[SCSI] libsrp: fix bug in ADDITIONAL CDB LENGTH interpretation
[linux-2.6/btrfs-unstable.git] / drivers / input / input.c
blob30b503b8d67bfb64dd8d84a75adad686b9db403a
1 /*
2 * The input core
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
7 /*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
13 #include <linux/init.h>
14 #include <linux/types.h>
15 #include <linux/input.h>
16 #include <linux/module.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/mutex.h>
25 #include <linux/rcupdate.h>
26 #include <linux/smp_lock.h>
27 #include "input-compat.h"
29 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
30 MODULE_DESCRIPTION("Input core");
31 MODULE_LICENSE("GPL");
33 #define INPUT_DEVICES 256
36 * EV_ABS events which should not be cached are listed here.
38 static unsigned int input_abs_bypass_init_data[] __initdata = {
39 ABS_MT_TOUCH_MAJOR,
40 ABS_MT_TOUCH_MINOR,
41 ABS_MT_WIDTH_MAJOR,
42 ABS_MT_WIDTH_MINOR,
43 ABS_MT_ORIENTATION,
44 ABS_MT_POSITION_X,
45 ABS_MT_POSITION_Y,
46 ABS_MT_TOOL_TYPE,
47 ABS_MT_BLOB_ID,
48 ABS_MT_TRACKING_ID,
51 static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)];
53 static LIST_HEAD(input_dev_list);
54 static LIST_HEAD(input_handler_list);
57 * input_mutex protects access to both input_dev_list and input_handler_list.
58 * This also causes input_[un]register_device and input_[un]register_handler
59 * be mutually exclusive which simplifies locking in drivers implementing
60 * input handlers.
62 static DEFINE_MUTEX(input_mutex);
64 static struct input_handler *input_table[8];
66 static inline int is_event_supported(unsigned int code,
67 unsigned long *bm, unsigned int max)
69 return code <= max && test_bit(code, bm);
72 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
74 if (fuzz) {
75 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
76 return old_val;
78 if (value > old_val - fuzz && value < old_val + fuzz)
79 return (old_val * 3 + value) / 4;
81 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
82 return (old_val + value) / 2;
85 return value;
89 * Pass event through all open handles. This function is called with
90 * dev->event_lock held and interrupts disabled.
92 static void input_pass_event(struct input_dev *dev,
93 unsigned int type, unsigned int code, int value)
95 struct input_handle *handle;
97 rcu_read_lock();
99 handle = rcu_dereference(dev->grab);
100 if (handle)
101 handle->handler->event(handle, type, code, value);
102 else
103 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
104 if (handle->open)
105 handle->handler->event(handle,
106 type, code, value);
107 rcu_read_unlock();
111 * Generate software autorepeat event. Note that we take
112 * dev->event_lock here to avoid racing with input_event
113 * which may cause keys get "stuck".
115 static void input_repeat_key(unsigned long data)
117 struct input_dev *dev = (void *) data;
118 unsigned long flags;
120 spin_lock_irqsave(&dev->event_lock, flags);
122 if (test_bit(dev->repeat_key, dev->key) &&
123 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
125 input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
127 if (dev->sync) {
129 * Only send SYN_REPORT if we are not in a middle
130 * of driver parsing a new hardware packet.
131 * Otherwise assume that the driver will send
132 * SYN_REPORT once it's done.
134 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
137 if (dev->rep[REP_PERIOD])
138 mod_timer(&dev->timer, jiffies +
139 msecs_to_jiffies(dev->rep[REP_PERIOD]));
142 spin_unlock_irqrestore(&dev->event_lock, flags);
145 static void input_start_autorepeat(struct input_dev *dev, int code)
147 if (test_bit(EV_REP, dev->evbit) &&
148 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
149 dev->timer.data) {
150 dev->repeat_key = code;
151 mod_timer(&dev->timer,
152 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
156 static void input_stop_autorepeat(struct input_dev *dev)
158 del_timer(&dev->timer);
161 #define INPUT_IGNORE_EVENT 0
162 #define INPUT_PASS_TO_HANDLERS 1
163 #define INPUT_PASS_TO_DEVICE 2
164 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
166 static void input_handle_event(struct input_dev *dev,
167 unsigned int type, unsigned int code, int value)
169 int disposition = INPUT_IGNORE_EVENT;
171 switch (type) {
173 case EV_SYN:
174 switch (code) {
175 case SYN_CONFIG:
176 disposition = INPUT_PASS_TO_ALL;
177 break;
179 case SYN_REPORT:
180 if (!dev->sync) {
181 dev->sync = 1;
182 disposition = INPUT_PASS_TO_HANDLERS;
184 break;
185 case SYN_MT_REPORT:
186 dev->sync = 0;
187 disposition = INPUT_PASS_TO_HANDLERS;
188 break;
190 break;
192 case EV_KEY:
193 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
194 !!test_bit(code, dev->key) != value) {
196 if (value != 2) {
197 __change_bit(code, dev->key);
198 if (value)
199 input_start_autorepeat(dev, code);
200 else
201 input_stop_autorepeat(dev);
204 disposition = INPUT_PASS_TO_HANDLERS;
206 break;
208 case EV_SW:
209 if (is_event_supported(code, dev->swbit, SW_MAX) &&
210 !!test_bit(code, dev->sw) != value) {
212 __change_bit(code, dev->sw);
213 disposition = INPUT_PASS_TO_HANDLERS;
215 break;
217 case EV_ABS:
218 if (is_event_supported(code, dev->absbit, ABS_MAX)) {
220 if (test_bit(code, input_abs_bypass)) {
221 disposition = INPUT_PASS_TO_HANDLERS;
222 break;
225 value = input_defuzz_abs_event(value,
226 dev->abs[code], dev->absfuzz[code]);
228 if (dev->abs[code] != value) {
229 dev->abs[code] = value;
230 disposition = INPUT_PASS_TO_HANDLERS;
233 break;
235 case EV_REL:
236 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
237 disposition = INPUT_PASS_TO_HANDLERS;
239 break;
241 case EV_MSC:
242 if (is_event_supported(code, dev->mscbit, MSC_MAX))
243 disposition = INPUT_PASS_TO_ALL;
245 break;
247 case EV_LED:
248 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
249 !!test_bit(code, dev->led) != value) {
251 __change_bit(code, dev->led);
252 disposition = INPUT_PASS_TO_ALL;
254 break;
256 case EV_SND:
257 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
259 if (!!test_bit(code, dev->snd) != !!value)
260 __change_bit(code, dev->snd);
261 disposition = INPUT_PASS_TO_ALL;
263 break;
265 case EV_REP:
266 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
267 dev->rep[code] = value;
268 disposition = INPUT_PASS_TO_ALL;
270 break;
272 case EV_FF:
273 if (value >= 0)
274 disposition = INPUT_PASS_TO_ALL;
275 break;
277 case EV_PWR:
278 disposition = INPUT_PASS_TO_ALL;
279 break;
282 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
283 dev->sync = 0;
285 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
286 dev->event(dev, type, code, value);
288 if (disposition & INPUT_PASS_TO_HANDLERS)
289 input_pass_event(dev, type, code, value);
293 * input_event() - report new input event
294 * @dev: device that generated the event
295 * @type: type of the event
296 * @code: event code
297 * @value: value of the event
299 * This function should be used by drivers implementing various input
300 * devices to report input events. See also input_inject_event().
