ring-buffer: record page entries in buffer page descriptor
[linux-2.6/btrfs-unstable.git] / kernel / trace / ring_buffer.c
blob342eacc4baa85c066ab87ccc193f4ab7c4626896
1 /*
2 * Generic ring buffer
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/init.h>
17 #include <linux/hash.h>
18 #include <linux/list.h>
19 #include <linux/cpu.h>
20 #include <linux/fs.h>
22 #include "trace.h"
25 * The ring buffer header is special. We must manually up keep it.
27 int ring_buffer_print_entry_header(struct trace_seq *s)
29 int ret;
31 ret = trace_seq_printf(s, "# compressed entry header\n");
32 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
33 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
34 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
35 ret = trace_seq_printf(s, "\n");
36 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
37 RINGBUF_TYPE_PADDING);
38 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
39 RINGBUF_TYPE_TIME_EXTEND);
40 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
41 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
43 return ret;
47 * The ring buffer is made up of a list of pages. A separate list of pages is
48 * allocated for each CPU. A writer may only write to a buffer that is
49 * associated with the CPU it is currently executing on. A reader may read
50 * from any per cpu buffer.
52 * The reader is special. For each per cpu buffer, the reader has its own
53 * reader page. When a reader has read the entire reader page, this reader
54 * page is swapped with another page in the ring buffer.
56 * Now, as long as the writer is off the reader page, the reader can do what
57 * ever it wants with that page. The writer will never write to that page
58 * again (as long as it is out of the ring buffer).
60 * Here's some silly ASCII art.
62 * +------+
63 * |reader| RING BUFFER
64 * |page |
65 * +------+ +---+ +---+ +---+
66 * | |-->| |-->| |
67 * +---+ +---+ +---+
68 * ^ |
69 * | |
70 * +---------------+
73 * +------+
74 * |reader| RING BUFFER
75 * |page |------------------v
76 * +------+ +---+ +---+ +---+
77 * | |-->| |-->| |
78 * +---+ +---+ +---+
79 * ^ |
80 * | |
81 * +---------------+
84 * +------+
85 * |reader| RING BUFFER
86 * |page |------------------v
87 * +------+ +---+ +---+ +---+
88 * ^ | |-->| |-->| |
89 * | +---+ +---+ +---+
90 * | |
91 * | |
92 * +------------------------------+
95 * +------+
96 * |buffer| RING BUFFER
97 * |page |------------------v
98 * +------+ +---+ +---+ +---+
99 * ^ | | | |-->| |
100 * | New +---+ +---+ +---+
101 * | Reader------^ |
102 * | page |
103 * +------------------------------+
106 * After we make this swap, the reader can hand this page off to the splice
107 * code and be done with it. It can even allocate a new page if it needs to
108 * and swap that into the ring buffer.
110 * We will be using cmpxchg soon to make all this lockless.
115 * A fast way to enable or disable all ring buffers is to
116 * call tracing_on or tracing_off. Turning off the ring buffers
117 * prevents all ring buffers from being recorded to.
118 * Turning this switch on, makes it OK to write to the
119 * ring buffer, if the ring buffer is enabled itself.
121 * There's three layers that must be on in order to write
122 * to the ring buffer.
124 * 1) This global flag must be set.
125 * 2) The ring buffer must be enabled for recording.
126 * 3) The per cpu buffer must be enabled for recording.
128 * In case of an anomaly, this global flag has a bit set that
129 * will permantly disable all ring buffers.
133 * Global flag to disable all recording to ring buffers
134 * This has two bits: ON, DISABLED
136 * ON DISABLED
137 * ---- ----------
138 * 0 0 : ring buffers are off
139 * 1 0 : ring buffers are on
140 * X 1 : ring buffers are permanently disabled
143 enum {
144 RB_BUFFERS_ON_BIT = 0,
145 RB_BUFFERS_DISABLED_BIT = 1,
148 enum {
149 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
150 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
153 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
155 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
158 * tracing_on - enable all tracing buffers
160 * This function enables all tracing buffers that may have been
161 * disabled with tracing_off.
163 void tracing_on(void)
165 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
167 EXPORT_SYMBOL_GPL(tracing_on);
170 * tracing_off - turn off all tracing buffers
172 * This function stops all tracing buffers from recording data.
173 * It does not disable any overhead the tracers themselves may
174 * be causing. This function simply causes all recording to
175 * the ring buffers to fail.
