb->data,
660 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
662 * Sanity test to see if we conflict with the DMA
663 * limitations of the Roadrunner.
665 if ((((unsigned long)skb->data) & 0xfff) > ~65320)
666 printk("skb alloc error\n");
668 set_rraddr(&rrpriv->rx_ring[i].addr, addr);
669 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
672 rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
673 rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
674 rrpriv->rx_ctrl[4].mode = 8;
675 rrpriv->rx_ctrl[4].pi = 0;
676 wmb();
677 set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
679 udelay(1000);
682 * Now start the FirmWare.
684 cmd.code = C_START_FW;
685 cmd.ring = 0;
686 cmd.index = 0;
688 rr_issue_cmd(rrpriv, &cmd);
691 * Give the FirmWare time to chew on the `get running' command.
693 myjif = jiffies + 5 * HZ;
694 while (time_before(jiffies, myjif) && !rrpriv->fw_running)
695 cpu_relax();
697 netif_start_queue(dev);
699 return ecode;
701 error:
703 * We might have gotten here because we are out of memory,
704 * make sure we release everything we allocated before failing
706 for (i = 0; i < RX_RING_ENTRIES; i++) {
707 struct sk_buff *skb = rrpriv->rx_skbuff[i];
709 if (skb) {
710 pci_unmap_single(rrpriv->pci_dev,
711 rrpriv->rx_ring[i].addr.addrlo,
712 dev->mtu + HIPPI_HLEN,
713 PCI_DMA_FROMDEVICE);
714 rrpriv->rx_ring[i].size = 0;
715 set_rraddr(&rrpriv->rx_ring[i].addr, 0);
716 dev_kfree_skb(skb);
717 rrpriv->rx_skbuff[i] = NULL;
720 return ecode;
725 * All events are considered to be slow (RX/TX ints do not generate
726 * events) and are handled here, outside the main interrupt handler,
727 * to reduce the size of the handler.
729 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
731 struct rr_private *rrpriv;
732 struct rr_regs __iomem *regs;
733 u32 tmp;
735 rrpriv = netdev_priv(dev);
736 regs = rrpriv->regs;
738 while (prodidx != eidx){
739 switch (rrpriv->evt_ring[eidx].code){
740 case E_NIC_UP:
741 tmp = readl(&regs->FwRev);
742 printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
743 "up and running\n", dev->name,
744 (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
745 rrpriv->fw_running = 1;
746 writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
747 wmb();
748 break;
749 case E_LINK_ON:
750 printk(KERN_INFO "%s: Optical link ON\n", dev->name);
751 break;
752 case E_LINK_OFF:
753 printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
754 break;
755 case E_RX_IDLE:
756 printk(KERN_WARNING "%s: RX data not moving\n",
757 dev->name);
758 goto drop;
759 case E_WATCHDOG:
760 printk(KERN_INFO "%s: The watchdog is here to see "
761 "us\n", dev->name);
762 break;
763 case E_INTERN_ERR:
764 printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
765 dev->name);
766 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
767 &regs->HostCtrl);
768 wmb();
769 break;
770 case E_HOST_ERR:
771 printk(KERN_ERR "%s: Host software error\n",
772 dev->name);
773 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
774 &regs->HostCtrl);
775 wmb();
776 break;
778 * TX events.
