gro: Inline skb_gro_header and cache frag0 virtual address
[linux-2.6/btrfs-unstable.git] / net / core / dev.c
blobbdb1a738193da81830b0aebad4cd3600766c1717
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/napi.h>
131 #include "net-sysfs.h"
133 /* Instead of increasing this, you should create a hash table. */
134 #define MAX_GRO_SKBS 8
136 /* This should be increased if a protocol with a bigger head is added. */
137 #define GRO_MAX_HEAD (MAX_HEADER + 128)
140 * The list of packet types we will receive (as opposed to discard)
141 * and the routines to invoke.
143 * Why 16. Because with 16 the only overlap we get on a hash of the
144 * low nibble of the protocol value is RARP/SNAP/X.25.
146 * NOTE: That is no longer true with the addition of VLAN tags. Not
147 * sure which should go first, but I bet it won't make much
148 * difference if we are running VLANs. The good news is that
149 * this protocol won't be in the list unless compiled in, so
150 * the average user (w/out VLANs) will not be adversely affected.
151 * --BLG
153 * 0800 IP
154 * 8100 802.1Q VLAN
155 * 0001 802.3
156 * 0002 AX.25
157 * 0004 802.2
158 * 8035 RARP
159 * 0005 SNAP
160 * 0805 X.25
161 * 0806 ARP
162 * 8137 IPX
163 * 0009 Localtalk
164 * 86DD IPv6
167 #define PTYPE_HASH_SIZE (16)
168 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
170 static DEFINE_SPINLOCK(ptype_lock);
171 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
172 static struct list_head ptype_all __read_mostly; /* Taps */
175 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
176 * semaphore.
178 * Pure readers hold dev_base_lock for reading.
180 * Writers must hold the rtnl semaphore while they loop through the
181 * dev_base_head list, and hold dev_base_lock for writing when they do the
182 * actual updates. This allows pure readers to access the list even
183 * while a writer is preparing to update it.
185 * To put it another way, dev_base_lock is held for writing only to
186 * protect against pure readers; the rtnl semaphore provides the
187 * protection against other writers.
189 * See, for example usages, register_netdevice() and
190 * unregister_netdevice(), which must be called with the rtnl
191 * semaphore held.
193 DEFINE_RWLOCK(dev_base_lock);
195 EXPORT_SYMBOL(dev_base_lock);
197 #define NETDEV_HASHBITS 8
198 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
200 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
203 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
208 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
211 /* Device list insertion */
212 static int list_netdevice(struct net_device *dev)
214 struct net *net = dev_net(dev);
216 ASSERT_RTNL();
218 write_lock_bh(&dev_base_lock);
219 list_add_tail(&dev->dev_list, &net->dev_base_head);
220 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
221 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
222 write_unlock_bh(&dev_base_lock);
223 return 0;
226 /* Device list removal */
227 static void unlist_netdevice(struct net_device *dev)
229 ASSERT_RTNL();
231 /* Unlink dev from the device chain */
232 write_lock_bh(&dev_base_lock);
233 list_del(&dev->dev_list);
234 hlist_del(&dev->name_hlist);
235 hlist_del(&dev->index_hlist);
236 write_unlock_bh(&dev_base_lock);
240 * Our notifier list
243 static RAW_NOTIFIER_HEAD(netdev_chain);
246 * Device drivers call our routines to queue packets here. We empty the
247 * queue in the local softnet handler.
250 DEFINE_PER_CPU(struct softnet_data, softnet_data);
252 #ifdef CONFIG_LOCKDEP
254 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
255 * according to dev->type
257 static const unsigned short netdev_lock_type[] =
258 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
259 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
260 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
261 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
262 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
263 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
264 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
265 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
266 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
267 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
268 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
269 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
270 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
271 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
272 ARPHRD_PHONET_PIPE, ARPHRD_VOID, ARPHRD_NONE};
274 static const char *netdev_lock_name[] =
275 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
276 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
277 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
278 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
279 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
280 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
281 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
282 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
283 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
284 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
285 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
286 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
287 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
288 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
289 "_xmit_PHONET_PIPE", "_xmit_VOID", "_xmit_NONE"};
291 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
292 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
294 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
296 int i;
298 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
299 if (netdev_lock_type[i] == dev_type)
300 return i;
301 /* the last key is used by default */
302 return ARRAY_SIZE(netdev_lock_type) - 1;
305 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
306 unsigned short dev_type)
308 int i;
310 i = netdev_lock_pos(dev_type);
311 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
312 netdev_lock_name[i]);
315 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
317 int i;
319 i = netdev_lock_pos(dev->type);
320 lockdep_set_class_and_name(&dev->addr_list_lock,
321 &netdev_addr_lock_key[i],
322 netdev_lock_name[i]);
324 #else
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
329 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
332 #endif
334 /*******************************************************************************
336 Protocol management and registration routines
338 *******************************************************************************/
341 * Add a protocol ID to the list. Now that the input handler is
342 * smarter we can dispense with all the messy stuff that used to be
343 * here.
345 * BEWARE!!! Protocol handlers, mangling input packets,
346 * MUST BE last in hash buckets and checking protocol handlers
347 * MUST start from promiscuous ptype_all chain in net_bh.
348 * It is true now, do not change it.
349 * Explanation follows: if protocol handler, mangling packet, will
350 * be the first on list, it is not able to sense, that packet
351 * is cloned and should be copied-on-write, so that it will
352 * change it and subsequent readers will get broken packet.
353 * --ANK (980803)
357 * dev_add_pack - add packet handler
358 * @pt: packet type declaration
360 * Add a protocol handler to the networking stack. The passed &packet_type
361 * is linked into kernel lists and may not be freed until it has been
362 * removed from the kernel lists.
364 * This call does not sleep therefore it can not
365 * guarantee all CPU's that are in middle of receiving packets
366 * will see the new packet type (until the next received packet).
369 void dev_add_pack(struct packet_type *pt)
371 int hash;
373 spin_lock_bh(&ptype_lock);
374 if (pt->type == htons(ETH_P_ALL))
375 list_add_rcu(&pt->list, &ptype_all);
376 else {
377 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
378 list_add_rcu(&pt->list, &ptype_base[hash]);
380 spin_unlock_bh(&ptype_lock);
384 * __dev_remove_pack - remove packet handler
385 * @pt: packet type declaration
387 * Remove a protocol handler that was previously added to the kernel
388 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
389 * from the kernel lists and can be freed or reused once this function
390 * returns.
392 * The packet type might still be in use by receivers
393 * and must not be freed until after all the CPU's have gone
394 * through a quiescent state.
396 void __dev_remove_pack(struct packet_type *pt)
398 struct list_head *head;
399 struct packet_type *pt1;
401 spin_lock_bh(&ptype_lock);
403 if (pt->type == htons(ETH_P_ALL))
404 head = &ptype_all;
405 else
406 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
408 list_for_each_entry(pt1, head, list) {
409 if (pt == pt1) {
410 list_del_rcu(&pt->list);
411 goto out;
415 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
416 out:
417 spin_unlock_bh(&ptype_lock);
420 * dev_remove_pack - remove packet handler
421 * @pt: packet type declaration
423 * Remove a protocol handler that was previously added to the kernel
424 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
425 * from the kernel lists and can be freed or reused once this function
426 * returns.
428 * This call sleeps to guarantee that no CPU is looking at the packet
429 * type after return.
431 void dev_remove_pack(struct packet_type *pt)
433 __dev_remove_pack(pt);
435 synchronize_net();
438 /******************************************************************************
440 Device Boot-time Settings Routines
442 *******************************************************************************/
444 /* Boot time configuration table */
445 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
448 * netdev_boot_setup_add - add new setup entry
449 * @name: name of the device
450 * @map: configured settings for the device
452 * Adds new setup entry to the dev_boot_setup list. The function
453 * returns 0 on error and 1 on success. This is a generic routine to
454 * all netdevices.
456 static int netdev_boot_setup_add(char *name, struct ifmap *map)
458 struct netdev_boot_setup *s;
459 int i;
461 s = dev_boot_setup;
462 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
463 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
464 memset(s[i].name, 0, sizeof(s[i].name));
465 strlcpy(s[i].name, name, IFNAMSIZ);
466 memcpy(&s[i].map, map, sizeof(s[i].map));
467 break;
471 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
475 * netdev_boot_setup_check - check boot time settings
476 * @dev: the netdevice
478 * Check boot time settings for the device.
479 * The found settings are set for the device to be used
480 * later in the device probing.
481 * Returns 0 if no settings found, 1 if they are.
483 int netdev_boot_setup_check(struct net_device *dev)
485 struct netdev_boot_setup *s = dev_boot_setup;
486 int i;
488 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
489 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
490 !strcmp(dev->name, s[i].name)) {
491 dev->irq = s[i].map.irq;
492 dev->base_addr = s[i].map.base_addr;
493 dev->mem_start = s[i].map.mem_start;
494 dev->mem_end = s[i].map.mem_end;
495 return 1;
498 return 0;
503 * netdev_boot_base - get address from boot time settings
504 * @prefix: prefix for network device
505 * @unit: id for network device
507 * Check boot time settings for the base address of device.
508 * The found settings are set for the device to be used
509 * later in the device probing.
510 * Returns 0 if no settings found.
512 unsigned long netdev_boot_base(const char *prefix, int unit)
514 const struct netdev_boot_setup *s = dev_boot_setup;
515 char name[IFNAMSIZ];
516 int i;
518 sprintf(name, "%s%d", prefix, unit);
521 * If device already registered then return base of 1
522 * to indicate not to probe for this interface
524 if (__dev_get_by_name(&init_net, name))
525 return 1;
527 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
528 if (!strcmp(name, s[i].name))
529 return s[i].map.base_addr;
530 return 0;
534 * Saves at boot time configured settings for any netdevice.
536 int __init netdev_boot_setup(char *str)
538 int ints[5];
539 struct ifmap map;
541 str = get_options(str, ARRAY_SIZE(ints), ints);
542 if (!str || !*str)
543 return 0;
545 /* Save settings */
546 memset(&map, 0, sizeof(map));
547 if (ints[0] > 0)
548 map.irq = ints[1];
549 if (ints[0] > 1)
550 map.base_addr = ints[2];
551 if (ints[0] > 2)
552 map.mem_start = ints[3];
553 if (ints[0] > 3)
554 map.mem_end = ints[4];
556 /* Add new entry to the list */
557 return netdev_boot_setup_add(str, &map);
560 __setup("netdev=", netdev_boot_setup);
562 /*******************************************************************************
564 Device Interface Subroutines
566 *******************************************************************************/
569 * __dev_get_by_name - find a device by its name
570 * @net: the applicable net namespace
571 * @name: name to find
573 * Find an interface by name. Must be called under RTNL semaphore
574 * or @dev_base_lock. If the name is found a pointer to the device
575 * is returned. If the name is not found then %NULL is returned. The
576 * reference counters are not incremented so the caller must be
577 * careful with locks.
580 struct net_device *__dev_get_by_name(struct net *net, const char *name)
582 struct hlist_node *p;
584 hlist_for_each(p, dev_name_hash(net, name)) {
585 struct net_device *dev
586 = hlist_entry(p, struct net_device, name_hlist);
587 if (!strncmp(dev->name, name, IFNAMSIZ))
588 return dev;
590 return NULL;
594 * dev_get_by_name - find a device by its name
595 * @net: the applicable net namespace
596 * @name: name to find
598 * Find an interface by name. This can be called from any
599 * context and does its own locking. The returned handle has
600 * the usage count incremented and the caller must use dev_put() to
601 * release it when it is no longer needed. %NULL is returned if no
602 * matching device is found.
605 struct net_device *dev_get_by_name(struct net *net, const char *name)
607 struct net_device *dev;
609 read_lock(&dev_base_lock);
610 dev = __dev_get_by_name(net, name);
611 if (dev)
612 dev_hold(dev);
613 read_unlock(&dev_base_lock);
614 return dev;
618 * __dev_get_by_index - find a device by its ifindex
619 * @net: the applicable net namespace
620 * @ifindex: index of device
622 * Search for an interface by index. Returns %NULL if the device
623 * is not found or a pointer to the device. The device has not
624 * had its reference counter increased so the caller must be careful
625 * about locking. The caller must hold either the RTNL semaphore
626 * or @dev_base_lock.
629 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
631 struct hlist_node *p;
633 hlist_for_each(p, dev_index_hash(net, ifindex)) {
634 struct net_device *dev
635 = hlist_entry(p, struct net_device, index_hlist);
636 if (dev->ifindex == ifindex)
637 return dev;
639 return NULL;
644 * dev_get_by_index - find a device by its ifindex
645 * @net: the applicable net namespace
646 * @ifindex: index of device
648 * Search for an interface by index. Returns NULL if the device
649 * is not found or a pointer to the device. The device returned has
650 * had a reference added and the pointer is safe until the user calls
651 * dev_put to indicate they have finished with it.
654 struct net_device *dev_get_by_index(struct net *net, int ifindex)
656 struct net_device *dev;
658 read_lock(&dev_base_lock);
659 dev = __dev_get_by_index(net, ifindex);
660 if (dev)
661 dev_hold(dev);
662 read_unlock(&dev_base_lock);
663 return dev;
667 * dev_getbyhwaddr - find a device by its hardware address
668 * @net: the applicable net namespace
669 * @type: media type of device
670 * @ha: hardware address
672 * Search for an interface by MAC address. Returns NULL if the device
673 * is not found or a pointer to the device. The caller must hold the
674 * rtnl semaphore. The returned device has not had its ref count increased
675 * and the caller must therefore be careful about locking
677 * BUGS:
678 * If the API was consistent this would be __dev_get_by_hwaddr
681 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
683 struct net_device *dev;
685 ASSERT_RTNL();
687 for_each_netdev(net, dev)
688 if (dev->type == type &&
689 !memcmp(dev->dev_addr, ha, dev->addr_len))
690 return dev;
692 return NULL;
695 EXPORT_SYMBOL(dev_getbyhwaddr);
697 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
699 struct net_device *dev;
701 ASSERT_RTNL();
702 for_each_netdev(net, dev)
703 if (dev->type == type)
704 return dev;
706 return NULL;
709 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
711 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
713 struct net_device *dev;
715 rtnl_lock();
716 dev = __dev_getfirstbyhwtype(net, type);
717 if (dev)
718 dev_hold(dev);
719 rtnl_unlock();
720 return dev;
723 EXPORT_SYMBOL(dev_getfirstbyhwtype);
726 * dev_get_by_flags - find any device with given flags
727 * @net: the applicable net namespace
728 * @if_flags: IFF_* values
729 * @mask: bitmask of bits in if_flags to check
731 * Search for any interface with the given flags. Returns NULL if a device
732 * is not found or a pointer to the device. The device returned has
733 * had a reference added and the pointer is safe until the user calls
734 * dev_put to indicate they have finished with it.
737 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
739 struct net_device *dev, *ret;
741 ret = NULL;
742 read_lock(&dev_base_lock);
743 for_each_netdev(net, dev) {
744 if (((dev->flags ^ if_flags) & mask) == 0) {
745 dev_hold(dev);
746 ret = dev;
747 break;
750 read_unlock(&dev_base_lock);
751 return ret;
755 * dev_valid_name - check if name is okay for network device
756 * @name: name string
758 * Network device names need to be valid file names to
759 * to allow sysfs to work. We also disallow any kind of
760 * whitespace.
762 int dev_valid_name(const char *name)
764 if (*name == '\0')
765 return 0;
766 if (strlen(name) >= IFNAMSIZ)
767 return 0;
768 if (!strcmp(name, ".") || !strcmp(name, ".."))
769 return 0;
771 while (*name) {
772 if (*name == '/' || isspace(*name))
773 return 0;
774 name++;
776 return 1;
780 * __dev_alloc_name - allocate a name for a device
781 * @net: network namespace to allocate the device name in
782 * @name: name format string
783 * @buf: scratch buffer and result name string
785 * Passed a format string - eg "lt%d" it will try and find a suitable
786 * id. It scans list of devices to build up a free map, then chooses
787 * the first empty slot. The caller must hold the dev_base or rtnl lock
788 * while allocating the name and adding the device in order to avoid
789 * duplicates.
790 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
791 * Returns the number of the unit assigned or a negative errno code.
794 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
796 int i = 0;
797 const char *p;
798 const int max_netdevices = 8*PAGE_SIZE;
799 unsigned long *inuse;
800 struct net_device *d;
802 p = strnchr(name, IFNAMSIZ-1, '%');
803 if (p) {
805 * Verify the string as this thing may have come from
806 * the user. There must be either one "%d" and no other "%"
807 * characters.
809 if (p[1] != 'd' || strchr(p + 2, '%'))
810 return -EINVAL;
812 /* Use one page as a bit array of possible slots */
813 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
814 if (!inuse)
815 return -ENOMEM;
817 for_each_netdev(net, d) {
818 if (!sscanf(d->name, name, &i))
819 continue;
820 if (i < 0 || i >= max_netdevices)
821 continue;
823 /* avoid cases where sscanf is not exact inverse of printf */
824 snprintf(buf, IFNAMSIZ, name, i);
825 if (!strncmp(buf, d->name, IFNAMSIZ))
826 set_bit(i, inuse);
829 i = find_first_zero_bit(inuse, max_netdevices);
830 free_page((unsigned long) inuse);
833 snprintf(buf, IFNAMSIZ, name, i);
834 if (!__dev_get_by_name(net, buf))
835 return i;
837 /* It is possible to run out of possible slots
838 * when the name is long and there isn't enough space left
839 * for the digits, or if all bits are used.
841 return -ENFILE;
845 * dev_alloc_name - allocate a name for a device
846 * @dev: device
847 * @name: name format string
849 * Passed a format string - eg "lt%d" it will try and find a suitable
850 * id. It scans list of devices to build up a free map, then chooses
851 * the first empty slot. The caller must hold the dev_base or rtnl lock
852 * while allocating the name and adding the device in order to avoid
853 * duplicates.