177 void tracing_off(void)
179 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
181 EXPORT_SYMBOL_GPL(tracing_off);
184 * tracing_off_permanent - permanently disable ring buffers
186 * This function, once called, will disable all ring buffers
187 * permanently.
189 void tracing_off_permanent(void)
191 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
195 * tracing_is_on - show state of ring buffers enabled
197 int tracing_is_on(void)
199 return ring_buffer_flags == RB_BUFFERS_ON;
201 EXPORT_SYMBOL_GPL(tracing_is_on);
203 #include "trace.h"
205 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
206 #define RB_ALIGNMENT 4U
207 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
209 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
210 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
212 enum {
213 RB_LEN_TIME_EXTEND = 8,
214 RB_LEN_TIME_STAMP = 16,
217 static inline int rb_null_event(struct ring_buffer_event *event)
219 return event->type_len == RINGBUF_TYPE_PADDING
220 && event->time_delta == 0;
223 static inline int rb_discarded_event(struct ring_buffer_event *event)
225 return event->type_len == RINGBUF_TYPE_PADDING && event->time_delta;
228 static void rb_event_set_padding(struct ring_buffer_event *event)
230 event->type_len = RINGBUF_TYPE_PADDING;
231 event->time_delta = 0;
234 static unsigned
235 rb_event_data_length(struct ring_buffer_event *event)
237 unsigned length;
239 if (event->type_len)
240 length = event->type_len * RB_ALIGNMENT;
241 else
242 length = event->array[0];
243 return length + RB_EVNT_HDR_SIZE;
246 /* inline for ring buffer fast paths */
247 static unsigned
248 rb_event_length(struct ring_buffer_event *event)
250 switch (event->type_len) {
251 case RINGBUF_TYPE_PADDING:
252 if (rb_null_event(event))
253 /* undefined */
254 return -1;
255 return event->array[0] + RB_EVNT_HDR_SIZE;
257 case RINGBUF_TYPE_TIME_EXTEND:
258 return RB_LEN_TIME_EXTEND;
260 case RINGBUF_TYPE_TIME_STAMP:
261 return RB_LEN_TIME_STAMP;
263 case RINGBUF_TYPE_DATA:
264 return rb_event_data_length(event);
265 default:
266 BUG();
268 /* not hit */
269 return 0;
273 * ring_buffer_event_length - return the length of the event
274 * @event: the event to get the length of
276 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
278 unsigned length = rb_event_length(event);
279 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
280 return length;
281 length -= RB_EVNT_HDR_SIZE;
282 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
283 length -= sizeof(event->array[0]);
284 return length;
286 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
288 /* inline for ring buffer fast paths */
289 static void *
290 rb_event_data(struct ring_buffer_event *event)
292 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
293 /* If length is in len field, then array[0] has the data */
294 if (event->type_len)
295 return (void *)&event->array[0];
296 /* Otherwise length is in array[0] and array[1] has the data */
297 return (void *)&event->array[1];
301 * ring_buffer_event_data - return the data of the event
302 * @event: the event to get the data from
304 void *ring_buffer_event_data(struct ring_buffer_event *event)
306 return rb_event_data(event);
308 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
310 #define for_each_buffer_cpu(buffer, cpu) \
311 for_each_cpu(cpu, buffer->cpumask)
313 #define TS_SHIFT 27
314 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
315 #define TS_DELTA_TEST (~TS_MASK)
317 struct buffer_data_page {
318 u64 time_stamp; /* page time stamp */
319 local_t commit; /* write committed index */
320 unsigned char data[]; /* data of buffer page */
323 struct buffer_page {
324 struct list_head list; /* list of buffer pages */
325 local_t write; /* index for next write */
326 unsigned read; /* index for next read */
327 local_t entries; /* entries on this page */
328 struct buffer_data_page *page; /* Actual data page */
331 static void rb_init_page(struct buffer_data_page *bpage)
333 local_set(&bpage->commit, 0);
337 * ring_buffer_page_len - the size of data on the page.
338 * @page: The page to read
340 * Returns the amount of data on the page, including buffer page header.
342 size_t ring_buffer_page_len(void *page)
344 return local_read(&((struct buffer_data_page *)page)->commit)
345 + BUF_PAGE_HDR_SIZE;
349 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
350 * this issue out.
