x86/fpu/regset: Replace static_cpu_has() usage with boot_cpu_has()
[linux-2.6/btrfs-unstable.git] / drivers / acpi / processor_idle.c
blob444e3745c8b3baa7acbf445e4a764ba760712e92
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26 #define pr_fmt(fmt) "ACPI: " fmt
28 #include <linux/module.h>
29 #include <linux/acpi.h>
30 #include <linux/dmi.h>
31 #include <linux/sched.h> /* need_resched() */
32 #include <linux/tick.h>
33 #include <linux/cpuidle.h>
34 #include <acpi/processor.h>
37 * Include the apic definitions for x86 to have the APIC timer related defines
38 * available also for UP (on SMP it gets magically included via linux/smp.h).
39 * asm/acpi.h is not an option, as it would require more include magic. Also
40 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
42 #ifdef CONFIG_X86
43 #include <asm/apic.h>
44 #endif
46 #define ACPI_PROCESSOR_CLASS "processor"
47 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
48 ACPI_MODULE_NAME("processor_idle");
50 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
51 module_param(max_cstate, uint, 0000);
52 static unsigned int nocst __read_mostly;
53 module_param(nocst, uint, 0000);
54 static int bm_check_disable __read_mostly;
55 module_param(bm_check_disable, uint, 0000);
57 static unsigned int latency_factor __read_mostly = 2;
58 module_param(latency_factor, uint, 0644);
60 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
62 static
63 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
65 static int disabled_by_idle_boot_param(void)
67 return boot_option_idle_override == IDLE_POLL ||
68 boot_option_idle_override == IDLE_HALT;
72 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
73 * For now disable this. Probably a bug somewhere else.
75 * To skip this limit, boot/load with a large max_cstate limit.
77 static int set_max_cstate(const struct dmi_system_id *id)
79 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
80 return 0;
82 pr_notice("%s detected - limiting to C%ld max_cstate."
83 " Override with \"processor.max_cstate=%d\"\n", id->ident,
84 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
86 max_cstate = (long)id->driver_data;
88 return 0;
91 static const struct dmi_system_id processor_power_dmi_table[] = {
92 { set_max_cstate, "Clevo 5600D", {
93 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
94 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
95 (void *)2},
96 { set_max_cstate, "Pavilion zv5000", {
97 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
98 DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
99 (void *)1},
100 { set_max_cstate, "Asus L8400B", {
101 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
102 DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
103 (void *)1},
109 * Callers should disable interrupts before the call and enable
110 * interrupts after return.
112 static void acpi_safe_halt(void)
114 if (!tif_need_resched()) {
115 safe_halt();
116 local_irq_disable();
120 #ifdef ARCH_APICTIMER_STOPS_ON_C3
123 * Some BIOS implementations switch to C3 in the published C2 state.
124 * This seems to be a common problem on AMD boxen, but other vendors
125 * are affected too. We pick the most conservative approach: we assume
126 * that the local APIC stops in both C2 and C3.
128 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
129 struct acpi_processor_cx *cx)
131 struct acpi_processor_power *pwr = &pr->power;
132 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
134 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
135 return;
137 if (amd_e400_c1e_detected)
138 type = ACPI_STATE_C1;
141 * Check, if one of the previous states already marked the lapic
142 * unstable
144 if (pwr->timer_broadcast_on_state < state)
145 return;
147 if (cx->type >= type)
148 pr->power.timer_broadcast_on_state = state;
151 static void __lapic_timer_propagate_broadcast(void *arg)
153 struct acpi_processor *pr = (struct acpi_processor *) arg;
155 if (pr->power.timer_broadcast_on_state < INT_MAX)
156 tick_broadcast_enable();
157 else
158 tick_broadcast_disable();
161 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
163 smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
164 (void *)pr, 1);
167 /* Power(C) State timer broadcast control */
168 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
169 struct acpi_processor_cx *cx,
170 int broadcast)
172 int state = cx - pr->power.states;
174 if (state >= pr->power.timer_broadcast_on_state) {
175 if (broadcast)
176 tick_broadcast_enter();
177 else
178 tick_broadcast_exit();
182 #else
184 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
185 struct acpi_processor_cx *cstate) { }
186 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
187 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
188 struct acpi_processor_cx *cx,
189 int broadcast)
193 #endif
195 #if defined(CONFIG_X86)
196 static void tsc_check_state(int state)
198 switch (boot_cpu_data.x86_vendor) {
199 case X86_VENDOR_AMD:
200 case X86_VENDOR_INTEL:
202 * AMD Fam10h TSC will tick in all
203 * C/P/S0/S1 states when this bit is set.