854 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
855 * Returns the number of the unit assigned or a negative errno code.
858 int dev_alloc_name(struct net_device *dev, const char *name)
860 char buf[IFNAMSIZ];
861 struct net *net;
862 int ret;
864 BUG_ON(!dev_net(dev));
865 net = dev_net(dev);
866 ret = __dev_alloc_name(net, name, buf);
867 if (ret >= 0)
868 strlcpy(dev->name, buf, IFNAMSIZ);
869 return ret;
874 * dev_change_name - change name of a device
875 * @dev: device
876 * @newname: name (or format string) must be at least IFNAMSIZ
878 * Change name of a device, can pass format strings "eth%d".
879 * for wildcarding.
881 int dev_change_name(struct net_device *dev, const char *newname)
883 char oldname[IFNAMSIZ];
884 int err = 0;
885 int ret;
886 struct net *net;
888 ASSERT_RTNL();
889 BUG_ON(!dev_net(dev));
891 net = dev_net(dev);
892 if (dev->flags & IFF_UP)
893 return -EBUSY;
895 if (!dev_valid_name(newname))
896 return -EINVAL;
898 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
899 return 0;
901 memcpy(oldname, dev->name, IFNAMSIZ);
903 if (strchr(newname, '%')) {
904 err = dev_alloc_name(dev, newname);
905 if (err < 0)
906 return err;
908 else if (__dev_get_by_name(net, newname))
909 return -EEXIST;
910 else
911 strlcpy(dev->name, newname, IFNAMSIZ);
913 rollback:
914 /* For now only devices in the initial network namespace
915 * are in sysfs.
917 if (net == &init_net) {
918 ret = device_rename(&dev->dev, dev->name);
919 if (ret) {
920 memcpy(dev->name, oldname, IFNAMSIZ);
921 return ret;
925 write_lock_bh(&dev_base_lock);
926 hlist_del(&dev->name_hlist);
927 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
928 write_unlock_bh(&dev_base_lock);
930 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
931 ret = notifier_to_errno(ret);
933 if (ret) {
934 if (err) {
935 printk(KERN_ERR
936 "%s: name change rollback failed: %d.\n",
937 dev->name, ret);
938 } else {
939 err = ret;
940 memcpy(dev->name, oldname, IFNAMSIZ);
941 goto rollback;
945 return err;
949 * dev_set_alias - change ifalias of a device
950 * @dev: device
951 * @alias: name up to IFALIASZ
952 * @len: limit of bytes to copy from info
954 * Set ifalias for a device,
956 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
958 ASSERT_RTNL();
960 if (len >= IFALIASZ)
961 return -EINVAL;
963 if (!len) {
964 if (dev->ifalias) {
965 kfree(dev->ifalias);
966 dev->ifalias = NULL;
968 return 0;
971 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL);
972 if (!dev->ifalias)
973 return -ENOMEM;
975 strlcpy(dev->ifalias, alias, len+1);
976 return len;
981 * netdev_features_change - device changes features
982 * @dev: device to cause notification
984 * Called to indicate a device has changed features.
986 void netdev_features_change(struct net_device *dev)
988 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
990 EXPORT_SYMBOL(netdev_features_change);
993 * netdev_state_change - device changes state
994 * @dev: device to cause notification
996 * Called to indicate a device has changed state. This function calls
997 * the notifier chains for netdev_chain and sends a NEWLINK message
998 * to the routing socket.
1000 void netdev_state_change(struct net_device *dev)
1002 if (dev->flags & IFF_UP) {
1003 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1004 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1008 void netdev_bonding_change(struct net_device *dev)
1010 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
1012 EXPORT_SYMBOL(netdev_bonding_change);
1015 * dev_load - load a network module
1016 * @net: the applicable net namespace
1017 * @name: name of interface
1019 * If a network interface is not present and the process has suitable
1020 * privileges this function loads the module. If module loading is not
1021 * available in this kernel then it becomes a nop.
1024 void dev_load(struct net *net, const char *name)
1026 struct net_device *dev;
1028 read_lock(&dev_base_lock);
1029 dev = __dev_get_by_name(net, name);
1030 read_unlock(&dev_base_lock);
1032 if (!dev && capable(CAP_SYS_MODULE))
1033 request_module("%s", name);
1037 * dev_open - prepare an interface for use.
1038 * @dev: device to open
1040 * Takes a device from down to up state. The device's private open
1041 * function is invoked and then the multicast lists are loaded. Finally
1042 * the device is moved into the up state and a %NETDEV_UP message is
1043 * sent to the netdev notifier chain.
1045 * Calling this function on an active interface is a nop. On a failure
1046 * a negative errno code is returned.
1048 int dev_open(struct net_device *dev)
1050 const struct net_device_ops *ops = dev->netdev_ops;
1051 int ret = 0;
1053 ASSERT_RTNL();
1056 * Is it already up?
1059 if (dev->flags & IFF_UP)
1060 return 0;
1063 * Is it even present?
1065 if (!netif_device_present(dev))
1066 return -ENODEV;
1069 * Call device private open method
1071 set_bit(__LINK_STATE_START, &dev->state);
1073 if (ops->ndo_validate_addr)
1074 ret = ops->ndo_validate_addr(dev);
1076 if (!ret && ops->ndo_open)
1077 ret = ops->ndo_open(dev);
1080 * If it went open OK then:
1083 if (ret)
1084 clear_bit(__LINK_STATE_START, &dev->state);
1085 else {
1087 * Set the flags.
1089 dev->flags |= IFF_UP;
1092 * Enable NET_DMA
1094 net_dmaengine_get();
1097 * Initialize multicasting status
1099 dev_set_rx_mode(dev);
1102 * Wakeup transmit queue engine
1104 dev_activate(dev);
1107 * ... and announce new interface.
1109 call_netdevice_notifiers(NETDEV_UP, dev);
1112 return ret;
1116 * dev_close - shutdown an interface.
1117 * @dev: device to shutdown
1119 * This function moves an active device into down state. A
1120 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1121 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1122 * chain.
1124 int dev_close(struct net_device *dev)
1126 const struct net_device_ops *ops = dev->netdev_ops;
1127 ASSERT_RTNL();
1129 might_sleep();
1131 if (!(dev->flags & IFF_UP))
1132 return 0;
1135 * Tell people we are going down, so that they can
1136 * prepare to death, when device is still operating.
1138 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1140 clear_bit(__LINK_STATE_START, &dev->state);
1142 /* Synchronize to scheduled poll. We cannot touch poll list,
1143 * it can be even on different cpu. So just clear netif_running().
1145 * dev->stop() will invoke napi_disable() on all of it's
1146 * napi_struct instances on this device.
1148 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1150 dev_deactivate(dev);
1153 * Call the device specific close. This cannot fail.
1154 * Only if device is UP
1156 * We allow it to be called even after a DETACH hot-plug
1157 * event.
1159 if (ops->ndo_stop)
1160 ops->ndo_stop(dev);
1163 * Device is now down.
1166 dev->flags &= ~IFF_UP;
1169 * Tell people we are down
1171 call_netdevice_notifiers(NETDEV_DOWN, dev);
1174 * Shutdown NET_DMA
1176 net_dmaengine_put();
1178 return 0;
1183 * dev_disable_lro - disable Large Receive Offload on a device
1184 * @dev: device
1186 * Disable Large Receive Offload (LRO) on a net device. Must be
1187 * called under RTNL. This is needed if received packets may be
1188 * forwarded to another interface.
1190 void dev_disable_lro(struct net_device *dev)
1192 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1193 dev->ethtool_ops->set_flags) {
1194 u32 flags = dev->ethtool_ops->get_flags(dev);
1195 if (flags & ETH_FLAG_LRO) {
1196 flags &= ~ETH_FLAG_LRO;
1197 dev->ethtool_ops->set_flags(dev, flags);
1200 WARN_ON(dev->features & NETIF_F_LRO);
1202 EXPORT_SYMBOL(dev_disable_lro);
1205 static int dev_boot_phase = 1;
1208 * Device change register/unregister. These are not inline or static
1209 * as we export them to the world.
1213 * register_netdevice_notifier - register a network notifier block
1214 * @nb: notifier
1216 * Register a notifier to be called when network device events occur.
1217 * The notifier passed is linked into the kernel structures and must
1218 * not be reused until it has been unregistered. A negative errno code
1219 * is returned on a failure.
1221 * When registered all registration and up events are replayed
1222 * to the new notifier to allow device to have a race free
1223 * view of the network device list.
1226 int register_netdevice_notifier(struct notifier_block *nb)
1228 struct net_device *dev;
1229 struct net_device *last;
1230 struct net *net;
1231 int err;
1233 rtnl_lock();
1234 err = raw_notifier_chain_register(&netdev_chain, nb);
1235 if (err)
1236 goto unlock;
1237 if (dev_boot_phase)
1238 goto unlock;
1239 for_each_net(net) {
1240 for_each_netdev(net, dev) {
1241 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1242 err = notifier_to_errno(err);
1243 if (err)
1244 goto rollback;
1246 if (!(dev->flags & IFF_UP))
1247 continue;
1249 nb->notifier_call(nb, NETDEV_UP, dev);
1253 unlock:
1254 rtnl_unlock();
1255 return err;
1257 rollback:
1258 last = dev;
1259 for_each_net(net) {
1260 for_each_netdev(net, dev) {
1261 if (dev == last)
1262 break;
1264 if (dev->flags & IFF_UP) {
1265 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1266 nb->notifier_call(nb, NETDEV_DOWN, dev);
1268 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1272 raw_notifier_chain_unregister(&netdev_chain, nb);
1273 goto unlock;
1277 * unregister_netdevice_notifier - unregister a network notifier block
1278 * @nb: notifier
1280 * Unregister a notifier previously registered by
1281 * register_netdevice_notifier(). The notifier is unlinked into the
1282 * kernel structures and may then be reused. A negative errno code
1283 * is returned on a failure.
1286 int unregister_netdevice_notifier(struct notifier_block *nb)
1288 int err;
1290 rtnl_lock();
1291 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1292 rtnl_unlock();
1293 return err;
1297 * call_netdevice_notifiers - call all network notifier blocks
1298 * @val: value passed unmodified to notifier function
1299 * @dev: net_device pointer passed unmodified to notifier function
1301 * Call all network notifier blocks. Parameters and return value
1302 * are as for raw_notifier_call_chain().
1305 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1307 return raw_notifier_call_chain(&netdev_chain, val, dev);
1310 /* When > 0 there are consumers of rx skb time stamps */
1311 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1313 void net_enable_timestamp(void)
1315 atomic_inc(&netstamp_needed);
1318 void net_disable_timestamp(void)
1320 atomic_dec(&netstamp_needed);
1323 static inline void net_timestamp(struct sk_buff *skb)
1325 if (atomic_read(&netstamp_needed))
1326 __net_timestamp(skb);
1327 else
1328 skb->tstamp.tv64 = 0;
1332 * Support routine. Sends outgoing frames to any network
1333 * taps currently in use.
1336 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1338 struct packet_type *ptype;
1340 #ifdef CONFIG_NET_CLS_ACT
1341 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1342 net_timestamp(skb);
1343 #else
1344 net_timestamp(skb);
1345 #endif
1347 rcu_read_lock();
1348 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1349 /* Never send packets back to the socket
1350 * they originated from - MvS (miquels@drinkel.ow.org)
1352 if ((ptype->dev == dev || !ptype->dev) &&
1353 (ptype->af_packet_priv == NULL ||
1354 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1355 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1356 if (!skb2)
1357 break;
1359 /* skb->nh should be correctly
1360 set by sender, so that the second statement is
1361 just protection against buggy protocols.
1363 skb_reset_mac_header(skb2);
1365 if (skb_network_header(skb2) < skb2->data ||
1366 skb2->network_header > skb2->tail) {
1367 if (net_ratelimit())
1368 printk(KERN_CRIT "protocol %04x is "
1369 "buggy, dev %s\n",
1370 skb2->protocol, dev->name);
1371 skb_reset_network_header(skb2);
1374 skb2->transport_header = skb2->network_header;
1375 skb2->pkt_type = PACKET_OUTGOING;
1376 ptype->func(skb2, skb->dev, ptype, skb->dev);
1379 rcu_read_unlock();
1383 static inline void __netif_reschedule(struct Qdisc *q)
1385 struct softnet_data *sd;
1386 unsigned long flags;
1388 local_irq_save(flags);
1389 sd = &__get_cpu_var(softnet_data);
1390 q->next_sched = sd->output_queue;
1391 sd->output_queue = q;
1392 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1393 local_irq_restore(flags);
1396 void __netif_schedule(struct Qdisc *q)
1398 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1399 __netif_reschedule(q);
1401 EXPORT_SYMBOL(__netif_schedule);
1403 void dev_kfree_skb_irq(struct sk_buff *skb)
1405 if (atomic_dec_and_test(&skb->users)) {
1406 struct softnet_data *sd;
1407 unsigned long flags;
1409 local_irq_save(flags);
1410 sd = &__get_cpu_var(softnet_data);
1411 skb->next = sd->completion_queue;
1412 sd->completion_queue = skb;
1413 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1414 local_irq_restore(flags);
1417 EXPORT_SYMBOL(dev_kfree_skb_irq);
1419 void dev_kfree_skb_any(struct sk_buff *skb)
1421 if (in_irq() || irqs_disabled())
1422 dev_kfree_skb_irq(skb);
1423 else
1424 dev_kfree_skb(skb);
1426 EXPORT_SYMBOL(dev_kfree_skb_any);
1430 * netif_device_detach - mark device as removed
1431 * @dev: network device
1433 * Mark device as removed from system and therefore no longer available.
1435 void netif_device_detach(struct net_device *dev)
1437 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1438 netif_running(dev)) {
1439 netif_tx_stop_all_queues(dev);
1442 EXPORT_SYMBOL(netif_device_detach);
1445 * netif_device_attach - mark device as attached
1446 * @dev: network device
1448 * Mark device as attached from system and restart if needed.
1450 void netif_device_attach(struct net_device *dev)
1452 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1453 netif_running(dev)) {
1454 netif_tx_wake_all_queues(dev);
1455 __netdev_watchdog_up(dev);
1458 EXPORT_SYMBOL(netif_device_attach);
1460 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1462 return ((features & NETIF_F_GEN_CSUM) ||
1463 ((features & NETIF_F_IP_CSUM) &&
1464 protocol == htons(ETH_P_IP)) ||
1465 ((features & NETIF_F_IPV6_CSUM) &&
1466 protocol == htons(ETH_P_IPV6)) ||
1467 ((features & NETIF_F_FCOE_CRC) &&
1468 protocol == htons(ETH_P_FCOE)));
1471 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1473 if (can_checksum_protocol(dev->features, skb->protocol))
1474 return true;
1476 if (skb->protocol == htons(ETH_P_8021Q)) {
1477 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1478 if (can_checksum_protocol(dev->features & dev->vlan_features,
1479 veh->h_vlan_encapsulated_proto))
1480 return true;
1483 return false;
1487 * Invalidate hardware checksum when packet is to be mangled, and
1488 * complete checksum manually on outgoing path.
1490 int skb_checksum_help(struct sk_buff *skb)
1492 __wsum csum;
1493 int ret = 0, offset;
1495 if (skb->ip_summed == CHECKSUM_COMPLETE)
1496 goto out_set_summed;
1498 if (unlikely(skb_shinfo(skb)->gso_size)) {
1499 /* Let GSO fix up the checksum. */
1500 goto out_set_summed;
1503 offset = skb->csum_start - skb_headroom(skb);
1504 BUG_ON(offset >= skb_headlen(skb));
1505 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1507 offset += skb->csum_offset;
1508 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1510 if (skb_cloned(skb) &&
1511 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1512 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1513 if (ret)
1514 goto out;
1517 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1518 out_set_summed:
1519 skb->ip_summed = CHECKSUM_NONE;
1520 out:
1521 return ret;
1525 * skb_gso_segment - Perform segmentation on skb.
1526 * @skb: buffer to segment
1527 * @features: features for the output path (see dev->features)
1529 * This function segments the given skb and returns a list of segments.
1531 * It may return NULL if the skb requires no segmentation. This is
1532 * only possible when GSO is used for verifying header integrity.
1534 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1536 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1537 struct packet_type *ptype;
1538 __be16 type = skb->protocol;
1539 int err;
1541 skb_reset_mac_header(skb);
1542 skb->mac_len = skb->network_header - skb->mac_header;
1543 __skb_pull(skb, skb->mac_len);
1545 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1546 struct net_device *dev = skb->dev;
1547 struct ethtool_drvinfo info = {};
1549 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1550 dev->ethtool_ops->get_drvinfo(dev, &info);
1552 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1553 "ip_summed=%d",
1554 info.driver, dev ? dev->features : 0L,
1555 skb->sk ? skb->sk->sk_route_caps : 0L,
1556 skb->len, skb->data_len, skb->ip_summed);
1558 if (skb_header_cloned(skb) &&
1559 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1560 return ERR_PTR(err);
1563 rcu_read_lock();
1564 list_for_each_entry_rcu(ptype,
1565 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1566 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1567 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1568 err = ptype->gso_send_check(skb);
1569 segs = ERR_PTR(err);
1570 if (err || skb_gso_ok(skb, features))
1571 break;
1572 __skb_push(skb, (skb->data -
1573 skb_network_header(skb)));
1575 segs = ptype->gso_segment(skb, features);
1576 break;
1579 rcu_read_unlock();
1581 __skb_push(skb, skb->data - skb_mac_header(skb));
1583 return segs;
1586 EXPORT_SYMBOL(skb_gso_segment);
1588 /* Take action when hardware reception checksum errors are detected. */
1589 #ifdef CONFIG_BUG
1590 void netdev_rx_csum_fault(struct net_device *dev)
1592 if (net_ratelimit()) {
1593 printk(KERN_ERR "%s: hw csum failure.\n",
1594 dev ? dev->name : "<unknown>");
1595 dump_stack();
1598 EXPORT_SYMBOL(netdev_rx_csum_fault);
1599 #endif
1601 /* Actually, we should eliminate this check as soon as we know, that:
1602 * 1. IOMMU is present and allows to map all the memory.
