nfp: switch to dev_alloc_page()
[linux-2.6/btrfs-unstable.git] / drivers / net / ethernet / netronome / nfp / nfp_net_common.c
blob7147335a8b36ba0b693468df80e979c8fc54a1b9
1 /*
2 * Copyright (C) 2015-2017 Netronome Systems, Inc.
4 * This software is dual licensed under the GNU General License Version 2,
5 * June 1991 as shown in the file COPYING in the top-level directory of this
6 * source tree or the BSD 2-Clause License provided below. You have the
7 * option to license this software under the complete terms of either license.
9 * The BSD 2-Clause License:
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
15 * 1. Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
19 * 2. Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
35 * nfp_net_common.c
36 * Netronome network device driver: Common functions between PF and VF
37 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
38 * Jason McMullan <jason.mcmullan@netronome.com>
39 * Rolf Neugebauer <rolf.neugebauer@netronome.com>
40 * Brad Petrus <brad.petrus@netronome.com>
41 * Chris Telfer <chris.telfer@netronome.com>
44 #include <linux/bitfield.h>
45 #include <linux/bpf.h>
46 #include <linux/bpf_trace.h>
47 #include <linux/module.h>
48 #include <linux/kernel.h>
49 #include <linux/init.h>
50 #include <linux/fs.h>
51 #include <linux/netdevice.h>
52 #include <linux/etherdevice.h>
53 #include <linux/interrupt.h>
54 #include <linux/ip.h>
55 #include <linux/ipv6.h>
56 #include <linux/page_ref.h>
57 #include <linux/pci.h>
58 #include <linux/pci_regs.h>
59 #include <linux/msi.h>
60 #include <linux/ethtool.h>
61 #include <linux/log2.h>
62 #include <linux/if_vlan.h>
63 #include <linux/random.h>
64 #include <linux/vmalloc.h>
65 #include <linux/ktime.h>
67 #include <net/switchdev.h>
68 #include <net/vxlan.h>
70 #include "nfpcore/nfp_nsp.h"
71 #include "nfp_app.h"
72 #include "nfp_net_ctrl.h"
73 #include "nfp_net.h"
74 #include "nfp_net_sriov.h"
75 #include "nfp_port.h"
77 /**
78 * nfp_net_get_fw_version() - Read and parse the FW version
79 * @fw_ver: Output fw_version structure to read to
80 * @ctrl_bar: Mapped address of the control BAR
82 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver,
83 void __iomem *ctrl_bar)
85 u32 reg;
87 reg = readl(ctrl_bar + NFP_NET_CFG_VERSION);
88 put_unaligned_le32(reg, fw_ver);
91 static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag)
93 return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM,
94 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
95 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
98 static void
99 nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr)
101 dma_sync_single_for_device(dp->dev, dma_addr,
102 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
103 dp->rx_dma_dir);
106 static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr)
108 dma_unmap_single_attrs(dp->dev, dma_addr,
109 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
110 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
113 static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr,
114 unsigned int len)
116 dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM,
117 len, dp->rx_dma_dir);
120 /* Firmware reconfig
122 * Firmware reconfig may take a while so we have two versions of it -
123 * synchronous and asynchronous (posted). All synchronous callers are holding
124 * RTNL so we don't have to worry about serializing them.
126 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update)
128 nn_writel(nn, NFP_NET_CFG_UPDATE, update);
129 /* ensure update is written before pinging HW */
130 nn_pci_flush(nn);
131 nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1);
134 /* Pass 0 as update to run posted reconfigs. */
135 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update)
137 update |= nn->reconfig_posted;
138 nn->reconfig_posted = 0;
140 nfp_net_reconfig_start(nn, update);
142 nn->reconfig_timer_active = true;
143 mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ);
146 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check)
148 u32 reg;
150 reg = nn_readl(nn, NFP_NET_CFG_UPDATE);
151 if (reg == 0)
152 return true;
153 if (reg & NFP_NET_CFG_UPDATE_ERR) {
154 nn_err(nn, "Reconfig error: 0x%08x\n", reg);
155 return true;
156 } else if (last_check) {
157 nn_err(nn, "Reconfig timeout: 0x%08x\n", reg);
158 return true;
161 return false;
164 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
166 bool timed_out = false;
168 /* Poll update field, waiting for NFP to ack the config */
169 while (!nfp_net_reconfig_check_done(nn, timed_out)) {
170 msleep(1);
171 timed_out = time_is_before_eq_jiffies(deadline);
174 if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR)
175 return -EIO;
177 return timed_out ? -EIO : 0;
180 static void nfp_net_reconfig_timer(struct timer_list *t)
182 struct nfp_net *nn = from_timer(nn, t, reconfig_timer);
184 spin_lock_bh(&nn->reconfig_lock);
186 nn->reconfig_timer_active = false;
188 /* If sync caller is present it will take over from us */
189 if (nn->reconfig_sync_present)
190 goto done;
192 /* Read reconfig status and report errors */
193 nfp_net_reconfig_check_done(nn, true);
195 if (nn->reconfig_posted)
196 nfp_net_reconfig_start_async(nn, 0);
197 done:
198 spin_unlock_bh(&nn->reconfig_lock);
202 * nfp_net_reconfig_post() - Post async reconfig request
203 * @nn: NFP Net device to reconfigure
204 * @update: The value for the update field in the BAR config
206 * Record FW reconfiguration request. Reconfiguration will be kicked off
207 * whenever reconfiguration machinery is idle. Multiple requests can be
208 * merged together!
210 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update)
212 spin_lock_bh(&nn->reconfig_lock);
214 /* Sync caller will kick off async reconf when it's done, just post */
215 if (nn->reconfig_sync_present) {
216 nn->reconfig_posted |= update;
217 goto done;
220 /* Opportunistically check if the previous command is done */
221 if (!nn->reconfig_timer_active ||
222 nfp_net_reconfig_check_done(nn, false))
223 nfp_net_reconfig_start_async(nn, update);
224 else
225 nn->reconfig_posted |= update;
226 done:
227 spin_unlock_bh(&nn->reconfig_lock);
231 * nfp_net_reconfig() - Reconfigure the firmware
232 * @nn: NFP Net device to reconfigure
233 * @update: The value for the update field in the BAR config
235 * Write the update word to the BAR and ping the reconfig queue. The
236 * poll until the firmware has acknowledged the update by zeroing the
237 * update word.
239 * Return: Negative errno on error, 0 on success
241 int nfp_net_reconfig(struct nfp_net *nn, u32 update)
243 bool cancelled_timer = false;
244 u32 pre_posted_requests;
245 int ret;
247 spin_lock_bh(&nn->reconfig_lock);
249 nn->reconfig_sync_present = true;
251 if (nn->reconfig_timer_active) {
252 del_timer(&nn->reconfig_timer);
253 nn->reconfig_timer_active = false;
254 cancelled_timer = true;
256 pre_posted_requests = nn->reconfig_posted;
257 nn->reconfig_posted = 0;
259 spin_unlock_bh(&nn->reconfig_lock);
261 if (cancelled_timer)
262 nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires);
264 /* Run the posted reconfigs which were issued before we started */
265 if (pre_posted_requests) {
266 nfp_net_reconfig_start(nn, pre_posted_requests);
267 nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
270 nfp_net_reconfig_start(nn, update);
271 ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
273 spin_lock_bh(&nn->reconfig_lock);
275 if (nn->reconfig_posted)
276 nfp_net_reconfig_start_async(nn, 0);
278 nn->reconfig_sync_present = false;
280 spin_unlock_bh(&nn->reconfig_lock);
282 return ret;
286 * nfp_net_reconfig_mbox() - Reconfigure the firmware via the mailbox
287 * @nn: NFP Net device to reconfigure
288 * @mbox_cmd: The value for the mailbox command
290 * Helper function for mailbox updates
292 * Return: Negative errno on error, 0 on success
294 static int nfp_net_reconfig_mbox(struct nfp_net *nn, u32 mbox_cmd)
296 int ret;
298 nn_writeq(nn, NFP_NET_CFG_MBOX_CMD, mbox_cmd);
300 ret = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX);
301 if (ret) {
302 nn_err(nn, "Mailbox update error\n");
303 return ret;
306 return -nn_readl(nn, NFP_NET_CFG_MBOX_RET);
309 /* Interrupt configuration and handling
313 * nfp_net_irq_unmask() - Unmask automasked interrupt
314 * @nn: NFP Network structure
315 * @entry_nr: MSI-X table entry
317 * Clear the ICR for the IRQ entry.
319 static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr)
321 nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED);
322 nn_pci_flush(nn);
326 * nfp_net_irqs_alloc() - allocates MSI-X irqs
327 * @pdev: PCI device structure
328 * @irq_entries: Array to be initialized and used to hold the irq entries
329 * @min_irqs: Minimal acceptable number of interrupts
330 * @wanted_irqs: Target number of interrupts to allocate
332 * Return: Number of irqs obtained or 0 on error.
334 unsigned int
335 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries,
336 unsigned int min_irqs, unsigned int wanted_irqs)
338 unsigned int i;
339 int got_irqs;
341 for (i = 0; i < wanted_irqs; i++)
342 irq_entries[i].entry = i;
344 got_irqs = pci_enable_msix_range(pdev, irq_entries,
345 min_irqs, wanted_irqs);
346 if (got_irqs < 0) {
347 dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n",
348 min_irqs, wanted_irqs, got_irqs);
349 return 0;
352 if (got_irqs < wanted_irqs)
353 dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n",
354 wanted_irqs, got_irqs);
356 return got_irqs;
360 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev
361 * @nn: NFP Network structure
362 * @irq_entries: Table of allocated interrupts
363 * @n: Size of @irq_entries (number of entries to grab)
365 * After interrupts are allocated with nfp_net_irqs_alloc() this function
366 * should be called to assign them to a specific netdev (port).
368 void
369 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries,
370 unsigned int n)
372 struct nfp_net_dp *dp = &nn->dp;
374 nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS;
375 dp->num_r_vecs = nn->max_r_vecs;
377 memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n);
379 if (dp->num_rx_rings > dp->num_r_vecs ||
380 dp->num_tx_rings > dp->num_r_vecs)
381 dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n",
382 dp->num_rx_rings, dp->num_tx_rings,
383 dp->num_r_vecs);
385 dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings);
386 dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings);
387 dp->num_stack_tx_rings = dp->num_tx_rings;
391 * nfp_net_irqs_disable() - Disable interrupts
392 * @pdev: PCI device structure
394 * Undoes what @nfp_net_irqs_alloc() does.
396 void nfp_net_irqs_disable(struct pci_dev *pdev)
398 pci_disable_msix(pdev);
402 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
403 * @irq: Interrupt
404 * @data: Opaque data structure
406 * Return: Indicate if the interrupt has been handled.
408 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data)
410 struct nfp_net_r_vector *r_vec = data;
412 napi_schedule_irqoff(&r_vec->napi);
414 /* The FW auto-masks any interrupt, either via the MASK bit in
415 * the MSI-X table or via the per entry ICR field. So there
416 * is no need to disable interrupts here.
418 return IRQ_HANDLED;
421 static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data)
423 struct nfp_net_r_vector *r_vec = data;
425 tasklet_schedule(&r_vec->tasklet);
427 return IRQ_HANDLED;
431 * nfp_net_read_link_status() - Reread link status from control BAR
432 * @nn: NFP Network structure
434 static void nfp_net_read_link_status(struct nfp_net *nn)
436 unsigned long flags;
437 bool link_up;
438 u32 sts;
440 spin_lock_irqsave(&nn->link_status_lock, flags);
442 sts = nn_readl(nn, NFP_NET_CFG_STS);
443 link_up = !!(sts & NFP_NET_CFG_STS_LINK);
445 if (nn->link_up == link_up)
446 goto out;
448 nn->link_up = link_up;
449 if (nn->port)
450 set_bit(NFP_PORT_CHANGED, &nn->port->flags);
452 if (nn->link_up) {
453 netif_carrier_on(nn->dp.netdev);
454 netdev_info(nn->dp.netdev, "NIC Link is Up\n");
455 } else {
456 netif_carrier_off(nn->dp.netdev);
457 netdev_info(nn->dp.netdev, "NIC Link is Down\n");
459 out:
460 spin_unlock_irqrestore(&nn->link_status_lock, flags);
464 * nfp_net_irq_lsc() - Interrupt service routine for link state changes
465 * @irq: Interrupt
466 * @data: Opaque data structure
468 * Return: Indicate if the interrupt has been handled.
470 static irqreturn_t nfp_net_irq_lsc(int irq, void *data)
472 struct nfp_net *nn = data;
473 struct msix_entry *entry;
475 entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX];
477 nfp_net_read_link_status(nn);
479 nfp_net_irq_unmask(nn, entry->entry);
481 return IRQ_HANDLED;
485 * nfp_net_irq_exn() - Interrupt service routine for exceptions
486 * @irq: Interrupt
487 * @data: Opaque data structure
489 * Return: Indicate if the interrupt has been handled.
491 static irqreturn_t nfp_net_irq_exn(int irq, void *data)
493 struct nfp_net *nn = data;
495 nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__);
496 /* XXX TO BE IMPLEMENTED */
497 return IRQ_HANDLED;
501 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
502 * @tx_ring: TX ring structure
503 * @r_vec: IRQ vector servicing this ring
504 * @idx: Ring index
505 * @is_xdp: Is this an XDP TX ring?