205 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
206 return;
208 /*FALL THROUGH*/
209 default:
210 /* TSC could halt in idle, so notify users */
211 if (state > ACPI_STATE_C1)
212 mark_tsc_unstable("TSC halts in idle");
215 #else
216 static void tsc_check_state(int state) { return; }
217 #endif
219 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
222 if (!pr->pblk)
223 return -ENODEV;
225 /* if info is obtained from pblk/fadt, type equals state */
226 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
227 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
229 #ifndef CONFIG_HOTPLUG_CPU
231 * Check for P_LVL2_UP flag before entering C2 and above on
232 * an SMP system.
234 if ((num_online_cpus() > 1) &&
235 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
236 return -ENODEV;
237 #endif
239 /* determine C2 and C3 address from pblk */
240 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
241 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
243 /* determine latencies from FADT */
244 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
245 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
248 * FADT specified C2 latency must be less than or equal to
249 * 100 microseconds.
251 if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
252 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
253 "C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
254 /* invalidate C2 */
255 pr->power.states[ACPI_STATE_C2].address = 0;
259 * FADT supplied C3 latency must be less than or equal to
260 * 1000 microseconds.
262 if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
263 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
264 "C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
265 /* invalidate C3 */
266 pr->power.states[ACPI_STATE_C3].address = 0;
269 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
270 "lvl2[0x%08x] lvl3[0x%08x]\n",
271 pr->power.states[ACPI_STATE_C2].address,
272 pr->power.states[ACPI_STATE_C3].address));
274 return 0;
277 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
279 if (!pr->power.states[ACPI_STATE_C1].valid) {
280 /* set the first C-State to C1 */
281 /* all processors need to support C1 */
282 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
283 pr->power.states[ACPI_STATE_C1].valid = 1;
284 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
286 /* the C0 state only exists as a filler in our array */
287 pr->power.states[ACPI_STATE_C0].valid = 1;
288 return 0;
291 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
293 acpi_status status;
294 u64 count;
295 int current_count;
296 int i, ret = 0;
297 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
298 union acpi_object *cst;
301 if (nocst)
302 return -ENODEV;
304 current_count = 0;
306 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
307 if (ACPI_FAILURE(status)) {
308 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
309 return -ENODEV;
312 cst = buffer.pointer;
314 /* There must be at least 2 elements */
315 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
316 pr_err("not enough elements in _CST\n");
317 ret = -EFAULT;
318 goto end;
321 count = cst->package.elements[0].integer.value;
323 /* Validate number of power states. */
324 if (count < 1 || count != cst->package.count - 1) {
325 pr_err("count given by _CST is not valid\n");
326 ret = -EFAULT;
327 goto end;
330 /* Tell driver that at least _CST is supported. */
331 pr->flags.has_cst = 1;
333 for (i = 1; i <= count; i++) {
334 union acpi_object *element;
335 union acpi_object *obj;
336 struct acpi_power_register *reg;
337 struct acpi_processor_cx cx;
339 memset(&cx, 0, sizeof(cx));
341 element = &(cst->package.elements[i]);
342 if (element->type != ACPI_TYPE_PACKAGE)
343 continue;
345 if (element->package.count != 4)
346 continue;
348 obj = &(element->package.elements[0]);
350 if (obj->type != ACPI_TYPE_BUFFER)
351 continue;
353 reg = (struct acpi_power_register *)obj->buffer.pointer;
355 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
356 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
357 continue;
359 /* There should be an easy way to extract an integer... */
360 obj = &(element->package.elements[1]);
361 if (obj->type != ACPI_TYPE_INTEGER)
362 continue;
364 cx.type = obj->integer.value;
366 * Some buggy BIOSes won't list C1 in _CST -
367 * Let acpi_processor_get_power_info_default() handle them later
369 if (i == 1 && cx.type != ACPI_STATE_C1)
370 current_count++;
372 cx.address = reg->address;
373 cx.index = current_count + 1;
375 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
376 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
377 if (acpi_processor_ffh_cstate_probe
378 (pr->id, &cx, reg) == 0) {
379 cx.entry_method = ACPI_CSTATE_FFH;
380 } else if (cx.type == ACPI_STATE_C1) {
382 * C1 is a special case where FIXED_HARDWARE
383 * can be handled in non-MWAIT way as well.