780 case E_CON_REJ:
781 printk(KERN_WARNING "%s: Connection rejected\n",
782 dev->name);
783 dev->stats.tx_aborted_errors++;
784 break;
785 case E_CON_TMOUT:
786 printk(KERN_WARNING "%s: Connection timeout\n",
787 dev->name);
788 break;
789 case E_DISC_ERR:
790 printk(KERN_WARNING "%s: HIPPI disconnect error\n",
791 dev->name);
792 dev->stats.tx_aborted_errors++;
793 break;
794 case E_INT_PRTY:
795 printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
796 dev->name);
797 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
798 &regs->HostCtrl);
799 wmb();
800 break;
801 case E_TX_IDLE:
802 printk(KERN_WARNING "%s: Transmitter idle\n",
803 dev->name);
804 break;
805 case E_TX_LINK_DROP:
806 printk(KERN_WARNING "%s: Link lost during transmit\n",
807 dev->name);
808 dev->stats.tx_aborted_errors++;
809 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
810 &regs->HostCtrl);
811 wmb();
812 break;
813 case E_TX_INV_RNG:
814 printk(KERN_ERR "%s: Invalid send ring block\n",
815 dev->name);
816 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
817 &regs->HostCtrl);
818 wmb();
819 break;
820 case E_TX_INV_BUF:
821 printk(KERN_ERR "%s: Invalid send buffer address\n",
822 dev->name);
823 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
824 &regs->HostCtrl);
825 wmb();
826 break;
827 case E_TX_INV_DSC:
828 printk(KERN_ERR "%s: Invalid descriptor address\n",
829 dev->name);
830 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
831 &regs->HostCtrl);
832 wmb();
833 break;
835 * RX events.
837 case E_RX_RNG_OUT:
838 printk(KERN_INFO "%s: Receive ring full\n", dev->name);
839 break;
841 case E_RX_PAR_ERR:
842 printk(KERN_WARNING "%s: Receive parity error\n",
843 dev->name);
844 goto drop;
845 case E_RX_LLRC_ERR:
846 printk(KERN_WARNING "%s: Receive LLRC error\n",
847 dev->name);
848 goto drop;
849 case E_PKT_LN_ERR:
850 printk(KERN_WARNING "%s: Receive packet length "
851 "error\n", dev->name);
852 goto drop;
853 case E_DTA_CKSM_ERR:
854 printk(KERN_WARNING "%s: Data checksum error\n",
855 dev->name);
856 goto drop;
857 case E_SHT_BST:
858 printk(KERN_WARNING "%s: Unexpected short burst "
859 "error\n", dev->name);
860 goto drop;
861 case E_STATE_ERR:
862 printk(KERN_WARNING "%s: Recv. state transition"
863 " error\n", dev->name);
864 goto drop;
865 case E_UNEXP_DATA:
866 printk(KERN_WARNING "%s: Unexpected data error\n",
867 dev->name);
868 goto drop;
869 case E_LST_LNK_ERR:
870 printk(KERN_WARNING "%s: Link lost error\n",
871 dev->name);
872 goto drop;
873 case E_FRM_ERR:
874 printk(KERN_WARNING "%s: Framming Error\n",
875 dev->name);
876 goto drop;
877 case E_FLG_SYN_ERR:
878 printk(KERN_WARNING "%s: Flag sync. lost during "
879 "packet\n", dev->name);
880 goto drop;
881 case E_RX_INV_BUF:
882 printk(KERN_ERR "%s: Invalid receive buffer "
883 "address\n", dev->name);
884 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
885 &regs->HostCtrl);
886 wmb();
887 break;
888 case E_RX_INV_DSC:
889 printk(KERN_ERR "%s: Invalid receive descriptor "
890 "address\n", dev->name);
891 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
892 &regs->HostCtrl);
893 wmb();
894 break;
895 case E_RNG_BLK:
896 printk(KERN_ERR "%s: Invalid ring block\n",
897 dev->name);
898 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
899 &regs->HostCtrl);
900 wmb();
901 break;
902 drop:
903 /* Label packet to be dropped.
904 * Actual dropping occurs in rx
905 * handling.