352 static void free_buffer_page(struct buffer_page *bpage)
354 free_page((unsigned long)bpage->page);
355 kfree(bpage);
359 * We need to fit the time_stamp delta into 27 bits.
361 static inline int test_time_stamp(u64 delta)
363 if (delta & TS_DELTA_TEST)
364 return 1;
365 return 0;
368 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
370 int ring_buffer_print_page_header(struct trace_seq *s)
372 struct buffer_data_page field;
373 int ret;
375 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
376 "offset:0;\tsize:%u;\n",
377 (unsigned int)sizeof(field.time_stamp));
379 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
380 "offset:%u;\tsize:%u;\n",
381 (unsigned int)offsetof(typeof(field), commit),
382 (unsigned int)sizeof(field.commit));
384 ret = trace_seq_printf(s, "\tfield: char data;\t"
385 "offset:%u;\tsize:%u;\n",
386 (unsigned int)offsetof(typeof(field), data),
387 (unsigned int)BUF_PAGE_SIZE);
389 return ret;
393 * head_page == tail_page && head == tail then buffer is empty.
395 struct ring_buffer_per_cpu {
396 int cpu;
397 struct ring_buffer *buffer;
398 spinlock_t reader_lock; /* serialize readers */
399 raw_spinlock_t lock;
400 struct lock_class_key lock_key;
401 struct list_head pages;
402 struct buffer_page *head_page; /* read from head */
403 struct buffer_page *tail_page; /* write to tail */
404 struct buffer_page *commit_page; /* committed pages */
405 struct buffer_page *reader_page;
406 unsigned long nmi_dropped;
407 unsigned long commit_overrun;
408 unsigned long overrun;
409 unsigned long read;
410 local_t entries;
411 u64 write_stamp;
412 u64 read_stamp;
413 atomic_t record_disabled;
416 struct ring_buffer {
417 unsigned pages;
418 unsigned flags;
419 int cpus;
420 atomic_t record_disabled;
421 cpumask_var_t cpumask;
423 struct mutex mutex;
425 struct ring_buffer_per_cpu **buffers;
427 #ifdef CONFIG_HOTPLUG_CPU
428 struct notifier_block cpu_notify;
429 #endif
430 u64 (*clock)(void);
433 struct ring_buffer_iter {
434 struct ring_buffer_per_cpu *cpu_buffer;
435 unsigned long head;
436 struct buffer_page *head_page;
437 u64 read_stamp;
440 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
441 #define RB_WARN_ON(buffer, cond) \
442 ({ \
443 int _____ret = unlikely(cond); \
444 if (_____ret) { \
445 atomic_inc(&buffer->record_disabled); \
446 WARN_ON(1); \
448 _____ret; \
451 /* Up this if you want to test the TIME_EXTENTS and normalization */
452 #define DEBUG_SHIFT 0
454 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
456 u64 time;
458 preempt_disable_notrace();
459 /* shift to debug/test normalization and TIME_EXTENTS */
460 time = buffer->clock() << DEBUG_SHIFT;
461 preempt_enable_no_resched_notrace();
463 return time;
465 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
467 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
468 int cpu, u64 *ts)
470 /* Just stupid testing the normalize function and deltas */
471 *ts >>= DEBUG_SHIFT;
473 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
476 * check_pages - integrity check of buffer pages
477 * @cpu_buffer: CPU buffer with pages to test
479 * As a safety measure we check to make sure the data pages have not
480 * been corrupted.