302 * NOTE: input_event() may be safely used right after input device was
303 * allocated with input_allocate_device(), even before it is registered
304 * with input_register_device(), but the event will not reach any of the
305 * input handlers. Such early invocation of input_event() may be used
306 * to 'seed' initial state of a switch or initial position of absolute
307 * axis, etc.
309 void input_event(struct input_dev *dev,
310 unsigned int type, unsigned int code, int value)
312 unsigned long flags;
314 if (is_event_supported(type, dev->evbit, EV_MAX)) {
316 spin_lock_irqsave(&dev->event_lock, flags);
317 add_input_randomness(type, code, value);
318 input_handle_event(dev, type, code, value);
319 spin_unlock_irqrestore(&dev->event_lock, flags);
322 EXPORT_SYMBOL(input_event);
325 * input_inject_event() - send input event from input handler
326 * @handle: input handle to send event through
327 * @type: type of the event
328 * @code: event code
329 * @value: value of the event
331 * Similar to input_event() but will ignore event if device is
332 * "grabbed" and handle injecting event is not the one that owns
333 * the device.
335 void input_inject_event(struct input_handle *handle,
336 unsigned int type, unsigned int code, int value)
338 struct input_dev *dev = handle->dev;
339 struct input_handle *grab;
340 unsigned long flags;
342 if (is_event_supported(type, dev->evbit, EV_MAX)) {
343 spin_lock_irqsave(&dev->event_lock, flags);
345 rcu_read_lock();
346 grab = rcu_dereference(dev->grab);
347 if (!grab || grab == handle)
348 input_handle_event(dev, type, code, value);
349 rcu_read_unlock();
351 spin_unlock_irqrestore(&dev->event_lock, flags);
354 EXPORT_SYMBOL(input_inject_event);
357 * input_grab_device - grabs device for exclusive use
358 * @handle: input handle that wants to own the device
360 * When a device is grabbed by an input handle all events generated by
361 * the device are delivered only to this handle. Also events injected
362 * by other input handles are ignored while device is grabbed.
364 int input_grab_device(struct input_handle *handle)
366 struct input_dev *dev = handle->dev;
367 int retval;
369 retval = mutex_lock_interruptible(&dev->mutex);
370 if (retval)
371 return retval;
373 if (dev->grab) {
374 retval = -EBUSY;
375 goto out;
378 rcu_assign_pointer(dev->grab, handle);
379 synchronize_rcu();
381 out:
382 mutex_unlock(&dev->mutex);
383 return retval;
385 EXPORT_SYMBOL(input_grab_device);
387 static void __input_release_device(struct input_handle *handle)
389 struct input_dev *dev = handle->dev;
391 if (dev->grab == handle) {
392 rcu_assign_pointer(dev->grab, NULL);
393 /* Make sure input_pass_event() notices that grab is gone */
394 synchronize_rcu();
396 list_for_each_entry(handle, &dev->h_list, d_node)
397 if (handle->open && handle->handler->start)
398 handle->handler->start(handle);
403 * input_release_device - release previously grabbed device
404 * @handle: input handle that owns the device
406 * Releases previously grabbed device so that other input handles can
407 * start receiving input events. Upon release all handlers attached
408 * to the device have their start() method called so they have a change
409 * to synchronize device state with the rest of the system.
411 void input_release_device(struct input_handle *handle)
413 struct input_dev *dev = handle->dev;
415 mutex_lock(&dev->mutex);
416 __input_release_device(handle);
417 mutex_unlock(&dev->mutex);
419 EXPORT_SYMBOL(input_release_device);
422 * input_open_device - open input device
423 * @handle: handle through which device is being accessed
425 * This function should be called by input handlers when they
426 * want to start receive events from given input device.
428 int input_open_device(struct input_handle *handle)
430 struct input_dev *dev = handle->dev;
431 int retval;
433 retval = mutex_lock_interruptible(&dev->mutex);
434 if (retval)
435 return retval;
437 if (dev->going_away) {
438 retval = -ENODEV;
439 goto out;
442 handle->open++;
444 if (!dev->users++ && dev->open)
445 retval = dev->open(dev);
447 if (retval) {
448 dev->users--;
449 if (!--handle->open) {
451 * Make sure we are not delivering any more events
452 * through this handle
454 synchronize_rcu();
458 out:
459 mutex_unlock(&dev->mutex);
460 return retval;
462 EXPORT_SYMBOL(input_open_device);
464 int input_flush_device(struct input_handle *handle, struct file *file)
466 struct input_dev *dev = handle->dev;
467 int retval;
469 retval = mutex_lock_interruptible(&dev->mutex);
470 if (retval)
471 return retval;
473 if (dev->flush)
474 retval = dev->flush(dev, file);
476 mutex_unlock(&dev->mutex);
477 return retval;
479 EXPORT_SYMBOL(input_flush_device);
482 * input_close_device - close input device
483 * @handle: handle through which device is being accessed
485 * This function should be called by input handlers when they
486 * want to stop receive events from given input device.