507 static void
508 nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring,
509 struct nfp_net_r_vector *r_vec, unsigned int idx,
510 bool is_xdp)
512 struct nfp_net *nn = r_vec->nfp_net;
514 tx_ring->idx = idx;
515 tx_ring->r_vec = r_vec;
516 tx_ring->is_xdp = is_xdp;
517 u64_stats_init(&tx_ring->r_vec->tx_sync);
519 tx_ring->qcidx = tx_ring->idx * nn->stride_tx;
520 tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx);
524 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
525 * @rx_ring: RX ring structure
526 * @r_vec: IRQ vector servicing this ring
527 * @idx: Ring index
529 static void
530 nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring,
531 struct nfp_net_r_vector *r_vec, unsigned int idx)
533 struct nfp_net *nn = r_vec->nfp_net;
535 rx_ring->idx = idx;
536 rx_ring->r_vec = r_vec;
537 u64_stats_init(&rx_ring->r_vec->rx_sync);
539 rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx;
540 rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx);
544 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
545 * @nn: NFP Network structure
546 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
547 * @format: printf-style format to construct the interrupt name
548 * @name: Pointer to allocated space for interrupt name
549 * @name_sz: Size of space for interrupt name
550 * @vector_idx: Index of MSI-X vector used for this interrupt
551 * @handler: IRQ handler to register for this interrupt
553 static int
554 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset,
555 const char *format, char *name, size_t name_sz,
556 unsigned int vector_idx, irq_handler_t handler)
558 struct msix_entry *entry;
559 int err;
561 entry = &nn->irq_entries[vector_idx];
563 snprintf(name, name_sz, format, nfp_net_name(nn));
564 err = request_irq(entry->vector, handler, 0, name, nn);
565 if (err) {
566 nn_err(nn, "Failed to request IRQ %d (err=%d).\n",
567 entry->vector, err);
568 return err;
570 nn_writeb(nn, ctrl_offset, entry->entry);
572 return 0;
576 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
577 * @nn: NFP Network structure
578 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
579 * @vector_idx: Index of MSI-X vector used for this interrupt
581 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset,
582 unsigned int vector_idx)
584 nn_writeb(nn, ctrl_offset, 0xff);
585 free_irq(nn->irq_entries[vector_idx].vector, nn);
588 /* Transmit
590 * One queue controller peripheral queue is used for transmit. The
591 * driver en-queues packets for transmit by advancing the write
592 * pointer. The device indicates that packets have transmitted by
593 * advancing the read pointer. The driver maintains a local copy of
594 * the read and write pointer in @struct nfp_net_tx_ring. The driver
595 * keeps @wr_p in sync with the queue controller write pointer and can
596 * determine how many packets have been transmitted by comparing its
597 * copy of the read pointer @rd_p with the read pointer maintained by
598 * the queue controller peripheral.
602 * nfp_net_tx_full() - Check if the TX ring is full
603 * @tx_ring: TX ring to check
604 * @dcnt: Number of descriptors that need to be enqueued (must be >= 1)
606 * This function checks, based on the *host copy* of read/write
607 * pointer if a given TX ring is full. The real TX queue may have
608 * some newly made available slots.
610 * Return: True if the ring is full.
612 static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt)
614 return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt);
617 /* Wrappers for deciding when to stop and restart TX queues */
618 static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
620 return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
623 static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
625 return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
629 * nfp_net_tx_ring_stop() - stop tx ring
630 * @nd_q: netdev queue
631 * @tx_ring: driver tx queue structure
633 * Safely stop TX ring. Remember that while we are running .start_xmit()
634 * someone else may be cleaning the TX ring completions so we need to be
635 * extra careful here.
637 static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q,
638 struct nfp_net_tx_ring *tx_ring)
640 netif_tx_stop_queue(nd_q);
642 /* We can race with the TX completion out of NAPI so recheck */
643 smp_mb();
644 if (unlikely(nfp_net_tx_ring_should_wake(tx_ring)))
645 netif_tx_start_queue(nd_q);
649 * nfp_net_tx_tso() - Set up Tx descriptor for LSO
650 * @r_vec: per-ring structure
651 * @txbuf: Pointer to driver soft TX descriptor
652 * @txd: Pointer to HW TX descriptor
653 * @skb: Pointer to SKB
655 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
656 * Return error on packet header greater than maximum supported LSO header size.
658 static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec,
659 struct nfp_net_tx_buf *txbuf,
660 struct nfp_net_tx_desc *txd, struct sk_buff *skb)
662 u32 hdrlen;
663 u16 mss;
665 if (!skb_is_gso(skb))
666 return;
668 if (!skb->encapsulation) {
669 txd->l3_offset = skb_network_offset(skb);
670 txd->l4_offset = skb_transport_offset(skb);
671 hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
672 } else {
673 txd->l3_offset = skb_inner_network_offset(skb);
674 txd->l4_offset = skb_inner_transport_offset(skb);
675 hdrlen = skb_inner_transport_header(skb) - skb->data +
676 inner_tcp_hdrlen(skb);
679 txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
680 txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);
682 mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK;
683 txd->lso_hdrlen = hdrlen;
684 txd->mss = cpu_to_le16(mss);
685 txd->flags |= PCIE_DESC_TX_LSO;
687 u64_stats_update_begin(&r_vec->tx_sync);
688 r_vec->tx_lso++;
689 u64_stats_update_end(&r_vec->tx_sync);
693 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor
694 * @dp: NFP Net data path struct
695 * @r_vec: per-ring structure
696 * @txbuf: Pointer to driver soft TX descriptor
697 * @txd: Pointer to TX descriptor
698 * @skb: Pointer to SKB
700 * This function sets the TX checksum flags in the TX descriptor based
701 * on the configuration and the protocol of the packet to be transmitted.
703 static void nfp_net_tx_csum(struct nfp_net_dp *dp,
704 struct nfp_net_r_vector *r_vec,
705 struct nfp_net_tx_buf *txbuf,
706 struct nfp_net_tx_desc *txd, struct sk_buff *skb)
708 struct ipv6hdr *ipv6h;
709 struct iphdr *iph;
710 u8 l4_hdr;
712 if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
713 return;
715 if (skb->ip_summed != CHECKSUM_PARTIAL)
716 return;
718 txd->flags |= PCIE_DESC_TX_CSUM;
719 if (skb->encapsulation)
720 txd->flags |= PCIE_DESC_TX_ENCAP;
722 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
723 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
725 if (iph->version == 4) {
726 txd->flags |= PCIE_DESC_TX_IP4_CSUM;
727 l4_hdr = iph->protocol;
728 } else if (ipv6h->version == 6) {
729 l4_hdr = ipv6h->nexthdr;
730 } else {
731 nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version);
732 return;
735 switch (l4_hdr) {
736 case IPPROTO_TCP:
737 txd->flags |= PCIE_DESC_TX_TCP_CSUM;
738 break;
739 case IPPROTO_UDP:
740 txd->flags |= PCIE_DESC_TX_UDP_CSUM;
741 break;
742 default:
743 nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr);
744 return;
747 u64_stats_update_begin(&r_vec->tx_sync);
748 if (skb->encapsulation)
749 r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
750 else
751 r_vec->hw_csum_tx += txbuf->pkt_cnt;
752 u64_stats_update_end(&r_vec->tx_sync);
755 static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring)
757 wmb();
758 nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add);
759 tx_ring->wr_ptr_add = 0;
762 static int nfp_net_prep_port_id(struct sk_buff *skb)
764 struct metadata_dst *md_dst = skb_metadata_dst(skb);
765 unsigned char *data;
767 if (likely(!md_dst))
768 return 0;
769 if (unlikely(md_dst->type != METADATA_HW_PORT_MUX))
770 return 0;
772 if (unlikely(skb_cow_head(skb, 8)))
773 return -ENOMEM;
775 data = skb_push(skb, 8);
776 put_unaligned_be32(NFP_NET_META_PORTID, data);
777 put_unaligned_be32(md_dst->u.port_info.port_id, data + 4);
779 return 8;
783 * nfp_net_tx() - Main transmit entry point
784 * @skb: SKB to transmit
785 * @netdev: netdev structure
787 * Return: NETDEV_TX_OK on success.
789 static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev)
791 struct nfp_net *nn = netdev_priv(netdev);
792 const struct skb_frag_struct *frag;
793 struct nfp_net_tx_desc *txd, txdg;
794 int f, nr_frags, wr_idx, md_bytes;
795 struct nfp_net_tx_ring *tx_ring;
796 struct nfp_net_r_vector *r_vec;
797 struct nfp_net_tx_buf *txbuf;
798 struct netdev_queue *nd_q;
799 struct nfp_net_dp *dp;
800 dma_addr_t dma_addr;
801 unsigned int fsize;
802 u16 qidx;
804 dp = &nn->dp;
805 qidx = skb_get_queue_mapping(skb);
806 tx_ring = &dp->tx_rings[qidx];
807 r_vec = tx_ring->r_vec;
808 nd_q = netdev_get_tx_queue(dp->netdev, qidx);
810 nr_frags = skb_shinfo(skb)->nr_frags;
812 if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
813 nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n",
814 qidx, tx_ring->wr_p, tx_ring->rd_p);
815 netif_tx_stop_queue(nd_q);
816 nfp_net_tx_xmit_more_flush(tx_ring);
817 u64_stats_update_begin(&r_vec->tx_sync);
818 r_vec->tx_busy++;
819 u64_stats_update_end(&r_vec->tx_sync);
820 return NETDEV_TX_BUSY;
823 md_bytes = nfp_net_prep_port_id(skb);
824 if (unlikely(md_bytes < 0)) {
825 nfp_net_tx_xmit_more_flush(tx_ring);
826 dev_kfree_skb_any(skb);
827 return NETDEV_TX_OK;
830 /* Start with the head skbuf */
831 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
832 DMA_TO_DEVICE);
833 if (dma_mapping_error(dp->dev, dma_addr))
834 goto err_free;
836 wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
838 /* Stash the soft descriptor of the head then initialize it */
839 txbuf = &tx_ring->txbufs[wr_idx];
840 txbuf->skb = skb;
841 txbuf->dma_addr = dma_addr;
842 txbuf->fidx = -1;
843 txbuf->pkt_cnt = 1;
844 txbuf->real_len = skb->len;
846 /* Build TX descriptor */
847 txd = &tx_ring->txds[wr_idx];
848 txd->offset_eop = (nr_frags ? 0 : PCIE_DESC_TX_EOP) | md_bytes;
849 txd->dma_len = cpu_to_le16(skb_headlen(skb));
850 nfp_desc_set_dma_addr(txd, dma_addr);
851 txd->data_len = cpu_to_le16(skb->len);
853 txd->flags = 0;
854 txd->mss = 0;
855 txd->lso_hdrlen = 0;
857 /* Do not reorder - tso may adjust pkt cnt, vlan may override fields */
858 nfp_net_tx_tso(r_vec, txbuf, txd, skb);
859 nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb);
860 if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
861 txd->flags |= PCIE_DESC_TX_VLAN;
862 txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
865 /* Gather DMA */
866 if (nr_frags > 0) {
867 /* all descs must match except for in addr, length and eop */
868 txdg = *txd;
870 for (f = 0; f < nr_frags; f++) {
871 frag = &skb_shinfo(skb)->frags[f];
872 fsize = skb_frag_size(frag);
874 dma_addr = skb_frag_dma_map(dp->dev, frag, 0,
875 fsize, DMA_TO_DEVICE);
876 if (dma_mapping_error(dp->dev, dma_addr))
877 goto err_unmap;
879 wr_idx = D_IDX(tx_ring, wr_idx + 1);
880 tx_ring->txbufs[wr_idx].skb = skb;
881 tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
882 tx_ring->txbufs[wr_idx].fidx = f;
884 txd = &tx_ring->txds[wr_idx];
885 *txd = txdg;
886 txd->dma_len = cpu_to_le16(fsize);
887 nfp_desc_set_dma_addr(txd, dma_addr);
888 txd->offset_eop |=
889 (f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0;
892 u64_stats_update_begin(&r_vec->tx_sync);
893 r_vec->tx_gather++;
894 u64_stats_update_end(&r_vec->tx_sync);
897 netdev_tx_sent_queue(nd_q, txbuf->real_len);
899 skb_tx_timestamp(skb);
901 tx_ring->wr_p += nr_frags + 1;
902 if (nfp_net_tx_ring_should_stop(tx_ring))
903 nfp_net_tx_ring_stop(nd_q, tx_ring);
905 tx_ring->wr_ptr_add += nr_frags + 1;
906 if (!skb->xmit_more || netif_xmit_stopped(nd_q))
907 nfp_net_tx_xmit_more_flush(tx_ring);
909 return NETDEV_TX_OK;
911 err_unmap:
912 while (--f >= 0) {
913 frag = &skb_shinfo(skb)->frags[f];
914 dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
915 skb_frag_size(frag), DMA_TO_DEVICE);
916 tx_ring->txbufs[wr_idx].skb = NULL;
917 tx_ring->txbufs[wr_idx].dma_addr = 0;
918 tx_ring->txbufs[wr_idx].fidx = -2;
919 wr_idx = wr_idx - 1;
920 if (wr_idx < 0)
921 wr_idx += tx_ring->cnt;
923 dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
924 skb_headlen(skb), DMA_TO_DEVICE);
925 tx_ring->txbufs[wr_idx].skb = NULL;
926 tx_ring->txbufs[wr_idx].dma_addr = 0;
927 tx_ring->txbufs[wr_idx].fidx = -2;
928 err_free:
929 nn_dp_warn(dp, "Failed to map DMA TX buffer\n");
930 nfp_net_tx_xmit_more_flush(tx_ring);
931 u64_stats_update_begin(&r_vec->tx_sync);
932 r_vec->tx_errors++;
933 u64_stats_update_end(&r_vec->tx_sync);
934 dev_kfree_skb_any(skb);
935 return NETDEV_TX_OK;
939 * nfp_net_tx_complete() - Handled completed TX packets
940 * @tx_ring: TX ring structure