907 * The index of packet we get to drop is
908 * the index of the packet following
909 * the bad packet. -kbf
912 u16 index = rrpriv->evt_ring[eidx].index;
913 index = (index + (RX_RING_ENTRIES - 1)) %
914 RX_RING_ENTRIES;
915 rrpriv->rx_ring[index].mode |=
916 (PACKET_BAD | PACKET_END);
918 break;
919 default:
920 printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
921 dev->name, rrpriv->evt_ring[eidx].code);
923 eidx = (eidx + 1) % EVT_RING_ENTRIES;
926 rrpriv->info->evt_ctrl.pi = eidx;
927 wmb();
928 return eidx;
932 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
934 struct rr_private *rrpriv = netdev_priv(dev);
935 struct rr_regs __iomem *regs = rrpriv->regs;
937 do {
938 struct rx_desc *desc;
939 u32 pkt_len;
941 desc = &(rrpriv->rx_ring[index]);
942 pkt_len = desc->size;
943 #if (DEBUG > 2)
944 printk("index %i, rxlimit %i\n", index, rxlimit);
945 printk("len %x, mode %x\n", pkt_len, desc->mode);
946 #endif
947 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
948 dev->stats.rx_dropped++;
949 goto defer;
952 if (pkt_len > 0){
953 struct sk_buff *skb, *rx_skb;
955 rx_skb = rrpriv->rx_skbuff[index];
957 if (pkt_len < PKT_COPY_THRESHOLD) {
958 skb = alloc_skb(pkt_len, GFP_ATOMIC);
959 if (skb == NULL){
960 printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
961 dev->stats.rx_dropped++;
962 goto defer;
963 } else {
964 pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
965 desc->addr.addrlo,
966 pkt_len,
967 PCI_DMA_FROMDEVICE);
969 memcpy(skb_put(skb, pkt_len),
970 rx_skb->data, pkt_len);
972 pci_dma_sync_single_for_device(rrpriv->pci_dev,
973 desc->addr.addrlo,
974 pkt_len,
975 PCI_DMA_FROMDEVICE);
977 }else{
978 struct sk_buff *newskb;
980 newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
981 GFP_ATOMIC);
982 if (newskb){
983 dma_addr_t addr;
985 pci_unmap_single(rrpriv->pci_dev,
986 desc->addr.addrlo, dev->mtu +
987 HIPPI_HLEN, PCI_DMA_FROMDEVICE);
988 skb = rx_skb;
989 skb_put(skb, pkt_len);
990 rrpriv->rx_skbuff[index] = newskb;
991 addr = pci_map_single(rrpriv->pci_dev,
992 newskb->data,
993 dev->mtu + HIPPI_HLEN,
994 PCI_DMA_FROMDEVICE);
995 set_rraddr(&desc->addr, addr);
996 } else {
997 printk("%s: Out of memory, deferring "
998 "packet\n", dev->name);
999 dev->stats.rx_dropped++;
1000 goto defer;
1003 skb->protocol = hippi_type_trans(skb, dev);
1005 netif_rx(skb); /* send it up */
1007 dev->stats.rx_packets++;
1008 dev->stats.rx_bytes += pkt_len;
1010 defer:
1011 desc->mode = 0;
1012 desc->size = dev->mtu + HIPPI_HLEN;
1014 if ((index & 7) == 7)
1015 writel(index, &regs->IpRxPi);
1017 index = (index + 1) % RX_RING_ENTRIES;
1018 } while(index != rxlimit);
1020 rrpriv->cur_rx = index;
1021 wmb();
1025 static irqreturn_t rr_interrupt(int irq, void *dev_id)
1027 struct rr_private *rrpriv;
1028 struct rr_regs __iomem *regs;
1029 struct net_device *dev = (struct net_device *)dev_id;
1030 u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1032 rrpriv = netdev_priv(dev);
1033 regs = rrpriv->regs;
1035 if (!(readl(&regs->HostCtrl) & RR_INT))
1036 return IRQ_NONE;
1038 spin_lock(&rrpriv->lock);
1040 prodidx = readl(&regs->EvtPrd);
1041 txcsmr = (prodidx >> 8) & 0xff;
1042 rxlimit = (prodidx >> 16) & 0xff;
1043 prodidx &= 0xff;
1045 #if (DEBUG > 2)
1046 printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1047 prodidx, rrpriv->info->evt_ctrl.pi);
1048 #endif