488 void input_close_device(struct input_handle *handle)
490 struct input_dev *dev = handle->dev;
492 mutex_lock(&dev->mutex);
494 __input_release_device(handle);
496 if (!--dev->users && dev->close)
497 dev->close(dev);
499 if (!--handle->open) {
501 * synchronize_rcu() makes sure that input_pass_event()
502 * completed and that no more input events are delivered
503 * through this handle
505 synchronize_rcu();
508 mutex_unlock(&dev->mutex);
510 EXPORT_SYMBOL(input_close_device);
513 * Prepare device for unregistering
515 static void input_disconnect_device(struct input_dev *dev)
517 struct input_handle *handle;
518 int code;
521 * Mark device as going away. Note that we take dev->mutex here
522 * not to protect access to dev->going_away but rather to ensure
523 * that there are no threads in the middle of input_open_device()
525 mutex_lock(&dev->mutex);
526 dev->going_away = true;
527 mutex_unlock(&dev->mutex);
529 spin_lock_irq(&dev->event_lock);
532 * Simulate keyup events for all pressed keys so that handlers
533 * are not left with "stuck" keys. The driver may continue
534 * generate events even after we done here but they will not
535 * reach any handlers.
537 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
538 for (code = 0; code <= KEY_MAX; code++) {
539 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
540 __test_and_clear_bit(code, dev->key)) {
541 input_pass_event(dev, EV_KEY, code, 0);
544 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
547 list_for_each_entry(handle, &dev->h_list, d_node)
548 handle->open = 0;
550 spin_unlock_irq(&dev->event_lock);
553 static int input_fetch_keycode(struct input_dev *dev, int scancode)
555 switch (dev->keycodesize) {
556 case 1:
557 return ((u8 *)dev->keycode)[scancode];
559 case 2:
560 return ((u16 *)dev->keycode)[scancode];
562 default:
563 return ((u32 *)dev->keycode)[scancode];
567 static int input_default_getkeycode(struct input_dev *dev,
568 int scancode, int *keycode)
570 if (!dev->keycodesize)
571 return -EINVAL;
573 if (scancode >= dev->keycodemax)
574 return -EINVAL;
576 *keycode = input_fetch_keycode(dev, scancode);
578 return 0;
581 static int input_default_setkeycode(struct input_dev *dev,
582 int scancode, int keycode)
584 int old_keycode;
585 int i;
587 if (scancode >= dev->keycodemax)
588 return -EINVAL;
590 if (!dev->keycodesize)
591 return -EINVAL;
593 if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
594 return -EINVAL;
596 switch (dev->keycodesize) {
597 case 1: {
598 u8 *k = (u8 *)dev->keycode;
599 old_keycode = k[scancode];
600 k[scancode] = keycode;
601 break;
603 case 2: {
604 u16 *k = (u16 *)dev->keycode;
605 old_keycode = k[scancode];
606 k[scancode] = keycode;
607 break;
609 default: {
610 u32 *k = (u32 *)dev->keycode;
611 old_keycode = k[scancode];
612 k[scancode] = keycode;
613 break;
617 clear_bit(old_keycode, dev->keybit);
618 set_bit(keycode, dev->keybit);
620 for (i = 0; i < dev->keycodemax; i++) {
621 if (input_fetch_keycode(dev, i) == old_keycode) {
622 set_bit(old_keycode, dev->keybit);
623 break; /* Setting the bit twice is useless, so break */
627 return 0;
631 * input_get_keycode - retrieve keycode currently mapped to a given scancode
632 * @dev: input device which keymap is being queried
633 * @scancode: scancode (or its equivalent for device in question) for which
634 * keycode is needed
635 * @keycode: result
637 * This function should be called by anyone interested in retrieving current
638 * keymap. Presently keyboard and evdev handlers use it.
640 int input_get_keycode(struct input_dev *dev, int scancode, int *keycode)
642 if (scancode < 0)
643 return -EINVAL;
645 return dev->getkeycode(dev, scancode, keycode);
647 EXPORT_SYMBOL(input_get_keycode);
650 * input_get_keycode - assign new keycode to a given scancode
651 * @dev: input device which keymap is being updated
652 * @scancode: scancode (or its equivalent for device in question)
653 * @keycode: new keycode to be assigned to the scancode
655 * This function should be called by anyone needing to update current
656 * keymap. Presently keyboard and evdev handlers use it.
658 int input_set_keycode(struct input_dev *dev, int scancode, int keycode)
660 unsigned long flags;
661 int old_keycode;
662 int retval;
664 if (scancode < 0)
665 return -EINVAL;
667 if (keycode < 0 || keycode > KEY_MAX)
668 return -EINVAL;
670 spin_lock_irqsave(&dev->event_lock, flags);
672 retval = dev->getkeycode(dev, scancode, &old_keycode);
673 if (retval)
674 goto out;
676 retval = dev->setkeycode(dev, scancode, keycode);
677 if (retval)
678 goto out;
681 * Simulate keyup event if keycode is not present
682 * in the keymap anymore
684 if (test_bit(EV_KEY, dev->evbit) &&
685 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
686 __test_and_clear_bit(old_keycode, dev->key)) {
688 input_pass_event(dev, EV_KEY, old_keycode, 0);
689 if (dev->sync)
690 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
693 out:
694 spin_unlock_irqrestore(&dev->event_lock, flags);
696 return retval;
698 EXPORT_SYMBOL(input_set_keycode);
700 #define MATCH_BIT(bit, max) \
701 for (i = 0; i < BITS_TO_LONGS(max); i++) \
702 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
703 break; \
704 if (i != BITS_TO_LONGS(max)) \
705 continue;
707 static const struct input_device_id *input_match_device(const struct input_device_id *id,
708 struct input_dev *dev)
710 int i;
712 for (; id->flags || id->driver_info; id++) {
714 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
715 if (id->bustype != dev->id.bustype)
716 continue;
718 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
719 if (id->vendor != dev->id.vendor)
720 continue;
722 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
723 if (id->product != dev->id.product)
724 continue;
726 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
727 if (id->version != dev->id.version)
728 continue;
730 MATCH_BIT(evbit, EV_MAX);
731 MATCH_BIT(keybit, KEY_MAX);
732 MATCH_BIT(relbit, REL_MAX);
733 MATCH_BIT(absbit, ABS_MAX);
734 MATCH_BIT(mscbit, MSC_MAX);
735 MATCH_BIT(ledbit, LED_MAX);
736 MATCH_BIT(sndbit, SND_MAX);
737 MATCH_BIT(ffbit, FF_MAX);
738 MATCH_BIT(swbit, SW_MAX);
740 return id;
743 return NULL;
746 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
748 const struct input_device_id *id;
749 int error;
751 if (handler->blacklist && input_match_device(handler->blacklist, dev))
752 return -ENODEV;
754 id = input_match_device(handler->id_table, dev);
755 if (!id)
756 return -ENODEV;
758 error = handler->connect(handler, dev, id);
759 if (error && error != -ENODEV)
760 printk(KERN_ERR
761 "input: failed to attach handler %s to device %s, "
762 "error: %d\n",
763 handler->name, kobject_name(&dev->dev.kobj), error);
765 return error;
768 #ifdef CONFIG_COMPAT
770 static int input_bits_to_string(char *buf, int buf_size,
771 unsigned long bits, bool skip_empty)
773 int len = 0;
775 if (INPUT_COMPAT_TEST) {
776 u32 dword = bits >> 32;
777 if (dword || !skip_empty)
778 len += snprintf(buf, buf_size, "%x ", dword);
780 dword = bits & 0xffffffffUL;
781 if (dword || !skip_empty || len)
782 len += snprintf(buf + len, max(buf_size - len, 0),
783 "%x", dword);
784 } else {
785 if (bits || !skip_empty)
786 len += snprintf(buf, buf_size, "%lx", bits);
789 return len;
792 #else /* !CONFIG_COMPAT */
794 static int input_bits_to_string(char *buf, int buf_size,
795 unsigned long bits, bool skip_empty)
797 return bits || !skip_empty ?