482 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
484 struct list_head *head = &cpu_buffer->pages;
485 struct buffer_page *bpage, *tmp;
487 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
488 return -1;
489 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
490 return -1;
492 list_for_each_entry_safe(bpage, tmp, head, list) {
493 if (RB_WARN_ON(cpu_buffer,
494 bpage->list.next->prev != &bpage->list))
495 return -1;
496 if (RB_WARN_ON(cpu_buffer,
497 bpage->list.prev->next != &bpage->list))
498 return -1;
501 return 0;
504 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
505 unsigned nr_pages)
507 struct list_head *head = &cpu_buffer->pages;
508 struct buffer_page *bpage, *tmp;
509 unsigned long addr;
510 LIST_HEAD(pages);
511 unsigned i;
513 for (i = 0; i < nr_pages; i++) {
514 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
515 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
516 if (!bpage)
517 goto free_pages;
518 list_add(&bpage->list, &pages);
520 addr = __get_free_page(GFP_KERNEL);
521 if (!addr)
522 goto free_pages;
523 bpage->page = (void *)addr;
524 rb_init_page(bpage->page);
527 list_splice(&pages, head);
529 rb_check_pages(cpu_buffer);
531 return 0;
533 free_pages:
534 list_for_each_entry_safe(bpage, tmp, &pages, list) {
535 list_del_init(&bpage->list);
536 free_buffer_page(bpage);
538 return -ENOMEM;
541 static struct ring_buffer_per_cpu *
542 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
544 struct ring_buffer_per_cpu *cpu_buffer;
545 struct buffer_page *bpage;
546 unsigned long addr;
547 int ret;
549 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
550 GFP_KERNEL, cpu_to_node(cpu));
551 if (!cpu_buffer)
552 return NULL;
554 cpu_buffer->cpu = cpu;
555 cpu_buffer->buffer = buffer;
556 spin_lock_init(&cpu_buffer->reader_lock);
557 cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
558 INIT_LIST_HEAD(&cpu_buffer->pages);
560 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
561 GFP_KERNEL, cpu_to_node(cpu));
562 if (!bpage)
563 goto fail_free_buffer;
565 cpu_buffer->reader_page = bpage;
566 addr = __get_free_page(GFP_KERNEL);
567 if (!addr)
568 goto fail_free_reader;
569 bpage->page = (void *)addr;
570 rb_init_page(bpage->page);
572 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
574 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
575 if (ret < 0)
576 goto fail_free_reader;
578 cpu_buffer->head_page
579 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
580 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
582 return cpu_buffer;
584 fail_free_reader:
585 free_buffer_page(cpu_buffer->reader_page);
587 fail_free_buffer:
588 kfree(cpu_buffer);
589 return NULL;
592 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
594 struct list_head *head = &cpu_buffer->pages;
595 struct buffer_page *bpage, *tmp;
597 free_buffer_page(cpu_buffer->reader_page);
599 list_for_each_entry_safe(bpage, tmp, head, list) {
600 list_del_init(&bpage->list);
601 free_buffer_page(bpage);
603 kfree(cpu_buffer);
607 * Causes compile errors if the struct buffer_page gets bigger
608 * than the struct page.
610 extern int ring_buffer_page_too_big(void);
612 #ifdef CONFIG_HOTPLUG_CPU
613 static int rb_cpu_notify(struct notifier_block *self,
614 unsigned long action, void *hcpu);
615 #endif
618 * ring_buffer_alloc - allocate a new ring_buffer
619 * @size: the size in bytes per cpu that is needed.
620 * @flags: attributes to set for the ring buffer.
622 * Currently the only flag that is available is the RB_FL_OVERWRITE
623 * flag. This flag means that the buffer will overwrite old data
624 * when the buffer wraps. If this flag is not set, the buffer will
625 * drop data when the tail hits the head.
627 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
629 struct ring_buffer *buffer;
630 int bsize;
631 int cpu;
633 /* Paranoid! Optimizes out when all is well */
634 if (sizeof(struct buffer_page) > sizeof(struct page))
635 ring_buffer_page_too_big();
638 /* keep it in its own cache line */
639 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
640 GFP_KERNEL);
641 if (!buffer)
642 return NULL;
644 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
645 goto fail_free_buffer;
647 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
648 buffer->flags = flags;
649 buffer->clock = trace_clock_local;
651 /* need at least two pages */
652 if (buffer->pages == 1)
653 buffer->pages++;
656 * In case of non-hotplug cpu, if the ring-buffer is allocated
657 * in early initcall, it will not be notified of secondary cpus.
658 * In that off case, we need to allocate for all possible cpus.