1603 * 2. No high memory really exists on this machine.
1606 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1608 #ifdef CONFIG_HIGHMEM
1609 int i;
1611 if (dev->features & NETIF_F_HIGHDMA)
1612 return 0;
1614 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1615 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1616 return 1;
1618 #endif
1619 return 0;
1622 struct dev_gso_cb {
1623 void (*destructor)(struct sk_buff *skb);
1626 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1628 static void dev_gso_skb_destructor(struct sk_buff *skb)
1630 struct dev_gso_cb *cb;
1632 do {
1633 struct sk_buff *nskb = skb->next;
1635 skb->next = nskb->next;
1636 nskb->next = NULL;
1637 kfree_skb(nskb);
1638 } while (skb->next);
1640 cb = DEV_GSO_CB(skb);
1641 if (cb->destructor)
1642 cb->destructor(skb);
1646 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1647 * @skb: buffer to segment
1649 * This function segments the given skb and stores the list of segments
1650 * in skb->next.
1652 static int dev_gso_segment(struct sk_buff *skb)
1654 struct net_device *dev = skb->dev;
1655 struct sk_buff *segs;
1656 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1657 NETIF_F_SG : 0);
1659 segs = skb_gso_segment(skb, features);
1661 /* Verifying header integrity only. */
1662 if (!segs)
1663 return 0;
1665 if (IS_ERR(segs))
1666 return PTR_ERR(segs);
1668 skb->next = segs;
1669 DEV_GSO_CB(skb)->destructor = skb->destructor;
1670 skb->destructor = dev_gso_skb_destructor;
1672 return 0;
1675 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1676 struct netdev_queue *txq)
1678 const struct net_device_ops *ops = dev->netdev_ops;
1679 int rc;
1681 if (likely(!skb->next)) {
1682 if (!list_empty(&ptype_all))
1683 dev_queue_xmit_nit(skb, dev);
1685 if (netif_needs_gso(dev, skb)) {
1686 if (unlikely(dev_gso_segment(skb)))
1687 goto out_kfree_skb;
1688 if (skb->next)
1689 goto gso;
1693 * If device doesnt need skb->dst, release it right now while
1694 * its hot in this cpu cache
1696 if ((dev->priv_flags & IFF_XMIT_DST_RELEASE) && skb->dst) {
1697 dst_release(skb->dst);
1698 skb->dst = NULL;
1700 rc = ops->ndo_start_xmit(skb, dev);
1701 if (rc == 0)
1702 txq_trans_update(txq);
1704 * TODO: if skb_orphan() was called by
1705 * dev->hard_start_xmit() (for example, the unmodified
1706 * igb driver does that; bnx2 doesn't), then
1707 * skb_tx_software_timestamp() will be unable to send
1708 * back the time stamp.
1710 * How can this be prevented? Always create another
1711 * reference to the socket before calling
1712 * dev->hard_start_xmit()? Prevent that skb_orphan()
1713 * does anything in dev->hard_start_xmit() by clearing
1714 * the skb destructor before the call and restoring it
1715 * afterwards, then doing the skb_orphan() ourselves?
1717 return rc;
1720 gso:
1721 do {
1722 struct sk_buff *nskb = skb->next;
1724 skb->next = nskb->next;
1725 nskb->next = NULL;
1726 rc = ops->ndo_start_xmit(nskb, dev);
1727 if (unlikely(rc)) {
1728 nskb->next = skb->next;
1729 skb->next = nskb;
1730 return rc;
1732 txq_trans_update(txq);
1733 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1734 return NETDEV_TX_BUSY;
1735 } while (skb->next);
1737 skb->destructor = DEV_GSO_CB(skb)->destructor;
1739 out_kfree_skb:
1740 kfree_skb(skb);
1741 return 0;
1744 static u32 skb_tx_hashrnd;
1746 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1748 u32 hash;
1750 if (skb_rx_queue_recorded(skb)) {
1751 hash = skb_get_rx_queue(skb);
1752 while (unlikely (hash >= dev->real_num_tx_queues))
1753 hash -= dev->real_num_tx_queues;
1754 return hash;
1757 if (skb->sk && skb->sk->sk_hash)
1758 hash = skb->sk->sk_hash;
1759 else
1760 hash = skb->protocol;
1762 hash = jhash_1word(hash, skb_tx_hashrnd);
1764 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1766 EXPORT_SYMBOL(skb_tx_hash);
1768 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1769 struct sk_buff *skb)
1771 const struct net_device_ops *ops = dev->netdev_ops;
1772 u16 queue_index = 0;
1774 if (ops->ndo_select_queue)
1775 queue_index = ops->ndo_select_queue(dev, skb);
1776 else if (dev->real_num_tx_queues > 1)
1777 queue_index = skb_tx_hash(dev, skb);
1779 skb_set_queue_mapping(skb, queue_index);
1780 return netdev_get_tx_queue(dev, queue_index);
1784 * dev_queue_xmit - transmit a buffer
1785 * @skb: buffer to transmit
1787 * Queue a buffer for transmission to a network device. The caller must
1788 * have set the device and priority and built the buffer before calling
1789 * this function. The function can be called from an interrupt.
1791 * A negative errno code is returned on a failure. A success does not
1792 * guarantee the frame will be transmitted as it may be dropped due
1793 * to congestion or traffic shaping.
1795 * -----------------------------------------------------------------------------------
1796 * I notice this method can also return errors from the queue disciplines,
1797 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1798 * be positive.
1800 * Regardless of the return value, the skb is consumed, so it is currently
1801 * difficult to retry a send to this method. (You can bump the ref count
1802 * before sending to hold a reference for retry if you are careful.)
1804 * When calling this method, interrupts MUST be enabled. This is because
1805 * the BH enable code must have IRQs enabled so that it will not deadlock.
1806 * --BLG
1808 int dev_queue_xmit(struct sk_buff *skb)
1810 struct net_device *dev = skb->dev;
1811 struct netdev_queue *txq;
1812 struct Qdisc *q;
1813 int rc = -ENOMEM;
1815 /* GSO will handle the following emulations directly. */
1816 if (netif_needs_gso(dev, skb))
1817 goto gso;
1819 if (skb_shinfo(skb)->frag_list &&
1820 !(dev->features & NETIF_F_FRAGLIST) &&
1821 __skb_linearize(skb))
1822 goto out_kfree_skb;
1824 /* Fragmented skb is linearized if device does not support SG,
1825 * or if at least one of fragments is in highmem and device
1826 * does not support DMA from it.
1828 if (skb_shinfo(skb)->nr_frags &&
1829 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1830 __skb_linearize(skb))
1831 goto out_kfree_skb;
1833 /* If packet is not checksummed and device does not support
1834 * checksumming for this protocol, complete checksumming here.
1836 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1837 skb_set_transport_header(skb, skb->csum_start -
1838 skb_headroom(skb));
1839 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1840 goto out_kfree_skb;
1843 gso:
1844 /* Disable soft irqs for various locks below. Also
1845 * stops preemption for RCU.
1847 rcu_read_lock_bh();
1849 txq = dev_pick_tx(dev, skb);
1850 q = rcu_dereference(txq->qdisc);
1852 #ifdef CONFIG_NET_CLS_ACT
1853 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1854 #endif
1855 if (q->enqueue) {
1856 spinlock_t *root_lock = qdisc_lock(q);
1858 spin_lock(root_lock);
1860 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1861 kfree_skb(skb);
1862 rc = NET_XMIT_DROP;
1863 } else {
1864 rc = qdisc_enqueue_root(skb, q);
1865 qdisc_run(q);
1867 spin_unlock(root_lock);
1869 goto out;
1872 /* The device has no queue. Common case for software devices:
1873 loopback, all the sorts of tunnels...
1875 Really, it is unlikely that netif_tx_lock protection is necessary
1876 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1877 counters.)
1878 However, it is possible, that they rely on protection
1879 made by us here.
1881 Check this and shot the lock. It is not prone from deadlocks.
1882 Either shot noqueue qdisc, it is even simpler 8)
1884 if (dev->flags & IFF_UP) {
1885 int cpu = smp_processor_id(); /* ok because BHs are off */
1887 if (txq->xmit_lock_owner != cpu) {
1889 HARD_TX_LOCK(dev, txq, cpu);
1891 if (!netif_tx_queue_stopped(txq)) {
1892 rc = 0;
1893 if (!dev_hard_start_xmit(skb, dev, txq)) {
1894 HARD_TX_UNLOCK(dev, txq);
1895 goto out;
1898 HARD_TX_UNLOCK(dev, txq);
1899 if (net_ratelimit())
1900 printk(KERN_CRIT "Virtual device %s asks to "
1901 "queue packet!\n", dev->name);
1902 } else {
1903 /* Recursion is detected! It is possible,
1904 * unfortunately */
1905 if (net_ratelimit())
1906 printk(KERN_CRIT "Dead loop on virtual device "
1907 "%s, fix it urgently!\n", dev->name);
1911 rc = -ENETDOWN;
1912 rcu_read_unlock_bh();
1914 out_kfree_skb:
1915 kfree_skb(skb);
1916 return rc;
1917 out:
1918 rcu_read_unlock_bh();
1919 return rc;
1923 /*=======================================================================
1924 Receiver routines
1925 =======================================================================*/
1927 int netdev_max_backlog __read_mostly = 1000;
1928 int netdev_budget __read_mostly = 300;
1929 int weight_p __read_mostly = 64; /* old backlog weight */
1931 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1935 * netif_rx - post buffer to the network code
1936 * @skb: buffer to post
1938 * This function receives a packet from a device driver and queues it for
1939 * the upper (protocol) levels to process. It always succeeds. The buffer
1940 * may be dropped during processing for congestion control or by the
1941 * protocol layers.
1943 * return values:
1944 * NET_RX_SUCCESS (no congestion)
1945 * NET_RX_DROP (packet was dropped)
1949 int netif_rx(struct sk_buff *skb)
1951 struct softnet_data *queue;
1952 unsigned long flags;
1954 /* if netpoll wants it, pretend we never saw it */
1955 if (netpoll_rx(skb))
1956 return NET_RX_DROP;
1958 if (!skb->tstamp.tv64)
1959 net_timestamp(skb);
1962 * The code is rearranged so that the path is the most
1963 * short when CPU is congested, but is still operating.
1965 local_irq_save(flags);
1966 queue = &__get_cpu_var(softnet_data);
1968 __get_cpu_var(netdev_rx_stat).total++;
1969 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1970 if (queue->input_pkt_queue.qlen) {
1971 enqueue:
1972 __skb_queue_tail(&queue->input_pkt_queue, skb);
1973 local_irq_restore(flags);
1974 return NET_RX_SUCCESS;
1977 napi_schedule(&queue->backlog);
1978 goto enqueue;
1981 __get_cpu_var(netdev_rx_stat).dropped++;
1982 local_irq_restore(flags);
1984 kfree_skb(skb);
1985 return NET_RX_DROP;
1988 int netif_rx_ni(struct sk_buff *skb)
1990 int err;
1992 preempt_disable();
1993 err = netif_rx(skb);
1994 if (local_softirq_pending())
1995 do_softirq();
1996 preempt_enable();
1998 return err;
2001 EXPORT_SYMBOL(netif_rx_ni);
2003 static void net_tx_action(struct softirq_action *h)
2005 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2007 if (sd->completion_queue) {
2008 struct sk_buff *clist;
2010 local_irq_disable();
2011 clist = sd->completion_queue;
2012 sd->completion_queue = NULL;
2013 local_irq_enable();
2015 while (clist) {
2016 struct sk_buff *skb = clist;
2017 clist = clist->next;
2019 WARN_ON(atomic_read(&skb->users));
2020 __kfree_skb(skb);
2024 if (sd->output_queue) {
2025 struct Qdisc *head;
2027 local_irq_disable();
2028 head = sd->output_queue;
2029 sd->output_queue = NULL;
2030 local_irq_enable();
2032 while (head) {
2033 struct Qdisc *q = head;
2034 spinlock_t *root_lock;
2036 head = head->next_sched;
2038 root_lock = qdisc_lock(q);
2039 if (spin_trylock(root_lock)) {
2040 smp_mb__before_clear_bit();
2041 clear_bit(__QDISC_STATE_SCHED,
2042 &q->state);
2043 qdisc_run(q);
2044 spin_unlock(root_lock);
2045 } else {
2046 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2047 &q->state)) {
2048 __netif_reschedule(q);
2049 } else {
2050 smp_mb__before_clear_bit();
2051 clear_bit(__QDISC_STATE_SCHED,
2052 &q->state);
2059 static inline int deliver_skb(struct sk_buff *skb,
2060 struct packet_type *pt_prev,
2061 struct net_device *orig_dev)
2063 atomic_inc(&skb->users);
2064 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2067 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2068 /* These hooks defined here for ATM */
2069 struct net_bridge;
2070 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2071 unsigned char *addr);
2072 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2075 * If bridge module is loaded call bridging hook.
2076 * returns NULL if packet was consumed.
2078 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2079 struct sk_buff *skb) __read_mostly;
2080 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2081 struct packet_type **pt_prev, int *ret,
2082 struct net_device *orig_dev)
2084 struct net_bridge_port *port;
2086 if (skb->pkt_type == PACKET_LOOPBACK ||
2087 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2088 return skb;
2090 if (*pt_prev) {
2091 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2092 *pt_prev = NULL;
2095 return br_handle_frame_hook(port, skb);
2097 #else
2098 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2099 #endif
2101 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2102 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2103 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2105 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2106 struct packet_type **pt_prev,
2107 int *ret,
2108 struct net_device *orig_dev)
2110 if (skb->dev->macvlan_port == NULL)
2111 return skb;
2113 if (*pt_prev) {
2114 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2115 *pt_prev = NULL;
2117 return macvlan_handle_frame_hook(skb);
2119 #else
2120 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2121 #endif
2123 #ifdef CONFIG_NET_CLS_ACT
2124 /* TODO: Maybe we should just force sch_ingress to be compiled in
2125 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2126 * a compare and 2 stores extra right now if we dont have it on
2127 * but have CONFIG_NET_CLS_ACT
2128 * NOTE: This doesnt stop any functionality; if you dont have
2129 * the ingress scheduler, you just cant add policies on ingress.
2132 static int ing_filter(struct sk_buff *skb)
2134 struct net_device *dev = skb->dev;
2135 u32 ttl = G_TC_RTTL(skb->tc_verd);
2136 struct netdev_queue *rxq;
2137 int result = TC_ACT_OK;
2138 struct Qdisc *q;
2140 if (MAX_RED_LOOP < ttl++) {
2141 printk(KERN_WARNING
2142 "Redir loop detected Dropping packet (%d->%d)\n",
2143 skb->iif, dev->ifindex);
2144 return TC_ACT_SHOT;
2147 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2148 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2150 rxq = &dev->rx_queue;
2152 q = rxq->qdisc;
2153 if (q != &noop_qdisc) {
2154 spin_lock(qdisc_lock(q));
2155 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2156 result = qdisc_enqueue_root(skb, q);
2157 spin_unlock(qdisc_lock(q));
2160 return result;
2163 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2164 struct packet_type **pt_prev,
2165 int *ret, struct net_device *orig_dev)
2167 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2168 goto out;
2170 if (*pt_prev) {
2171 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2172 *pt_prev = NULL;
2173 } else {
2174 /* Huh? Why does turning on AF_PACKET affect this? */
2175 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2178 switch (ing_filter(skb)) {
2179 case TC_ACT_SHOT:
2180 case TC_ACT_STOLEN:
2181 kfree_skb(skb);
2182 return NULL;
2185 out:
2186 skb->tc_verd = 0;
2187 return skb;
2189 #endif
2192 * netif_nit_deliver - deliver received packets to network taps
2193 * @skb: buffer
2195 * This function is used to deliver incoming packets to network
2196 * taps. It should be used when the normal netif_receive_skb path
2197 * is bypassed, for example because of VLAN acceleration.
2199 void netif_nit_deliver(struct sk_buff *skb)
2201 struct packet_type *ptype;
2203 if (list_empty(&ptype_all))
2204 return;
2206 skb_reset_network_header(skb);
2207 skb_reset_transport_header(skb);
2208 skb->mac_len = skb->network_header - skb->mac_header;
2210 rcu_read_lock();
2211 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2212 if (!ptype->dev || ptype->dev == skb->dev)
2213 deliver_skb(skb, ptype, skb->dev);
2215 rcu_read_unlock();
2219 * netif_receive_skb - process receive buffer from network
2220 * @skb: buffer to process
2222 * netif_receive_skb() is the main receive data processing function.
2223 * It always succeeds. The buffer may be dropped during processing
2224 * for congestion control or by the protocol layers.
2226 * This function may only be called from softirq context and interrupts
2227 * should be enabled.