1050 * Order here is important. We must handle events
1051 * before doing anything else in order to catch
1052 * such things as LLRC errors, etc -kbf
1055 eidx = rrpriv->info->evt_ctrl.pi;
1056 if (prodidx != eidx)
1057 eidx = rr_handle_event(dev, prodidx, eidx);
1059 rxindex = rrpriv->cur_rx;
1060 if (rxindex != rxlimit)
1061 rx_int(dev, rxlimit, rxindex);
1063 txcon = rrpriv->dirty_tx;
1064 if (txcsmr != txcon) {
1065 do {
1066 /* Due to occational firmware TX producer/consumer out
1067 * of sync. error need to check entry in ring -kbf
1069 if(rrpriv->tx_skbuff[txcon]){
1070 struct tx_desc *desc;
1071 struct sk_buff *skb;
1073 desc = &(rrpriv->tx_ring[txcon]);
1074 skb = rrpriv->tx_skbuff[txcon];
1076 dev->stats.tx_packets++;
1077 dev->stats.tx_bytes += skb->len;
1079 pci_unmap_single(rrpriv->pci_dev,
1080 desc->addr.addrlo, skb->len,
1081 PCI_DMA_TODEVICE);
1082 dev_kfree_skb_irq(skb);
1084 rrpriv->tx_skbuff[txcon] = NULL;
1085 desc->size = 0;
1086 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1087 desc->mode = 0;
1089 txcon = (txcon + 1) % TX_RING_ENTRIES;
1090 } while (txcsmr != txcon);
1091 wmb();
1093 rrpriv->dirty_tx = txcon;
1094 if (rrpriv->tx_full && rr_if_busy(dev) &&
1095 (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1096 != rrpriv->dirty_tx)){
1097 rrpriv->tx_full = 0;
1098 netif_wake_queue(dev);
1102 eidx |= ((txcsmr << 8) | (rxlimit << 16));
1103 writel(eidx, &regs->EvtCon);
1104 wmb();
1106 spin_unlock(&rrpriv->lock);
1107 return IRQ_HANDLED;
1110 static inline void rr_raz_tx(struct rr_private *rrpriv,
1111 struct net_device *dev)
1113 int i;
1115 for (i = 0; i < TX_RING_ENTRIES; i++) {
1116 struct sk_buff *skb = rrpriv->tx_skbuff[i];
1118 if (skb) {
1119 struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1121 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1122 skb->len, PCI_DMA_TODEVICE);
1123 desc->size = 0;
1124 set_rraddr(&desc->addr, 0);
1125 dev_kfree_skb(skb);
1126 rrpriv->tx_skbuff[i] = NULL;
1132 static inline void rr_raz_rx(struct rr_private *rrpriv,
1133 struct net_device *dev)
1135 int i;
1137 for (i = 0; i < RX_RING_ENTRIES; i++) {
1138 struct sk_buff *skb = rrpriv->rx_skbuff[i];
1140 if (skb) {
1141 struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1143 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1144 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1145 desc->size = 0;
1146 set_rraddr(&desc->addr, 0);
1147 dev_kfree_skb(skb);
1148 rrpriv->rx_skbuff[i] = NULL;
1153 static void rr_timer(unsigned long data)
1155 struct net_device *dev = (struct net_device *)data;
1156 struct rr_private *rrpriv = netdev_priv(dev);
1157 struct rr_regs __iomem *regs = rrpriv->regs;
1158 unsigned long flags;
1160 if (readl(&regs->HostCtrl) & NIC_HALTED){
1161 printk("%s: Restarting nic\n", dev->name);
1162 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1163 memset(rrpriv->info, 0, sizeof(struct rr_info));
1164 wmb();
1166 rr_raz_tx(rrpriv, dev);
1167 rr_raz_rx(rrpriv, dev);
1169 if (rr_init1(dev)) {
1170 spin_lock_irqsave(&rrpriv->lock, flags);
1171 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1172 &regs->HostCtrl);
1173 spin_unlock_irqrestore(&rrpriv->lock, flags);
1176 rrpriv->timer.expires = RUN_AT(5*HZ);
1177 add_timer(&rrpriv->timer);
1181 static int rr_open(struct net_device *dev)
1183 struct rr_private *rrpriv = netdev_priv(dev);