798 snprintf(buf, buf_size, "%lx", bits) : 0;
801 #endif
803 #ifdef CONFIG_PROC_FS
805 static struct proc_dir_entry *proc_bus_input_dir;
806 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
807 static int input_devices_state;
809 static inline void input_wakeup_procfs_readers(void)
811 input_devices_state++;
812 wake_up(&input_devices_poll_wait);
815 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
817 poll_wait(file, &input_devices_poll_wait, wait);
818 if (file->f_version != input_devices_state) {
819 file->f_version = input_devices_state;
820 return POLLIN | POLLRDNORM;
823 return 0;
826 union input_seq_state {
827 struct {
828 unsigned short pos;
829 bool mutex_acquired;
831 void *p;
834 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
836 union input_seq_state *state = (union input_seq_state *)&seq->private;
837 int error;
839 /* We need to fit into seq->private pointer */
840 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
842 error = mutex_lock_interruptible(&input_mutex);
843 if (error) {
844 state->mutex_acquired = false;
845 return ERR_PTR(error);
848 state->mutex_acquired = true;
850 return seq_list_start(&input_dev_list, *pos);
853 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
855 return seq_list_next(v, &input_dev_list, pos);
858 static void input_seq_stop(struct seq_file *seq, void *v)
860 union input_seq_state *state = (union input_seq_state *)&seq->private;
862 if (state->mutex_acquired)
863 mutex_unlock(&input_mutex);
866 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
867 unsigned long *bitmap, int max)
869 int i;
870 bool skip_empty = true;
871 char buf[18];
873 seq_printf(seq, "B: %s=", name);
875 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
876 if (input_bits_to_string(buf, sizeof(buf),
877 bitmap[i], skip_empty)) {
878 skip_empty = false;
879 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
884 * If no output was produced print a single 0.
886 if (skip_empty)
887 seq_puts(seq, "0");
889 seq_putc(seq, '\n');
892 static int input_devices_seq_show(struct seq_file *seq, void *v)
894 struct input_dev *dev = container_of(v, struct input_dev, node);
895 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
896 struct input_handle *handle;
898 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
899 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
901 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
902 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
903 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
904 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
905 seq_printf(seq, "H: Handlers=");
907 list_for_each_entry(handle, &dev->h_list, d_node)
908 seq_printf(seq, "%s ", handle->name);
909 seq_putc(seq, '\n');
911 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
912 if (test_bit(EV_KEY, dev->evbit))
913 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
914 if (test_bit(EV_REL, dev->evbit))
915 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
916 if (test_bit(EV_ABS, dev->evbit))
917 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
918 if (test_bit(EV_MSC, dev->evbit))
919 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
920 if (test_bit(EV_LED, dev->evbit))
921 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
922 if (test_bit(EV_SND, dev->evbit))
923 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
924 if (test_bit(EV_FF, dev->evbit))
925 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
926 if (test_bit(EV_SW, dev->evbit))
927 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
929 seq_putc(seq, '\n');
931 kfree(path);
932 return 0;
935 static const struct seq_operations input_devices_seq_ops = {
936 .start = input_devices_seq_start,
937 .next = input_devices_seq_next,
938 .stop = input_seq_stop,
939 .show = input_devices_seq_show,
942 static int input_proc_devices_open(struct inode *inode, struct file *file)
944 return seq_open(file, &input_devices_seq_ops);
947 static const struct file_operations input_devices_fileops = {
948 .owner = THIS_MODULE,
949 .open = input_proc_devices_open,
950 .poll = input_proc_devices_poll,
951 .read = seq_read,
952 .llseek = seq_lseek,
953 .release = seq_release,
956 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
958 union input_seq_state *state = (union input_seq_state *)&seq->private;
959 int error;
961 /* We need to fit into seq->private pointer */
962 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
964 error = mutex_lock_interruptible(&input_mutex);
965 if (error) {
966 state->mutex_acquired = false;
967 return ERR_PTR(error);
970 state->mutex_acquired = true;
971 state->pos = *pos;
973 return seq_list_start(&input_handler_list, *pos);
976 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
978 union input_seq_state *state = (union input_seq_state *)&seq->private;
980 state->pos = *pos + 1;
981 return seq_list_next(v, &input_handler_list, pos);
984 static int input_handlers_seq_show(struct seq_file *seq, void *v)
986 struct input_handler *handler = container_of(v, struct input_handler, node);
987 union input_seq_state *state = (union input_seq_state *)&seq->private;
989 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
990 if (handler->fops)
991 seq_printf(seq, " Minor=%d", handler->minor);
992 seq_putc(seq, '\n');
994 return 0;
997 static const struct seq_operations input_handlers_seq_ops = {