2229 * Return values (usually ignored):
2230 * NET_RX_SUCCESS: no congestion
2231 * NET_RX_DROP: packet was dropped
2233 int netif_receive_skb(struct sk_buff *skb)
2235 struct packet_type *ptype, *pt_prev;
2236 struct net_device *orig_dev;
2237 struct net_device *null_or_orig;
2238 int ret = NET_RX_DROP;
2239 __be16 type;
2241 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2242 return NET_RX_SUCCESS;
2244 /* if we've gotten here through NAPI, check netpoll */
2245 if (netpoll_receive_skb(skb))
2246 return NET_RX_DROP;
2248 if (!skb->tstamp.tv64)
2249 net_timestamp(skb);
2251 if (!skb->iif)
2252 skb->iif = skb->dev->ifindex;
2254 null_or_orig = NULL;
2255 orig_dev = skb->dev;
2256 if (orig_dev->master) {
2257 if (skb_bond_should_drop(skb))
2258 null_or_orig = orig_dev; /* deliver only exact match */
2259 else
2260 skb->dev = orig_dev->master;
2263 __get_cpu_var(netdev_rx_stat).total++;
2265 skb_reset_network_header(skb);
2266 skb_reset_transport_header(skb);
2267 skb->mac_len = skb->network_header - skb->mac_header;
2269 pt_prev = NULL;
2271 rcu_read_lock();
2273 #ifdef CONFIG_NET_CLS_ACT
2274 if (skb->tc_verd & TC_NCLS) {
2275 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2276 goto ncls;
2278 #endif
2280 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2281 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2282 ptype->dev == orig_dev) {
2283 if (pt_prev)
2284 ret = deliver_skb(skb, pt_prev, orig_dev);
2285 pt_prev = ptype;
2289 #ifdef CONFIG_NET_CLS_ACT
2290 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2291 if (!skb)
2292 goto out;
2293 ncls:
2294 #endif
2296 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2297 if (!skb)
2298 goto out;
2299 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2300 if (!skb)
2301 goto out;
2303 skb_orphan(skb);
2305 type = skb->protocol;
2306 list_for_each_entry_rcu(ptype,
2307 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2308 if (ptype->type == type &&
2309 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2310 ptype->dev == orig_dev)) {
2311 if (pt_prev)
2312 ret = deliver_skb(skb, pt_prev, orig_dev);
2313 pt_prev = ptype;
2317 if (pt_prev) {
2318 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2319 } else {
2320 kfree_skb(skb);
2321 /* Jamal, now you will not able to escape explaining
2322 * me how you were going to use this. :-)
2324 ret = NET_RX_DROP;
2327 out:
2328 rcu_read_unlock();
2329 return ret;
2332 /* Network device is going away, flush any packets still pending */
2333 static void flush_backlog(void *arg)
2335 struct net_device *dev = arg;
2336 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2337 struct sk_buff *skb, *tmp;
2339 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2340 if (skb->dev == dev) {
2341 __skb_unlink(skb, &queue->input_pkt_queue);
2342 kfree_skb(skb);
2346 static int napi_gro_complete(struct sk_buff *skb)
2348 struct packet_type *ptype;
2349 __be16 type = skb->protocol;
2350 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2351 int err = -ENOENT;
2353 if (NAPI_GRO_CB(skb)->count == 1) {
2354 skb_shinfo(skb)->gso_size = 0;
2355 goto out;
2358 rcu_read_lock();
2359 list_for_each_entry_rcu(ptype, head, list) {
2360 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2361 continue;
2363 err = ptype->gro_complete(skb);
2364 break;
2366 rcu_read_unlock();
2368 if (err) {
2369 WARN_ON(&ptype->list == head);
2370 kfree_skb(skb);
2371 return NET_RX_SUCCESS;
2374 out:
2375 return netif_receive_skb(skb);
2378 void napi_gro_flush(struct napi_struct *napi)
2380 struct sk_buff *skb, *next;
2382 for (skb = napi->gro_list; skb; skb = next) {
2383 next = skb->next;
2384 skb->next = NULL;
2385 napi_gro_complete(skb);
2388 napi->gro_count = 0;
2389 napi->gro_list = NULL;
2391 EXPORT_SYMBOL(napi_gro_flush);
2393 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2395 struct sk_buff **pp = NULL;
2396 struct packet_type *ptype;
2397 __be16 type = skb->protocol;
2398 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2399 int same_flow;
2400 int mac_len;
2401 int ret;
2403 if (!(skb->dev->features & NETIF_F_GRO))
2404 goto normal;
2406 if (skb_is_gso(skb) || skb_shinfo(skb)->frag_list)
2407 goto normal;
2409 rcu_read_lock();
2410 list_for_each_entry_rcu(ptype, head, list) {
2411 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2412 continue;
2414 skb_set_network_header(skb, skb_gro_offset(skb));
2415 mac_len = skb->network_header - skb->mac_header;
2416 skb->mac_len = mac_len;
2417 NAPI_GRO_CB(skb)->same_flow = 0;
2418 NAPI_GRO_CB(skb)->flush = 0;
2419 NAPI_GRO_CB(skb)->free = 0;
2421 pp = ptype->gro_receive(&napi->gro_list, skb);
2422 break;
2424 rcu_read_unlock();
2426 if (&ptype->list == head)
2427 goto normal;
2429 same_flow = NAPI_GRO_CB(skb)->same_flow;
2430 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2432 if (pp) {
2433 struct sk_buff *nskb = *pp;
2435 *pp = nskb->next;
2436 nskb->next = NULL;
2437 napi_gro_complete(nskb);
2438 napi->gro_count--;
2441 if (same_flow)
2442 goto ok;
2444 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2445 goto normal;
2447 napi->gro_count++;
2448 NAPI_GRO_CB(skb)->count = 1;
2449 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2450 skb->next = napi->gro_list;
2451 napi->gro_list = skb;
2452 ret = GRO_HELD;
2454 pull:
2455 if (unlikely(!pskb_may_pull(skb, skb_gro_offset(skb)))) {
2456 if (napi->gro_list == skb)
2457 napi->gro_list = skb->next;
2458 ret = GRO_DROP;
2462 return ret;
2464 normal:
2465 ret = GRO_NORMAL;
2466 goto pull;
2468 EXPORT_SYMBOL(dev_gro_receive);
2470 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2472 struct sk_buff *p;
2474 if (netpoll_rx_on(skb))
2475 return GRO_NORMAL;
2477 for (p = napi->gro_list; p; p = p->next) {
2478 NAPI_GRO_CB(p)->same_flow = (p->dev == skb->dev)
2479 && !compare_ether_header(skb_mac_header(p),
2480 skb_gro_mac_header(skb));
2481 NAPI_GRO_CB(p)->flush = 0;
2484 return dev_gro_receive(napi, skb);
2487 int napi_skb_finish(int ret, struct sk_buff *skb)
2489 int err = NET_RX_SUCCESS;
2491 switch (ret) {
2492 case GRO_NORMAL:
2493 return netif_receive_skb(skb);
2495 case GRO_DROP:
2496 err = NET_RX_DROP;
2497 /* fall through */
2499 case GRO_MERGED_FREE:
2500 kfree_skb(skb);
2501 break;
2504 return err;
2506 EXPORT_SYMBOL(napi_skb_finish);
2508 void skb_gro_reset_offset(struct sk_buff *skb)
2510 NAPI_GRO_CB(skb)->data_offset = 0;
2511 NAPI_GRO_CB(skb)->frag0 = NULL;
2513 if (!skb_headlen(skb) && !PageHighMem(skb_shinfo(skb)->frags[0].page))
2514 NAPI_GRO_CB(skb)->frag0 =
2515 page_address(skb_shinfo(skb)->frags[0].page) +
2516 skb_shinfo(skb)->frags[0].page_offset;
2518 EXPORT_SYMBOL(skb_gro_reset_offset);
2520 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2522 skb_gro_reset_offset(skb);
2524 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2526 EXPORT_SYMBOL(napi_gro_receive);
2528 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2530 __skb_pull(skb, skb_headlen(skb));
2531 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2533 napi->skb = skb;
2535 EXPORT_SYMBOL(napi_reuse_skb);
2537 struct sk_buff *napi_get_frags(struct napi_struct *napi)
2539 struct net_device *dev = napi->dev;
2540 struct sk_buff *skb = napi->skb;
2542 if (!skb) {
2543 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN);
2544 if (!skb)
2545 goto out;
2547 skb_reserve(skb, NET_IP_ALIGN);
2549 napi->skb = skb;
2552 out:
2553 return skb;
2555 EXPORT_SYMBOL(napi_get_frags);
2557 int napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, int ret)
2559 int err = NET_RX_SUCCESS;
2561 switch (ret) {
2562 case GRO_NORMAL:
2563 case GRO_HELD:
2564 skb->protocol = eth_type_trans(skb, napi->dev);
2566 if (ret == GRO_NORMAL)
2567 return netif_receive_skb(skb);
2569 skb_gro_pull(skb, -ETH_HLEN);
2570 break;
2572 case GRO_DROP:
2573 err = NET_RX_DROP;
2574 /* fall through */
2576 case GRO_MERGED_FREE:
2577 napi_reuse_skb(napi, skb);
2578 break;
2581 return err;
2583 EXPORT_SYMBOL(napi_frags_finish);
2585 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
2587 struct sk_buff *skb = napi->skb;
2588 struct ethhdr *eth;
2590 napi->skb = NULL;
2592 skb_reset_mac_header(skb);
2593 skb_gro_reset_offset(skb);
2595 eth = skb_gro_header(skb, sizeof(*eth));
2596 if (!eth) {
2597 napi_reuse_skb(napi, skb);
2598 skb = NULL;
2599 goto out;
2602 skb_gro_pull(skb, sizeof(*eth));
2605 * This works because the only protocols we care about don't require
2606 * special handling. We'll fix it up properly at the end.
2608 skb->protocol = eth->h_proto;
2610 out:
2611 return skb;
2613 EXPORT_SYMBOL(napi_frags_skb);
2615 int napi_gro_frags(struct napi_struct *napi)
2617 struct sk_buff *skb = napi_frags_skb(napi);
2619 if (!skb)
2620 return NET_RX_DROP;
2622 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2624 EXPORT_SYMBOL(napi_gro_frags);
2626 static int process_backlog(struct napi_struct *napi, int quota)
2628 int work = 0;
2629 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2630 unsigned long start_time = jiffies;
2632 napi->weight = weight_p;
2633 do {
2634 struct sk_buff *skb;
2636 local_irq_disable();
2637 skb = __skb_dequeue(&queue->input_pkt_queue);
2638 if (!skb) {
2639 __napi_complete(napi);
2640 local_irq_enable();
2641 break;
2643 local_irq_enable();
2645 netif_receive_skb(skb);
2646 } while (++work < quota && jiffies == start_time);
2648 return work;
2652 * __napi_schedule - schedule for receive
2653 * @n: entry to schedule
2655 * The entry's receive function will be scheduled to run
2657 void __napi_schedule(struct napi_struct *n)
2659 unsigned long flags;
2661 local_irq_save(flags);
2662 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2663 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2664 local_irq_restore(flags);
2666 EXPORT_SYMBOL(__napi_schedule);
2668 void __napi_complete(struct napi_struct *n)
2670 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2671 BUG_ON(n->gro_list);
2673 list_del(&n->poll_list);
2674 smp_mb__before_clear_bit();
2675 clear_bit(NAPI_STATE_SCHED, &n->state);
2677 EXPORT_SYMBOL(__napi_complete);
2679 void napi_complete(struct napi_struct *n)
2681 unsigned long flags;
2684 * don't let napi dequeue from the cpu poll list
2685 * just in case its running on a different cpu
2687 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2688 return;
2690 napi_gro_flush(n);
2691 local_irq_save(flags);
2692 __napi_complete(n);
2693 local_irq_restore(flags);
2695 EXPORT_SYMBOL(napi_complete);
2697 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2698 int (*poll)(struct napi_struct *, int), int weight)
2700 INIT_LIST_HEAD(&napi->poll_list);
2701 napi->gro_count = 0;
2702 napi->gro_list = NULL;
2703 napi->skb = NULL;
2704 napi->poll = poll;
2705 napi->weight = weight;
2706 list_add(&napi->dev_list, &dev->napi_list);
2707 napi->dev = dev;
2708 #ifdef CONFIG_NETPOLL
2709 spin_lock_init(&napi->poll_lock);
2710 napi->poll_owner = -1;
2711 #endif
2712 set_bit(NAPI_STATE_SCHED, &napi->state);
2714 EXPORT_SYMBOL(netif_napi_add);
2716 void netif_napi_del(struct napi_struct *napi)
2718 struct sk_buff *skb, *next;
2720 list_del_init(&napi->dev_list);
2721 napi_free_frags(napi);
2723 for (skb = napi->gro_list; skb; skb = next) {
2724 next = skb->next;
2725 skb->next = NULL;
2726 kfree_skb(skb);
2729 napi->gro_list = NULL;
2730 napi->gro_count = 0;
2732 EXPORT_SYMBOL(netif_napi_del);
2735 static void net_rx_action(struct softirq_action *h)
2737 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2738 unsigned long time_limit = jiffies + 2;
2739 int budget = netdev_budget;
2740 void *have;
2742 local_irq_disable();
2744 while (!list_empty(list)) {
2745 struct napi_struct *n;
2746 int work, weight;
2748 /* If softirq window is exhuasted then punt.
2749 * Allow this to run for 2 jiffies since which will allow
2750 * an average latency of 1.5/HZ.
2752 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2753 goto softnet_break;
2755 local_irq_enable();
2757 /* Even though interrupts have been re-enabled, this
2758 * access is safe because interrupts can only add new
2759 * entries to the tail of this list, and only ->poll()
2760 * calls can remove this head entry from the list.
2762 n = list_entry(list->next, struct napi_struct, poll_list);
2764 have = netpoll_poll_lock(n);
2766 weight = n->weight;
2768 /* This NAPI_STATE_SCHED test is for avoiding a race
2769 * with netpoll's poll_napi(). Only the entity which
2770 * obtains the lock and sees NAPI_STATE_SCHED set will
2771 * actually make the ->poll() call. Therefore we avoid
2772 * accidently calling ->poll() when NAPI is not scheduled.
2774 work = 0;
2775 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
2776 work = n->poll(n, weight);
2777 trace_napi_poll(n);
2780 WARN_ON_ONCE(work > weight);
2782 budget -= work;
2784 local_irq_disable();
2786 /* Drivers must not modify the NAPI state if they
2787 * consume the entire weight. In such cases this code
2788 * still "owns" the NAPI instance and therefore can
2789 * move the instance around on the list at-will.
2791 if (unlikely(work == weight)) {
2792 if (unlikely(napi_disable_pending(n)))
2793 __napi_complete(n);
2794 else
2795 list_move_tail(&n->poll_list, list);
2798 netpoll_poll_unlock(have);
2800 out:
2801 local_irq_enable();
2803 #ifdef CONFIG_NET_DMA
2805 * There may not be any more sk_buffs coming right now, so push
2806 * any pending DMA copies to hardware
2808 dma_issue_pending_all();
2809 #endif
2811 return;
2813 softnet_break:
2814 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2815 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2816 goto out;
2819 static gifconf_func_t * gifconf_list [NPROTO];
2822 * register_gifconf - register a SIOCGIF handler
2823 * @family: Address family
2824 * @gifconf: Function handler
2826 * Register protocol dependent address dumping routines. The handler
2827 * that is passed must not be freed or reused until it has been replaced
2828 * by another handler.
2830 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2832 if (family >= NPROTO)
2833 return -EINVAL;
2834 gifconf_list[family] = gifconf;
2835 return 0;
2840 * Map an interface index to its name (SIOCGIFNAME)
2844 * We need this ioctl for efficient implementation of the
2845 * if_indextoname() function required by the IPv6 API. Without
2846 * it, we would have to search all the interfaces to find a
2847 * match. --pb
2850 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2852 struct net_device *dev;
2853 struct ifreq ifr;
2856 * Fetch the caller's info block.
2859 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2860 return -EFAULT;
2862 read_lock(&dev_base_lock);
2863 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2864 if (!dev) {
2865 read_unlock(&dev_base_lock);
2866 return -ENODEV;
2869 strcpy(ifr.ifr_name, dev->name);
2870 read_unlock(&dev_base_lock);
2872 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2873 return -EFAULT;
2874 return 0;
2878 * Perform a SIOCGIFCONF call. This structure will change
2879 * size eventually, and there is nothing I can do about it.
2880 * Thus we will need a 'compatibility mode'.
2883 static int dev_ifconf(struct net *net, char __user *arg)
2885 struct ifconf ifc;
2886 struct net_device *dev;
2887 char __user *pos;
2888 int len;
2889 int total;
2890 int i;
2893 * Fetch the caller's info block.
2896 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2897 return -EFAULT;
2899 pos = ifc.ifc_buf;
2900 len = ifc.ifc_len;
2903 * Loop over the interfaces, and write an info block for each.
2906 total = 0;
2907 for_each_netdev(net, dev) {
2908 for (i = 0; i < NPROTO; i++) {
2909 if (gifconf_list[i]) {
2910 int done;
2911 if (!pos)
2912 done = gifconf_list[i](dev, NULL, 0);
2913 else
2914 done = gifconf_list[i](dev, pos + total,
2915 len - total);
2916 if (done < 0)
2917 return -EFAULT;
2918 total += done;
2924 * All done. Write the updated control block back to the caller.
2926 ifc.ifc_len = total;
2929 * Both BSD and Solaris return 0 here, so we do too.
2931 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2934 #ifdef CONFIG_PROC_FS
2936 * This is invoked by the /proc filesystem handler to display a device
2937 * in detail.
2939 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2940 __acquires(dev_base_lock)
2942 struct net *net = seq_file_net(seq);
2943 loff_t off;
2944 struct net_device *dev;
2946 read_lock(&dev_base_lock);
2947 if (!*pos)
2948 return SEQ_START_TOKEN;
2950 off = 1;
2951 for_each_netdev(net, dev)
2952 if (off++ == *pos)
2953 return dev;
2955 return NULL;
2958 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2960 struct net *net = seq_file_net(seq);
2961 ++*pos;
2962 return v == SEQ_START_TOKEN ?