660 #ifdef CONFIG_HOTPLUG_CPU
661 get_online_cpus();
662 cpumask_copy(buffer->cpumask, cpu_online_mask);
663 #else
664 cpumask_copy(buffer->cpumask, cpu_possible_mask);
665 #endif
666 buffer->cpus = nr_cpu_ids;
668 bsize = sizeof(void *) * nr_cpu_ids;
669 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
670 GFP_KERNEL);
671 if (!buffer->buffers)
672 goto fail_free_cpumask;
674 for_each_buffer_cpu(buffer, cpu) {
675 buffer->buffers[cpu] =
676 rb_allocate_cpu_buffer(buffer, cpu);
677 if (!buffer->buffers[cpu])
678 goto fail_free_buffers;
681 #ifdef CONFIG_HOTPLUG_CPU
682 buffer->cpu_notify.notifier_call = rb_cpu_notify;
683 buffer->cpu_notify.priority = 0;
684 register_cpu_notifier(&buffer->cpu_notify);
685 #endif
687 put_online_cpus();
688 mutex_init(&buffer->mutex);
690 return buffer;
692 fail_free_buffers:
693 for_each_buffer_cpu(buffer, cpu) {
694 if (buffer->buffers[cpu])
695 rb_free_cpu_buffer(buffer->buffers[cpu]);
697 kfree(buffer->buffers);
699 fail_free_cpumask:
700 free_cpumask_var(buffer->cpumask);
701 put_online_cpus();
703 fail_free_buffer:
704 kfree(buffer);
705 return NULL;
707 EXPORT_SYMBOL_GPL(ring_buffer_alloc);
710 * ring_buffer_free - free a ring buffer.
711 * @buffer: the buffer to free.
713 void
714 ring_buffer_free(struct ring_buffer *buffer)
716 int cpu;
718 get_online_cpus();
720 #ifdef CONFIG_HOTPLUG_CPU
721 unregister_cpu_notifier(&buffer->cpu_notify);
722 #endif
724 for_each_buffer_cpu(buffer, cpu)
725 rb_free_cpu_buffer(buffer->buffers[cpu]);
727 put_online_cpus();
729 free_cpumask_var(buffer->cpumask);
731 kfree(buffer);
733 EXPORT_SYMBOL_GPL(ring_buffer_free);
735 void ring_buffer_set_clock(struct ring_buffer *buffer,
736 u64 (*clock)(void))
738 buffer->clock = clock;
741 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
743 static void
744 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
746 struct buffer_page *bpage;
747 struct list_head *p;
748 unsigned i;
750 atomic_inc(&cpu_buffer->record_disabled);
751 synchronize_sched();
753 for (i = 0; i < nr_pages; i++) {
754 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
755 return;
756 p = cpu_buffer->pages.next;
757 bpage = list_entry(p, struct buffer_page, list);
758 list_del_init(&bpage->list);
759 free_buffer_page(bpage);
761 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
762 return;
764 rb_reset_cpu(cpu_buffer);
766 rb_check_pages(cpu_buffer);
768 atomic_dec(&cpu_buffer->record_disabled);
772 static void
773 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
774 struct list_head *pages, unsigned nr_pages)
776 struct buffer_page *bpage;
777 struct list_head *p;
778 unsigned i;
780 atomic_inc(&cpu_buffer->record_disabled);
781 synchronize_sched();
783 for (i = 0; i < nr_pages; i++) {
784 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
785 return;
786 p = pages->next;
787 bpage = list_entry(p, struct buffer_page, list);
788 list_del_init(&bpage->list);
789 list_add_tail(&bpage->list, &cpu_buffer->pages);
791 rb_reset_cpu(cpu_buffer);
793 rb_check_pages(cpu_buffer);
795 atomic_dec(&cpu_buffer->record_disabled);
799 * ring_buffer_resize - resize the ring buffer
800 * @buffer: the buffer to resize.
801 * @size: the new size.
803 * The tracer is responsible for making sure that the buffer is
804 * not being used while changing the size.
805 * Note: We may be able to change the above requirement by using
806 * RCU synchronizations.
808 * Minimum size is 2 * BUF_PAGE_SIZE.
810 * Returns -1 on failure.