998 .start = input_handlers_seq_start,
999 .next = input_handlers_seq_next,
1000 .stop = input_seq_stop,
1001 .show = input_handlers_seq_show,
1004 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1006 return seq_open(file, &input_handlers_seq_ops);
1009 static const struct file_operations input_handlers_fileops = {
1010 .owner = THIS_MODULE,
1011 .open = input_proc_handlers_open,
1012 .read = seq_read,
1013 .llseek = seq_lseek,
1014 .release = seq_release,
1017 static int __init input_proc_init(void)
1019 struct proc_dir_entry *entry;
1021 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1022 if (!proc_bus_input_dir)
1023 return -ENOMEM;
1025 entry = proc_create("devices", 0, proc_bus_input_dir,
1026 &input_devices_fileops);
1027 if (!entry)
1028 goto fail1;
1030 entry = proc_create("handlers", 0, proc_bus_input_dir,
1031 &input_handlers_fileops);
1032 if (!entry)
1033 goto fail2;
1035 return 0;
1037 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1038 fail1: remove_proc_entry("bus/input", NULL);
1039 return -ENOMEM;
1042 static void input_proc_exit(void)
1044 remove_proc_entry("devices", proc_bus_input_dir);
1045 remove_proc_entry("handlers", proc_bus_input_dir);
1046 remove_proc_entry("bus/input", NULL);
1049 #else /* !CONFIG_PROC_FS */
1050 static inline void input_wakeup_procfs_readers(void) { }
1051 static inline int input_proc_init(void) { return 0; }
1052 static inline void input_proc_exit(void) { }
1053 #endif
1055 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1056 static ssize_t input_dev_show_##name(struct device *dev, \
1057 struct device_attribute *attr, \
1058 char *buf) \
1060 struct input_dev *input_dev = to_input_dev(dev); \
1062 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1063 input_dev->name ? input_dev->name : ""); \
1065 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1067 INPUT_DEV_STRING_ATTR_SHOW(name);
1068 INPUT_DEV_STRING_ATTR_SHOW(phys);
1069 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1071 static int input_print_modalias_bits(char *buf, int size,
1072 char name, unsigned long *bm,
1073 unsigned int min_bit, unsigned int max_bit)
1075 int len = 0, i;
1077 len += snprintf(buf, max(size, 0), "%c", name);
1078 for (i = min_bit; i < max_bit; i++)
1079 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1080 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1081 return len;
1084 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1085 int add_cr)
1087 int len;
1089 len = snprintf(buf, max(size, 0),
1090 "input:b%04Xv%04Xp%04Xe%04X-",
1091 id->id.bustype, id->id.vendor,
1092 id->id.product, id->id.version);
1094 len += input_print_modalias_bits(buf + len, size - len,
1095 'e', id->evbit, 0, EV_MAX);
1096 len += input_print_modalias_bits(buf + len, size - len,
1097 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1098 len += input_print_modalias_bits(buf + len, size - len,
1099 'r', id->relbit, 0, REL_MAX);
1100 len += input_print_modalias_bits(buf + len, size - len,
1101 'a', id->absbit, 0, ABS_MAX);
1102 len += input_print_modalias_bits(buf + len, size - len,
1103 'm', id->mscbit, 0, MSC_MAX);
1104 len += input_print_modalias_bits(buf + len, size - len,
1105 'l', id->ledbit, 0, LED_MAX);
1106 len += input_print_modalias_bits(buf + len, size - len,
1107 's', id->sndbit, 0, SND_MAX);
1108 len += input_print_modalias_bits(buf + len, size - len,
1109 'f', id->ffbit, 0, FF_MAX);
1110 len += input_print_modalias_bits(buf + len, size - len,
1111 'w', id->swbit, 0, SW_MAX);
1113 if (add_cr)
1114 len += snprintf(buf + len, max(size - len, 0), "\n");
1116 return len;
1119 static ssize_t input_dev_show_modalias(struct device *dev,
1120 struct device_attribute *attr,
1121 char *buf)
1123 struct input_dev *id = to_input_dev(dev);
1124 ssize_t len;
1126 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1128 return min_t(int, len, PAGE_SIZE);
1130 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1132 static struct attribute *input_dev_attrs[] = {
1133 &dev_attr_name.attr,
1134 &dev_attr_phys.attr,
1135 &dev_attr_uniq.attr,
1136 &dev_attr_modalias.attr,
1137 NULL
1140 static struct attribute_group input_dev_attr_group = {
1141 .attrs = input_dev_attrs,
1144 #define INPUT_DEV_ID_ATTR(name) \
1145 static ssize_t input_dev_show_id_##name(struct device *dev, \
1146 struct device_attribute *attr, \
1147 char *buf) \
1149 struct input_dev *input_dev = to_input_dev(dev); \
1150 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1152 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1154 INPUT_DEV_ID_ATTR(bustype);
1155 INPUT_DEV_ID_ATTR(vendor);
1156 INPUT_DEV_ID_ATTR(product);
1157 INPUT_DEV_ID_ATTR(version);
1159 static struct attribute *input_dev_id_attrs[] = {
1160 &dev_attr_bustype.attr,
1161 &dev_attr_vendor.attr,
1162 &dev_attr_product.attr,
1163 &dev_attr_version.attr,
1164 NULL
1167 static struct attribute_group input_dev_id_attr_group = {
1168 .name = "id",
1169 .attrs = input_dev_id_attrs,
1172 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1173 int max, int add_cr)
1175 int i;
1176 int len = 0;
1177 bool skip_empty = true;
1179 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1180 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1181 bitmap[i], skip_empty);
1182 if (len) {
1183 skip_empty = false;
1184 if (i > 0)
1185 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1190 * If no output was produced print a single 0.