942 * Return: Number of completed TX descriptors
944 static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring)
946 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
947 struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
948 const struct skb_frag_struct *frag;
949 struct netdev_queue *nd_q;
950 u32 done_pkts = 0, done_bytes = 0;
951 struct sk_buff *skb;
952 int todo, nr_frags;
953 u32 qcp_rd_p;
954 int fidx;
955 int idx;
957 if (tx_ring->wr_p == tx_ring->rd_p)
958 return;
960 /* Work out how many descriptors have been transmitted */
961 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
963 if (qcp_rd_p == tx_ring->qcp_rd_p)
964 return;
966 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
968 while (todo--) {
969 idx = D_IDX(tx_ring, tx_ring->rd_p++);
971 skb = tx_ring->txbufs[idx].skb;
972 if (!skb)
973 continue;
975 nr_frags = skb_shinfo(skb)->nr_frags;
976 fidx = tx_ring->txbufs[idx].fidx;
978 if (fidx == -1) {
979 /* unmap head */
980 dma_unmap_single(dp->dev, tx_ring->txbufs[idx].dma_addr,
981 skb_headlen(skb), DMA_TO_DEVICE);
983 done_pkts += tx_ring->txbufs[idx].pkt_cnt;
984 done_bytes += tx_ring->txbufs[idx].real_len;
985 } else {
986 /* unmap fragment */
987 frag = &skb_shinfo(skb)->frags[fidx];
988 dma_unmap_page(dp->dev, tx_ring->txbufs[idx].dma_addr,
989 skb_frag_size(frag), DMA_TO_DEVICE);
992 /* check for last gather fragment */
993 if (fidx == nr_frags - 1)
994 dev_consume_skb_any(skb);
996 tx_ring->txbufs[idx].dma_addr = 0;
997 tx_ring->txbufs[idx].skb = NULL;
998 tx_ring->txbufs[idx].fidx = -2;
1001 tx_ring->qcp_rd_p = qcp_rd_p;
1003 u64_stats_update_begin(&r_vec->tx_sync);
1004 r_vec->tx_bytes += done_bytes;
1005 r_vec->tx_pkts += done_pkts;
1006 u64_stats_update_end(&r_vec->tx_sync);
1008 if (!dp->netdev)
1009 return;
1011 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1012 netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
1013 if (nfp_net_tx_ring_should_wake(tx_ring)) {
1014 /* Make sure TX thread will see updated tx_ring->rd_p */
1015 smp_mb();
1017 if (unlikely(netif_tx_queue_stopped(nd_q)))
1018 netif_tx_wake_queue(nd_q);
1021 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1022 "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1023 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1026 static bool nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring)
1028 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1029 u32 done_pkts = 0, done_bytes = 0;
1030 bool done_all;
1031 int idx, todo;
1032 u32 qcp_rd_p;
1034 /* Work out how many descriptors have been transmitted */
1035 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
1037 if (qcp_rd_p == tx_ring->qcp_rd_p)
1038 return true;
1040 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
1042 done_all = todo <= NFP_NET_XDP_MAX_COMPLETE;
1043 todo = min(todo, NFP_NET_XDP_MAX_COMPLETE);
1045 tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo);
1047 done_pkts = todo;
1048 while (todo--) {
1049 idx = D_IDX(tx_ring, tx_ring->rd_p);
1050 tx_ring->rd_p++;
1052 done_bytes += tx_ring->txbufs[idx].real_len;
1055 u64_stats_update_begin(&r_vec->tx_sync);
1056 r_vec->tx_bytes += done_bytes;
1057 r_vec->tx_pkts += done_pkts;
1058 u64_stats_update_end(&r_vec->tx_sync);
1060 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1061 "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1062 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1064 return done_all;
1068 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers
1069 * @dp: NFP Net data path struct
1070 * @tx_ring: TX ring structure
1072 * Assumes that the device is stopped
1074 static void
1075 nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
1077 const struct skb_frag_struct *frag;
1078 struct netdev_queue *nd_q;
1080 while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) {
1081 struct nfp_net_tx_buf *tx_buf;
1082 struct sk_buff *skb;
1083 int idx, nr_frags;
1085 idx = D_IDX(tx_ring, tx_ring->rd_p);
1086 tx_buf = &tx_ring->txbufs[idx];
1088 skb = tx_ring->txbufs[idx].skb;
1089 nr_frags = skb_shinfo(skb)->nr_frags;
1091 if (tx_buf->fidx == -1) {
1092 /* unmap head */
1093 dma_unmap_single(dp->dev, tx_buf->dma_addr,
1094 skb_headlen(skb), DMA_TO_DEVICE);
1095 } else {
1096 /* unmap fragment */
1097 frag = &skb_shinfo(skb)->frags[tx_buf->fidx];
1098 dma_unmap_page(dp->dev, tx_buf->dma_addr,
1099 skb_frag_size(frag), DMA_TO_DEVICE);
1102 /* check for last gather fragment */
1103 if (tx_buf->fidx == nr_frags - 1)
1104 dev_kfree_skb_any(skb);
1106 tx_buf->dma_addr = 0;
1107 tx_buf->skb = NULL;
1108 tx_buf->fidx = -2;
1110 tx_ring->qcp_rd_p++;
1111 tx_ring->rd_p++;
1114 memset(tx_ring->txds, 0, sizeof(*tx_ring->txds) * tx_ring->cnt);
1115 tx_ring->wr_p = 0;
1116 tx_ring->rd_p = 0;
1117 tx_ring->qcp_rd_p = 0;
1118 tx_ring->wr_ptr_add = 0;
1120 if (tx_ring->is_xdp || !dp->netdev)
1121 return;
1123 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1124 netdev_tx_reset_queue(nd_q);
1127 static void nfp_net_tx_timeout(struct net_device *netdev)
1129 struct nfp_net *nn = netdev_priv(netdev);
1130 int i;
1132 for (i = 0; i < nn->dp.netdev->real_num_tx_queues; i++) {
1133 if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i)))
1134 continue;
1135 nn_warn(nn, "TX timeout on ring: %d\n", i);
1137 nn_warn(nn, "TX watchdog timeout\n");
1140 /* Receive processing
1142 static unsigned int
1143 nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp)
1145 unsigned int fl_bufsz;
1147 fl_bufsz = NFP_NET_RX_BUF_HEADROOM;
1148 fl_bufsz += dp->rx_dma_off;
1149 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1150 fl_bufsz += NFP_NET_MAX_PREPEND;
1151 else
1152 fl_bufsz += dp->rx_offset;
1153 fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu;
1155 fl_bufsz = SKB_DATA_ALIGN(fl_bufsz);
1156 fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1158 return fl_bufsz;
1161 static void
1162 nfp_net_free_frag(void *frag, bool xdp)
1164 if (!xdp)
1165 skb_free_frag(frag);
1166 else
1167 __free_page(virt_to_page(frag));
1171 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX
1172 * @dp: NFP Net data path struct
1173 * @dma_addr: Pointer to storage for DMA address (output param)
1175 * This function will allcate a new page frag, map it for DMA.
1177 * Return: allocated page frag or NULL on failure.
1179 static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1181 void *frag;
1183 if (!dp->xdp_prog) {
1184 frag = netdev_alloc_frag(dp->fl_bufsz);
1185 } else {
1186 struct page *page;
1188 page = alloc_page(GFP_KERNEL | __GFP_COLD);
1189 frag = page ? page_address(page) : NULL;
1191 if (!frag) {
1192 nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1193 return NULL;
1196 *dma_addr = nfp_net_dma_map_rx(dp, frag);
1197 if (dma_mapping_error(dp->dev, *dma_addr)) {
1198 nfp_net_free_frag(frag, dp->xdp_prog);
1199 nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1200 return NULL;
1203 return frag;
1206 static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1208 void *frag;
1210 if (!dp->xdp_prog) {
1211 frag = napi_alloc_frag(dp->fl_bufsz);
1212 } else {
1213 struct page *page;
1215 page = dev_alloc_page();
1216 frag = page ? page_address(page) : NULL;
1218 if (!frag) {
1219 nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1220 return NULL;
1223 *dma_addr = nfp_net_dma_map_rx(dp, frag);
1224 if (dma_mapping_error(dp->dev, *dma_addr)) {
1225 nfp_net_free_frag(frag, dp->xdp_prog);
1226 nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1227 return NULL;
1230 return frag;
1234 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings
1235 * @dp: NFP Net data path struct
1236 * @rx_ring: RX ring structure
1237 * @frag: page fragment buffer
1238 * @dma_addr: DMA address of skb mapping
1240 static void nfp_net_rx_give_one(const struct nfp_net_dp *dp,
1241 struct nfp_net_rx_ring *rx_ring,
1242 void *frag, dma_addr_t dma_addr)
1244 unsigned int wr_idx;
1246 wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1248 nfp_net_dma_sync_dev_rx(dp, dma_addr);
1250 /* Stash SKB and DMA address away */
1251 rx_ring->rxbufs[wr_idx].frag = frag;
1252 rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;
1254 /* Fill freelist descriptor */
1255 rx_ring->rxds[wr_idx].fld.reserved = 0;
1256 rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
1257 nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld,
1258 dma_addr + dp->rx_dma_off);
1260 rx_ring->wr_p++;
1261 if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) {
1262 /* Update write pointer of the freelist queue. Make
1263 * sure all writes are flushed before telling the hardware.
1265 wmb();
1266 nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH);
1271 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
1272 * @rx_ring: RX ring structure
1274 * Warning: Do *not* call if ring buffers were never put on the FW freelist
1275 * (i.e. device was not enabled)!
1277 static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring)
1279 unsigned int wr_idx, last_idx;
1281 /* Move the empty entry to the end of the list */
1282 wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1283 last_idx = rx_ring->cnt - 1;
1284 rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr;
1285 rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag;
1286 rx_ring->rxbufs[last_idx].dma_addr = 0;
1287 rx_ring->rxbufs[last_idx].frag = NULL;
1289 memset(rx_ring->rxds, 0, sizeof(*rx_ring->rxds) * rx_ring->cnt);
1290 rx_ring->wr_p = 0;
1291 rx_ring->rd_p = 0;
1295 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
1296 * @dp: NFP Net data path struct
1297 * @rx_ring: RX ring to remove buffers from
1299 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
1300 * entries. After device is disabled nfp_net_rx_ring_reset() must be called
1301 * to restore required ring geometry.
1303 static void
1304 nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp,
1305 struct nfp_net_rx_ring *rx_ring)
1307 unsigned int i;
1309 for (i = 0; i < rx_ring->cnt - 1; i++) {
1310 /* NULL skb can only happen when initial filling of the ring
1311 * fails to allocate enough buffers and calls here to free
1312 * already allocated ones.
1314 if (!rx_ring->rxbufs[i].frag)
1315 continue;
1317 nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr);
1318 nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog);
1319 rx_ring->rxbufs[i].dma_addr = 0;
1320 rx_ring->rxbufs[i].frag = NULL;
1325 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
1326 * @dp: NFP Net data path struct
1327 * @rx_ring: RX ring to remove buffers from
1329 static int
1330 nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp,
1331 struct nfp_net_rx_ring *rx_ring)
1333 struct nfp_net_rx_buf *rxbufs;
1334 unsigned int i;
1336 rxbufs = rx_ring->rxbufs;
1338 for (i = 0; i < rx_ring->cnt - 1; i++) {
1339 rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr);
1340 if (!rxbufs[i].frag) {
1341 nfp_net_rx_ring_bufs_free(dp, rx_ring);
1342 return -ENOMEM;
1346 return 0;
1350 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW
1351 * @dp: NFP Net data path struct
1352 * @rx_ring: RX ring to fill
1354 static void
1355 nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp,
1356 struct nfp_net_rx_ring *rx_ring)
1358 unsigned int i;
1360 for (i = 0; i < rx_ring->cnt - 1; i++)
1361 nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag,
1362 rx_ring->rxbufs[i].dma_addr);
1366 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors
1367 * @flags: RX descriptor flags field in CPU byte order
1369 static int nfp_net_rx_csum_has_errors(u16 flags)
1371 u16 csum_all_checked, csum_all_ok;
1373 csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
1374 csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;
1376 return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
1380 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags
1381 * @dp: NFP Net data path struct
1382 * @r_vec: per-ring structure
1383 * @rxd: Pointer to RX descriptor
1384 * @meta: Parsed metadata prepend
1385 * @skb: Pointer to SKB
1387 static void nfp_net_rx_csum(struct nfp_net_dp *dp,
1388 struct nfp_net_r_vector *r_vec,
1389 struct nfp_net_rx_desc *rxd,
1390 struct nfp_meta_parsed *meta, struct sk_buff *skb)
1392 skb_checksum_none_assert(skb);
1394 if (!(dp->netdev->features & NETIF_F_RXCSUM))
1395 return;
1397 if (meta->csum_type) {
1398 skb->ip_summed = meta->csum_type;
1399 skb->csum = meta->csum;
1400 u64_stats_update_begin(&r_vec->rx_sync);
1401 r_vec->hw_csum_rx_ok++;
1402 u64_stats_update_end(&r_vec->rx_sync);
1403 return;
1406 if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
1407 u64_stats_update_begin(&r_vec->rx_sync);
1408 r_vec->hw_csum_rx_error++;
1409 u64_stats_update_end(&r_vec->rx_sync);
1410 return;
1413 /* Assume that the firmware will never report inner CSUM_OK unless outer
1414 * L4 headers were successfully parsed. FW will always report zero UDP
1415 * checksum as CSUM_OK.