384 * In that case, save this _CST entry info.
385 * Otherwise, ignore this info and continue.
387 cx.entry_method = ACPI_CSTATE_HALT;
388 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
389 } else {
390 continue;
392 if (cx.type == ACPI_STATE_C1 &&
393 (boot_option_idle_override == IDLE_NOMWAIT)) {
395 * In most cases the C1 space_id obtained from
396 * _CST object is FIXED_HARDWARE access mode.
397 * But when the option of idle=halt is added,
398 * the entry_method type should be changed from
399 * CSTATE_FFH to CSTATE_HALT.
400 * When the option of idle=nomwait is added,
401 * the C1 entry_method type should be
402 * CSTATE_HALT.
404 cx.entry_method = ACPI_CSTATE_HALT;
405 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
407 } else {
408 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
409 cx.address);
412 if (cx.type == ACPI_STATE_C1) {
413 cx.valid = 1;
416 obj = &(element->package.elements[2]);
417 if (obj->type != ACPI_TYPE_INTEGER)
418 continue;
420 cx.latency = obj->integer.value;
422 obj = &(element->package.elements[3]);
423 if (obj->type != ACPI_TYPE_INTEGER)
424 continue;
426 current_count++;
427 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
430 * We support total ACPI_PROCESSOR_MAX_POWER - 1
431 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
433 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
434 pr_warn("Limiting number of power states to max (%d)\n",
435 ACPI_PROCESSOR_MAX_POWER);
436 pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
437 break;
441 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
442 current_count));
444 /* Validate number of power states discovered */
445 if (current_count < 2)
446 ret = -EFAULT;
448 end:
449 kfree(buffer.pointer);
451 return ret;
454 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
455 struct acpi_processor_cx *cx)
457 static int bm_check_flag = -1;
458 static int bm_control_flag = -1;
461 if (!cx->address)
462 return;
465 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
466 * DMA transfers are used by any ISA device to avoid livelock.
467 * Note that we could disable Type-F DMA (as recommended by
468 * the erratum), but this is known to disrupt certain ISA
469 * devices thus we take the conservative approach.
471 else if (errata.piix4.fdma) {
472 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
473 "C3 not supported on PIIX4 with Type-F DMA\n"));
474 return;
477 /* All the logic here assumes flags.bm_check is same across all CPUs */
478 if (bm_check_flag == -1) {
479 /* Determine whether bm_check is needed based on CPU */
480 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
481 bm_check_flag = pr->flags.bm_check;
482 bm_control_flag = pr->flags.bm_control;
483 } else {
484 pr->flags.bm_check = bm_check_flag;
485 pr->flags.bm_control = bm_control_flag;
488 if (pr->flags.bm_check) {
489 if (!pr->flags.bm_control) {
490 if (pr->flags.has_cst != 1) {
491 /* bus mastering control is necessary */
492 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
493 "C3 support requires BM control\n"));
494 return;
495 } else {
496 /* Here we enter C3 without bus mastering */
497 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
498 "C3 support without BM control\n"));
501 } else {
503 * WBINVD should be set in fadt, for C3 state to be
504 * supported on when bm_check is not required.