2963 first_net_device(net) : next_net_device((struct net_device *)v);
2966 void dev_seq_stop(struct seq_file *seq, void *v)
2967 __releases(dev_base_lock)
2969 read_unlock(&dev_base_lock);
2972 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2974 const struct net_device_stats *stats = dev_get_stats(dev);
2976 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2977 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2978 dev->name, stats->rx_bytes, stats->rx_packets,
2979 stats->rx_errors,
2980 stats->rx_dropped + stats->rx_missed_errors,
2981 stats->rx_fifo_errors,
2982 stats->rx_length_errors + stats->rx_over_errors +
2983 stats->rx_crc_errors + stats->rx_frame_errors,
2984 stats->rx_compressed, stats->multicast,
2985 stats->tx_bytes, stats->tx_packets,
2986 stats->tx_errors, stats->tx_dropped,
2987 stats->tx_fifo_errors, stats->collisions,
2988 stats->tx_carrier_errors +
2989 stats->tx_aborted_errors +
2990 stats->tx_window_errors +
2991 stats->tx_heartbeat_errors,
2992 stats->tx_compressed);
2996 * Called from the PROCfs module. This now uses the new arbitrary sized
2997 * /proc/net interface to create /proc/net/dev
2999 static int dev_seq_show(struct seq_file *seq, void *v)
3001 if (v == SEQ_START_TOKEN)
3002 seq_puts(seq, "Inter-| Receive "
3003 " | Transmit\n"
3004 " face |bytes packets errs drop fifo frame "
3005 "compressed multicast|bytes packets errs "
3006 "drop fifo colls carrier compressed\n");
3007 else
3008 dev_seq_printf_stats(seq, v);
3009 return 0;
3012 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3014 struct netif_rx_stats *rc = NULL;
3016 while (*pos < nr_cpu_ids)
3017 if (cpu_online(*pos)) {
3018 rc = &per_cpu(netdev_rx_stat, *pos);
3019 break;
3020 } else
3021 ++*pos;
3022 return rc;
3025 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3027 return softnet_get_online(pos);
3030 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3032 ++*pos;
3033 return softnet_get_online(pos);
3036 static void softnet_seq_stop(struct seq_file *seq, void *v)
3040 static int softnet_seq_show(struct seq_file *seq, void *v)
3042 struct netif_rx_stats *s = v;
3044 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3045 s->total, s->dropped, s->time_squeeze, 0,
3046 0, 0, 0, 0, /* was fastroute */
3047 s->cpu_collision );
3048 return 0;
3051 static const struct seq_operations dev_seq_ops = {
3052 .start = dev_seq_start,
3053 .next = dev_seq_next,
3054 .stop = dev_seq_stop,
3055 .show = dev_seq_show,
3058 static int dev_seq_open(struct inode *inode, struct file *file)
3060 return seq_open_net(inode, file, &dev_seq_ops,
3061 sizeof(struct seq_net_private));
3064 static const struct file_operations dev_seq_fops = {
3065 .owner = THIS_MODULE,
3066 .open = dev_seq_open,
3067 .read = seq_read,
3068 .llseek = seq_lseek,
3069 .release = seq_release_net,
3072 static const struct seq_operations softnet_seq_ops = {
3073 .start = softnet_seq_start,
3074 .next = softnet_seq_next,
3075 .stop = softnet_seq_stop,
3076 .show = softnet_seq_show,
3079 static int softnet_seq_open(struct inode *inode, struct file *file)
3081 return seq_open(file, &softnet_seq_ops);
3084 static const struct file_operations softnet_seq_fops = {
3085 .owner = THIS_MODULE,
3086 .open = softnet_seq_open,
3087 .read = seq_read,
3088 .llseek = seq_lseek,
3089 .release = seq_release,
3092 static void *ptype_get_idx(loff_t pos)
3094 struct packet_type *pt = NULL;
3095 loff_t i = 0;
3096 int t;
3098 list_for_each_entry_rcu(pt, &ptype_all, list) {
3099 if (i == pos)
3100 return pt;
3101 ++i;
3104 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3105 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3106 if (i == pos)
3107 return pt;
3108 ++i;
3111 return NULL;
3114 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3115 __acquires(RCU)
3117 rcu_read_lock();
3118 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3121 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3123 struct packet_type *pt;
3124 struct list_head *nxt;
3125 int hash;
3127 ++*pos;
3128 if (v == SEQ_START_TOKEN)
3129 return ptype_get_idx(0);
3131 pt = v;
3132 nxt = pt->list.next;
3133 if (pt->type == htons(ETH_P_ALL)) {
3134 if (nxt != &ptype_all)
3135 goto found;
3136 hash = 0;
3137 nxt = ptype_base[0].next;
3138 } else
3139 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3141 while (nxt == &ptype_base[hash]) {
3142 if (++hash >= PTYPE_HASH_SIZE)
3143 return NULL;
3144 nxt = ptype_base[hash].next;
3146 found:
3147 return list_entry(nxt, struct packet_type, list);
3150 static void ptype_seq_stop(struct seq_file *seq, void *v)
3151 __releases(RCU)
3153 rcu_read_unlock();
3156 static int ptype_seq_show(struct seq_file *seq, void *v)
3158 struct packet_type *pt = v;
3160 if (v == SEQ_START_TOKEN)
3161 seq_puts(seq, "Type Device Function\n");
3162 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3163 if (pt->type == htons(ETH_P_ALL))
3164 seq_puts(seq, "ALL ");
3165 else
3166 seq_printf(seq, "%04x", ntohs(pt->type));
3168 seq_printf(seq, " %-8s %pF\n",
3169 pt->dev ? pt->dev->name : "", pt->func);
3172 return 0;
3175 static const struct seq_operations ptype_seq_ops = {
3176 .start = ptype_seq_start,
3177 .next = ptype_seq_next,
3178 .stop = ptype_seq_stop,
3179 .show = ptype_seq_show,
3182 static int ptype_seq_open(struct inode *inode, struct file *file)
3184 return seq_open_net(inode, file, &ptype_seq_ops,
3185 sizeof(struct seq_net_private));
3188 static const struct file_operations ptype_seq_fops = {
3189 .owner = THIS_MODULE,
3190 .open = ptype_seq_open,
3191 .read = seq_read,
3192 .llseek = seq_lseek,
3193 .release = seq_release_net,
3197 static int __net_init dev_proc_net_init(struct net *net)
3199 int rc = -ENOMEM;
3201 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3202 goto out;
3203 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3204 goto out_dev;
3205 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3206 goto out_softnet;
3208 if (wext_proc_init(net))
3209 goto out_ptype;
3210 rc = 0;
3211 out:
3212 return rc;
3213 out_ptype:
3214 proc_net_remove(net, "ptype");
3215 out_softnet:
3216 proc_net_remove(net, "softnet_stat");
3217 out_dev:
3218 proc_net_remove(net, "dev");
3219 goto out;
3222 static void __net_exit dev_proc_net_exit(struct net *net)
3224 wext_proc_exit(net);
3226 proc_net_remove(net, "ptype");
3227 proc_net_remove(net, "softnet_stat");
3228 proc_net_remove(net, "dev");
3231 static struct pernet_operations __net_initdata dev_proc_ops = {
3232 .init = dev_proc_net_init,
3233 .exit = dev_proc_net_exit,
3236 static int __init dev_proc_init(void)
3238 return register_pernet_subsys(&dev_proc_ops);
3240 #else
3241 #define dev_proc_init() 0
3242 #endif /* CONFIG_PROC_FS */
3246 * netdev_set_master - set up master/slave pair
3247 * @slave: slave device
3248 * @master: new master device
3250 * Changes the master device of the slave. Pass %NULL to break the
3251 * bonding. The caller must hold the RTNL semaphore. On a failure
3252 * a negative errno code is returned. On success the reference counts
3253 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3254 * function returns zero.
3256 int netdev_set_master(struct net_device *slave, struct net_device *master)
3258 struct net_device *old = slave->master;
3260 ASSERT_RTNL();
3262 if (master) {
3263 if (old)
3264 return -EBUSY;
3265 dev_hold(master);
3268 slave->master = master;
3270 synchronize_net();
3272 if (old)
3273 dev_put(old);
3275 if (master)
3276 slave->flags |= IFF_SLAVE;
3277 else
3278 slave->flags &= ~IFF_SLAVE;
3280 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3281 return 0;
3284 static void dev_change_rx_flags(struct net_device *dev, int flags)
3286 const struct net_device_ops *ops = dev->netdev_ops;
3288 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3289 ops->ndo_change_rx_flags(dev, flags);
3292 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3294 unsigned short old_flags = dev->flags;
3295 uid_t uid;
3296 gid_t gid;
3298 ASSERT_RTNL();
3300 dev->flags |= IFF_PROMISC;
3301 dev->promiscuity += inc;
3302 if (dev->promiscuity == 0) {
3304 * Avoid overflow.
3305 * If inc causes overflow, untouch promisc and return error.
3307 if (inc < 0)
3308 dev->flags &= ~IFF_PROMISC;
3309 else {
3310 dev->promiscuity -= inc;
3311 printk(KERN_WARNING "%s: promiscuity touches roof, "
3312 "set promiscuity failed, promiscuity feature "
3313 "of device might be broken.\n", dev->name);
3314 return -EOVERFLOW;
3317 if (dev->flags != old_flags) {
3318 printk(KERN_INFO "device %s %s promiscuous mode\n",
3319 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3320 "left");
3321 if (audit_enabled) {
3322 current_uid_gid(&uid, &gid);
3323 audit_log(current->audit_context, GFP_ATOMIC,
3324 AUDIT_ANOM_PROMISCUOUS,
3325 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3326 dev->name, (dev->flags & IFF_PROMISC),
3327 (old_flags & IFF_PROMISC),
3328 audit_get_loginuid(current),
3329 uid, gid,
3330 audit_get_sessionid(current));
3333 dev_change_rx_flags(dev, IFF_PROMISC);
3335 return 0;
3339 * dev_set_promiscuity - update promiscuity count on a device
3340 * @dev: device
3341 * @inc: modifier
3343 * Add or remove promiscuity from a device. While the count in the device
3344 * remains above zero the interface remains promiscuous. Once it hits zero
3345 * the device reverts back to normal filtering operation. A negative inc
3346 * value is used to drop promiscuity on the device.
3347 * Return 0 if successful or a negative errno code on error.
3349 int dev_set_promiscuity(struct net_device *dev, int inc)
3351 unsigned short old_flags = dev->flags;
3352 int err;
3354 err = __dev_set_promiscuity(dev, inc);
3355 if (err < 0)
3356 return err;
3357 if (dev->flags != old_flags)
3358 dev_set_rx_mode(dev);
3359 return err;
3363 * dev_set_allmulti - update allmulti count on a device
3364 * @dev: device
3365 * @inc: modifier
3367 * Add or remove reception of all multicast frames to a device. While the
3368 * count in the device remains above zero the interface remains listening
3369 * to all interfaces. Once it hits zero the device reverts back to normal
3370 * filtering operation. A negative @inc value is used to drop the counter
3371 * when releasing a resource needing all multicasts.
3372 * Return 0 if successful or a negative errno code on error.
3375 int dev_set_allmulti(struct net_device *dev, int inc)
3377 unsigned short old_flags = dev->flags;
3379 ASSERT_RTNL();
3381 dev->flags |= IFF_ALLMULTI;
3382 dev->allmulti += inc;
3383 if (dev->allmulti == 0) {
3385 * Avoid overflow.
3386 * If inc causes overflow, untouch allmulti and return error.
3388 if (inc < 0)
3389 dev->flags &= ~IFF_ALLMULTI;
3390 else {
3391 dev->allmulti -= inc;
3392 printk(KERN_WARNING "%s: allmulti touches roof, "
3393 "set allmulti failed, allmulti feature of "
3394 "device might be broken.\n", dev->name);
3395 return -EOVERFLOW;
3398 if (dev->flags ^ old_flags) {
3399 dev_change_rx_flags(dev, IFF_ALLMULTI);
3400 dev_set_rx_mode(dev);
3402 return 0;
3406 * Upload unicast and multicast address lists to device and
3407 * configure RX filtering. When the device doesn't support unicast
3408 * filtering it is put in promiscuous mode while unicast addresses
3409 * are present.
3411 void __dev_set_rx_mode(struct net_device *dev)
3413 const struct net_device_ops *ops = dev->netdev_ops;
3415 /* dev_open will call this function so the list will stay sane. */
3416 if (!(dev->flags&IFF_UP))
3417 return;
3419 if (!netif_device_present(dev))
3420 return;
3422 if (ops->ndo_set_rx_mode)
3423 ops->ndo_set_rx_mode(dev);
3424 else {
3425 /* Unicast addresses changes may only happen under the rtnl,
3426 * therefore calling __dev_set_promiscuity here is safe.
3428 if (dev->uc_count > 0 && !dev->uc_promisc) {
3429 __dev_set_promiscuity(dev, 1);
3430 dev->uc_promisc = 1;
3431 } else if (dev->uc_count == 0 && dev->uc_promisc) {
3432 __dev_set_promiscuity(dev, -1);
3433 dev->uc_promisc = 0;
3436 if (ops->ndo_set_multicast_list)
3437 ops->ndo_set_multicast_list(dev);
3441 void dev_set_rx_mode(struct net_device *dev)
3443 netif_addr_lock_bh(dev);
3444 __dev_set_rx_mode(dev);
3445 netif_addr_unlock_bh(dev);
3448 /* hw addresses list handling functions */
3450 static int __hw_addr_add(struct list_head *list, unsigned char *addr,
3451 int addr_len, unsigned char addr_type)
3453 struct netdev_hw_addr *ha;
3454 int alloc_size;
3456 if (addr_len > MAX_ADDR_LEN)
3457 return -EINVAL;
3459 alloc_size = sizeof(*ha);
3460 if (alloc_size < L1_CACHE_BYTES)
3461 alloc_size = L1_CACHE_BYTES;
3462 ha = kmalloc(alloc_size, GFP_ATOMIC);
3463 if (!ha)
3464 return -ENOMEM;
3465 memcpy(ha->addr, addr, addr_len);
3466 ha->type = addr_type;
3467 list_add_tail_rcu(&ha->list, list);
3468 return 0;
3471 static void ha_rcu_free(struct rcu_head *head)
3473 struct netdev_hw_addr *ha;
3475 ha = container_of(head, struct netdev_hw_addr, rcu_head);
3476 kfree(ha);
3479 static int __hw_addr_del_ii(struct list_head *list, unsigned char *addr,
3480 int addr_len, unsigned char addr_type,
3481 int ignore_index)
3483 struct netdev_hw_addr *ha;
3484 int i = 0;
3486 list_for_each_entry(ha, list, list) {
3487 if (i++ != ignore_index &&
3488 !memcmp(ha->addr, addr, addr_len) &&
3489 (ha->type == addr_type || !addr_type)) {
3490 list_del_rcu(&ha->list);
3491 call_rcu(&ha->rcu_head, ha_rcu_free);
3492 return 0;
3495 return -ENOENT;
3498 static int __hw_addr_add_multiple_ii(struct list_head *to_list,
3499 struct list_head *from_list,
3500 int addr_len, unsigned char addr_type,
3501 int ignore_index)
3503 int err;
3504 struct netdev_hw_addr *ha, *ha2;
3505 unsigned char type;
3507 list_for_each_entry(ha, from_list, list) {
3508 type = addr_type ? addr_type : ha->type;
3509 err = __hw_addr_add(to_list, ha->addr, addr_len, type);
3510 if (err)
3511 goto unroll;
3513 return 0;
3515 unroll:
3516 list_for_each_entry(ha2, from_list, list) {
3517 if (ha2 == ha)
3518 break;
3519 type = addr_type ? addr_type : ha2->type;
3520 __hw_addr_del_ii(to_list, ha2->addr, addr_len, type,
3521 ignore_index);
3523 return err;
3526 static void __hw_addr_del_multiple_ii(struct list_head *to_list,
3527 struct list_head *from_list,
3528 int addr_len, unsigned char addr_type,
3529 int ignore_index)
3531 struct netdev_hw_addr *ha;
3532 unsigned char type;
3534 list_for_each_entry(ha, from_list, list) {
3535 type = addr_type ? addr_type : ha->type;
3536 __hw_addr_del_ii(to_list, ha->addr, addr_len, addr_type,
3537 ignore_index);
3541 static void __hw_addr_flush(struct list_head *list)
3543 struct netdev_hw_addr *ha, *tmp;
3545 list_for_each_entry_safe(ha, tmp, list, list) {
3546 list_del_rcu(&ha->list);
3547 call_rcu(&ha->rcu_head, ha_rcu_free);
3551 /* Device addresses handling functions */
3553 static void dev_addr_flush(struct net_device *dev)
3555 /* rtnl_mutex must be held here */
3557 __hw_addr_flush(&dev->dev_addr_list);
3558 dev->dev_addr = NULL;
3561 static int dev_addr_init(struct net_device *dev)
3563 unsigned char addr[MAX_ADDR_LEN];
3564 struct netdev_hw_addr *ha;
3565 int err;
3567 /* rtnl_mutex must be held here */
3569 INIT_LIST_HEAD(&dev->dev_addr_list);
3570 memset(addr, 0, sizeof(*addr));
3571 err = __hw_addr_add(&dev->dev_addr_list, addr, sizeof(*addr),
3572 NETDEV_HW_ADDR_T_LAN);
3573 if (!err) {
3575 * Get the first (previously created) address from the list
3576 * and set dev_addr pointer to this location.
3578 ha = list_first_entry(&dev->dev_addr_list,
3579 struct netdev_hw_addr, list);
3580 dev->dev_addr = ha->addr;
3582 return err;
3586 * dev_addr_add - Add a device address
3587 * @dev: device
3588 * @addr: address to add
3589 * @addr_type: address type
3591 * Add a device address to the device or increase the reference count if
3592 * it already exists.
3594 * The caller must hold the rtnl_mutex.
3596 int dev_addr_add(struct net_device *dev, unsigned char *addr,
3597 unsigned char addr_type)
3599 int err;
3601 ASSERT_RTNL();
3603 err = __hw_addr_add(&dev->dev_addr_list, addr, dev->addr_len,
3604 addr_type);
3605 if (!err)
3606 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3607 return err;
3609 EXPORT_SYMBOL(dev_addr_add);
3612 * dev_addr_del - Release a device address.