1417 if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
1418 rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
1419 __skb_incr_checksum_unnecessary(skb);
1420 u64_stats_update_begin(&r_vec->rx_sync);
1421 r_vec->hw_csum_rx_ok++;
1422 u64_stats_update_end(&r_vec->rx_sync);
1425 if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
1426 rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
1427 __skb_incr_checksum_unnecessary(skb);
1428 u64_stats_update_begin(&r_vec->rx_sync);
1429 r_vec->hw_csum_rx_inner_ok++;
1430 u64_stats_update_end(&r_vec->rx_sync);
1434 static void
1435 nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta,
1436 unsigned int type, __be32 *hash)
1438 if (!(netdev->features & NETIF_F_RXHASH))
1439 return;
1441 switch (type) {
1442 case NFP_NET_RSS_IPV4:
1443 case NFP_NET_RSS_IPV6:
1444 case NFP_NET_RSS_IPV6_EX:
1445 meta->hash_type = PKT_HASH_TYPE_L3;
1446 break;
1447 default:
1448 meta->hash_type = PKT_HASH_TYPE_L4;
1449 break;
1452 meta->hash = get_unaligned_be32(hash);
1455 static void
1456 nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta,
1457 void *data, struct nfp_net_rx_desc *rxd)
1459 struct nfp_net_rx_hash *rx_hash = data;
1461 if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
1462 return;
1464 nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type),
1465 &rx_hash->hash);
1468 static void *
1469 nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta,
1470 void *data, int meta_len)
1472 u32 meta_info;
1474 meta_info = get_unaligned_be32(data);
1475 data += 4;
1477 while (meta_info) {
1478 switch (meta_info & NFP_NET_META_FIELD_MASK) {
1479 case NFP_NET_META_HASH:
1480 meta_info >>= NFP_NET_META_FIELD_SIZE;
1481 nfp_net_set_hash(netdev, meta,
1482 meta_info & NFP_NET_META_FIELD_MASK,
1483 (__be32 *)data);
1484 data += 4;
1485 break;
1486 case NFP_NET_META_MARK:
1487 meta->mark = get_unaligned_be32(data);
1488 data += 4;
1489 break;
1490 case NFP_NET_META_PORTID:
1491 meta->portid = get_unaligned_be32(data);
1492 data += 4;
1493 break;
1494 case NFP_NET_META_CSUM:
1495 meta->csum_type = CHECKSUM_COMPLETE;
1496 meta->csum =
1497 (__force __wsum)__get_unaligned_cpu32(data);
1498 data += 4;
1499 break;
1500 default:
1501 return NULL;
1504 meta_info >>= NFP_NET_META_FIELD_SIZE;
1507 return data;
1510 static void
1511 nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
1512 struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf,
1513 struct sk_buff *skb)
1515 u64_stats_update_begin(&r_vec->rx_sync);
1516 r_vec->rx_drops++;
1517 u64_stats_update_end(&r_vec->rx_sync);
1519 /* skb is build based on the frag, free_skb() would free the frag
1520 * so to be able to reuse it we need an extra ref.
1522 if (skb && rxbuf && skb->head == rxbuf->frag)
1523 page_ref_inc(virt_to_head_page(rxbuf->frag));
1524 if (rxbuf)
1525 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr);
1526 if (skb)
1527 dev_kfree_skb_any(skb);
1530 static bool
1531 nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
1532 struct nfp_net_tx_ring *tx_ring,
1533 struct nfp_net_rx_buf *rxbuf, unsigned int dma_off,
1534 unsigned int pkt_len, bool *completed)
1536 struct nfp_net_tx_buf *txbuf;
1537 struct nfp_net_tx_desc *txd;
1538 int wr_idx;
1540 if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1541 if (!*completed) {
1542 nfp_net_xdp_complete(tx_ring);
1543 *completed = true;
1546 if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1547 nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf,
1548 NULL);
1549 return false;
1553 wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1555 /* Stash the soft descriptor of the head then initialize it */
1556 txbuf = &tx_ring->txbufs[wr_idx];
1558 nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr);
1560 txbuf->frag = rxbuf->frag;
1561 txbuf->dma_addr = rxbuf->dma_addr;
1562 txbuf->fidx = -1;
1563 txbuf->pkt_cnt = 1;
1564 txbuf->real_len = pkt_len;
1566 dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off,
1567 pkt_len, DMA_BIDIRECTIONAL);
1569 /* Build TX descriptor */
1570 txd = &tx_ring->txds[wr_idx];
1571 txd->offset_eop = PCIE_DESC_TX_EOP;
1572 txd->dma_len = cpu_to_le16(pkt_len);
1573 nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off);
1574 txd->data_len = cpu_to_le16(pkt_len);
1576 txd->flags = 0;
1577 txd->mss = 0;
1578 txd->lso_hdrlen = 0;
1580 tx_ring->wr_p++;
1581 tx_ring->wr_ptr_add++;
1582 return true;
1586 * nfp_net_rx() - receive up to @budget packets on @rx_ring
1587 * @rx_ring: RX ring to receive from
1588 * @budget: NAPI budget
1590 * Note, this function is separated out from the napi poll function to
1591 * more cleanly separate packet receive code from other bookkeeping
1592 * functions performed in the napi poll function.
1594 * Return: Number of packets received.
1596 static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget)
1598 struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1599 struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1600 struct nfp_net_tx_ring *tx_ring;
1601 struct bpf_prog *xdp_prog;
1602 bool xdp_tx_cmpl = false;
1603 unsigned int true_bufsz;
1604 struct sk_buff *skb;
1605 int pkts_polled = 0;
1606 int idx;
1608 rcu_read_lock();
1609 xdp_prog = READ_ONCE(dp->xdp_prog);
1610 true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz;
1611 tx_ring = r_vec->xdp_ring;
1613 while (pkts_polled < budget) {
1614 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1615 struct nfp_net_rx_buf *rxbuf;
1616 struct nfp_net_rx_desc *rxd;
1617 struct nfp_meta_parsed meta;
1618 struct net_device *netdev;
1619 dma_addr_t new_dma_addr;
1620 u32 meta_len_xdp = 0;
1621 void *new_frag;
1623 idx = D_IDX(rx_ring, rx_ring->rd_p);
1625 rxd = &rx_ring->rxds[idx];
1626 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1627 break;
1629 /* Memory barrier to ensure that we won't do other reads
1630 * before the DD bit.
1632 dma_rmb();
1634 memset(&meta, 0, sizeof(meta));
1636 rx_ring->rd_p++;
1637 pkts_polled++;
1639 rxbuf = &rx_ring->rxbufs[idx];
1640 /* < meta_len >
1641 * <-- [rx_offset] -->
1642 * ---------------------------------------------------------
1643 * | [XX] | metadata | packet | XXXX |
1644 * ---------------------------------------------------------
1645 * <---------------- data_len --------------->
1647 * The rx_offset is fixed for all packets, the meta_len can vary
1648 * on a packet by packet basis. If rx_offset is set to zero
1649 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
1650 * buffer and is immediately followed by the packet (no [XX]).
1652 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
1653 data_len = le16_to_cpu(rxd->rxd.data_len);
1654 pkt_len = data_len - meta_len;
1656 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
1657 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1658 pkt_off += meta_len;
1659 else
1660 pkt_off += dp->rx_offset;
1661 meta_off = pkt_off - meta_len;
1663 /* Stats update */
1664 u64_stats_update_begin(&r_vec->rx_sync);
1665 r_vec->rx_pkts++;
1666 r_vec->rx_bytes += pkt_len;
1667 u64_stats_update_end(&r_vec->rx_sync);
1669 if (unlikely(meta_len > NFP_NET_MAX_PREPEND ||
1670 (dp->rx_offset && meta_len > dp->rx_offset))) {
1671 nn_dp_warn(dp, "oversized RX packet metadata %u\n",
1672 meta_len);
1673 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1674 continue;
1677 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,
1678 data_len);
1680 if (!dp->chained_metadata_format) {
1681 nfp_net_set_hash_desc(dp->netdev, &meta,
1682 rxbuf->frag + meta_off, rxd);
1683 } else if (meta_len) {
1684 void *end;
1686 end = nfp_net_parse_meta(dp->netdev, &meta,
1687 rxbuf->frag + meta_off,
1688 meta_len);
1689 if (unlikely(end != rxbuf->frag + pkt_off)) {
1690 nn_dp_warn(dp, "invalid RX packet metadata\n");
1691 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf,
1692 NULL);
1693 continue;
1697 if (xdp_prog && !(rxd->rxd.flags & PCIE_DESC_RX_BPF &&
1698 dp->bpf_offload_xdp) && !meta.portid) {
1699 void *orig_data = rxbuf->frag + pkt_off;
1700 unsigned int dma_off;
1701 struct xdp_buff xdp;
1702 int act;
1704 xdp.data_hard_start = rxbuf->frag + NFP_NET_RX_BUF_HEADROOM;
1705 xdp.data = orig_data;
1706 xdp.data_meta = orig_data;
1707 xdp.data_end = orig_data + pkt_len;
1709 act = bpf_prog_run_xdp(xdp_prog, &xdp);
1711 pkt_len -= xdp.data - orig_data;
1712 pkt_off += xdp.data - orig_data;
1714 switch (act) {
1715 case XDP_PASS:
1716 meta_len_xdp = xdp.data - xdp.data_meta;
1717 break;
1718 case XDP_TX:
1719 dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM;
1720 if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring,
1721 tx_ring, rxbuf,
1722 dma_off,
1723 pkt_len,
1724 &xdp_tx_cmpl)))
1725 trace_xdp_exception(dp->netdev,
1726 xdp_prog, act);
1727 continue;
1728 default:
1729 bpf_warn_invalid_xdp_action(act);
1730 /* fall through */
1731 case XDP_ABORTED:
1732 trace_xdp_exception(dp->netdev, xdp_prog, act);
1733 /* fall through */
1734 case XDP_DROP:
1735 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag,
1736 rxbuf->dma_addr);
1737 continue;
1741 skb = build_skb(rxbuf->frag, true_bufsz);
1742 if (unlikely(!skb)) {
1743 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1744 continue;
1746 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
1747 if (unlikely(!new_frag)) {
1748 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1749 continue;
1752 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1754 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1756 if (likely(!meta.portid)) {
1757 netdev = dp->netdev;
1758 } else {
1759 struct nfp_net *nn;
1761 nn = netdev_priv(dp->netdev);
1762 netdev = nfp_app_repr_get(nn->app, meta.portid);
1763 if (unlikely(!netdev)) {
1764 nfp_net_rx_drop(dp, r_vec, rx_ring, NULL, skb);
1765 continue;
1767 nfp_repr_inc_rx_stats(netdev, pkt_len);
1770 skb_reserve(skb, pkt_off);
1771 skb_put(skb, pkt_len);
1773 skb->mark = meta.mark;
1774 skb_set_hash(skb, meta.hash, meta.hash_type);
1776 skb_record_rx_queue(skb, rx_ring->idx);
1777 skb->protocol = eth_type_trans(skb, netdev);
1779 nfp_net_rx_csum(dp, r_vec, rxd, &meta, skb);
1781 if (rxd->rxd.flags & PCIE_DESC_RX_VLAN)
1782 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1783 le16_to_cpu(rxd->rxd.vlan));
1784 if (meta_len_xdp)
1785 skb_metadata_set(skb, meta_len_xdp);
1787 napi_gro_receive(&rx_ring->r_vec->napi, skb);
1790 if (xdp_prog) {
1791 if (tx_ring->wr_ptr_add)
1792 nfp_net_tx_xmit_more_flush(tx_ring);
1793 else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) &&
1794 !xdp_tx_cmpl)
1795 if (!nfp_net_xdp_complete(tx_ring))
1796 pkts_polled = budget;
1798 rcu_read_unlock();
1800 return pkts_polled;
1804 * nfp_net_poll() - napi poll function
1805 * @napi: NAPI structure
1806 * @budget: NAPI budget
1808 * Return: number of packets polled.