1192 if (len == 0)
1193 len = snprintf(buf, buf_size, "%d", 0);
1195 if (add_cr)
1196 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1198 return len;
1201 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1202 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1203 struct device_attribute *attr, \
1204 char *buf) \
1206 struct input_dev *input_dev = to_input_dev(dev); \
1207 int len = input_print_bitmap(buf, PAGE_SIZE, \
1208 input_dev->bm##bit, ev##_MAX, \
1209 true); \
1210 return min_t(int, len, PAGE_SIZE); \
1212 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1214 INPUT_DEV_CAP_ATTR(EV, ev);
1215 INPUT_DEV_CAP_ATTR(KEY, key);
1216 INPUT_DEV_CAP_ATTR(REL, rel);
1217 INPUT_DEV_CAP_ATTR(ABS, abs);
1218 INPUT_DEV_CAP_ATTR(MSC, msc);
1219 INPUT_DEV_CAP_ATTR(LED, led);
1220 INPUT_DEV_CAP_ATTR(SND, snd);
1221 INPUT_DEV_CAP_ATTR(FF, ff);
1222 INPUT_DEV_CAP_ATTR(SW, sw);
1224 static struct attribute *input_dev_caps_attrs[] = {
1225 &dev_attr_ev.attr,
1226 &dev_attr_key.attr,
1227 &dev_attr_rel.attr,
1228 &dev_attr_abs.attr,
1229 &dev_attr_msc.attr,
1230 &dev_attr_led.attr,
1231 &dev_attr_snd.attr,
1232 &dev_attr_ff.attr,
1233 &dev_attr_sw.attr,
1234 NULL
1237 static struct attribute_group input_dev_caps_attr_group = {
1238 .name = "capabilities",
1239 .attrs = input_dev_caps_attrs,
1242 static const struct attribute_group *input_dev_attr_groups[] = {
1243 &input_dev_attr_group,
1244 &input_dev_id_attr_group,
1245 &input_dev_caps_attr_group,
1246 NULL
1249 static void input_dev_release(struct device *device)
1251 struct input_dev *dev = to_input_dev(device);
1253 input_ff_destroy(dev);
1254 kfree(dev);
1256 module_put(THIS_MODULE);
1260 * Input uevent interface - loading event handlers based on
1261 * device bitfields.
1263 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1264 const char *name, unsigned long *bitmap, int max)
1266 int len;
1268 if (add_uevent_var(env, "%s=", name))
1269 return -ENOMEM;
1271 len = input_print_bitmap(&env->buf[env->buflen - 1],
1272 sizeof(env->buf) - env->buflen,
1273 bitmap, max, false);
1274 if (len >= (sizeof(env->buf) - env->buflen))
1275 return -ENOMEM;
1277 env->buflen += len;
1278 return 0;
1281 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1282 struct input_dev *dev)
1284 int len;
1286 if (add_uevent_var(env, "MODALIAS="))
1287 return -ENOMEM;
1289 len = input_print_modalias(&env->buf[env->buflen - 1],
1290 sizeof(env->buf) - env->buflen,
1291 dev, 0);
1292 if (len >= (sizeof(env->buf) - env->buflen))
1293 return -ENOMEM;
1295 env->buflen += len;
1296 return 0;
1299 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1300 do { \
1301 int err = add_uevent_var(env, fmt, val); \
1302 if (err) \
1303 return err; \
1304 } while (0)
1306 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1307 do { \
1308 int err = input_add_uevent_bm_var(env, name, bm, max); \
1309 if (err) \
1310 return err; \
1311 } while (0)
1313 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1314 do { \
1315 int err = input_add_uevent_modalias_var(env, dev); \
1316 if (err) \
1317 return err; \
1318 } while (0)
1320 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1322 struct input_dev *dev = to_input_dev(device);
1324 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1325 dev->id.bustype, dev->id.vendor,
1326 dev->id.product, dev->id.version);
1327 if (dev->name)
1328 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1329 if (dev->phys)
1330 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1331 if (dev->uniq)
1332 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1334 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1335 if (test_bit(EV_KEY, dev->evbit))
1336 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1337 if (test_bit(EV_REL, dev->evbit))
1338 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1339 if (test_bit(EV_ABS, dev->evbit))
1340 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1341 if (test_bit(EV_MSC, dev->evbit))
1342 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1343 if (test_bit(EV_LED, dev->evbit))
1344 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1345 if (test_bit(EV_SND, dev->evbit))
1346 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1347 if (test_bit(EV_FF, dev->evbit))
1348 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1349 if (test_bit(EV_SW, dev->evbit))
1350 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1352 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1354 return 0;
1357 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1358 do { \
1359 int i; \
1360 bool active; \
1362 if (!test_bit(EV_##type, dev->evbit)) \
1363 break; \
1365 for (i = 0; i < type##_MAX; i++) { \
1366 if (!test_bit(i, dev->bits##bit)) \
1367 continue; \
1369 active = test_bit(i, dev->bits); \
1370 if (!active && !on) \
1371 continue; \
1373 dev->event(dev, EV_##type, i, on ? active : 0); \
1375 } while (0)
1377 #ifdef CONFIG_PM
1378 static void input_dev_reset(struct input_dev *dev, bool activate)
1380 if (!dev->event)
1381 return;
1383 INPUT_DO_TOGGLE(dev, LED, led, activate);
1384 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1386 if (activate && test_bit(EV_REP, dev->evbit)) {
1387 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1388 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1392 static int input_dev_suspend(struct device *dev)
1394 struct input_dev *input_dev = to_input_dev(dev);
1396 mutex_lock(&input_dev->mutex);
1397 input_dev_reset(input_dev, false);
1398 mutex_unlock(&input_dev->mutex);
1400 return 0;
1403 static int input_dev_resume(struct device *dev)
1405 struct input_dev *input_dev = to_input_dev(dev);
1407 mutex_lock(&input_dev->mutex);
1408 input_dev_reset(input_dev, true);
1409 mutex_unlock(&input_dev->mutex);
1411 return 0;
1414 static const struct dev_pm_ops input_dev_pm_ops = {
1415 .suspend = input_dev_suspend,
1416 .resume = input_dev_resume,
1417 .poweroff = input_dev_suspend,
1418 .restore = input_dev_resume,
1420 #endif /* CONFIG_PM */
1422 static struct device_type input_dev_type = {
1423 .groups = input_dev_attr_groups,
1424 .release = input_dev_release,
1425 .uevent = input_dev_uevent,
1426 #ifdef CONFIG_PM
1427 .pm = &input_dev_pm_ops,
1428 #endif
1431 static char *input_devnode(struct device *dev, mode_t *mode)
1433 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1436 struct class input_class = {
1437 .name = "input",
1438 .devnode = input_devnode,
1440 EXPORT_SYMBOL_GPL(input_class);
1443 * input_allocate_device - allocate memory for new input device
1445 * Returns prepared struct input_dev or NULL.