3613 * @dev: device
3614 * @addr: address to delete
3615 * @addr_type: address type
3617 * Release reference to a device address and remove it from the device
3618 * if the reference count drops to zero.
3620 * The caller must hold the rtnl_mutex.
3622 int dev_addr_del(struct net_device *dev, unsigned char *addr,
3623 unsigned char addr_type)
3625 int err;
3627 ASSERT_RTNL();
3629 err = __hw_addr_del_ii(&dev->dev_addr_list, addr, dev->addr_len,
3630 addr_type, 0);
3631 if (!err)
3632 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3633 return err;
3635 EXPORT_SYMBOL(dev_addr_del);
3638 * dev_addr_add_multiple - Add device addresses from another device
3639 * @to_dev: device to which addresses will be added
3640 * @from_dev: device from which addresses will be added
3641 * @addr_type: address type - 0 means type will be used from from_dev
3643 * Add device addresses of the one device to another.
3645 * The caller must hold the rtnl_mutex.
3647 int dev_addr_add_multiple(struct net_device *to_dev,
3648 struct net_device *from_dev,
3649 unsigned char addr_type)
3651 int err;
3653 ASSERT_RTNL();
3655 if (from_dev->addr_len != to_dev->addr_len)
3656 return -EINVAL;
3657 err = __hw_addr_add_multiple_ii(&to_dev->dev_addr_list,
3658 &from_dev->dev_addr_list,
3659 to_dev->addr_len, addr_type, 0);
3660 if (!err)
3661 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3662 return err;
3664 EXPORT_SYMBOL(dev_addr_add_multiple);
3667 * dev_addr_del_multiple - Delete device addresses by another device
3668 * @to_dev: device where the addresses will be deleted
3669 * @from_dev: device by which addresses the addresses will be deleted
3670 * @addr_type: address type - 0 means type will used from from_dev
3672 * Deletes addresses in to device by the list of addresses in from device.
3674 * The caller must hold the rtnl_mutex.
3676 int dev_addr_del_multiple(struct net_device *to_dev,
3677 struct net_device *from_dev,
3678 unsigned char addr_type)
3680 ASSERT_RTNL();
3682 if (from_dev->addr_len != to_dev->addr_len)
3683 return -EINVAL;
3684 __hw_addr_del_multiple_ii(&to_dev->dev_addr_list,
3685 &from_dev->dev_addr_list,
3686 to_dev->addr_len, addr_type, 0);
3687 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3688 return 0;
3690 EXPORT_SYMBOL(dev_addr_del_multiple);
3692 /* unicast and multicast addresses handling functions */
3694 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3695 void *addr, int alen, int glbl)
3697 struct dev_addr_list *da;
3699 for (; (da = *list) != NULL; list = &da->next) {
3700 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3701 alen == da->da_addrlen) {
3702 if (glbl) {
3703 int old_glbl = da->da_gusers;
3704 da->da_gusers = 0;
3705 if (old_glbl == 0)
3706 break;
3708 if (--da->da_users)
3709 return 0;
3711 *list = da->next;
3712 kfree(da);
3713 (*count)--;
3714 return 0;
3717 return -ENOENT;
3720 int __dev_addr_add(struct dev_addr_list **list, int *count,
3721 void *addr, int alen, int glbl)
3723 struct dev_addr_list *da;
3725 for (da = *list; da != NULL; da = da->next) {
3726 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3727 da->da_addrlen == alen) {
3728 if (glbl) {
3729 int old_glbl = da->da_gusers;
3730 da->da_gusers = 1;
3731 if (old_glbl)
3732 return 0;
3734 da->da_users++;
3735 return 0;
3739 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3740 if (da == NULL)
3741 return -ENOMEM;
3742 memcpy(da->da_addr, addr, alen);
3743 da->da_addrlen = alen;
3744 da->da_users = 1;
3745 da->da_gusers = glbl ? 1 : 0;
3746 da->next = *list;
3747 *list = da;
3748 (*count)++;
3749 return 0;
3753 * dev_unicast_delete - Release secondary unicast address.
3754 * @dev: device
3755 * @addr: address to delete
3756 * @alen: length of @addr
3758 * Release reference to a secondary unicast address and remove it
3759 * from the device if the reference count drops to zero.
3761 * The caller must hold the rtnl_mutex.
3763 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3765 int err;
3767 ASSERT_RTNL();
3769 netif_addr_lock_bh(dev);
3770 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3771 if (!err)
3772 __dev_set_rx_mode(dev);
3773 netif_addr_unlock_bh(dev);
3774 return err;
3776 EXPORT_SYMBOL(dev_unicast_delete);
3779 * dev_unicast_add - add a secondary unicast address
3780 * @dev: device
3781 * @addr: address to add
3782 * @alen: length of @addr
3784 * Add a secondary unicast address to the device or increase
3785 * the reference count if it already exists.
3787 * The caller must hold the rtnl_mutex.
3789 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3791 int err;
3793 ASSERT_RTNL();
3795 netif_addr_lock_bh(dev);
3796 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3797 if (!err)
3798 __dev_set_rx_mode(dev);
3799 netif_addr_unlock_bh(dev);
3800 return err;
3802 EXPORT_SYMBOL(dev_unicast_add);
3804 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3805 struct dev_addr_list **from, int *from_count)
3807 struct dev_addr_list *da, *next;
3808 int err = 0;
3810 da = *from;
3811 while (da != NULL) {
3812 next = da->next;
3813 if (!da->da_synced) {
3814 err = __dev_addr_add(to, to_count,
3815 da->da_addr, da->da_addrlen, 0);
3816 if (err < 0)
3817 break;
3818 da->da_synced = 1;
3819 da->da_users++;
3820 } else if (da->da_users == 1) {
3821 __dev_addr_delete(to, to_count,
3822 da->da_addr, da->da_addrlen, 0);
3823 __dev_addr_delete(from, from_count,
3824 da->da_addr, da->da_addrlen, 0);
3826 da = next;
3828 return err;
3831 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3832 struct dev_addr_list **from, int *from_count)
3834 struct dev_addr_list *da, *next;
3836 da = *from;
3837 while (da != NULL) {
3838 next = da->next;
3839 if (da->da_synced) {
3840 __dev_addr_delete(to, to_count,
3841 da->da_addr, da->da_addrlen, 0);
3842 da->da_synced = 0;
3843 __dev_addr_delete(from, from_count,
3844 da->da_addr, da->da_addrlen, 0);
3846 da = next;
3851 * dev_unicast_sync - Synchronize device's unicast list to another device
3852 * @to: destination device
3853 * @from: source device
3855 * Add newly added addresses to the destination device and release
3856 * addresses that have no users left. The source device must be
3857 * locked by netif_tx_lock_bh.
3859 * This function is intended to be called from the dev->set_rx_mode
3860 * function of layered software devices.
3862 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3864 int err = 0;
3866 netif_addr_lock_bh(to);
3867 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3868 &from->uc_list, &from->uc_count);
3869 if (!err)
3870 __dev_set_rx_mode(to);
3871 netif_addr_unlock_bh(to);
3872 return err;
3874 EXPORT_SYMBOL(dev_unicast_sync);
3877 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3878 * @to: destination device
3879 * @from: source device
3881 * Remove all addresses that were added to the destination device by
3882 * dev_unicast_sync(). This function is intended to be called from the
3883 * dev->stop function of layered software devices.
3885 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3887 netif_addr_lock_bh(from);
3888 netif_addr_lock(to);
3890 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3891 &from->uc_list, &from->uc_count);
3892 __dev_set_rx_mode(to);
3894 netif_addr_unlock(to);
3895 netif_addr_unlock_bh(from);
3897 EXPORT_SYMBOL(dev_unicast_unsync);
3899 static void __dev_addr_discard(struct dev_addr_list **list)
3901 struct dev_addr_list *tmp;
3903 while (*list != NULL) {
3904 tmp = *list;
3905 *list = tmp->next;
3906 if (tmp->da_users > tmp->da_gusers)
3907 printk("__dev_addr_discard: address leakage! "
3908 "da_users=%d\n", tmp->da_users);
3909 kfree(tmp);
3913 static void dev_addr_discard(struct net_device *dev)
3915 netif_addr_lock_bh(dev);
3917 __dev_addr_discard(&dev->uc_list);
3918 dev->uc_count = 0;
3920 __dev_addr_discard(&dev->mc_list);
3921 dev->mc_count = 0;
3923 netif_addr_unlock_bh(dev);
3927 * dev_get_flags - get flags reported to userspace
3928 * @dev: device
3930 * Get the combination of flag bits exported through APIs to userspace.
3932 unsigned dev_get_flags(const struct net_device *dev)
3934 unsigned flags;
3936 flags = (dev->flags & ~(IFF_PROMISC |
3937 IFF_ALLMULTI |
3938 IFF_RUNNING |
3939 IFF_LOWER_UP |
3940 IFF_DORMANT)) |
3941 (dev->gflags & (IFF_PROMISC |
3942 IFF_ALLMULTI));
3944 if (netif_running(dev)) {
3945 if (netif_oper_up(dev))
3946 flags |= IFF_RUNNING;
3947 if (netif_carrier_ok(dev))
3948 flags |= IFF_LOWER_UP;
3949 if (netif_dormant(dev))
3950 flags |= IFF_DORMANT;
3953 return flags;
3957 * dev_change_flags - change device settings
3958 * @dev: device
3959 * @flags: device state flags
3961 * Change settings on device based state flags. The flags are
3962 * in the userspace exported format.
3964 int dev_change_flags(struct net_device *dev, unsigned flags)
3966 int ret, changes;
3967 int old_flags = dev->flags;
3969 ASSERT_RTNL();
3972 * Set the flags on our device.
3975 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3976 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3977 IFF_AUTOMEDIA)) |
3978 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3979 IFF_ALLMULTI));
3982 * Load in the correct multicast list now the flags have changed.
3985 if ((old_flags ^ flags) & IFF_MULTICAST)
3986 dev_change_rx_flags(dev, IFF_MULTICAST);
3988 dev_set_rx_mode(dev);
3991 * Have we downed the interface. We handle IFF_UP ourselves
3992 * according to user attempts to set it, rather than blindly
3993 * setting it.
3996 ret = 0;
3997 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3998 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
4000 if (!ret)
4001 dev_set_rx_mode(dev);
4004 if (dev->flags & IFF_UP &&
4005 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
4006 IFF_VOLATILE)))
4007 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4009 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4010 int inc = (flags & IFF_PROMISC) ? +1 : -1;
4011 dev->gflags ^= IFF_PROMISC;
4012 dev_set_promiscuity(dev, inc);
4015 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4016 is important. Some (broken) drivers set IFF_PROMISC, when
4017 IFF_ALLMULTI is requested not asking us and not reporting.
4019 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4020 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
4021 dev->gflags ^= IFF_ALLMULTI;
4022 dev_set_allmulti(dev, inc);
4025 /* Exclude state transition flags, already notified */
4026 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
4027 if (changes)
4028 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4030 return ret;
4034 * dev_set_mtu - Change maximum transfer unit
4035 * @dev: device
4036 * @new_mtu: new transfer unit
4038 * Change the maximum transfer size of the network device.
4040 int dev_set_mtu(struct net_device *dev, int new_mtu)
4042 const struct net_device_ops *ops = dev->netdev_ops;
4043 int err;
4045 if (new_mtu == dev->mtu)
4046 return 0;
4048 /* MTU must be positive. */
4049 if (new_mtu < 0)
4050 return -EINVAL;
4052 if (!netif_device_present(dev))
4053 return -ENODEV;
4055 err = 0;
4056 if (ops->ndo_change_mtu)
4057 err = ops->ndo_change_mtu(dev, new_mtu);
4058 else
4059 dev->mtu = new_mtu;
4061 if (!err && dev->flags & IFF_UP)
4062 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4063 return err;
4067 * dev_set_mac_address - Change Media Access Control Address
4068 * @dev: device
4069 * @sa: new address
4071 * Change the hardware (MAC) address of the device
4073 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4075 const struct net_device_ops *ops = dev->netdev_ops;
4076 int err;
4078 if (!ops->ndo_set_mac_address)
4079 return -EOPNOTSUPP;
4080 if (sa->sa_family != dev->type)
4081 return -EINVAL;
4082 if (!netif_device_present(dev))
4083 return -ENODEV;
4084 err = ops->ndo_set_mac_address(dev, sa);
4085 if (!err)
4086 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4087 return err;
4091 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
4093 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4095 int err;
4096 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4098 if (!dev)
4099 return -ENODEV;
4101 switch (cmd) {
4102 case SIOCGIFFLAGS: /* Get interface flags */
4103 ifr->ifr_flags = dev_get_flags(dev);
4104 return 0;
4106 case SIOCGIFMETRIC: /* Get the metric on the interface
4107 (currently unused) */
4108 ifr->ifr_metric = 0;
4109 return 0;
4111 case SIOCGIFMTU: /* Get the MTU of a device */
4112 ifr->ifr_mtu = dev->mtu;
4113 return 0;
4115 case SIOCGIFHWADDR:
4116 if (!dev->addr_len)
4117 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4118 else
4119 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4120 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4121 ifr->ifr_hwaddr.sa_family = dev->type;
4122 return 0;
4124 case SIOCGIFSLAVE:
4125 err = -EINVAL;
4126 break;
4128 case SIOCGIFMAP:
4129 ifr->ifr_map.mem_start = dev->mem_start;
4130 ifr->ifr_map.mem_end = dev->mem_end;
4131 ifr->ifr_map.base_addr = dev->base_addr;
4132 ifr->ifr_map.irq = dev->irq;
4133 ifr->ifr_map.dma = dev->dma;
4134 ifr->ifr_map.port = dev->if_port;
4135 return 0;
4137 case SIOCGIFINDEX:
4138 ifr->ifr_ifindex = dev->ifindex;
4139 return 0;
4141 case SIOCGIFTXQLEN:
4142 ifr->ifr_qlen = dev->tx_queue_len;
4143 return 0;
4145 default:
4146 /* dev_ioctl() should ensure this case
4147 * is never reached
4149 WARN_ON(1);
4150 err = -EINVAL;
4151 break;
4154 return err;
4158 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4160 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4162 int err;
4163 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4164 const struct net_device_ops *ops;
4166 if (!dev)
4167 return -ENODEV;
4169 ops = dev->netdev_ops;
4171 switch (cmd) {
4172 case SIOCSIFFLAGS: /* Set interface flags */
4173 return dev_change_flags(dev, ifr->ifr_flags);
4175 case SIOCSIFMETRIC: /* Set the metric on the interface
4176 (currently unused) */
4177 return -EOPNOTSUPP;
4179 case SIOCSIFMTU: /* Set the MTU of a device */
4180 return dev_set_mtu(dev, ifr->ifr_mtu);
4182 case SIOCSIFHWADDR:
4183 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4185 case SIOCSIFHWBROADCAST:
4186 if (ifr->ifr_hwaddr.sa_family != dev->type)
4187 return -EINVAL;
4188 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4189 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4190 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4191 return 0;
4193 case SIOCSIFMAP:
4194 if (ops->ndo_set_config) {
4195 if (!netif_device_present(dev))
4196 return -ENODEV;
4197 return ops->ndo_set_config(dev, &ifr->ifr_map);
4199 return -EOPNOTSUPP;
4201 case SIOCADDMULTI:
4202 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4203 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4204 return -EINVAL;
4205 if (!netif_device_present(dev))
4206 return -ENODEV;
4207 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
4208 dev->addr_len, 1);
4210 case SIOCDELMULTI:
4211 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4212 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4213 return -EINVAL;
4214 if (!netif_device_present(dev))
4215 return -ENODEV;
4216 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
4217 dev->addr_len, 1);
4219 case SIOCSIFTXQLEN:
4220 if (ifr->ifr_qlen < 0)
4221 return -EINVAL;
4222 dev->tx_queue_len = ifr->ifr_qlen;
4223 return 0;
4225 case SIOCSIFNAME:
4226 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4227 return dev_change_name(dev, ifr->ifr_newname);
4230 * Unknown or private ioctl
4233 default:
4234 if ((cmd >= SIOCDEVPRIVATE &&
4235 cmd <= SIOCDEVPRIVATE + 15) ||
4236 cmd == SIOCBONDENSLAVE ||
4237 cmd == SIOCBONDRELEASE ||
4238 cmd == SIOCBONDSETHWADDR ||
4239 cmd == SIOCBONDSLAVEINFOQUERY ||
4240 cmd == SIOCBONDINFOQUERY ||
4241 cmd == SIOCBONDCHANGEACTIVE ||
4242 cmd == SIOCGMIIPHY ||
4243 cmd == SIOCGMIIREG ||
4244 cmd == SIOCSMIIREG ||
4245 cmd == SIOCBRADDIF ||
4246 cmd == SIOCBRDELIF ||
4247 cmd == SIOCSHWTSTAMP ||
4248 cmd == SIOCWANDEV) {
4249 err = -EOPNOTSUPP;
4250 if (ops->ndo_do_ioctl) {
4251 if (netif_device_present(dev))
4252 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4253 else
4254 err = -ENODEV;
4256 } else
4257 err = -EINVAL;
4260 return err;
4264 * This function handles all "interface"-type I/O control requests. The actual
4265 * 'doing' part of this is dev_ifsioc above.
4269 * dev_ioctl - network device ioctl
4270 * @net: the applicable net namespace
4271 * @cmd: command to issue
4272 * @arg: pointer to a struct ifreq in user space
4274 * Issue ioctl functions to devices. This is normally called by the
4275 * user space syscall interfaces but can sometimes be useful for
4276 * other purposes. The return value is the return from the syscall if
4277 * positive or a negative errno code on error.
4280 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4282 struct ifreq ifr;
4283 int ret;
4284 char *colon;
4286 /* One special case: SIOCGIFCONF takes ifconf argument
4287 and requires shared lock, because it sleeps writing
4288 to user space.