1810 static int nfp_net_poll(struct napi_struct *napi, int budget)
1812 struct nfp_net_r_vector *r_vec =
1813 container_of(napi, struct nfp_net_r_vector, napi);
1814 unsigned int pkts_polled = 0;
1816 if (r_vec->tx_ring)
1817 nfp_net_tx_complete(r_vec->tx_ring);
1818 if (r_vec->rx_ring)
1819 pkts_polled = nfp_net_rx(r_vec->rx_ring, budget);
1821 if (pkts_polled < budget)
1822 if (napi_complete_done(napi, pkts_polled))
1823 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
1825 return pkts_polled;
1828 /* Control device data path
1831 static bool
1832 nfp_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
1833 struct sk_buff *skb, bool old)
1835 unsigned int real_len = skb->len, meta_len = 0;
1836 struct nfp_net_tx_ring *tx_ring;
1837 struct nfp_net_tx_buf *txbuf;
1838 struct nfp_net_tx_desc *txd;
1839 struct nfp_net_dp *dp;
1840 dma_addr_t dma_addr;
1841 int wr_idx;
1843 dp = &r_vec->nfp_net->dp;
1844 tx_ring = r_vec->tx_ring;
1846 if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) {
1847 nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n");
1848 goto err_free;
1851 if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1852 u64_stats_update_begin(&r_vec->tx_sync);
1853 r_vec->tx_busy++;
1854 u64_stats_update_end(&r_vec->tx_sync);
1855 if (!old)
1856 __skb_queue_tail(&r_vec->queue, skb);
1857 else
1858 __skb_queue_head(&r_vec->queue, skb);
1859 return true;
1862 if (nfp_app_ctrl_has_meta(nn->app)) {
1863 if (unlikely(skb_headroom(skb) < 8)) {
1864 nn_dp_warn(dp, "CTRL TX on skb without headroom\n");
1865 goto err_free;
1867 meta_len = 8;
1868 put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4));
1869 put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4));
1872 /* Start with the head skbuf */
1873 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
1874 DMA_TO_DEVICE);
1875 if (dma_mapping_error(dp->dev, dma_addr))
1876 goto err_dma_warn;
1878 wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1880 /* Stash the soft descriptor of the head then initialize it */
1881 txbuf = &tx_ring->txbufs[wr_idx];
1882 txbuf->skb = skb;
1883 txbuf->dma_addr = dma_addr;
1884 txbuf->fidx = -1;
1885 txbuf->pkt_cnt = 1;
1886 txbuf->real_len = real_len;
1888 /* Build TX descriptor */
1889 txd = &tx_ring->txds[wr_idx];
1890 txd->offset_eop = meta_len | PCIE_DESC_TX_EOP;
1891 txd->dma_len = cpu_to_le16(skb_headlen(skb));
1892 nfp_desc_set_dma_addr(txd, dma_addr);
1893 txd->data_len = cpu_to_le16(skb->len);
1895 txd->flags = 0;
1896 txd->mss = 0;
1897 txd->lso_hdrlen = 0;
1899 tx_ring->wr_p++;
1900 tx_ring->wr_ptr_add++;
1901 nfp_net_tx_xmit_more_flush(tx_ring);
1903 return false;
1905 err_dma_warn:
1906 nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n");
1907 err_free:
1908 u64_stats_update_begin(&r_vec->tx_sync);
1909 r_vec->tx_errors++;
1910 u64_stats_update_end(&r_vec->tx_sync);
1911 dev_kfree_skb_any(skb);
1912 return false;
1915 bool nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb)
1917 struct nfp_net_r_vector *r_vec = &nn->r_vecs[0];
1918 bool ret;
1920 spin_lock_bh(&r_vec->lock);
1921 ret = nfp_ctrl_tx_one(nn, r_vec, skb, false);
1922 spin_unlock_bh(&r_vec->lock);
1924 return ret;
1927 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec)
1929 struct sk_buff *skb;
1931 while ((skb = __skb_dequeue(&r_vec->queue)))
1932 if (nfp_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true))
1933 return;
1936 static bool
1937 nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len)
1939 u32 meta_type, meta_tag;
1941 if (!nfp_app_ctrl_has_meta(nn->app))
1942 return !meta_len;
1944 if (meta_len != 8)
1945 return false;
1947 meta_type = get_unaligned_be32(data);
1948 meta_tag = get_unaligned_be32(data + 4);
1950 return (meta_type == NFP_NET_META_PORTID &&
1951 meta_tag == NFP_META_PORT_ID_CTRL);
1954 static bool
1955 nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp,
1956 struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring)
1958 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1959 struct nfp_net_rx_buf *rxbuf;
1960 struct nfp_net_rx_desc *rxd;
1961 dma_addr_t new_dma_addr;
1962 struct sk_buff *skb;
1963 void *new_frag;
1964 int idx;
1966 idx = D_IDX(rx_ring, rx_ring->rd_p);
1968 rxd = &rx_ring->rxds[idx];
1969 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1970 return false;
1972 /* Memory barrier to ensure that we won't do other reads
1973 * before the DD bit.
1975 dma_rmb();
1977 rx_ring->rd_p++;
1979 rxbuf = &rx_ring->rxbufs[idx];
1980 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
1981 data_len = le16_to_cpu(rxd->rxd.data_len);
1982 pkt_len = data_len - meta_len;
1984 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
1985 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1986 pkt_off += meta_len;
1987 else
1988 pkt_off += dp->rx_offset;
1989 meta_off = pkt_off - meta_len;
1991 /* Stats update */
1992 u64_stats_update_begin(&r_vec->rx_sync);
1993 r_vec->rx_pkts++;
1994 r_vec->rx_bytes += pkt_len;
1995 u64_stats_update_end(&r_vec->rx_sync);
1997 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, data_len);
1999 if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) {
2000 nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n",
2001 meta_len);
2002 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
2003 return true;
2006 skb = build_skb(rxbuf->frag, dp->fl_bufsz);
2007 if (unlikely(!skb)) {
2008 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
2009 return true;
2011 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
2012 if (unlikely(!new_frag)) {
2013 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
2014 return true;
2017 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
2019 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
2021 skb_reserve(skb, pkt_off);
2022 skb_put(skb, pkt_len);
2024 nfp_app_ctrl_rx(nn->app, skb);
2026 return true;
2029 static void nfp_ctrl_rx(struct nfp_net_r_vector *r_vec)
2031 struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring;
2032 struct nfp_net *nn = r_vec->nfp_net;
2033 struct nfp_net_dp *dp = &nn->dp;
2035 while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring))
2036 continue;
2039 static void nfp_ctrl_poll(unsigned long arg)
2041 struct nfp_net_r_vector *r_vec = (void *)arg;
2043 spin_lock_bh(&r_vec->lock);
2044 nfp_net_tx_complete(r_vec->tx_ring);
2045 __nfp_ctrl_tx_queued(r_vec);
2046 spin_unlock_bh(&r_vec->lock);
2048 nfp_ctrl_rx(r_vec);
2050 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
2053 /* Setup and Configuration
2057 * nfp_net_vecs_init() - Assign IRQs and setup rvecs.
2058 * @nn: NFP Network structure
2060 static void nfp_net_vecs_init(struct nfp_net *nn)
2062 struct nfp_net_r_vector *r_vec;
2063 int r;
2065 nn->lsc_handler = nfp_net_irq_lsc;
2066 nn->exn_handler = nfp_net_irq_exn;
2068 for (r = 0; r < nn->max_r_vecs; r++) {
2069 struct msix_entry *entry;
2071 entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r];
2073 r_vec = &nn->r_vecs[r];
2074 r_vec->nfp_net = nn;
2075 r_vec->irq_entry = entry->entry;
2076 r_vec->irq_vector = entry->vector;
2078 if (nn->dp.netdev) {
2079 r_vec->handler = nfp_net_irq_rxtx;
2080 } else {
2081 r_vec->handler = nfp_ctrl_irq_rxtx;
2083 __skb_queue_head_init(&r_vec->queue);
2084 spin_lock_init(&r_vec->lock);
2085 tasklet_init(&r_vec->tasklet, nfp_ctrl_poll,
2086 (unsigned long)r_vec);
2087 tasklet_disable(&r_vec->tasklet);
2090 cpumask_set_cpu(r, &r_vec->affinity_mask);
2095 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring
2096 * @tx_ring: TX ring to free
2098 static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring)
2100 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
2101 struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
2103 kfree(tx_ring->txbufs);
2105 if (tx_ring->txds)
2106 dma_free_coherent(dp->dev, tx_ring->size,
2107 tx_ring->txds, tx_ring->dma);
2109 tx_ring->cnt = 0;
2110 tx_ring->txbufs = NULL;
2111 tx_ring->txds = NULL;
2112 tx_ring->dma = 0;
2113 tx_ring->size = 0;
2117 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring
2118 * @dp: NFP Net data path struct
2119 * @tx_ring: TX Ring structure to allocate
2121 * Return: 0 on success, negative errno otherwise.
2123 static int
2124 nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
2126 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
2127 int sz;
2129 tx_ring->cnt = dp->txd_cnt;
2131 tx_ring->size = sizeof(*tx_ring->txds) * tx_ring->cnt;
2132 tx_ring->txds = dma_zalloc_coherent(dp->dev, tx_ring->size,
2133 &tx_ring->dma, GFP_KERNEL);
2134 if (!tx_ring->txds)
2135 goto err_alloc;
2137 sz = sizeof(*tx_ring->txbufs) * tx_ring->cnt;
2138 tx_ring->txbufs = kzalloc(sz, GFP_KERNEL);
2139 if (!tx_ring->txbufs)
2140 goto err_alloc;
2142 if (!tx_ring->is_xdp && dp->netdev)
2143 netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask,
2144 tx_ring->idx);
2146 return 0;
2148 err_alloc:
2149 nfp_net_tx_ring_free(tx_ring);
2150 return -ENOMEM;
2153 static void
2154 nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp,
2155 struct nfp_net_tx_ring *tx_ring)
2157 unsigned int i;
2159 if (!tx_ring->is_xdp)
2160 return;
2162 for (i = 0; i < tx_ring->cnt; i++) {
2163 if (!tx_ring->txbufs[i].frag)
2164 return;
2166 nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr);
2167 __free_page(virt_to_page(tx_ring->txbufs[i].frag));
2171 static int
2172 nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp,
2173 struct nfp_net_tx_ring *tx_ring)
2175 struct nfp_net_tx_buf *txbufs = tx_ring->txbufs;
2176 unsigned int i;
2178 if (!tx_ring->is_xdp)
2179 return 0;
2181 for (i = 0; i < tx_ring->cnt; i++) {
2182 txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr);
2183 if (!txbufs[i].frag) {
2184 nfp_net_tx_ring_bufs_free(dp, tx_ring);
2185 return -ENOMEM;
2189 return 0;
2192 static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
2194 unsigned int r;
2196 dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings),
2197 GFP_KERNEL);
2198 if (!dp->tx_rings)
2199 return -ENOMEM;
2201 for (r = 0; r < dp->num_tx_rings; r++) {
2202 int bias = 0;
2204 if (r >= dp->num_stack_tx_rings)
2205 bias = dp->num_stack_tx_rings;
2207 nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias],
2208 r, bias);
2210 if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r]))
2211 goto err_free_prev;
2213 if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r]))
2214 goto err_free_ring;
2217 return 0;
2219 err_free_prev:
2220 while (r--) {
2221 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
2222 err_free_ring:
2223 nfp_net_tx_ring_free(&dp->tx_rings[r]);
2225 kfree(dp->tx_rings);
2226 return -ENOMEM;
2229 static void nfp_net_tx_rings_free(struct nfp_net_dp *dp)
2231 unsigned int r;
2233 for (r = 0; r < dp->num_tx_rings; r++) {
2234 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
2235 nfp_net_tx_ring_free(&dp->tx_rings[r]);
2238 kfree(dp->tx_rings);
2242 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring
2243 * @rx_ring: RX ring to free
2245 static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring)
2247 struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
2248 struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
2250 kfree(rx_ring->rxbufs);
2252 if (rx_ring->rxds)
2253 dma_free_coherent(dp->dev, rx_ring->size,
2254 rx_ring->rxds, rx_ring->dma);
2256 rx_ring->cnt = 0;
2257 rx_ring->rxbufs = NULL;
2258 rx_ring->rxds = NULL;
2259 rx_ring->dma = 0;
2260 rx_ring->size = 0;
2264 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
2265 * @dp: NFP Net data path struct
2266 * @rx_ring: RX ring to allocate
2268 * Return: 0 on success, negative errno otherwise.
2270 static int
2271 nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring)
2273 int sz;
2275 rx_ring->cnt = dp->rxd_cnt;
2276 rx_ring->size = sizeof(*rx_ring->rxds) * rx_ring->cnt;
2277 rx_ring->rxds = dma_zalloc_coherent(dp->dev, rx_ring->size,
2278 &rx_ring->dma, GFP_KERNEL);
2279 if (!rx_ring->rxds)
2280 goto err_alloc;
2282 sz = sizeof(*rx_ring->rxbufs) * rx_ring->cnt;
2283 rx_ring->rxbufs = kzalloc(sz, GFP_KERNEL);
2284 if (!rx_ring->rxbufs)
2285 goto err_alloc;
2287 return 0;
2289 err_alloc:
2290 nfp_net_rx_ring_free(rx_ring);
2291 return -ENOMEM;
2294 static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
2296 unsigned int r;
2298 dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings),
2299 GFP_KERNEL);
2300 if (!dp->rx_rings)
2301 return -ENOMEM;
2303 for (r = 0; r < dp->num_rx_rings; r++) {
2304 nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r);
2306 if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r]))
2307 goto err_free_prev;
2309 if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r]))
2310 goto err_free_ring;
2313 return 0;
2315 err_free_prev:
2316 while (r--) {
2317 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
2318 err_free_ring:
2319 nfp_net_rx_ring_free(&dp->rx_rings[r]);
2321 kfree(dp->rx_rings);
2322 return -ENOMEM;
2325 static void nfp_net_rx_rings_free(struct nfp_net_dp *dp)
2327 unsigned int r;
2329 for (r = 0; r < dp->num_rx_rings; r++) {
2330 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
2331 nfp_net_rx_ring_free(&dp->rx_rings[r]);
2334 kfree(dp->rx_rings);
2337 static void
2338 nfp_net_vector_assign_rings(struct nfp_net_dp *dp,
2339 struct nfp_net_r_vector *r_vec, int idx)
2341 r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL;
2342 r_vec->tx_ring =
2343 idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL;
2345 r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ?