1447 * NOTE: Use input_free_device() to free devices that have not been
1448 * registered; input_unregister_device() should be used for already
1449 * registered devices.
1451 struct input_dev *input_allocate_device(void)
1453 struct input_dev *dev;
1455 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1456 if (dev) {
1457 dev->dev.type = &input_dev_type;
1458 dev->dev.class = &input_class;
1459 device_initialize(&dev->dev);
1460 mutex_init(&dev->mutex);
1461 spin_lock_init(&dev->event_lock);
1462 INIT_LIST_HEAD(&dev->h_list);
1463 INIT_LIST_HEAD(&dev->node);
1465 __module_get(THIS_MODULE);
1468 return dev;
1470 EXPORT_SYMBOL(input_allocate_device);
1473 * input_free_device - free memory occupied by input_dev structure
1474 * @dev: input device to free
1476 * This function should only be used if input_register_device()
1477 * was not called yet or if it failed. Once device was registered
1478 * use input_unregister_device() and memory will be freed once last
1479 * reference to the device is dropped.
1481 * Device should be allocated by input_allocate_device().
1483 * NOTE: If there are references to the input device then memory
1484 * will not be freed until last reference is dropped.
1486 void input_free_device(struct input_dev *dev)
1488 if (dev)
1489 input_put_device(dev);
1491 EXPORT_SYMBOL(input_free_device);
1494 * input_set_capability - mark device as capable of a certain event
1495 * @dev: device that is capable of emitting or accepting event
1496 * @type: type of the event (EV_KEY, EV_REL, etc...)
1497 * @code: event code
1499 * In addition to setting up corresponding bit in appropriate capability
1500 * bitmap the function also adjusts dev->evbit.
1502 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1504 switch (type) {
1505 case EV_KEY:
1506 __set_bit(code, dev->keybit);
1507 break;
1509 case EV_REL:
1510 __set_bit(code, dev->relbit);
1511 break;
1513 case EV_ABS:
1514 __set_bit(code, dev->absbit);
1515 break;
1517 case EV_MSC:
1518 __set_bit(code, dev->mscbit);
1519 break;
1521 case EV_SW:
1522 __set_bit(code, dev->swbit);
1523 break;
1525 case EV_LED:
1526 __set_bit(code, dev->ledbit);
1527 break;
1529 case EV_SND:
1530 __set_bit(code, dev->sndbit);
1531 break;
1533 case EV_FF:
1534 __set_bit(code, dev->ffbit);
1535 break;
1537 case EV_PWR:
1538 /* do nothing */
1539 break;
1541 default:
1542 printk(KERN_ERR
1543 "input_set_capability: unknown type %u (code %u)\n",
1544 type, code);
1545 dump_stack();
1546 return;
1549 __set_bit(type, dev->evbit);
1551 EXPORT_SYMBOL(input_set_capability);
1554 * input_register_device - register device with input core
1555 * @dev: device to be registered
1557 * This function registers device with input core. The device must be
1558 * allocated with input_allocate_device() and all it's capabilities
1559 * set up before registering.
1560 * If function fails the device must be freed with input_free_device().
1561 * Once device has been successfully registered it can be unregistered
1562 * with input_unregister_device(); input_free_device() should not be
1563 * called in this case.
1565 int input_register_device(struct input_dev *dev)
1567 static atomic_t input_no = ATOMIC_INIT(0);
1568 struct input_handler *handler;
1569 const char *path;
1570 int error;
1572 __set_bit(EV_SYN, dev->evbit);
1575 * If delay and period are pre-set by the driver, then autorepeating
1576 * is handled by the driver itself and we don't do it in input.c.
1579 init_timer(&dev->timer);
1580 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1581 dev->timer.data = (long) dev;
1582 dev->timer.function = input_repeat_key;
1583 dev->rep[REP_DELAY] = 250;
1584 dev->rep[REP_PERIOD] = 33;
1587 if (!dev->getkeycode)
1588 dev->getkeycode = input_default_getkeycode;
1590 if (!dev->setkeycode)
1591 dev->setkeycode = input_default_setkeycode;
1593 dev_set_name(&dev->dev, "input%ld",
1594 (unsigned long) atomic_inc_return(&input_no) - 1);
1596 error = device_add(&dev->dev);
1597 if (error)
1598 return error;
1600 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1601 printk(KERN_INFO "input: %s as %s\n",
1602 dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
1603 kfree(path);
1605 error = mutex_lock_interruptible(&input_mutex);
1606 if (error) {
1607 device_del(&dev->dev);
1608 return error;
1611 list_add_tail(&dev->node, &input_dev_list);
1613 list_for_each_entry(handler, &input_handler_list, node)
1614 input_attach_handler(dev, handler);
1616 input_wakeup_procfs_readers();
1618 mutex_unlock(&input_mutex);
1620 return 0;
1622 EXPORT_SYMBOL(input_register_device);
1625 * input_unregister_device - unregister previously registered device
1626 * @dev: device to be unregistered
1628 * This function unregisters an input device. Once device is unregistered
1629 * the caller should not try to access it as it may get freed at any moment.
1631 void input_unregister_device(struct input_dev *dev)
1633 struct input_handle *handle, *next;
1635 input_disconnect_device(dev);
1637 mutex_lock(&input_mutex);
1639 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1640 handle->handler->disconnect(handle);
1641 WARN_ON(!list_empty(&dev->h_list));
1643 del_timer_sync(&dev->timer);
1644 list_del_init(&dev->node);
1646 input_wakeup_procfs_readers();
1648 mutex_unlock(&input_mutex);
1650 device_unregister(&dev->dev);
1652 EXPORT_SYMBOL(input_unregister_device);
1655 * input_register_handler - register a new input handler
1656 * @handler: handler to be registered
1658 * This function registers a new input handler (interface) for input
1659 * devices in the system and attaches it to all input devices that
1660 * are compatible with the handler.