1184 struct pci_dev *pdev = rrpriv->pci_dev;
1185 struct rr_regs __iomem *regs;
1186 int ecode = 0;
1187 unsigned long flags;
1188 dma_addr_t dma_addr;
1190 regs = rrpriv->regs;
1192 if (rrpriv->fw_rev < 0x00020000) {
1193 printk(KERN_WARNING "%s: trying to configure device with "
1194 "obsolete firmware\n", dev->name);
1195 ecode = -EBUSY;
1196 goto error;
1199 rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1200 256 * sizeof(struct ring_ctrl),
1201 &dma_addr);
1202 if (!rrpriv->rx_ctrl) {
1203 ecode = -ENOMEM;
1204 goto error;
1206 rrpriv->rx_ctrl_dma = dma_addr;
1207 memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1209 rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1210 &dma_addr);
1211 if (!rrpriv->info) {
1212 ecode = -ENOMEM;
1213 goto error;
1215 rrpriv->info_dma = dma_addr;
1216 memset(rrpriv->info, 0, sizeof(struct rr_info));
1217 wmb();
1219 spin_lock_irqsave(&rrpriv->lock, flags);
1220 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1221 readl(&regs->HostCtrl);
1222 spin_unlock_irqrestore(&rrpriv->lock, flags);
1224 if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1225 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1226 dev->name, pdev->irq);
1227 ecode = -EAGAIN;
1228 goto error;
1231 if ((ecode = rr_init1(dev)))
1232 goto error;
1234 /* Set the timer to switch to check for link beat and perhaps switch
1235 to an alternate media type. */
1236 init_timer(&rrpriv->timer);
1237 rrpriv->timer.expires = RUN_AT(5*HZ); /* 5 sec. watchdog */
1238 rrpriv->timer.data = (unsigned long)dev;
1239 rrpriv->timer.function = rr_timer; /* timer handler */
1240 add_timer(&rrpriv->timer);
1242 netif_start_queue(dev);
1244 return ecode;
1246 error:
1247 spin_lock_irqsave(&rrpriv->lock, flags);
1248 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1249 spin_unlock_irqrestore(&rrpriv->lock, flags);
1251 if (rrpriv->info) {
1252 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1253 rrpriv->info_dma);
1254 rrpriv->info = NULL;
1256 if (rrpriv->rx_ctrl) {
1257 pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1258 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1259 rrpriv->rx_ctrl = NULL;
1262 netif_stop_queue(dev);
1264 return ecode;
1268 static void rr_dump(struct net_device *dev)
1270 struct rr_private *rrpriv;
1271 struct rr_regs __iomem *regs;
1272 u32 index, cons;
1273 short i;
1274 int len;
1276 rrpriv = netdev_priv(dev);
1277 regs = rrpriv->regs;
1279 printk("%s: dumping NIC TX rings\n", dev->name);
1281 printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1282 readl(&regs->RxPrd), readl(&regs->TxPrd),
1283 readl(&regs->EvtPrd), readl(&regs->TxPi),
1284 rrpriv->info->tx_ctrl.pi);
1286 printk("Error code 0x%x\n", readl(&regs->Fail1));
1288 index = (((readl(&regs->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1289 cons = rrpriv->dirty_tx;
1290 printk("TX ring index %i, TX consumer %i\n",
1291 index, cons);
1293 if (rrpriv->tx_skbuff[index]){
1294 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1295 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1296 for (i = 0; i < len; i++){
1297 if (!(i & 7))
1298 printk("\n");
1299 printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1301 printk("\n");
1304 if (rrpriv->tx_skbuff[cons]){
1305 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1306 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1307 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1308 rrpriv->tx_ring[cons].mode,