2346 &dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL;
2349 static int
2350 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
2351 int idx)
2353 int err;
2355 /* Setup NAPI */
2356 if (nn->dp.netdev)
2357 netif_napi_add(nn->dp.netdev, &r_vec->napi,
2358 nfp_net_poll, NAPI_POLL_WEIGHT);
2359 else
2360 tasklet_enable(&r_vec->tasklet);
2362 snprintf(r_vec->name, sizeof(r_vec->name),
2363 "%s-rxtx-%d", nfp_net_name(nn), idx);
2364 err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name,
2365 r_vec);
2366 if (err) {
2367 if (nn->dp.netdev)
2368 netif_napi_del(&r_vec->napi);
2369 else
2370 tasklet_disable(&r_vec->tasklet);
2372 nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector);
2373 return err;
2375 disable_irq(r_vec->irq_vector);
2377 irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask);
2379 nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector,
2380 r_vec->irq_entry);
2382 return 0;
2385 static void
2386 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec)
2388 irq_set_affinity_hint(r_vec->irq_vector, NULL);
2389 if (nn->dp.netdev)
2390 netif_napi_del(&r_vec->napi);
2391 else
2392 tasklet_disable(&r_vec->tasklet);
2394 free_irq(r_vec->irq_vector, r_vec);
2398 * nfp_net_rss_write_itbl() - Write RSS indirection table to device
2399 * @nn: NFP Net device to reconfigure
2401 void nfp_net_rss_write_itbl(struct nfp_net *nn)
2403 int i;
2405 for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4)
2406 nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i,
2407 get_unaligned_le32(nn->rss_itbl + i));
2411 * nfp_net_rss_write_key() - Write RSS hash key to device
2412 * @nn: NFP Net device to reconfigure
2414 void nfp_net_rss_write_key(struct nfp_net *nn)
2416 int i;
2418 for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4)
2419 nn_writel(nn, NFP_NET_CFG_RSS_KEY + i,
2420 get_unaligned_le32(nn->rss_key + i));
2424 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
2425 * @nn: NFP Net device to reconfigure
2427 void nfp_net_coalesce_write_cfg(struct nfp_net *nn)
2429 u8 i;
2430 u32 factor;
2431 u32 value;
2433 /* Compute factor used to convert coalesce '_usecs' parameters to
2434 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp
2435 * count.
2437 factor = nn->me_freq_mhz / 16;
2439 /* copy RX interrupt coalesce parameters */
2440 value = (nn->rx_coalesce_max_frames << 16) |
2441 (factor * nn->rx_coalesce_usecs);
2442 for (i = 0; i < nn->dp.num_rx_rings; i++)
2443 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value);
2445 /* copy TX interrupt coalesce parameters */
2446 value = (nn->tx_coalesce_max_frames << 16) |
2447 (factor * nn->tx_coalesce_usecs);
2448 for (i = 0; i < nn->dp.num_tx_rings; i++)
2449 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value);
2453 * nfp_net_write_mac_addr() - Write mac address to the device control BAR
2454 * @nn: NFP Net device to reconfigure
2455 * @addr: MAC address to write
2457 * Writes the MAC address from the netdev to the device control BAR. Does not
2458 * perform the required reconfig. We do a bit of byte swapping dance because
2459 * firmware is LE.
2461 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr)
2463 nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr));
2464 nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4));
2467 static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx)
2469 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0);
2470 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0);
2471 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0);
2473 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0);
2474 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0);
2475 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0);
2479 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
2480 * @nn: NFP Net device to reconfigure
2482 static void nfp_net_clear_config_and_disable(struct nfp_net *nn)
2484 u32 new_ctrl, update;
2485 unsigned int r;
2486 int err;
2488 new_ctrl = nn->dp.ctrl;
2489 new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE;
2490 update = NFP_NET_CFG_UPDATE_GEN;
2491 update |= NFP_NET_CFG_UPDATE_MSIX;
2492 update |= NFP_NET_CFG_UPDATE_RING;
2494 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
2495 new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;
2497 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
2498 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
2500 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2501 err = nfp_net_reconfig(nn, update);
2502 if (err)
2503 nn_err(nn, "Could not disable device: %d\n", err);
2505 for (r = 0; r < nn->dp.num_rx_rings; r++)
2506 nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]);
2507 for (r = 0; r < nn->dp.num_tx_rings; r++)
2508 nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]);
2509 for (r = 0; r < nn->dp.num_r_vecs; r++)
2510 nfp_net_vec_clear_ring_data(nn, r);
2512 nn->dp.ctrl = new_ctrl;
2515 static void
2516 nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn,
2517 struct nfp_net_rx_ring *rx_ring, unsigned int idx)
2519 /* Write the DMA address, size and MSI-X info to the device */
2520 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma);
2521 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt));
2522 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry);
2525 static void
2526 nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn,
2527 struct nfp_net_tx_ring *tx_ring, unsigned int idx)
2529 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma);
2530 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt));
2531 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry);
2535 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP
2536 * @nn: NFP Net device to reconfigure
2538 static int nfp_net_set_config_and_enable(struct nfp_net *nn)
2540 u32 bufsz, new_ctrl, update = 0;
2541 unsigned int r;
2542 int err;
2544 new_ctrl = nn->dp.ctrl;
2546 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) {
2547 nfp_net_rss_write_key(nn);
2548 nfp_net_rss_write_itbl(nn);
2549 nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg);
2550 update |= NFP_NET_CFG_UPDATE_RSS;
2553 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) {
2554 nfp_net_coalesce_write_cfg(nn);
2555 update |= NFP_NET_CFG_UPDATE_IRQMOD;
2558 for (r = 0; r < nn->dp.num_tx_rings; r++)
2559 nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r);
2560 for (r = 0; r < nn->dp.num_rx_rings; r++)
2561 nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r);
2563 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ?
2564 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1);
2566 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ?
2567 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1);
2569 if (nn->dp.netdev)
2570 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
2572 nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu);
2574 bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA;
2575 nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz);
2577 /* Enable device */
2578 new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
2579 update |= NFP_NET_CFG_UPDATE_GEN;
2580 update |= NFP_NET_CFG_UPDATE_MSIX;
2581 update |= NFP_NET_CFG_UPDATE_RING;
2582 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
2583 new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;
2585 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2586 err = nfp_net_reconfig(nn, update);
2587 if (err) {
2588 nfp_net_clear_config_and_disable(nn);
2589 return err;
2592 nn->dp.ctrl = new_ctrl;
2594 for (r = 0; r < nn->dp.num_rx_rings; r++)
2595 nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]);
2597 /* Since reconfiguration requests while NFP is down are ignored we
2598 * have to wipe the entire VXLAN configuration and reinitialize it.
2600 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) {
2601 memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports));
2602 memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt));
2603 udp_tunnel_get_rx_info(nn->dp.netdev);
2606 return 0;
2610 * nfp_net_close_stack() - Quiesce the stack (part of close)
2611 * @nn: NFP Net device to reconfigure
2613 static void nfp_net_close_stack(struct nfp_net *nn)
2615 unsigned int r;
2617 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2618 netif_carrier_off(nn->dp.netdev);
2619 nn->link_up = false;
2621 for (r = 0; r < nn->dp.num_r_vecs; r++) {
2622 disable_irq(nn->r_vecs[r].irq_vector);
2623 napi_disable(&nn->r_vecs[r].napi);
2626 netif_tx_disable(nn->dp.netdev);
2630 * nfp_net_close_free_all() - Free all runtime resources
2631 * @nn: NFP Net device to reconfigure
2633 static void nfp_net_close_free_all(struct nfp_net *nn)
2635 unsigned int r;
2637 nfp_net_tx_rings_free(&nn->dp);
2638 nfp_net_rx_rings_free(&nn->dp);
2640 for (r = 0; r < nn->dp.num_r_vecs; r++)
2641 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2643 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2644 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2648 * nfp_net_netdev_close() - Called when the device is downed
2649 * @netdev: netdev structure
2651 static int nfp_net_netdev_close(struct net_device *netdev)
2653 struct nfp_net *nn = netdev_priv(netdev);
2655 /* Step 1: Disable RX and TX rings from the Linux kernel perspective
2657 nfp_net_close_stack(nn);
2659 /* Step 2: Tell NFP
2661 nfp_net_clear_config_and_disable(nn);
2662 nfp_port_configure(netdev, false);
2664 /* Step 3: Free resources
2666 nfp_net_close_free_all(nn);
2668 nn_dbg(nn, "%s down", netdev->name);
2669 return 0;
2672 void nfp_ctrl_close(struct nfp_net *nn)
2674 int r;
2676 rtnl_lock();
2678 for (r = 0; r < nn->dp.num_r_vecs; r++) {
2679 disable_irq(nn->r_vecs[r].irq_vector);
2680 tasklet_disable(&nn->r_vecs[r].tasklet);
2683 nfp_net_clear_config_and_disable(nn);
2685 nfp_net_close_free_all(nn);
2687 rtnl_unlock();
2691 * nfp_net_open_stack() - Start the device from stack's perspective
2692 * @nn: NFP Net device to reconfigure
2694 static void nfp_net_open_stack(struct nfp_net *nn)
2696 unsigned int r;
2698 for (r = 0; r < nn->dp.num_r_vecs; r++) {
2699 napi_enable(&nn->r_vecs[r].napi);
2700 enable_irq(nn->r_vecs[r].irq_vector);
2703 netif_tx_wake_all_queues(nn->dp.netdev);
2705 enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2706 nfp_net_read_link_status(nn);
2709 static int nfp_net_open_alloc_all(struct nfp_net *nn)
2711 int err, r;
2713 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn",
2714 nn->exn_name, sizeof(nn->exn_name),
2715 NFP_NET_IRQ_EXN_IDX, nn->exn_handler);
2716 if (err)
2717 return err;
2718 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc",
2719 nn->lsc_name, sizeof(nn->lsc_name),
2720 NFP_NET_IRQ_LSC_IDX, nn->lsc_handler);
2721 if (err)
2722 goto err_free_exn;
2723 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2725 for (r = 0; r < nn->dp.num_r_vecs; r++) {
2726 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
2727 if (err)
2728 goto err_cleanup_vec_p;
2731 err = nfp_net_rx_rings_prepare(nn, &nn->dp);
2732 if (err)
2733 goto err_cleanup_vec;
2735 err = nfp_net_tx_rings_prepare(nn, &nn->dp);
2736 if (err)
2737 goto err_free_rx_rings;
2739 for (r = 0; r < nn->max_r_vecs; r++)
2740 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2742 return 0;
2744 err_free_rx_rings:
2745 nfp_net_rx_rings_free(&nn->dp);
2746 err_cleanup_vec:
2747 r = nn->dp.num_r_vecs;
2748 err_cleanup_vec_p:
2749 while (r--)
2750 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2751 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2752 err_free_exn:
2753 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2754 return err;
2757 static int nfp_net_netdev_open(struct net_device *netdev)
2759 struct nfp_net *nn = netdev_priv(netdev);
2760 int err;
2762 /* Step 1: Allocate resources for rings and the like
2763 * - Request interrupts
2764 * - Allocate RX and TX ring resources
2765 * - Setup initial RSS table
2767 err = nfp_net_open_alloc_all(nn);
2768 if (err)
2769 return err;
2771 err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings);
2772 if (err)
2773 goto err_free_all;
2775 err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings);
2776 if (err)
2777 goto err_free_all;
2779 /* Step 2: Configure the NFP
2780 * - Ifup the physical interface if it exists
2781 * - Enable rings from 0 to tx_rings/rx_rings - 1.