506 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
507 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
508 "Cache invalidation should work properly"
509 " for C3 to be enabled on SMP systems\n"));
510 return;
515 * Otherwise we've met all of our C3 requirements.
516 * Normalize the C3 latency to expidite policy. Enable
517 * checking of bus mastering status (bm_check) so we can
518 * use this in our C3 policy
520 cx->valid = 1;
523 * On older chipsets, BM_RLD needs to be set
524 * in order for Bus Master activity to wake the
525 * system from C3. Newer chipsets handle DMA
526 * during C3 automatically and BM_RLD is a NOP.
527 * In either case, the proper way to
528 * handle BM_RLD is to set it and leave it set.
530 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
532 return;
535 static int acpi_processor_power_verify(struct acpi_processor *pr)
537 unsigned int i;
538 unsigned int working = 0;
540 pr->power.timer_broadcast_on_state = INT_MAX;
542 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
543 struct acpi_processor_cx *cx = &pr->power.states[i];
545 switch (cx->type) {
546 case ACPI_STATE_C1:
547 cx->valid = 1;
548 break;
550 case ACPI_STATE_C2:
551 if (!cx->address)
552 break;
553 cx->valid = 1;
554 break;
556 case ACPI_STATE_C3:
557 acpi_processor_power_verify_c3(pr, cx);
558 break;
560 if (!cx->valid)
561 continue;
563 lapic_timer_check_state(i, pr, cx);
564 tsc_check_state(cx->type);
565 working++;
568 lapic_timer_propagate_broadcast(pr);
570 return (working);
573 static int acpi_processor_get_power_info(struct acpi_processor *pr)
575 unsigned int i;
576 int result;
579 /* NOTE: the idle thread may not be running while calling
580 * this function */
582 /* Zero initialize all the C-states info. */
583 memset(pr->power.states, 0, sizeof(pr->power.states));
585 result = acpi_processor_get_power_info_cst(pr);
586 if (result == -ENODEV)
587 result = acpi_processor_get_power_info_fadt(pr);
589 if (result)
590 return result;
592 acpi_processor_get_power_info_default(pr);
594 pr->power.count = acpi_processor_power_verify(pr);
597 * if one state of type C2 or C3 is available, mark this
598 * CPU as being "idle manageable"
600 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
601 if (pr->power.states[i].valid) {
602 pr->power.count = i;
603 if (pr->power.states[i].type >= ACPI_STATE_C2)
604 pr->flags.power = 1;
608 return 0;
612 * acpi_idle_bm_check - checks if bus master activity was detected
614 static int acpi_idle_bm_check(void)
616 u32 bm_status = 0;
618 if (bm_check_disable)
619 return 0;
621 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
622 if (bm_status)
623 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
625 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
626 * the true state of bus mastering activity; forcing us to
627 * manually check the BMIDEA bit of each IDE channel.
629 else if (errata.piix4.bmisx) {
630 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
631 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
632 bm_status = 1;
634 return bm_status;
638 * acpi_idle_do_entry - enter idle state using the appropriate method
639 * @cx: cstate data
641 * Caller disables interrupt before call and enables interrupt after return.