1309 rrpriv->tx_ring[cons].size,
1310 (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1311 (unsigned long)rrpriv->tx_skbuff[cons]->data,
1312 (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1313 for (i = 0; i < len; i++){
1314 if (!(i & 7))
1315 printk("\n");
1316 printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1318 printk("\n");
1321 printk("dumping TX ring info:\n");
1322 for (i = 0; i < TX_RING_ENTRIES; i++)
1323 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1324 rrpriv->tx_ring[i].mode,
1325 rrpriv->tx_ring[i].size,
1326 (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1331 static int rr_close(struct net_device *dev)
1333 struct rr_private *rrpriv = netdev_priv(dev);
1334 struct rr_regs __iomem *regs = rrpriv->regs;
1335 struct pci_dev *pdev = rrpriv->pci_dev;
1336 unsigned long flags;
1337 u32 tmp;
1338 short i;
1340 netif_stop_queue(dev);
1344 * Lock to make sure we are not cleaning up while another CPU
1345 * is handling interrupts.
1347 spin_lock_irqsave(&rrpriv->lock, flags);
1349 tmp = readl(&regs->HostCtrl);
1350 if (tmp & NIC_HALTED){
1351 printk("%s: NIC already halted\n", dev->name);
1352 rr_dump(dev);
1353 }else{
1354 tmp |= HALT_NIC | RR_CLEAR_INT;
1355 writel(tmp, &regs->HostCtrl);
1356 readl(&regs->HostCtrl);
1359 rrpriv->fw_running = 0;
1361 del_timer_sync(&rrpriv->timer);
1363 writel(0, &regs->TxPi);
1364 writel(0, &regs->IpRxPi);
1366 writel(0, &regs->EvtCon);
1367 writel(0, &regs->EvtPrd);
1369 for (i = 0; i < CMD_RING_ENTRIES; i++)
1370 writel(0, &regs->CmdRing[i]);
1372 rrpriv->info->tx_ctrl.entries = 0;
1373 rrpriv->info->cmd_ctrl.pi = 0;
1374 rrpriv->info->evt_ctrl.pi = 0;
1375 rrpriv->rx_ctrl[4].entries = 0;
1377 rr_raz_tx(rrpriv, dev);
1378 rr_raz_rx(rrpriv, dev);
1380 pci_free_consistent(pdev, 256 * sizeof(struct ring_ctrl),
1381 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1382 rrpriv->rx_ctrl = NULL;
1384 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1385 rrpriv->info_dma);
1386 rrpriv->info = NULL;
1388 free_irq(pdev->irq, dev);
1389 spin_unlock_irqrestore(&rrpriv->lock, flags);
1391 return 0;
1395 static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1396 struct net_device *dev)
1398 struct rr_private *rrpriv = netdev_priv(dev);
1399 struct rr_regs __iomem *regs = rrpriv->regs;
1400 struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1401 struct ring_ctrl *txctrl;
1402 unsigned long flags;
1403 u32 index, len = skb->len;
1404 u32 *ifield;
1405 struct sk_buff *new_skb;
1407 if (readl(&regs->Mode) & FATAL_ERR)
1408 printk("error codes Fail1 %02x, Fail2 %02x\n",
1409 readl(&regs->Fail1), readl(&regs->Fail2));
1412 * We probably need to deal with tbusy here to prevent overruns.
1415 if (skb_headroom(skb) < 8){
1416 printk("incoming skb too small - reallocating\n");
1417 if (!(new_skb = dev_alloc_skb(len + 8))) {
1418 dev_kfree_skb(skb);
1419 netif_wake_queue(dev);
1420 return NETDEV_TX_OK;
1422 skb_reserve(new_skb, 8);
1423 skb_put(new_skb, len);
1424 skb_copy_from_linear_data(skb, new_skb->data, len);
1425 dev_kfree_skb(skb);
1426 skb = new_skb;
1429 ifield = (u32 *)skb_push(skb, 8);
1431 ifield[0] = 0;
1432 ifield[1] = hcb->ifield;
1435 * We don't need the lock before we are actually going to start
1436 * fiddling with the control blocks.