4291 if (cmd == SIOCGIFCONF) {
4292 rtnl_lock();
4293 ret = dev_ifconf(net, (char __user *) arg);
4294 rtnl_unlock();
4295 return ret;
4297 if (cmd == SIOCGIFNAME)
4298 return dev_ifname(net, (struct ifreq __user *)arg);
4300 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4301 return -EFAULT;
4303 ifr.ifr_name[IFNAMSIZ-1] = 0;
4305 colon = strchr(ifr.ifr_name, ':');
4306 if (colon)
4307 *colon = 0;
4310 * See which interface the caller is talking about.
4313 switch (cmd) {
4315 * These ioctl calls:
4316 * - can be done by all.
4317 * - atomic and do not require locking.
4318 * - return a value
4320 case SIOCGIFFLAGS:
4321 case SIOCGIFMETRIC:
4322 case SIOCGIFMTU:
4323 case SIOCGIFHWADDR:
4324 case SIOCGIFSLAVE:
4325 case SIOCGIFMAP:
4326 case SIOCGIFINDEX:
4327 case SIOCGIFTXQLEN:
4328 dev_load(net, ifr.ifr_name);
4329 read_lock(&dev_base_lock);
4330 ret = dev_ifsioc_locked(net, &ifr, cmd);
4331 read_unlock(&dev_base_lock);
4332 if (!ret) {
4333 if (colon)
4334 *colon = ':';
4335 if (copy_to_user(arg, &ifr,
4336 sizeof(struct ifreq)))
4337 ret = -EFAULT;
4339 return ret;
4341 case SIOCETHTOOL:
4342 dev_load(net, ifr.ifr_name);
4343 rtnl_lock();
4344 ret = dev_ethtool(net, &ifr);
4345 rtnl_unlock();
4346 if (!ret) {
4347 if (colon)
4348 *colon = ':';
4349 if (copy_to_user(arg, &ifr,
4350 sizeof(struct ifreq)))
4351 ret = -EFAULT;
4353 return ret;
4356 * These ioctl calls:
4357 * - require superuser power.
4358 * - require strict serialization.
4359 * - return a value
4361 case SIOCGMIIPHY:
4362 case SIOCGMIIREG:
4363 case SIOCSIFNAME:
4364 if (!capable(CAP_NET_ADMIN))
4365 return -EPERM;
4366 dev_load(net, ifr.ifr_name);
4367 rtnl_lock();
4368 ret = dev_ifsioc(net, &ifr, cmd);
4369 rtnl_unlock();
4370 if (!ret) {
4371 if (colon)
4372 *colon = ':';
4373 if (copy_to_user(arg, &ifr,
4374 sizeof(struct ifreq)))
4375 ret = -EFAULT;
4377 return ret;
4380 * These ioctl calls:
4381 * - require superuser power.
4382 * - require strict serialization.
4383 * - do not return a value
4385 case SIOCSIFFLAGS:
4386 case SIOCSIFMETRIC:
4387 case SIOCSIFMTU:
4388 case SIOCSIFMAP:
4389 case SIOCSIFHWADDR:
4390 case SIOCSIFSLAVE:
4391 case SIOCADDMULTI:
4392 case SIOCDELMULTI:
4393 case SIOCSIFHWBROADCAST:
4394 case SIOCSIFTXQLEN:
4395 case SIOCSMIIREG:
4396 case SIOCBONDENSLAVE:
4397 case SIOCBONDRELEASE:
4398 case SIOCBONDSETHWADDR:
4399 case SIOCBONDCHANGEACTIVE:
4400 case SIOCBRADDIF:
4401 case SIOCBRDELIF:
4402 case SIOCSHWTSTAMP:
4403 if (!capable(CAP_NET_ADMIN))
4404 return -EPERM;
4405 /* fall through */
4406 case SIOCBONDSLAVEINFOQUERY:
4407 case SIOCBONDINFOQUERY:
4408 dev_load(net, ifr.ifr_name);
4409 rtnl_lock();
4410 ret = dev_ifsioc(net, &ifr, cmd);
4411 rtnl_unlock();
4412 return ret;
4414 case SIOCGIFMEM:
4415 /* Get the per device memory space. We can add this but
4416 * currently do not support it */
4417 case SIOCSIFMEM:
4418 /* Set the per device memory buffer space.
4419 * Not applicable in our case */
4420 case SIOCSIFLINK:
4421 return -EINVAL;
4424 * Unknown or private ioctl.
4426 default:
4427 if (cmd == SIOCWANDEV ||
4428 (cmd >= SIOCDEVPRIVATE &&
4429 cmd <= SIOCDEVPRIVATE + 15)) {
4430 dev_load(net, ifr.ifr_name);
4431 rtnl_lock();
4432 ret = dev_ifsioc(net, &ifr, cmd);
4433 rtnl_unlock();
4434 if (!ret && copy_to_user(arg, &ifr,
4435 sizeof(struct ifreq)))
4436 ret = -EFAULT;
4437 return ret;
4439 /* Take care of Wireless Extensions */
4440 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4441 return wext_handle_ioctl(net, &ifr, cmd, arg);
4442 return -EINVAL;
4448 * dev_new_index - allocate an ifindex
4449 * @net: the applicable net namespace
4451 * Returns a suitable unique value for a new device interface
4452 * number. The caller must hold the rtnl semaphore or the
4453 * dev_base_lock to be sure it remains unique.
4455 static int dev_new_index(struct net *net)
4457 static int ifindex;
4458 for (;;) {
4459 if (++ifindex <= 0)
4460 ifindex = 1;
4461 if (!__dev_get_by_index(net, ifindex))
4462 return ifindex;
4466 /* Delayed registration/unregisteration */
4467 static LIST_HEAD(net_todo_list);
4469 static void net_set_todo(struct net_device *dev)
4471 list_add_tail(&dev->todo_list, &net_todo_list);
4474 static void rollback_registered(struct net_device *dev)
4476 BUG_ON(dev_boot_phase);
4477 ASSERT_RTNL();
4479 /* Some devices call without registering for initialization unwind. */
4480 if (dev->reg_state == NETREG_UNINITIALIZED) {
4481 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
4482 "was registered\n", dev->name, dev);
4484 WARN_ON(1);
4485 return;
4488 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4490 /* If device is running, close it first. */
4491 dev_close(dev);
4493 /* And unlink it from device chain. */
4494 unlist_netdevice(dev);
4496 dev->reg_state = NETREG_UNREGISTERING;
4498 synchronize_net();
4500 /* Shutdown queueing discipline. */
4501 dev_shutdown(dev);
4504 /* Notify protocols, that we are about to destroy
4505 this device. They should clean all the things.
4507 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4510 * Flush the unicast and multicast chains
4512 dev_addr_discard(dev);
4514 if (dev->netdev_ops->ndo_uninit)
4515 dev->netdev_ops->ndo_uninit(dev);
4517 /* Notifier chain MUST detach us from master device. */
4518 WARN_ON(dev->master);
4520 /* Remove entries from kobject tree */
4521 netdev_unregister_kobject(dev);
4523 synchronize_net();
4525 dev_put(dev);
4528 static void __netdev_init_queue_locks_one(struct net_device *dev,
4529 struct netdev_queue *dev_queue,
4530 void *_unused)
4532 spin_lock_init(&dev_queue->_xmit_lock);
4533 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4534 dev_queue->xmit_lock_owner = -1;
4537 static void netdev_init_queue_locks(struct net_device *dev)
4539 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4540 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4543 unsigned long netdev_fix_features(unsigned long features, const char *name)
4545 /* Fix illegal SG+CSUM combinations. */
4546 if ((features & NETIF_F_SG) &&
4547 !(features & NETIF_F_ALL_CSUM)) {
4548 if (name)
4549 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4550 "checksum feature.\n", name);
4551 features &= ~NETIF_F_SG;
4554 /* TSO requires that SG is present as well. */
4555 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4556 if (name)
4557 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4558 "SG feature.\n", name);
4559 features &= ~NETIF_F_TSO;
4562 if (features & NETIF_F_UFO) {
4563 if (!(features & NETIF_F_GEN_CSUM)) {
4564 if (name)
4565 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4566 "since no NETIF_F_HW_CSUM feature.\n",
4567 name);
4568 features &= ~NETIF_F_UFO;
4571 if (!(features & NETIF_F_SG)) {
4572 if (name)
4573 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4574 "since no NETIF_F_SG feature.\n", name);
4575 features &= ~NETIF_F_UFO;
4579 return features;
4581 EXPORT_SYMBOL(netdev_fix_features);
4584 * register_netdevice - register a network device
4585 * @dev: device to register
4587 * Take a completed network device structure and add it to the kernel
4588 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4589 * chain. 0 is returned on success. A negative errno code is returned
4590 * on a failure to set up the device, or if the name is a duplicate.
4592 * Callers must hold the rtnl semaphore. You may want
4593 * register_netdev() instead of this.
4595 * BUGS:
4596 * The locking appears insufficient to guarantee two parallel registers
4597 * will not get the same name.
4600 int register_netdevice(struct net_device *dev)
4602 struct hlist_head *head;
4603 struct hlist_node *p;
4604 int ret;
4605 struct net *net = dev_net(dev);
4607 BUG_ON(dev_boot_phase);
4608 ASSERT_RTNL();
4610 might_sleep();
4612 /* When net_device's are persistent, this will be fatal. */
4613 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4614 BUG_ON(!net);
4616 spin_lock_init(&dev->addr_list_lock);
4617 netdev_set_addr_lockdep_class(dev);
4618 netdev_init_queue_locks(dev);
4620 dev->iflink = -1;
4622 /* Init, if this function is available */
4623 if (dev->netdev_ops->ndo_init) {
4624 ret = dev->netdev_ops->ndo_init(dev);
4625 if (ret) {
4626 if (ret > 0)
4627 ret = -EIO;
4628 goto out;
4632 if (!dev_valid_name(dev->name)) {
4633 ret = -EINVAL;
4634 goto err_uninit;
4637 dev->ifindex = dev_new_index(net);
4638 if (dev->iflink == -1)
4639 dev->iflink = dev->ifindex;
4641 /* Check for existence of name */
4642 head = dev_name_hash(net, dev->name);
4643 hlist_for_each(p, head) {
4644 struct net_device *d
4645 = hlist_entry(p, struct net_device, name_hlist);
4646 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4647 ret = -EEXIST;
4648 goto err_uninit;
4652 /* Fix illegal checksum combinations */
4653 if ((dev->features & NETIF_F_HW_CSUM) &&
4654 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4655 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4656 dev->name);
4657 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4660 if ((dev->features & NETIF_F_NO_CSUM) &&
4661 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4662 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4663 dev->name);
4664 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4667 dev->features = netdev_fix_features(dev->features, dev->name);
4669 /* Enable software GSO if SG is supported. */
4670 if (dev->features & NETIF_F_SG)
4671 dev->features |= NETIF_F_GSO;
4673 netdev_initialize_kobject(dev);
4674 ret = netdev_register_kobject(dev);
4675 if (ret)
4676 goto err_uninit;
4677 dev->reg_state = NETREG_REGISTERED;
4680 * Default initial state at registry is that the
4681 * device is present.
4684 set_bit(__LINK_STATE_PRESENT, &dev->state);
4686 dev_init_scheduler(dev);
4687 dev_hold(dev);
4688 list_netdevice(dev);
4690 /* Notify protocols, that a new device appeared. */
4691 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4692 ret = notifier_to_errno(ret);
4693 if (ret) {
4694 rollback_registered(dev);
4695 dev->reg_state = NETREG_UNREGISTERED;
4698 out:
4699 return ret;
4701 err_uninit:
4702 if (dev->netdev_ops->ndo_uninit)
4703 dev->netdev_ops->ndo_uninit(dev);
4704 goto out;
4708 * init_dummy_netdev - init a dummy network device for NAPI
4709 * @dev: device to init
4711 * This takes a network device structure and initialize the minimum
4712 * amount of fields so it can be used to schedule NAPI polls without
4713 * registering a full blown interface. This is to be used by drivers
4714 * that need to tie several hardware interfaces to a single NAPI
4715 * poll scheduler due to HW limitations.
4717 int init_dummy_netdev(struct net_device *dev)
4719 /* Clear everything. Note we don't initialize spinlocks
4720 * are they aren't supposed to be taken by any of the
4721 * NAPI code and this dummy netdev is supposed to be
4722 * only ever used for NAPI polls
4724 memset(dev, 0, sizeof(struct net_device));
4726 /* make sure we BUG if trying to hit standard
4727 * register/unregister code path
4729 dev->reg_state = NETREG_DUMMY;
4731 /* initialize the ref count */
4732 atomic_set(&dev->refcnt, 1);
4734 /* NAPI wants this */
4735 INIT_LIST_HEAD(&dev->napi_list);
4737 /* a dummy interface is started by default */
4738 set_bit(__LINK_STATE_PRESENT, &dev->state);
4739 set_bit(__LINK_STATE_START, &dev->state);
4741 return 0;
4743 EXPORT_SYMBOL_GPL(init_dummy_netdev);
4747 * register_netdev - register a network device
4748 * @dev: device to register
4750 * Take a completed network device structure and add it to the kernel
4751 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4752 * chain. 0 is returned on success. A negative errno code is returned
4753 * on a failure to set up the device, or if the name is a duplicate.
4755 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4756 * and expands the device name if you passed a format string to
4757 * alloc_netdev.
4759 int register_netdev(struct net_device *dev)
4761 int err;
4763 rtnl_lock();
4766 * If the name is a format string the caller wants us to do a
4767 * name allocation.
4769 if (strchr(dev->name, '%')) {
4770 err = dev_alloc_name(dev, dev->name);
4771 if (err < 0)
4772 goto out;
4775 err = register_netdevice(dev);
4776 out:
4777 rtnl_unlock();
4778 return err;
4780 EXPORT_SYMBOL(register_netdev);
4783 * netdev_wait_allrefs - wait until all references are gone.
4785 * This is called when unregistering network devices.
4787 * Any protocol or device that holds a reference should register
4788 * for netdevice notification, and cleanup and put back the
4789 * reference if they receive an UNREGISTER event.
4790 * We can get stuck here if buggy protocols don't correctly
4791 * call dev_put.
4793 static void netdev_wait_allrefs(struct net_device *dev)
4795 unsigned long rebroadcast_time, warning_time;
4797 rebroadcast_time = warning_time = jiffies;
4798 while (atomic_read(&dev->refcnt) != 0) {
4799 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4800 rtnl_lock();
4802 /* Rebroadcast unregister notification */
4803 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4805 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4806 &dev->state)) {
4807 /* We must not have linkwatch events
4808 * pending on unregister. If this
4809 * happens, we simply run the queue
4810 * unscheduled, resulting in a noop
4811 * for this device.
4813 linkwatch_run_queue();
4816 __rtnl_unlock();
4818 rebroadcast_time = jiffies;
4821 msleep(250);
4823 if (time_after(jiffies, warning_time + 10 * HZ)) {
4824 printk(KERN_EMERG "unregister_netdevice: "
4825 "waiting for %s to become free. Usage "
4826 "count = %d\n",
4827 dev->name, atomic_read(&dev->refcnt));
4828 warning_time = jiffies;
4833 /* The sequence is:
4835 * rtnl_lock();
4836 * ...
4837 * register_netdevice(x1);
4838 * register_netdevice(x2);
4839 * ...
4840 * unregister_netdevice(y1);
4841 * unregister_netdevice(y2);
4842 * ...
4843 * rtnl_unlock();
4844 * free_netdev(y1);
4845 * free_netdev(y2);
4847 * We are invoked by rtnl_unlock().
4848 * This allows us to deal with problems:
4849 * 1) We can delete sysfs objects which invoke hotplug
4850 * without deadlocking with linkwatch via keventd.
4851 * 2) Since we run with the RTNL semaphore not held, we can sleep
4852 * safely in order to wait for the netdev refcnt to drop to zero.
4854 * We must not return until all unregister events added during
4855 * the interval the lock was held have been completed.
4857 void netdev_run_todo(void)
4859 struct list_head list;
4861 /* Snapshot list, allow later requests */
4862 list_replace_init(&net_todo_list, &list);
4864 __rtnl_unlock();
4866 while (!list_empty(&list)) {
4867 struct net_device *dev
4868 = list_entry(list.next, struct net_device, todo_list);
4869 list_del(&dev->todo_list);
4871 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4872 printk(KERN_ERR "network todo '%s' but state %d\n",
4873 dev->name, dev->reg_state);
4874 dump_stack();
4875 continue;
4878 dev->reg_state = NETREG_UNREGISTERED;
4880 on_each_cpu(flush_backlog, dev, 1);
4882 netdev_wait_allrefs(dev);
4884 /* paranoia */
4885 BUG_ON(atomic_read(&dev->refcnt));
4886 WARN_ON(dev->ip_ptr);
4887 WARN_ON(dev->ip6_ptr);
4888 WARN_ON(dev->dn_ptr);
4890 if (dev->destructor)
4891 dev->destructor(dev);
4893 /* Free network device */
4894 kobject_put(&dev->dev.kobj);
4899 * dev_get_stats - get network device statistics
4900 * @dev: device to get statistics from
4902 * Get network statistics from device. The device driver may provide
4903 * its own method by setting dev->netdev_ops->get_stats; otherwise
4904 * the internal statistics structure is used.