643 static void acpi_idle_do_entry(struct acpi_processor_cx *cx)
645 if (cx->entry_method == ACPI_CSTATE_FFH) {
646 /* Call into architectural FFH based C-state */
647 acpi_processor_ffh_cstate_enter(cx);
648 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
649 acpi_safe_halt();
650 } else {
651 /* IO port based C-state */
652 inb(cx->address);
653 /* Dummy wait op - must do something useless after P_LVL2 read
654 because chipsets cannot guarantee that STPCLK# signal
655 gets asserted in time to freeze execution properly. */
656 inl(acpi_gbl_FADT.xpm_timer_block.address);
661 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
662 * @dev: the target CPU
663 * @index: the index of suggested state
665 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
667 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
669 ACPI_FLUSH_CPU_CACHE();
671 while (1) {
673 if (cx->entry_method == ACPI_CSTATE_HALT)
674 safe_halt();
675 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
676 inb(cx->address);
677 /* See comment in acpi_idle_do_entry() */
678 inl(acpi_gbl_FADT.xpm_timer_block.address);
679 } else
680 return -ENODEV;
683 /* Never reached */
684 return 0;
687 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
689 return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
690 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
693 static int c3_cpu_count;
694 static DEFINE_RAW_SPINLOCK(c3_lock);
697 * acpi_idle_enter_bm - enters C3 with proper BM handling
698 * @pr: Target processor
699 * @cx: Target state context
700 * @timer_bc: Whether or not to change timer mode to broadcast
702 static void acpi_idle_enter_bm(struct acpi_processor *pr,
703 struct acpi_processor_cx *cx, bool timer_bc)
705 acpi_unlazy_tlb(smp_processor_id());
708 * Must be done before busmaster disable as we might need to
709 * access HPET !
711 if (timer_bc)
712 lapic_timer_state_broadcast(pr, cx, 1);
715 * disable bus master
716 * bm_check implies we need ARB_DIS
717 * bm_control implies whether we can do ARB_DIS
719 * That leaves a case where bm_check is set and bm_control is
720 * not set. In that case we cannot do much, we enter C3
721 * without doing anything.
723 if (pr->flags.bm_control) {
724 raw_spin_lock(&c3_lock);
725 c3_cpu_count++;
726 /* Disable bus master arbitration when all CPUs are in C3 */
727 if (c3_cpu_count == num_online_cpus())
728 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
729 raw_spin_unlock(&c3_lock);
732 acpi_idle_do_entry(cx);
734 /* Re-enable bus master arbitration */
735 if (pr->flags.bm_control) {
736 raw_spin_lock(&c3_lock);
737 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
738 c3_cpu_count--;
739 raw_spin_unlock(&c3_lock);
742 if (timer_bc)
743 lapic_timer_state_broadcast(pr, cx, 0);
746 static int acpi_idle_enter(struct cpuidle_device *dev,
747 struct cpuidle_driver *drv, int index)
749 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
750 struct acpi_processor *pr;
752 pr = __this_cpu_read(processors);
753 if (unlikely(!pr))
754 return -EINVAL;
756 if (cx->type != ACPI_STATE_C1) {
757 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
758 index = CPUIDLE_DRIVER_STATE_START;
759 cx = per_cpu(acpi_cstate[index], dev->cpu);
760 } else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
761 if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
762 acpi_idle_enter_bm(pr, cx, true);
763 return index;
764 } else if (drv->safe_state_index >= 0) {
765 index = drv->safe_state_index;
766 cx = per_cpu(acpi_cstate[index], dev->cpu);
767 } else {
768 acpi_safe_halt();
769 return -EBUSY;
774 lapic_timer_state_broadcast(pr, cx, 1);
776 if (cx->type == ACPI_STATE_C3)
777 ACPI_FLUSH_CPU_CACHE();
779 acpi_idle_do_entry(cx);
781 lapic_timer_state_broadcast(pr, cx, 0);
783 return index;
786 static void acpi_idle_enter_freeze(struct cpuidle_device *dev,
787 struct cpuidle_driver *drv, int index)
789 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
791 if (cx->type == ACPI_STATE_C3) {