1662 int input_register_handler(struct input_handler *handler)
1664 struct input_dev *dev;
1665 int retval;
1667 retval = mutex_lock_interruptible(&input_mutex);
1668 if (retval)
1669 return retval;
1671 INIT_LIST_HEAD(&handler->h_list);
1673 if (handler->fops != NULL) {
1674 if (input_table[handler->minor >> 5]) {
1675 retval = -EBUSY;
1676 goto out;
1678 input_table[handler->minor >> 5] = handler;
1681 list_add_tail(&handler->node, &input_handler_list);
1683 list_for_each_entry(dev, &input_dev_list, node)
1684 input_attach_handler(dev, handler);
1686 input_wakeup_procfs_readers();
1688 out:
1689 mutex_unlock(&input_mutex);
1690 return retval;
1692 EXPORT_SYMBOL(input_register_handler);
1695 * input_unregister_handler - unregisters an input handler
1696 * @handler: handler to be unregistered
1698 * This function disconnects a handler from its input devices and
1699 * removes it from lists of known handlers.
1701 void input_unregister_handler(struct input_handler *handler)
1703 struct input_handle *handle, *next;
1705 mutex_lock(&input_mutex);
1707 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1708 handler->disconnect(handle);
1709 WARN_ON(!list_empty(&handler->h_list));
1711 list_del_init(&handler->node);
1713 if (handler->fops != NULL)
1714 input_table[handler->minor >> 5] = NULL;
1716 input_wakeup_procfs_readers();
1718 mutex_unlock(&input_mutex);
1720 EXPORT_SYMBOL(input_unregister_handler);
1723 * input_handler_for_each_handle - handle iterator
1724 * @handler: input handler to iterate
1725 * @data: data for the callback
1726 * @fn: function to be called for each handle
1728 * Iterate over @bus's list of devices, and call @fn for each, passing
1729 * it @data and stop when @fn returns a non-zero value. The function is
1730 * using RCU to traverse the list and therefore may be usind in atonic
1731 * contexts. The @fn callback is invoked from RCU critical section and
1732 * thus must not sleep.
1734 int input_handler_for_each_handle(struct input_handler *handler, void *data,
1735 int (*fn)(struct input_handle *, void *))
1737 struct input_handle *handle;
1738 int retval = 0;
1740 rcu_read_lock();
1742 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
1743 retval = fn(handle, data);
1744 if (retval)
1745 break;
1748 rcu_read_unlock();
1750 return retval;
1752 EXPORT_SYMBOL(input_handler_for_each_handle);
1755 * input_register_handle - register a new input handle
1756 * @handle: handle to register
1758 * This function puts a new input handle onto device's
1759 * and handler's lists so that events can flow through
1760 * it once it is opened using input_open_device().
1762 * This function is supposed to be called from handler's
1763 * connect() method.
1765 int input_register_handle(struct input_handle *handle)
1767 struct input_handler *handler = handle->handler;
1768 struct input_dev *dev = handle->dev;
1769 int error;
1772 * We take dev->mutex here to prevent race with
1773 * input_release_device().
1775 error = mutex_lock_interruptible(&dev->mutex);
1776 if (error)
1777 return error;
1778 list_add_tail_rcu(&handle->d_node, &dev->h_list);
1779 mutex_unlock(&dev->mutex);
1782 * Since we are supposed to be called from ->connect()
1783 * which is mutually exclusive with ->disconnect()
1784 * we can't be racing with input_unregister_handle()
1785 * and so separate lock is not needed here.
1787 list_add_tail_rcu(&handle->h_node, &handler->h_list);
1789 if (handler->start)
1790 handler->start(handle);
1792 return 0;
1794 EXPORT_SYMBOL(input_register_handle);
1797 * input_unregister_handle - unregister an input handle
1798 * @handle: handle to unregister
1800 * This function removes input handle from device's
1801 * and handler's lists.
1803 * This function is supposed to be called from handler's
1804 * disconnect() method.
1806 void input_unregister_handle(struct input_handle *handle)
1808 struct input_dev *dev = handle->dev;
1810 list_del_rcu(&handle->h_node);
1813 * Take dev->mutex to prevent race with input_release_device().
1815 mutex_lock(&dev->mutex);
1816 list_del_rcu(&handle->d_node);
1817 mutex_unlock(&dev->mutex);
1819 synchronize_rcu();
1821 EXPORT_SYMBOL(input_unregister_handle);
1823 static int input_open_file(struct inode *inode, struct file *file)
1825 struct input_handler *handler;
1826 const struct file_operations *old_fops, *new_fops = NULL;
1827 int err;
1829 lock_kernel();
1830 /* No load-on-demand here? */
1831 handler = input_table[iminor(inode) >> 5];
1832 if (!handler || !(new_fops = fops_get(handler->fops))) {
1833 err = -ENODEV;
1834 goto out;
1838 * That's _really_ odd. Usually NULL ->open means "nothing special",
1839 * not "no device". Oh, well...
1841 if (!new_fops->open) {
1842 fops_put(new_fops);
1843 err = -ENODEV;
1844 goto out;
1846 old_fops = file->f_op;
1847 file->f_op = new_fops;
1849 err = new_fops->open(inode, file);
1851 if (err) {
1852 fops_put(file->f_op);
1853 file->f_op = fops_get(old_fops);
1855 fops_put(old_fops);
1856 out:
1857 unlock_kernel();
1858 return err;
1861 static const struct file_operations input_fops = {
1862 .owner = THIS_MODULE,
1863 .open = input_open_file,
1866 static void __init input_init_abs_bypass(void)
1868 const unsigned int *p;
1870 for (p = input_abs_bypass_init_data; *p; p++)
1871 input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p);
1874 static int __init input_init(void)
1876 int err;
1878 input_init_abs_bypass();
1880 err = class_register(&input_class);
1881 if (err) {
1882 printk(KERN_ERR "input: unable to register input_dev class\n");
1883 return err;
1886 err = input_proc_init();
1887 if (err)
1888 goto fail1;
1890 err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
1891 if (err) {
1892 printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
1893 goto fail2;
1896 return 0;
1898 fail2: input_proc_exit();
1899 fail1: class_unregister(&input_class);
1900 return err;
1903 static void __exit input_exit(void)
1905 input_proc_exit();
1906 unregister_chrdev(INPUT_MAJOR, "input");
1907 class_unregister(&input_class);
1910 subsys_initcall(input_init);
1911 module_exit(input_exit);