2782 * - Write MAC address (in case it changed)
2783 * - Set the MTU
2784 * - Set the Freelist buffer size
2785 * - Enable the FW
2787 err = nfp_port_configure(netdev, true);
2788 if (err)
2789 goto err_free_all;
2791 err = nfp_net_set_config_and_enable(nn);
2792 if (err)
2793 goto err_port_disable;
2795 /* Step 3: Enable for kernel
2796 * - put some freelist descriptors on each RX ring
2797 * - enable NAPI on each ring
2798 * - enable all TX queues
2799 * - set link state
2801 nfp_net_open_stack(nn);
2803 return 0;
2805 err_port_disable:
2806 nfp_port_configure(netdev, false);
2807 err_free_all:
2808 nfp_net_close_free_all(nn);
2809 return err;
2812 int nfp_ctrl_open(struct nfp_net *nn)
2814 int err, r;
2816 /* ring dumping depends on vNICs being opened/closed under rtnl */
2817 rtnl_lock();
2819 err = nfp_net_open_alloc_all(nn);
2820 if (err)
2821 goto err_unlock;
2823 err = nfp_net_set_config_and_enable(nn);
2824 if (err)
2825 goto err_free_all;
2827 for (r = 0; r < nn->dp.num_r_vecs; r++)
2828 enable_irq(nn->r_vecs[r].irq_vector);
2830 rtnl_unlock();
2832 return 0;
2834 err_free_all:
2835 nfp_net_close_free_all(nn);
2836 err_unlock:
2837 rtnl_unlock();
2838 return err;
2841 static void nfp_net_set_rx_mode(struct net_device *netdev)
2843 struct nfp_net *nn = netdev_priv(netdev);
2844 u32 new_ctrl;
2846 new_ctrl = nn->dp.ctrl;
2848 if (netdev->flags & IFF_PROMISC) {
2849 if (nn->cap & NFP_NET_CFG_CTRL_PROMISC)
2850 new_ctrl |= NFP_NET_CFG_CTRL_PROMISC;
2851 else
2852 nn_warn(nn, "FW does not support promiscuous mode\n");
2853 } else {
2854 new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC;
2857 if (new_ctrl == nn->dp.ctrl)
2858 return;
2860 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2861 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN);
2863 nn->dp.ctrl = new_ctrl;
2866 static void nfp_net_rss_init_itbl(struct nfp_net *nn)
2868 int i;
2870 for (i = 0; i < sizeof(nn->rss_itbl); i++)
2871 nn->rss_itbl[i] =
2872 ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings);
2875 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp)
2877 struct nfp_net_dp new_dp = *dp;
2879 *dp = nn->dp;
2880 nn->dp = new_dp;
2882 nn->dp.netdev->mtu = new_dp.mtu;
2884 if (!netif_is_rxfh_configured(nn->dp.netdev))
2885 nfp_net_rss_init_itbl(nn);
2888 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp)
2890 unsigned int r;
2891 int err;
2893 nfp_net_dp_swap(nn, dp);
2895 for (r = 0; r < nn->max_r_vecs; r++)
2896 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2898 err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings);
2899 if (err)
2900 return err;
2902 if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) {
2903 err = netif_set_real_num_tx_queues(nn->dp.netdev,
2904 nn->dp.num_stack_tx_rings);
2905 if (err)
2906 return err;
2909 return nfp_net_set_config_and_enable(nn);
2912 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn)
2914 struct nfp_net_dp *new;
2916 new = kmalloc(sizeof(*new), GFP_KERNEL);
2917 if (!new)
2918 return NULL;
2920 *new = nn->dp;
2922 /* Clear things which need to be recomputed */
2923 new->fl_bufsz = 0;
2924 new->tx_rings = NULL;
2925 new->rx_rings = NULL;
2926 new->num_r_vecs = 0;
2927 new->num_stack_tx_rings = 0;
2929 return new;
2932 static int
2933 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp,
2934 struct netlink_ext_ack *extack)
2936 /* XDP-enabled tests */
2937 if (!dp->xdp_prog)
2938 return 0;
2939 if (dp->fl_bufsz > PAGE_SIZE) {
2940 NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled");
2941 return -EINVAL;
2943 if (dp->num_tx_rings > nn->max_tx_rings) {
2944 NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled");
2945 return -EINVAL;
2948 return 0;
2951 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp,
2952 struct netlink_ext_ack *extack)
2954 int r, err;
2956 dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp);
2958 dp->num_stack_tx_rings = dp->num_tx_rings;
2959 if (dp->xdp_prog)
2960 dp->num_stack_tx_rings -= dp->num_rx_rings;
2962 dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings);
2964 err = nfp_net_check_config(nn, dp, extack);
2965 if (err)
2966 goto exit_free_dp;
2968 if (!netif_running(dp->netdev)) {
2969 nfp_net_dp_swap(nn, dp);
2970 err = 0;
2971 goto exit_free_dp;
2974 /* Prepare new rings */
2975 for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) {
2976 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
2977 if (err) {
2978 dp->num_r_vecs = r;
2979 goto err_cleanup_vecs;
2983 err = nfp_net_rx_rings_prepare(nn, dp);
2984 if (err)
2985 goto err_cleanup_vecs;
2987 err = nfp_net_tx_rings_prepare(nn, dp);
2988 if (err)
2989 goto err_free_rx;
2991 /* Stop device, swap in new rings, try to start the firmware */
2992 nfp_net_close_stack(nn);
2993 nfp_net_clear_config_and_disable(nn);
2995 err = nfp_net_dp_swap_enable(nn, dp);
2996 if (err) {
2997 int err2;
2999 nfp_net_clear_config_and_disable(nn);
3001 /* Try with old configuration and old rings */
3002 err2 = nfp_net_dp_swap_enable(nn, dp);
3003 if (err2)
3004 nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n",
3005 err, err2);
3007 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
3008 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3010 nfp_net_rx_rings_free(dp);
3011 nfp_net_tx_rings_free(dp);
3013 nfp_net_open_stack(nn);
3014 exit_free_dp:
3015 kfree(dp);
3017 return err;
3019 err_free_rx:
3020 nfp_net_rx_rings_free(dp);
3021 err_cleanup_vecs:
3022 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
3023 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3024 kfree(dp);
3025 return err;
3028 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu)
3030 struct nfp_net *nn = netdev_priv(netdev);
3031 struct nfp_net_dp *dp;
3033 dp = nfp_net_clone_dp(nn);
3034 if (!dp)
3035 return -ENOMEM;
3037 dp->mtu = new_mtu;
3039 return nfp_net_ring_reconfig(nn, dp, NULL);
3042 static int
3043 nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3045 struct nfp_net *nn = netdev_priv(netdev);
3047 /* Priority tagged packets with vlan id 0 are processed by the
3048 * NFP as untagged packets
3050 if (!vid)
3051 return 0;
3053 nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_VID, vid);
3054 nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_PROTO, ETH_P_8021Q);
3056 return nfp_net_reconfig_mbox(nn, NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD);
3059 static int
3060 nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3062 struct nfp_net *nn = netdev_priv(netdev);
3064 /* Priority tagged packets with vlan id 0 are processed by the
3065 * NFP as untagged packets
3067 if (!vid)
3068 return 0;
3070 nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_VID, vid);
3071 nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_PROTO, ETH_P_8021Q);
3073 return nfp_net_reconfig_mbox(nn, NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL);
3076 static void nfp_net_stat64(struct net_device *netdev,
3077 struct rtnl_link_stats64 *stats)
3079 struct nfp_net *nn = netdev_priv(netdev);
3080 int r;
3082 for (r = 0; r < nn->dp.num_r_vecs; r++) {
3083 struct nfp_net_r_vector *r_vec = &nn->r_vecs[r];
3084 u64 data[3];
3085 unsigned int start;
3087 do {
3088 start = u64_stats_fetch_begin(&r_vec->rx_sync);
3089 data[0] = r_vec->rx_pkts;
3090 data[1] = r_vec->rx_bytes;
3091 data[2] = r_vec->rx_drops;
3092 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
3093 stats->rx_packets += data[0];
3094 stats->rx_bytes += data[1];
3095 stats->rx_dropped += data[2];
3097 do {
3098 start = u64_stats_fetch_begin(&r_vec->tx_sync);
3099 data[0] = r_vec->tx_pkts;
3100 data[1] = r_vec->tx_bytes;
3101 data[2] = r_vec->tx_errors;
3102 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
3103 stats->tx_packets += data[0];
3104 stats->tx_bytes += data[1];
3105 stats->tx_errors += data[2];
3109 static int nfp_net_set_features(struct net_device *netdev,
3110 netdev_features_t features)
3112 netdev_features_t changed = netdev->features ^ features;
3113 struct nfp_net *nn = netdev_priv(netdev);
3114 u32 new_ctrl;
3115 int err;
3117 /* Assume this is not called with features we have not advertised */
3119 new_ctrl = nn->dp.ctrl;
3121 if (changed & NETIF_F_RXCSUM) {
3122 if (features & NETIF_F_RXCSUM)
3123 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
3124 else
3125 new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY;
3128 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3129 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
3130 new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3131 else
3132 new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM;
3135 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
3136 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
3137 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
3138 NFP_NET_CFG_CTRL_LSO;
3139 else
3140 new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
3143 if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
3144 if (features & NETIF_F_HW_VLAN_CTAG_RX)
3145 new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3146 else
3147 new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN;
3150 if (changed & NETIF_F_HW_VLAN_CTAG_TX) {
3151 if (features & NETIF_F_HW_VLAN_CTAG_TX)
3152 new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
3153 else
3154 new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN;
3157 if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) {
3158 if (features & NETIF_F_HW_VLAN_CTAG_FILTER)
3159 new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
3160 else
3161 new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER;
3164 if (changed & NETIF_F_SG) {
3165 if (features & NETIF_F_SG)
3166 new_ctrl |= NFP_NET_CFG_CTRL_GATHER;
3167 else
3168 new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER;
3171 if (changed & NETIF_F_HW_TC && nfp_app_tc_busy(nn->app, nn)) {
3172 nn_err(nn, "Cannot disable HW TC offload while in use\n");
3173 return -EBUSY;
3176 nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
3177 netdev->features, features, changed);
3179 if (new_ctrl == nn->dp.ctrl)
3180 return 0;
3182 nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl);
3183 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
3184 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
3185 if (err)
3186 return err;
3188 nn->dp.ctrl = new_ctrl;
3190 return 0;
3193 static netdev_features_t
3194 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev,
3195 netdev_features_t features)
3197 u8 l4_hdr;
3199 /* We can't do TSO over double tagged packets (802.1AD) */
3200 features &= vlan_features_check(skb, features);
3202 if (!skb->encapsulation)
3203 return features;
3205 /* Ensure that inner L4 header offset fits into TX descriptor field */
3206 if (skb_is_gso(skb)) {
3207 u32 hdrlen;
3209 hdrlen = skb_inner_transport_header(skb) - skb->data +
3210 inner_tcp_hdrlen(skb);
3212 if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ))
3213 features &= ~NETIF_F_GSO_MASK;
3216 /* VXLAN/GRE check */
3217 switch (vlan_get_protocol(skb)) {
3218 case htons(ETH_P_IP):
3219 l4_hdr = ip_hdr(skb)->protocol;
3220 break;
3221 case htons(ETH_P_IPV6):
3222 l4_hdr = ipv6_hdr(skb)->nexthdr;
3223 break;
3224 default:
3225 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3228 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
3229 skb->inner_protocol != htons(ETH_P_TEB) ||
3230 (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) ||
3231 (l4_hdr == IPPROTO_UDP &&
3232 (skb_inner_mac_header(skb) - skb_transport_header(skb) !=
3233 sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
3234 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3236 return features;
3240 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW
3241 * @nn: NFP Net device to reconfigure
3242 * @idx: Index into the port table where new port should be written
3243 * @port: UDP port to configure (pass zero to remove VXLAN port)
3245 static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port)
3247 int i;
3249 nn->vxlan_ports[idx] = port;
3251 if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN))
3252 return;
3254 BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1);
3255 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2)
3256 nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port),
3257 be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 |
3258 be16_to_cpu(nn->vxlan_ports[i]));
3260 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN);
3264 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one
3265 * @nn: NFP Network structure
3266 * @port: UDP port to look for
3268 * Return: if the port is already in the table -- it's position;
3269 * if the port is not in the table -- free position to use;
3270 * if the table is full -- -ENOSPC.
3272 static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port)
3274 int i, free_idx = -ENOSPC;
3276 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) {
3277 if (nn->vxlan_ports[i] == port)
3278 return i;
3279 if (!nn->vxlan_usecnt[i])
3280 free_idx = i;
3283 return free_idx;
3286 static void nfp_net_add_vxlan_port(struct net_device *netdev,
3287 struct udp_tunnel_info *ti)
3289 struct nfp_net *nn = netdev_priv(netdev);
3290 int idx;
3292 if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3293 return;
3295 idx = nfp_net_find_vxlan_idx(nn, ti->port);
3296 if (idx == -ENOSPC)
3297 return;
3299 if (!nn->vxlan_usecnt[idx]++)
3300 nfp_net_set_vxlan_port(nn, idx, ti->port);
3303 static void nfp_net_del_vxlan_port(struct net_device *netdev,
3304 struct udp_tunnel_info *ti)
3306 struct nfp_net *nn = netdev_priv(netdev);
3307 int idx;
3309 if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3310 return;
3312 idx = nfp_net_find_vxlan_idx(nn, ti->port);
3313 if (idx == -ENOSPC || !nn->vxlan_usecnt[idx])
3314 return;
3316 if (!--nn->vxlan_usecnt[idx])
3317 nfp_net_set_vxlan_port(nn, idx, 0);
3320 static int
3321 nfp_net_xdp_setup_drv(struct nfp_net *nn, struct bpf_prog *prog,
3322 struct netlink_ext_ack *extack)
3324 struct nfp_net_dp *dp;
3326 if (!prog == !nn->dp.xdp_prog) {
3327 WRITE_ONCE(nn->dp.xdp_prog, prog);
3328 return 0;
3331 dp = nfp_net_clone_dp(nn);
3332 if (!dp)
3333 return -ENOMEM;
3335 dp->xdp_prog = prog;
3336 dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings;
3337 dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
3338 dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0;
3340 /* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */
3341 return nfp_net_ring_reconfig(nn, dp, extack);
3344 static int
3345 nfp_net_xdp_setup(struct nfp_net *nn, struct bpf_prog *prog, u32 flags,
3346 struct netlink_ext_ack *extack)
3348 struct bpf_prog *drv_prog, *offload_prog;
3349 int err;
3351 if (nn->xdp_prog && (flags ^ nn->xdp_flags) & XDP_FLAGS_MODES)
3352 return -EBUSY;
3354 /* Load both when no flags set to allow easy activation of driver path
3355 * when program is replaced by one which can't be offloaded.