812 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
814 struct ring_buffer_per_cpu *cpu_buffer;
815 unsigned nr_pages, rm_pages, new_pages;
816 struct buffer_page *bpage, *tmp;
817 unsigned long buffer_size;
818 unsigned long addr;
819 LIST_HEAD(pages);
820 int i, cpu;
823 * Always succeed at resizing a non-existent buffer:
825 if (!buffer)
826 return size;
828 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
829 size *= BUF_PAGE_SIZE;
830 buffer_size = buffer->pages * BUF_PAGE_SIZE;
832 /* we need a minimum of two pages */
833 if (size < BUF_PAGE_SIZE * 2)
834 size = BUF_PAGE_SIZE * 2;
836 if (size == buffer_size)
837 return size;
839 mutex_lock(&buffer->mutex);
840 get_online_cpus();
842 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
844 if (size < buffer_size) {
846 /* easy case, just free pages */
847 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
848 goto out_fail;
850 rm_pages = buffer->pages - nr_pages;
852 for_each_buffer_cpu(buffer, cpu) {
853 cpu_buffer = buffer->buffers[cpu];
854 rb_remove_pages(cpu_buffer, rm_pages);
856 goto out;
860 * This is a bit more difficult. We only want to add pages
861 * when we can allocate enough for all CPUs. We do this
862 * by allocating all the pages and storing them on a local
863 * link list. If we succeed in our allocation, then we
864 * add these pages to the cpu_buffers. Otherwise we just free
865 * them all and return -ENOMEM;
867 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
868 goto out_fail;
870 new_pages = nr_pages - buffer->pages;
872 for_each_buffer_cpu(buffer, cpu) {
873 for (i = 0; i < new_pages; i++) {
874 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
875 cache_line_size()),
876 GFP_KERNEL, cpu_to_node(cpu));
877 if (!bpage)
878 goto free_pages;
879 list_add(&bpage->list, &pages);
880 addr = __get_free_page(GFP_KERNEL);
881 if (!addr)
882 goto free_pages;
883 bpage->page = (void *)addr;
884 rb_init_page(bpage->page);
888 for_each_buffer_cpu(buffer, cpu) {
889 cpu_buffer = buffer->buffers[cpu];
890 rb_insert_pages(cpu_buffer, &pages, new_pages);
893 if (RB_WARN_ON(buffer, !list_empty(&pages)))
894 goto out_fail;
896 out:
897 buffer->pages = nr_pages;
898 put_online_cpus();
899 mutex_unlock(&buffer->mutex);
901 return size;
903 free_pages:
904 list_for_each_entry_safe(bpage, tmp, &pages, list) {
905 list_del_init(&bpage->list);
906 free_buffer_page(bpage);
908 put_online_cpus();
909 mutex_unlock(&buffer->mutex);
910 return -ENOMEM;
913 * Something went totally wrong, and we are too paranoid
914 * to even clean up the mess.
916 out_fail:
917 put_online_cpus();
918 mutex_unlock(&buffer->mutex);
919 return -1;
921 EXPORT_SYMBOL_GPL(ring_buffer_resize);
923 static inline void *
924 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
926 return bpage->data + index;
929 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
931 return bpage->page->data + index;
934 static inline struct ring_buffer_event *
935 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
937 return __rb_page_index(cpu_buffer->reader_page,
938 cpu_buffer->reader_page->read);
941 static inline struct ring_buffer_event *
942 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
944 return __rb_page_index(cpu_buffer->head_page,
945 cpu_buffer->head_page->read);
948 static inline struct ring_buffer_event *
949 rb_iter_head_event(struct ring_buffer_iter *iter)
951 return __rb_page_index(iter->head_page, iter->head);
954 static inline unsigned rb_page_write(struct buffer_page *bpage)
956 return local_read(&bpage->write);
959 static inline unsigned rb_page_commit(struct buffer_page *bpage)
961 return local_read(&bpage->page->commit);
964 /* Size is determined by what has been commited */
965 static inline unsigned rb_page_size(struct buffer_page *bpage)
967 return rb_page_commit(bpage);
970 static inline unsigned
971 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
973 return rb_page_commit(cpu_buffer->commit_page);
976 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
978 return rb_page_commit(cpu_buffer->head_page);
981 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
982 struct buffer_page **bpage)
984 struct list_head *p = (*bpage)->list.next;
986 if (p == &cpu_buffer->pages)
987 p = p->next;
989 *bpage = list_entry(p, struct buffer_page, list);
992 static inline unsigned
993 rb_event_index(struct ring_buffer_event *event)
995 unsigned long addr = (unsigned long)event;
997 return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
1000 static int
1001 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1002 struct ring_buffer_event *event)
1004 unsigned long addr = (unsigned long)event;
1005 unsigned long index;
1007 index = rb_event_index(event);
1008 addr &= PAGE_MASK;
1010 return cpu_buffer->commit_page->page == (void *)addr &&
1011 rb_commit_index(cpu_buffer) == index;
1014 static void
1015 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
1016 struct ring_buffer_event *event)
1018 unsigned long addr = (unsigned long)event;
1019 unsigned long index;
1021 index = rb_event_index(event);
1022 addr &= PAGE_MASK;
1024 while (cpu_buffer->commit_page->page != (void *)addr) {
1025 if (RB_WARN_ON(cpu_buffer,
1026 cpu_buffer->commit_page == cpu_buffer->tail_page))
1027 return;
1028 cpu_buffer->commit_page->page->commit =
1029 cpu_buffer->commit_page->write;
1030 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1031 cpu_buffer->write_stamp =
1032 cpu_buffer->commit_page->page->time_stamp;
1035 /* Now set the commit to the event's index */
1036 local_set(&cpu_buffer->commit_page->page->commit, index);
1039 static void
1040 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1043 * We only race with interrupts and NMIs on this CPU.