792 struct acpi_processor *pr = __this_cpu_read(processors);
794 if (unlikely(!pr))
795 return;
797 if (pr->flags.bm_check) {
798 acpi_idle_enter_bm(pr, cx, false);
799 return;
800 } else {
801 ACPI_FLUSH_CPU_CACHE();
804 acpi_idle_do_entry(cx);
807 struct cpuidle_driver acpi_idle_driver = {
808 .name = "acpi_idle",
809 .owner = THIS_MODULE,
813 * acpi_processor_setup_cpuidle_cx - prepares and configures CPUIDLE
814 * device i.e. per-cpu data
816 * @pr: the ACPI processor
817 * @dev : the cpuidle device
819 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
820 struct cpuidle_device *dev)
822 int i, count = CPUIDLE_DRIVER_STATE_START;
823 struct acpi_processor_cx *cx;
825 if (!pr->flags.power_setup_done)
826 return -EINVAL;
828 if (pr->flags.power == 0) {
829 return -EINVAL;
832 if (!dev)
833 return -EINVAL;
835 dev->cpu = pr->id;
837 if (max_cstate == 0)
838 max_cstate = 1;
840 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
841 cx = &pr->power.states[i];
843 if (!cx->valid)
844 continue;
846 per_cpu(acpi_cstate[count], dev->cpu) = cx;
848 count++;
849 if (count == CPUIDLE_STATE_MAX)
850 break;
853 if (!count)
854 return -EINVAL;
856 return 0;
860 * acpi_processor_setup_cpuidle states- prepares and configures cpuidle
861 * global state data i.e. idle routines
863 * @pr: the ACPI processor
865 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
867 int i, count = CPUIDLE_DRIVER_STATE_START;
868 struct acpi_processor_cx *cx;
869 struct cpuidle_state *state;
870 struct cpuidle_driver *drv = &acpi_idle_driver;
872 if (!pr->flags.power_setup_done)
873 return -EINVAL;
875 if (pr->flags.power == 0)
876 return -EINVAL;
878 drv->safe_state_index = -1;
879 for (i = CPUIDLE_DRIVER_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
880 drv->states[i].name[0] = '\0';
881 drv->states[i].desc[0] = '\0';
884 if (max_cstate == 0)
885 max_cstate = 1;
887 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
888 cx = &pr->power.states[i];
890 if (!cx->valid)
891 continue;
893 state = &drv->states[count];
894 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
895 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
896 state->exit_latency = cx->latency;
897 state->target_residency = cx->latency * latency_factor;
898 state->enter = acpi_idle_enter;
900 state->flags = 0;
901 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
902 state->enter_dead = acpi_idle_play_dead;
903 drv->safe_state_index = count;
906 * Halt-induced C1 is not good for ->enter_freeze, because it
907 * re-enables interrupts on exit. Moreover, C1 is generally not
908 * particularly interesting from the suspend-to-idle angle, so
909 * avoid C1 and the situations in which we may need to fall back
910 * to it altogether.
912 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
913 state->enter_freeze = acpi_idle_enter_freeze;
915 count++;
916 if (count == CPUIDLE_STATE_MAX)
917 break;
920 drv->state_count = count;
922 if (!count)
923 return -EINVAL;
925 return 0;
928 int acpi_processor_hotplug(struct acpi_processor *pr)
930 int ret = 0;
931 struct cpuidle_device *dev;
933 if (disabled_by_idle_boot_param())
934 return 0;
936 if (nocst)
937 return -ENODEV;
939 if (!pr->flags.power_setup_done)
940 return -ENODEV;
942 dev = per_cpu(acpi_cpuidle_device, pr->id);
943 cpuidle_pause_and_lock();
944 cpuidle_disable_device(dev);
945 acpi_processor_get_power_info(pr);
946 if (pr->flags.power) {
947 acpi_processor_setup_cpuidle_cx(pr, dev);
948 ret = cpuidle_enable_device(dev);
950 cpuidle_resume_and_unlock();
952 return ret;
955 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
957 int cpu;
958 struct acpi_processor *_pr;
959 struct cpuidle_device *dev;
961 if (disabled_by_idle_boot_param())
962 return 0;
964 if (nocst)
965 return -ENODEV;
967 if (!pr->flags.power_setup_done)
968 return -ENODEV;
971 * FIXME: Design the ACPI notification to make it once per
972 * system instead of once per-cpu. This condition is a hack
973 * to make the code that updates C-States be called once.