3357 drv_prog = flags & XDP_FLAGS_HW_MODE ? NULL : prog;
3358 offload_prog = flags & XDP_FLAGS_DRV_MODE ? NULL : prog;
3360 err = nfp_net_xdp_setup_drv(nn, drv_prog, extack);
3361 if (err)
3362 return err;
3364 err = nfp_app_xdp_offload(nn->app, nn, offload_prog);
3365 if (err && flags & XDP_FLAGS_HW_MODE)
3366 return err;
3368 if (nn->xdp_prog)
3369 bpf_prog_put(nn->xdp_prog);
3370 nn->xdp_prog = prog;
3371 nn->xdp_flags = flags;
3373 return 0;
3376 static int nfp_net_xdp(struct net_device *netdev, struct netdev_xdp *xdp)
3378 struct nfp_net *nn = netdev_priv(netdev);
3380 switch (xdp->command) {
3381 case XDP_SETUP_PROG:
3382 case XDP_SETUP_PROG_HW:
3383 return nfp_net_xdp_setup(nn, xdp->prog, xdp->flags,
3384 xdp->extack);
3385 case XDP_QUERY_PROG:
3386 xdp->prog_attached = !!nn->xdp_prog;
3387 if (nn->dp.bpf_offload_xdp)
3388 xdp->prog_attached = XDP_ATTACHED_HW;
3389 xdp->prog_id = nn->xdp_prog ? nn->xdp_prog->aux->id : 0;
3390 return 0;
3391 default:
3392 return -EINVAL;
3396 static int nfp_net_set_mac_address(struct net_device *netdev, void *addr)
3398 struct nfp_net *nn = netdev_priv(netdev);
3399 struct sockaddr *saddr = addr;
3400 int err;
3402 err = eth_prepare_mac_addr_change(netdev, addr);
3403 if (err)
3404 return err;
3406 nfp_net_write_mac_addr(nn, saddr->sa_data);
3408 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR);
3409 if (err)
3410 return err;
3412 eth_commit_mac_addr_change(netdev, addr);
3414 return 0;
3417 const struct net_device_ops nfp_net_netdev_ops = {
3418 .ndo_open = nfp_net_netdev_open,
3419 .ndo_stop = nfp_net_netdev_close,
3420 .ndo_start_xmit = nfp_net_tx,
3421 .ndo_get_stats64 = nfp_net_stat64,
3422 .ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid,
3423 .ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid,
3424 .ndo_set_vf_mac = nfp_app_set_vf_mac,
3425 .ndo_set_vf_vlan = nfp_app_set_vf_vlan,
3426 .ndo_set_vf_spoofchk = nfp_app_set_vf_spoofchk,
3427 .ndo_get_vf_config = nfp_app_get_vf_config,
3428 .ndo_set_vf_link_state = nfp_app_set_vf_link_state,
3429 .ndo_setup_tc = nfp_port_setup_tc,
3430 .ndo_tx_timeout = nfp_net_tx_timeout,
3431 .ndo_set_rx_mode = nfp_net_set_rx_mode,
3432 .ndo_change_mtu = nfp_net_change_mtu,
3433 .ndo_set_mac_address = nfp_net_set_mac_address,
3434 .ndo_set_features = nfp_net_set_features,
3435 .ndo_features_check = nfp_net_features_check,
3436 .ndo_get_phys_port_name = nfp_port_get_phys_port_name,
3437 .ndo_udp_tunnel_add = nfp_net_add_vxlan_port,
3438 .ndo_udp_tunnel_del = nfp_net_del_vxlan_port,
3439 .ndo_xdp = nfp_net_xdp,
3443 * nfp_net_info() - Print general info about the NIC
3444 * @nn: NFP Net device to reconfigure
3446 void nfp_net_info(struct nfp_net *nn)
3448 nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
3449 nn->dp.is_vf ? "VF " : "",
3450 nn->dp.num_tx_rings, nn->max_tx_rings,
3451 nn->dp.num_rx_rings, nn->max_rx_rings);
3452 nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
3453 nn->fw_ver.resv, nn->fw_ver.class,
3454 nn->fw_ver.major, nn->fw_ver.minor,
3455 nn->max_mtu);
3456 nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
3457 nn->cap,
3458 nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "",
3459 nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "",
3460 nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "",
3461 nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "",
3462 nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "",
3463 nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "",
3464 nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "",
3465 nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "",
3466 nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "",
3467 nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO1 " : "",
3468 nn->cap & NFP_NET_CFG_CTRL_LSO2 ? "TSO2 " : "",
3469 nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS1 " : "",
3470 nn->cap & NFP_NET_CFG_CTRL_RSS2 ? "RSS2 " : "",
3471 nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "",
3472 nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "",
3473 nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "",
3474 nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "",
3475 nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "",
3476 nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : "",
3477 nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ?
3478 "RXCSUM_COMPLETE " : "",
3479 nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "",
3480 nfp_app_extra_cap(nn->app, nn));
3484 * nfp_net_alloc() - Allocate netdev and related structure
3485 * @pdev: PCI device
3486 * @needs_netdev: Whether to allocate a netdev for this vNIC
3487 * @max_tx_rings: Maximum number of TX rings supported by device
3488 * @max_rx_rings: Maximum number of RX rings supported by device
3490 * This function allocates a netdev device and fills in the initial
3491 * part of the @struct nfp_net structure. In case of control device
3492 * nfp_net structure is allocated without the netdev.
3494 * Return: NFP Net device structure, or ERR_PTR on error.
3496 struct nfp_net *nfp_net_alloc(struct pci_dev *pdev, bool needs_netdev,
3497 unsigned int max_tx_rings,
3498 unsigned int max_rx_rings)
3500 struct nfp_net *nn;
3502 if (needs_netdev) {
3503 struct net_device *netdev;
3505 netdev = alloc_etherdev_mqs(sizeof(struct nfp_net),
3506 max_tx_rings, max_rx_rings);
3507 if (!netdev)
3508 return ERR_PTR(-ENOMEM);
3510 SET_NETDEV_DEV(netdev, &pdev->dev);
3511 nn = netdev_priv(netdev);
3512 nn->dp.netdev = netdev;
3513 } else {
3514 nn = vzalloc(sizeof(*nn));
3515 if (!nn)
3516 return ERR_PTR(-ENOMEM);
3519 nn->dp.dev = &pdev->dev;
3520 nn->pdev = pdev;
3522 nn->max_tx_rings = max_tx_rings;
3523 nn->max_rx_rings = max_rx_rings;
3525 nn->dp.num_tx_rings = min_t(unsigned int,
3526 max_tx_rings, num_online_cpus());
3527 nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings,
3528 netif_get_num_default_rss_queues());
3530 nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings);
3531 nn->dp.num_r_vecs = min_t(unsigned int,
3532 nn->dp.num_r_vecs, num_online_cpus());
3534 nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT;
3535 nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT;
3537 spin_lock_init(&nn->reconfig_lock);
3538 spin_lock_init(&nn->link_status_lock);
3540 timer_setup(&nn->reconfig_timer, nfp_net_reconfig_timer, 0);
3542 return nn;
3546 * nfp_net_free() - Undo what @nfp_net_alloc() did
3547 * @nn: NFP Net device to reconfigure
3549 void nfp_net_free(struct nfp_net *nn)
3551 if (nn->xdp_prog)
3552 bpf_prog_put(nn->xdp_prog);
3554 if (nn->dp.netdev)
3555 free_netdev(nn->dp.netdev);
3556 else
3557 vfree(nn);
3561 * nfp_net_rss_key_sz() - Get current size of the RSS key
3562 * @nn: NFP Net device instance
3564 * Return: size of the RSS key for currently selected hash function.
3566 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn)
3568 switch (nn->rss_hfunc) {
3569 case ETH_RSS_HASH_TOP:
3570 return NFP_NET_CFG_RSS_KEY_SZ;
3571 case ETH_RSS_HASH_XOR:
3572 return 0;
3573 case ETH_RSS_HASH_CRC32:
3574 return 4;
3577 nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc);
3578 return 0;
3582 * nfp_net_rss_init() - Set the initial RSS parameters
3583 * @nn: NFP Net device to reconfigure
3585 static void nfp_net_rss_init(struct nfp_net *nn)
3587 unsigned long func_bit, rss_cap_hfunc;
3588 u32 reg;
3590 /* Read the RSS function capability and select first supported func */
3591 reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP);
3592 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg);
3593 if (!rss_cap_hfunc)
3594 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC,
3595 NFP_NET_CFG_RSS_TOEPLITZ);
3597 func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS);
3598 if (func_bit == NFP_NET_CFG_RSS_HFUNCS) {
3599 dev_warn(nn->dp.dev,
3600 "Bad RSS config, defaulting to Toeplitz hash\n");
3601 func_bit = ETH_RSS_HASH_TOP_BIT;
3603 nn->rss_hfunc = 1 << func_bit;
3605 netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn));
3607 nfp_net_rss_init_itbl(nn);
3609 /* Enable IPv4/IPv6 TCP by default */
3610 nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP |
3611 NFP_NET_CFG_RSS_IPV6_TCP |
3612 FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) |
3613 NFP_NET_CFG_RSS_MASK;
3617 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
3618 * @nn: NFP Net device to reconfigure
3620 static void nfp_net_irqmod_init(struct nfp_net *nn)
3622 nn->rx_coalesce_usecs = 50;
3623 nn->rx_coalesce_max_frames = 64;
3624 nn->tx_coalesce_usecs = 50;
3625 nn->tx_coalesce_max_frames = 64;
3628 static void nfp_net_netdev_init(struct nfp_net *nn)
3630 struct net_device *netdev = nn->dp.netdev;
3632 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
3634 netdev->mtu = nn->dp.mtu;
3636 /* Advertise/enable offloads based on capabilities
3638 * Note: netdev->features show the currently enabled features
3639 * and netdev->hw_features advertises which features are
3640 * supported. By default we enable most features.
3642 if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR)
3643 netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3645 netdev->hw_features = NETIF_F_HIGHDMA;
3646 if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) {
3647 netdev->hw_features |= NETIF_F_RXCSUM;
3648 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
3650 if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) {
3651 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3652 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3654 if (nn->cap & NFP_NET_CFG_CTRL_GATHER) {
3655 netdev->hw_features |= NETIF_F_SG;
3656 nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER;
3658 if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) ||
3659 nn->cap & NFP_NET_CFG_CTRL_LSO2) {
3660 netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
3661 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
3662 NFP_NET_CFG_CTRL_LSO;
3664 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY)
3665 netdev->hw_features |= NETIF_F_RXHASH;
3666 if (nn->cap & NFP_NET_CFG_CTRL_VXLAN &&
3667 nn->cap & NFP_NET_CFG_CTRL_NVGRE) {
3668 if (nn->cap & NFP_NET_CFG_CTRL_LSO)
3669 netdev->hw_features |= NETIF_F_GSO_GRE |
3670 NETIF_F_GSO_UDP_TUNNEL;
3671 nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE;
3673 netdev->hw_enc_features = netdev->hw_features;
3676 netdev->vlan_features = netdev->hw_features;
3678 if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) {
3679 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
3680 nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3682 if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) {
3683 if (nn->cap & NFP_NET_CFG_CTRL_LSO2) {
3684 nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n");
3685 } else {
3686 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
3687 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
3690 if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) {
3691 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3692 nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
3695 netdev->features = netdev->hw_features;
3697 if (nfp_app_has_tc(nn->app))
3698 netdev->hw_features |= NETIF_F_HW_TC;
3700 /* Advertise but disable TSO by default. */
3701 netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
3702 nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
3704 /* Finalise the netdev setup */
3705 netdev->netdev_ops = &nfp_net_netdev_ops;
3706 netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000);
3708 SWITCHDEV_SET_OPS(netdev, &nfp_port_switchdev_ops);
3710 /* MTU range: 68 - hw-specific max */
3711 netdev->min_mtu = ETH_MIN_MTU;
3712 netdev->max_mtu = nn->max_mtu;
3714 netif_carrier_off(netdev);
3716 nfp_net_set_ethtool_ops(netdev);
3720 * nfp_net_init() - Initialise/finalise the nfp_net structure
3721 * @nn: NFP Net device structure
3723 * Return: 0 on success or negative errno on error.
3725 int nfp_net_init(struct nfp_net *nn)
3727 int err;
3729 nn->dp.rx_dma_dir = DMA_FROM_DEVICE;
3731 /* Get some of the read-only fields from the BAR */
3732 nn->cap = nn_readl(nn, NFP_NET_CFG_CAP);
3733 nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU);
3735 /* ABI 4.x and ctrl vNIC always use chained metadata, in other cases
3736 * we allow use of non-chained metadata if RSS(v1) is the only
3737 * advertised capability requiring metadata.
3739 nn->dp.chained_metadata_format = nn->fw_ver.major == 4 ||
3740 !nn->dp.netdev ||
3741 !(nn->cap & NFP_NET_CFG_CTRL_RSS) ||
3742 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META;
3743 /* RSS(v1) uses non-chained metadata format, except in ABI 4.x where
3744 * it has the same meaning as RSSv2.
3746 if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4)
3747 nn->cap &= ~NFP_NET_CFG_CTRL_RSS;
3749 /* Determine RX packet/metadata boundary offset */
3750 if (nn->fw_ver.major >= 2) {
3751 u32 reg;
3753 reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET);
3754 if (reg > NFP_NET_MAX_PREPEND) {
3755 nn_err(nn, "Invalid rx offset: %d\n", reg);
3756 return -EINVAL;
3758 nn->dp.rx_offset = reg;
3759 } else {
3760 nn->dp.rx_offset = NFP_NET_RX_OFFSET;
3763 /* Set default MTU and Freelist buffer size */
3764 if (nn->max_mtu < NFP_NET_DEFAULT_MTU)
3765 nn->dp.mtu = nn->max_mtu;
3766 else
3767 nn->dp.mtu = NFP_NET_DEFAULT_MTU;
3768 nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp);
3770 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) {
3771 nfp_net_rss_init(nn);
3772 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?:
3773 NFP_NET_CFG_CTRL_RSS;
3776 /* Allow L2 Broadcast and Multicast through by default, if supported */
3777 if (nn->cap & NFP_NET_CFG_CTRL_L2BC)
3778 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC;
3779 if (nn->cap & NFP_NET_CFG_CTRL_L2MC)
3780 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2MC;
3782 /* Allow IRQ moderation, if supported */
3783 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
3784 nfp_net_irqmod_init(nn);
3785 nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
3788 if (nn->dp.netdev)
3789 nfp_net_netdev_init(nn);
3791 /* Stash the re-configuration queue away. First odd queue in TX Bar */
3792 nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;
3794 /* Make sure the FW knows the netdev is supposed to be disabled here */
3795 nn_writel(nn, NFP_NET_CFG_CTRL, 0);
3796 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
3797 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
3798 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING |
3799 NFP_NET_CFG_UPDATE_GEN);
3800 if (err)
3801 return err;
3803 nfp_net_vecs_init(nn);
3805 if (!nn->dp.netdev)
3806 return 0;
3807 return register_netdev(nn->dp.netdev);
3811 * nfp_net_clean() - Undo what nfp_net_init() did.
3812 * @nn: NFP Net device structure
3814 void nfp_net_clean(struct nfp_net *nn)
3816 if (!nn->dp.netdev)
3817 return;
3819 unregister_netdev(nn->dp.netdev);