4906 const struct net_device_stats *dev_get_stats(struct net_device *dev)
4908 const struct net_device_ops *ops = dev->netdev_ops;
4910 if (ops->ndo_get_stats)
4911 return ops->ndo_get_stats(dev);
4912 else {
4913 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
4914 struct net_device_stats *stats = &dev->stats;
4915 unsigned int i;
4916 struct netdev_queue *txq;
4918 for (i = 0; i < dev->num_tx_queues; i++) {
4919 txq = netdev_get_tx_queue(dev, i);
4920 tx_bytes += txq->tx_bytes;
4921 tx_packets += txq->tx_packets;
4922 tx_dropped += txq->tx_dropped;
4924 if (tx_bytes || tx_packets || tx_dropped) {
4925 stats->tx_bytes = tx_bytes;
4926 stats->tx_packets = tx_packets;
4927 stats->tx_dropped = tx_dropped;
4929 return stats;
4932 EXPORT_SYMBOL(dev_get_stats);
4934 static void netdev_init_one_queue(struct net_device *dev,
4935 struct netdev_queue *queue,
4936 void *_unused)
4938 queue->dev = dev;
4941 static void netdev_init_queues(struct net_device *dev)
4943 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4944 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4945 spin_lock_init(&dev->tx_global_lock);
4949 * alloc_netdev_mq - allocate network device
4950 * @sizeof_priv: size of private data to allocate space for
4951 * @name: device name format string
4952 * @setup: callback to initialize device
4953 * @queue_count: the number of subqueues to allocate
4955 * Allocates a struct net_device with private data area for driver use
4956 * and performs basic initialization. Also allocates subquue structs
4957 * for each queue on the device at the end of the netdevice.
4959 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4960 void (*setup)(struct net_device *), unsigned int queue_count)
4962 struct netdev_queue *tx;
4963 struct net_device *dev;
4964 size_t alloc_size;
4965 void *p;
4967 BUG_ON(strlen(name) >= sizeof(dev->name));
4969 alloc_size = sizeof(struct net_device);
4970 if (sizeof_priv) {
4971 /* ensure 32-byte alignment of private area */
4972 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4973 alloc_size += sizeof_priv;
4975 /* ensure 32-byte alignment of whole construct */
4976 alloc_size += NETDEV_ALIGN_CONST;
4978 p = kzalloc(alloc_size, GFP_KERNEL);
4979 if (!p) {
4980 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4981 return NULL;
4984 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
4985 if (!tx) {
4986 printk(KERN_ERR "alloc_netdev: Unable to allocate "
4987 "tx qdiscs.\n");
4988 goto free_p;
4991 dev = (struct net_device *)
4992 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4993 dev->padded = (char *)dev - (char *)p;
4995 if (dev_addr_init(dev))
4996 goto free_tx;
4998 dev_net_set(dev, &init_net);
5000 dev->_tx = tx;
5001 dev->num_tx_queues = queue_count;
5002 dev->real_num_tx_queues = queue_count;
5004 dev->gso_max_size = GSO_MAX_SIZE;
5006 netdev_init_queues(dev);
5008 INIT_LIST_HEAD(&dev->napi_list);
5009 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5010 setup(dev);
5011 strcpy(dev->name, name);
5012 return dev;
5014 free_tx:
5015 kfree(tx);
5017 free_p:
5018 kfree(p);
5019 return NULL;
5021 EXPORT_SYMBOL(alloc_netdev_mq);
5024 * free_netdev - free network device
5025 * @dev: device
5027 * This function does the last stage of destroying an allocated device
5028 * interface. The reference to the device object is released.
5029 * If this is the last reference then it will be freed.
5031 void free_netdev(struct net_device *dev)
5033 struct napi_struct *p, *n;
5035 release_net(dev_net(dev));
5037 kfree(dev->_tx);
5039 /* Flush device addresses */
5040 dev_addr_flush(dev);
5042 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5043 netif_napi_del(p);
5045 /* Compatibility with error handling in drivers */
5046 if (dev->reg_state == NETREG_UNINITIALIZED) {
5047 kfree((char *)dev - dev->padded);
5048 return;
5051 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5052 dev->reg_state = NETREG_RELEASED;
5054 /* will free via device release */
5055 put_device(&dev->dev);
5059 * synchronize_net - Synchronize with packet receive processing
5061 * Wait for packets currently being received to be done.
5062 * Does not block later packets from starting.
5064 void synchronize_net(void)
5066 might_sleep();
5067 synchronize_rcu();
5071 * unregister_netdevice - remove device from the kernel
5072 * @dev: device
5074 * This function shuts down a device interface and removes it
5075 * from the kernel tables.
5077 * Callers must hold the rtnl semaphore. You may want
5078 * unregister_netdev() instead of this.
5081 void unregister_netdevice(struct net_device *dev)
5083 ASSERT_RTNL();
5085 rollback_registered(dev);
5086 /* Finish processing unregister after unlock */
5087 net_set_todo(dev);
5091 * unregister_netdev - remove device from the kernel
5092 * @dev: device
5094 * This function shuts down a device interface and removes it
5095 * from the kernel tables.
5097 * This is just a wrapper for unregister_netdevice that takes
5098 * the rtnl semaphore. In general you want to use this and not
5099 * unregister_netdevice.
5101 void unregister_netdev(struct net_device *dev)
5103 rtnl_lock();
5104 unregister_netdevice(dev);
5105 rtnl_unlock();
5108 EXPORT_SYMBOL(unregister_netdev);
5111 * dev_change_net_namespace - move device to different nethost namespace
5112 * @dev: device
5113 * @net: network namespace
5114 * @pat: If not NULL name pattern to try if the current device name
5115 * is already taken in the destination network namespace.
5117 * This function shuts down a device interface and moves it
5118 * to a new network namespace. On success 0 is returned, on
5119 * a failure a netagive errno code is returned.
5121 * Callers must hold the rtnl semaphore.
5124 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5126 char buf[IFNAMSIZ];
5127 const char *destname;
5128 int err;
5130 ASSERT_RTNL();
5132 /* Don't allow namespace local devices to be moved. */
5133 err = -EINVAL;
5134 if (dev->features & NETIF_F_NETNS_LOCAL)
5135 goto out;
5137 #ifdef CONFIG_SYSFS
5138 /* Don't allow real devices to be moved when sysfs
5139 * is enabled.
5141 err = -EINVAL;
5142 if (dev->dev.parent)
5143 goto out;
5144 #endif
5146 /* Ensure the device has been registrered */
5147 err = -EINVAL;
5148 if (dev->reg_state != NETREG_REGISTERED)
5149 goto out;
5151 /* Get out if there is nothing todo */
5152 err = 0;
5153 if (net_eq(dev_net(dev), net))
5154 goto out;
5156 /* Pick the destination device name, and ensure
5157 * we can use it in the destination network namespace.
5159 err = -EEXIST;
5160 destname = dev->name;
5161 if (__dev_get_by_name(net, destname)) {
5162 /* We get here if we can't use the current device name */
5163 if (!pat)
5164 goto out;
5165 if (!dev_valid_name(pat))
5166 goto out;
5167 if (strchr(pat, '%')) {
5168 if (__dev_alloc_name(net, pat, buf) < 0)
5169 goto out;
5170 destname = buf;
5171 } else
5172 destname = pat;
5173 if (__dev_get_by_name(net, destname))
5174 goto out;
5178 * And now a mini version of register_netdevice unregister_netdevice.
5181 /* If device is running close it first. */
5182 dev_close(dev);
5184 /* And unlink it from device chain */
5185 err = -ENODEV;
5186 unlist_netdevice(dev);
5188 synchronize_net();
5190 /* Shutdown queueing discipline. */
5191 dev_shutdown(dev);
5193 /* Notify protocols, that we are about to destroy
5194 this device. They should clean all the things.
5196 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5199 * Flush the unicast and multicast chains
5201 dev_addr_discard(dev);
5203 netdev_unregister_kobject(dev);
5205 /* Actually switch the network namespace */
5206 dev_net_set(dev, net);
5208 /* Assign the new device name */
5209 if (destname != dev->name)
5210 strcpy(dev->name, destname);
5212 /* If there is an ifindex conflict assign a new one */
5213 if (__dev_get_by_index(net, dev->ifindex)) {
5214 int iflink = (dev->iflink == dev->ifindex);
5215 dev->ifindex = dev_new_index(net);
5216 if (iflink)
5217 dev->iflink = dev->ifindex;
5220 /* Fixup kobjects */
5221 err = netdev_register_kobject(dev);
5222 WARN_ON(err);
5224 /* Add the device back in the hashes */
5225 list_netdevice(dev);
5227 /* Notify protocols, that a new device appeared. */
5228 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5230 synchronize_net();
5231 err = 0;
5232 out:
5233 return err;
5236 static int dev_cpu_callback(struct notifier_block *nfb,
5237 unsigned long action,
5238 void *ocpu)
5240 struct sk_buff **list_skb;
5241 struct Qdisc **list_net;
5242 struct sk_buff *skb;
5243 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5244 struct softnet_data *sd, *oldsd;
5246 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5247 return NOTIFY_OK;
5249 local_irq_disable();
5250 cpu = smp_processor_id();
5251 sd = &per_cpu(softnet_data, cpu);
5252 oldsd = &per_cpu(softnet_data, oldcpu);
5254 /* Find end of our completion_queue. */
5255 list_skb = &sd->completion_queue;
5256 while (*list_skb)
5257 list_skb = &(*list_skb)->next;
5258 /* Append completion queue from offline CPU. */
5259 *list_skb = oldsd->completion_queue;
5260 oldsd->completion_queue = NULL;
5262 /* Find end of our output_queue. */
5263 list_net = &sd->output_queue;
5264 while (*list_net)
5265 list_net = &(*list_net)->next_sched;
5266 /* Append output queue from offline CPU. */
5267 *list_net = oldsd->output_queue;
5268 oldsd->output_queue = NULL;
5270 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5271 local_irq_enable();
5273 /* Process offline CPU's input_pkt_queue */
5274 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5275 netif_rx(skb);
5277 return NOTIFY_OK;
5282 * netdev_increment_features - increment feature set by one
5283 * @all: current feature set
5284 * @one: new feature set
5285 * @mask: mask feature set
5287 * Computes a new feature set after adding a device with feature set
5288 * @one to the master device with current feature set @all. Will not
5289 * enable anything that is off in @mask. Returns the new feature set.
5291 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5292 unsigned long mask)
5294 /* If device needs checksumming, downgrade to it. */
5295 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5296 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5297 else if (mask & NETIF_F_ALL_CSUM) {
5298 /* If one device supports v4/v6 checksumming, set for all. */
5299 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5300 !(all & NETIF_F_GEN_CSUM)) {
5301 all &= ~NETIF_F_ALL_CSUM;
5302 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5305 /* If one device supports hw checksumming, set for all. */
5306 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5307 all &= ~NETIF_F_ALL_CSUM;
5308 all |= NETIF_F_HW_CSUM;
5312 one |= NETIF_F_ALL_CSUM;
5314 one |= all & NETIF_F_ONE_FOR_ALL;
5315 all &= one | NETIF_F_LLTX | NETIF_F_GSO;
5316 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5318 return all;
5320 EXPORT_SYMBOL(netdev_increment_features);
5322 static struct hlist_head *netdev_create_hash(void)
5324 int i;
5325 struct hlist_head *hash;
5327 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5328 if (hash != NULL)
5329 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5330 INIT_HLIST_HEAD(&hash[i]);
5332 return hash;
5335 /* Initialize per network namespace state */
5336 static int __net_init netdev_init(struct net *net)
5338 INIT_LIST_HEAD(&net->dev_base_head);
5340 net->dev_name_head = netdev_create_hash();
5341 if (net->dev_name_head == NULL)
5342 goto err_name;
5344 net->dev_index_head = netdev_create_hash();
5345 if (net->dev_index_head == NULL)
5346 goto err_idx;
5348 return 0;
5350 err_idx:
5351 kfree(net->dev_name_head);
5352 err_name:
5353 return -ENOMEM;
5357 * netdev_drivername - network driver for the device
5358 * @dev: network device
5359 * @buffer: buffer for resulting name
5360 * @len: size of buffer
5362 * Determine network driver for device.
5364 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5366 const struct device_driver *driver;
5367 const struct device *parent;
5369 if (len <= 0 || !buffer)
5370 return buffer;
5371 buffer[0] = 0;
5373 parent = dev->dev.parent;
5375 if (!parent)
5376 return buffer;
5378 driver = parent->driver;
5379 if (driver && driver->name)
5380 strlcpy(buffer, driver->name, len);
5381 return buffer;
5384 static void __net_exit netdev_exit(struct net *net)
5386 kfree(net->dev_name_head);
5387 kfree(net->dev_index_head);
5390 static struct pernet_operations __net_initdata netdev_net_ops = {
5391 .init = netdev_init,
5392 .exit = netdev_exit,
5395 static void __net_exit default_device_exit(struct net *net)
5397 struct net_device *dev;
5399 * Push all migratable of the network devices back to the
5400 * initial network namespace
5402 rtnl_lock();
5403 restart:
5404 for_each_netdev(net, dev) {
5405 int err;
5406 char fb_name[IFNAMSIZ];
5408 /* Ignore unmoveable devices (i.e. loopback) */
5409 if (dev->features & NETIF_F_NETNS_LOCAL)
5410 continue;
5412 /* Delete virtual devices */
5413 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5414 dev->rtnl_link_ops->dellink(dev);
5415 goto restart;
5418 /* Push remaing network devices to init_net */
5419 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5420 err = dev_change_net_namespace(dev, &init_net, fb_name);
5421 if (err) {
5422 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5423 __func__, dev->name, err);
5424 BUG();
5426 goto restart;
5428 rtnl_unlock();
5431 static struct pernet_operations __net_initdata default_device_ops = {
5432 .exit = default_device_exit,
5436 * Initialize the DEV module. At boot time this walks the device list and
5437 * unhooks any devices that fail to initialise (normally hardware not
5438 * present) and leaves us with a valid list of present and active devices.
5443 * This is called single threaded during boot, so no need
5444 * to take the rtnl semaphore.
5446 static int __init net_dev_init(void)
5448 int i, rc = -ENOMEM;
5450 BUG_ON(!dev_boot_phase);
5452 if (dev_proc_init())
5453 goto out;
5455 if (netdev_kobject_init())
5456 goto out;
5458 INIT_LIST_HEAD(&ptype_all);
5459 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5460 INIT_LIST_HEAD(&ptype_base[i]);
5462 if (register_pernet_subsys(&netdev_net_ops))
5463 goto out;
5466 * Initialise the packet receive queues.
5469 for_each_possible_cpu(i) {
5470 struct softnet_data *queue;
5472 queue = &per_cpu(softnet_data, i);
5473 skb_queue_head_init(&queue->input_pkt_queue);
5474 queue->completion_queue = NULL;
5475 INIT_LIST_HEAD(&queue->poll_list);
5477 queue->backlog.poll = process_backlog;
5478 queue->backlog.weight = weight_p;
5479 queue->backlog.gro_list = NULL;
5480 queue->backlog.gro_count = 0;
5483 dev_boot_phase = 0;
5485 /* The loopback device is special if any other network devices
5486 * is present in a network namespace the loopback device must
5487 * be present. Since we now dynamically allocate and free the
5488 * loopback device ensure this invariant is maintained by
5489 * keeping the loopback device as the first device on the
5490 * list of network devices. Ensuring the loopback devices
5491 * is the first device that appears and the last network device
5492 * that disappears.
5494 if (register_pernet_device(&loopback_net_ops))
5495 goto out;
5497 if (register_pernet_device(&default_device_ops))
5498 goto out;
5500 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5501 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5503 hotcpu_notifier(dev_cpu_callback, 0);
5504 dst_init();
5505 dev_mcast_init();
5506 rc = 0;
5507 out:
5508 return rc;
5511 subsys_initcall(net_dev_init);
5513 static int __init initialize_hashrnd(void)
5515 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
5516 return 0;
5519 late_initcall_sync(initialize_hashrnd);
5521 EXPORT_SYMBOL(__dev_get_by_index);
5522 EXPORT_SYMBOL(__dev_get_by_name);
5523 EXPORT_SYMBOL(__dev_remove_pack);
5524 EXPORT_SYMBOL(dev_valid_name);
5525 EXPORT_SYMBOL(dev_add_pack);
5526 EXPORT_SYMBOL(dev_alloc_name);
5527 EXPORT_SYMBOL(dev_close);
5528 EXPORT_SYMBOL(dev_get_by_flags);
5529 EXPORT_SYMBOL(dev_get_by_index);
5530 EXPORT_SYMBOL(dev_get_by_name);
5531 EXPORT_SYMBOL(dev_open);
5532 EXPORT_SYMBOL(dev_queue_xmit);
5533 EXPORT_SYMBOL(dev_remove_pack);
5534 EXPORT_SYMBOL(dev_set_allmulti);
5535 EXPORT_SYMBOL(dev_set_promiscuity);
5536 EXPORT_SYMBOL(dev_change_flags);
5537 EXPORT_SYMBOL(dev_set_mtu);
5538 EXPORT_SYMBOL(dev_set_mac_address);
5539 EXPORT_SYMBOL(free_netdev);
5540 EXPORT_SYMBOL(netdev_boot_setup_check);
5541 EXPORT_SYMBOL(netdev_set_master);
5542 EXPORT_SYMBOL(netdev_state_change);
5543 EXPORT_SYMBOL(netif_receive_skb);
5544 EXPORT_SYMBOL(netif_rx);
5545 EXPORT_SYMBOL(register_gifconf);
5546 EXPORT_SYMBOL(register_netdevice);
5547 EXPORT_SYMBOL(register_netdevice_notifier);
5548 EXPORT_SYMBOL(skb_checksum_help);
5549 EXPORT_SYMBOL(synchronize_net);
5550 EXPORT_SYMBOL(unregister_netdevice);
5551 EXPORT_SYMBOL(unregister_netdevice_notifier);
5552 EXPORT_SYMBOL(net_enable_timestamp);
5553 EXPORT_SYMBOL(net_disable_timestamp);
5554 EXPORT_SYMBOL(dev_get_flags);
5556 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
5557 EXPORT_SYMBOL(br_handle_frame_hook);
5558 EXPORT_SYMBOL(br_fdb_get_hook);
5559 EXPORT_SYMBOL(br_fdb_put_hook);
5560 #endif
5562 EXPORT_SYMBOL(dev_load);
5564 EXPORT_PER_CPU_SYMBOL(softnet_data);