976 if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
978 /* Protect against cpu-hotplug */
979 get_online_cpus();
980 cpuidle_pause_and_lock();
982 /* Disable all cpuidle devices */
983 for_each_online_cpu(cpu) {
984 _pr = per_cpu(processors, cpu);
985 if (!_pr || !_pr->flags.power_setup_done)
986 continue;
987 dev = per_cpu(acpi_cpuidle_device, cpu);
988 cpuidle_disable_device(dev);
991 /* Populate Updated C-state information */
992 acpi_processor_get_power_info(pr);
993 acpi_processor_setup_cpuidle_states(pr);
995 /* Enable all cpuidle devices */
996 for_each_online_cpu(cpu) {
997 _pr = per_cpu(processors, cpu);
998 if (!_pr || !_pr->flags.power_setup_done)
999 continue;
1000 acpi_processor_get_power_info(_pr);
1001 if (_pr->flags.power) {
1002 dev = per_cpu(acpi_cpuidle_device, cpu);
1003 acpi_processor_setup_cpuidle_cx(_pr, dev);
1004 cpuidle_enable_device(dev);
1007 cpuidle_resume_and_unlock();
1008 put_online_cpus();
1011 return 0;
1014 static int acpi_processor_registered;
1016 int acpi_processor_power_init(struct acpi_processor *pr)
1018 acpi_status status;
1019 int retval;
1020 struct cpuidle_device *dev;
1021 static int first_run;
1023 if (disabled_by_idle_boot_param())
1024 return 0;
1026 if (!first_run) {
1027 dmi_check_system(processor_power_dmi_table);
1028 max_cstate = acpi_processor_cstate_check(max_cstate);
1029 if (max_cstate < ACPI_C_STATES_MAX)
1030 printk(KERN_NOTICE
1031 "ACPI: processor limited to max C-state %d\n",
1032 max_cstate);
1033 first_run++;
1036 if (acpi_gbl_FADT.cst_control && !nocst) {
1037 status =
1038 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1039 if (ACPI_FAILURE(status)) {
1040 ACPI_EXCEPTION((AE_INFO, status,
1041 "Notifying BIOS of _CST ability failed"));
1045 acpi_processor_get_power_info(pr);
1046 pr->flags.power_setup_done = 1;
1049 * Install the idle handler if processor power management is supported.
1050 * Note that we use previously set idle handler will be used on
1051 * platforms that only support C1.
1053 if (pr->flags.power) {
1054 /* Register acpi_idle_driver if not already registered */
1055 if (!acpi_processor_registered) {
1056 acpi_processor_setup_cpuidle_states(pr);
1057 retval = cpuidle_register_driver(&acpi_idle_driver);
1058 if (retval)
1059 return retval;
1060 pr_debug("%s registered with cpuidle\n",
1061 acpi_idle_driver.name);
1064 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1065 if (!dev)
1066 return -ENOMEM;
1067 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1069 acpi_processor_setup_cpuidle_cx(pr, dev);
1071 /* Register per-cpu cpuidle_device. Cpuidle driver
1072 * must already be registered before registering device
1074 retval = cpuidle_register_device(dev);
1075 if (retval) {
1076 if (acpi_processor_registered == 0)
1077 cpuidle_unregister_driver(&acpi_idle_driver);
1078 return retval;
1080 acpi_processor_registered++;
1082 return 0;
1085 int acpi_processor_power_exit(struct acpi_processor *pr)
1087 struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1089 if (disabled_by_idle_boot_param())
1090 return 0;
1092 if (pr->flags.power) {
1093 cpuidle_unregister_device(dev);
1094 acpi_processor_registered--;
1095 if (acpi_processor_registered == 0)
1096 cpuidle_unregister_driver(&acpi_idle_driver);
1099 pr->flags.power_setup_done = 0;
1100 return 0;