1438 spin_lock_irqsave(&rrpriv->lock, flags);
1440 txctrl = &rrpriv->info->tx_ctrl;
1442 index = txctrl->pi;
1444 rrpriv->tx_skbuff[index] = skb;
1445 set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1446 rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1447 rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1448 rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1449 txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1450 wmb();
1451 writel(txctrl->pi, &regs->TxPi);
1453 if (txctrl->pi == rrpriv->dirty_tx){
1454 rrpriv->tx_full = 1;
1455 netif_stop_queue(dev);
1458 spin_unlock_irqrestore(&rrpriv->lock, flags);
1460 return NETDEV_TX_OK;
1465 * Read the firmware out of the EEPROM and put it into the SRAM
1466 * (or from user space - later)
1468 * This operation requires the NIC to be halted and is performed with
1469 * interrupts disabled and with the spinlock hold.
1471 static int rr_load_firmware(struct net_device *dev)
1473 struct rr_private *rrpriv;
1474 struct rr_regs __iomem *regs;
1475 size_t eptr, segptr;
1476 int i, j;
1477 u32 localctrl, sptr, len, tmp;
1478 u32 p2len, p2size, nr_seg, revision, io, sram_size;
1480 rrpriv = netdev_priv(dev);
1481 regs = rrpriv->regs;
1483 if (dev->flags & IFF_UP)
1484 return -EBUSY;
1486 if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1487 printk("%s: Trying to load firmware to a running NIC.\n",
1488 dev->name);
1489 return -EBUSY;
1492 localctrl = readl(&regs->LocalCtrl);
1493 writel(0, &regs->LocalCtrl);
1495 writel(0, &regs->EvtPrd);
1496 writel(0, &regs->RxPrd);
1497 writel(0, &regs->TxPrd);
1500 * First wipe the entire SRAM, otherwise we might run into all
1501 * kinds of trouble ... sigh, this took almost all afternoon
1502 * to track down ;-(
1504 io = readl(&regs->ExtIo);
1505 writel(0, &regs->ExtIo);
1506 sram_size = rr_read_eeprom_word(rrpriv, 8);
1508 for (i = 200; i < sram_size / 4; i++){
1509 writel(i * 4, &regs->WinBase);
1510 mb();
1511 writel(0, &regs->WinData);
1512 mb();
1514 writel(io, &regs->ExtIo);
1515 mb();
1517 eptr = rr_read_eeprom_word(rrpriv,
1518 offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1519 eptr = ((eptr & 0x1fffff) >> 3);
1521 p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1522 p2len = (p2len << 2);
1523 p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1524 p2size = ((p2size & 0x1fffff) >> 3);
1526 if ((eptr < p2size) || (eptr > (p2size + p2len))){
1527 printk("%s: eptr is invalid\n", dev->name);
1528 goto out;
1531 revision = rr_read_eeprom_word(rrpriv,
1532 offsetof(struct eeprom, manf.HeaderFmt));
1534 if (revision != 1){
1535 printk("%s: invalid firmware format (%i)\n",
1536 dev->name, revision);
1537 goto out;
1540 nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1541 eptr +=4;
1542 #if (DEBUG > 1)
1543 printk("%s: nr_seg %i\n", dev->name, nr_seg);
1544 #endif
1546 for (i = 0; i < nr_seg; i++){
1547 sptr = rr_read_eeprom_word(rrpriv, eptr);
1548 eptr += 4;
1549 len = rr_read_eeprom_word(rrpriv, eptr);
1550 eptr += 4;
1551 segptr = rr_read_eeprom_word(rrpriv, eptr);
1552 segptr = ((segptr & 0x1fffff) >> 3);
1553 eptr += 4;
1554 #if (DEBUG > 1)
1555 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1556 dev->name, i, sptr, len, segptr);
1557 #endif
1558 for (j = 0; j < len; j++){
1559 tmp = rr_read_eeprom_word(rrpriv, segptr);
1560 writel(sptr, &regs->WinBase);
1561 mb();
1562 writel(tmp, &regs->WinData);
1563 mb();
1564 segptr += 4;
1565 sptr += 4;
1569 out:
1570 writel(localctrl, &regs->LocalCtrl);
1571 mb();
1572 return 0;
1576 static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1578 struct rr_private *rrpriv;
1579 unsigned char *image, *oldimage;
1580 unsigned long flags;
1581 unsigned int i;
1582 int error = -EOPNOTSUPP;
1584 rrpriv = netdev_priv(dev);
1586 switch(cmd){
1587 case SIOCRRGFW:
1588 if (!capable(CAP_SYS_RAWIO)){
1589 return -EPERM;
1592 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1593 if (!image)
1594 return -ENOMEM;
1596 if (rrpriv->fw_running){
1597 printk("%s: Firmware already running\n", dev->name);
1598 error = -EPERM;
1599 goto gf_out;
1602 spin_lock_irqsave(&rrpriv->lock, flags);
1603 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1604 spin_unlock_irqrestore(&rrpriv->lock, flags);
1605 if (i != EEPROM_BYTES){
1606 printk(KERN_ERR "%s: Error reading EEPROM\n",
1607 dev->name);
1608 error = -EFAULT;
1609 goto gf_out;
1611 error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1612 if (error)
1613 error = -EFAULT;
1614 gf_out:
1615 kfree(image);
1616 return error;
1618 case SIOCRRPFW:
1619 if (!capable(CAP_SYS_RAWIO)){
1620 return -EPERM;
1623 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1624 oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1625 if (!image || !oldimage) {
1626 error = -ENOMEM;
1627 goto wf_out;
1630 error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
1631 if (error) {
1632 error = -EFAULT;
1633 goto wf_out;
1636 if (rrpriv->fw_running){
1637 printk("%s: Firmware already running\n", dev->name);
1638 error = -EPERM;
1639 goto wf_out;
1642 printk("%s: Updating EEPROM firmware\n", dev->name);
1644 spin_lock_irqsave(&rrpriv->lock, flags);
1645 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1646 if (error)
1647 printk(KERN_ERR "%s: Error writing EEPROM\n",
1648 dev->name);
1650 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1651 spin_unlock_irqrestore(&rrpriv->lock, flags);
1653 if (i != EEPROM_BYTES)
1654 printk(KERN_ERR "%s: Error reading back EEPROM "
1655 "image\n", dev->name);
1657 error = memcmp(image, oldimage, EEPROM_BYTES);
1658 if (error){
1659 printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1660 dev->name);
1661 error = -EFAULT;
1663 wf_out:
1664 kfree(oldimage);
1665 kfree(image);
1666 return error;
1668 case SIOCRRID:
1669 return put_user(0x52523032, (int __user *)rq->ifr_data);
1670 default:
1671 return error;
1675 static DEFINE_PCI_DEVICE_TABLE(rr_pci_tbl) = {
1676 { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1677 PCI_ANY_ID, PCI_ANY_ID, },
1678 { 0,}
1680 MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1682 static struct pci_driver rr_driver = {
1683 .name = "rrunner",
1684 .id_table = rr_pci_tbl,
1685 .probe = rr_init_one,
1686 .remove = rr_remove_one,
1689 static int __init rr_init_module(void)
1691 return pci_register_driver(&rr_driver);
1694 static void __exit rr_cleanup_module(void)
1696 pci_unregister_driver(&rr_driver);
1699 module_init(rr_init_module);
1700 module_exit(rr_cleanup_module);