1044 * If we own the commit event, then we can commit
1045 * all others that interrupted us, since the interruptions
1046 * are in stack format (they finish before they come
1047 * back to us). This allows us to do a simple loop to
1048 * assign the commit to the tail.
1050 again:
1051 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1052 cpu_buffer->commit_page->page->commit =
1053 cpu_buffer->commit_page->write;
1054 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1055 cpu_buffer->write_stamp =
1056 cpu_buffer->commit_page->page->time_stamp;
1057 /* add barrier to keep gcc from optimizing too much */
1058 barrier();
1060 while (rb_commit_index(cpu_buffer) !=
1061 rb_page_write(cpu_buffer->commit_page)) {
1062 cpu_buffer->commit_page->page->commit =
1063 cpu_buffer->commit_page->write;
1064 barrier();
1067 /* again, keep gcc from optimizing */
1068 barrier();
1071 * If an interrupt came in just after the first while loop
1072 * and pushed the tail page forward, we will be left with
1073 * a dangling commit that will never go forward.
1075 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1076 goto again;
1079 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1081 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1082 cpu_buffer->reader_page->read = 0;
1085 static void rb_inc_iter(struct ring_buffer_iter *iter)
1087 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1090 * The iterator could be on the reader page (it starts there).
1091 * But the head could have moved, since the reader was
1092 * found. Check for this case and assign the iterator
1093 * to the head page instead of next.
1095 if (iter->head_page == cpu_buffer->reader_page)
1096 iter->head_page = cpu_buffer->head_page;
1097 else
1098 rb_inc_page(cpu_buffer, &iter->head_page);
1100 iter->read_stamp = iter->head_page->page->time_stamp;
1101 iter->head = 0;
1105 * ring_buffer_update_event - update event type and data
1106 * @event: the even to update
1107 * @type: the type of event
1108 * @length: the size of the event field in the ring buffer
1110 * Update the type and data fields of the event. The length
1111 * is the actual size that is written to the ring buffer,
1112 * and with this, we can determine what to place into the
1113 * data field.
1115 static void
1116 rb_update_event(struct ring_buffer_event *event,
1117 unsigned type, unsigned length)
1119 event->type_len = type;
1121 switch (type) {
1123 case RINGBUF_TYPE_PADDING:
1124 case RINGBUF_TYPE_TIME_EXTEND:
1125 case RINGBUF_TYPE_TIME_STAMP:
1126 break;
1128 case 0:
1129 length -= RB_EVNT_HDR_SIZE;
1130 if (length > RB_MAX_SMALL_DATA)
1131 event->array[0] = length;
1132 else
1133 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1134 break;
1135 default:
1136 BUG();
1140 static unsigned rb_calculate_event_length(unsigned length)
1142 struct ring_buffer_event event; /* Used only for sizeof array */
1144 /* zero length can cause confusions */
1145 if (!length)
1146 length = 1;
1148 if (length > RB_MAX_SMALL_DATA)
1149 length += sizeof(event.array[0]);
1151 length += RB_EVNT_HDR_SIZE;
1152 length = ALIGN(length, RB_ALIGNMENT);
1154 return length;
1157 static struct ring_buffer_event *
1158 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1159 unsigned type, unsigned long length, u64 *ts)
1161 struct buffer_page *tail_page, *head_page, *reader_page, *commit_page;
1162 unsigned long tail, write;
1163 struct ring_buffer *buffer = cpu_buffer->buffer;
1164 struct ring_buffer_event *event;
1165 unsigned long flags;
1166 bool lock_taken = false;
1168 commit_page = cpu_buffer->commit_page;
1169 /* we just need to protect against interrupts */
1170 barrier();
1171 tail_page = cpu_buffer->tail_page;
1172 write = local_add_return(length, &tail_page->write);
1173 tail = write - length;
1175 /* See if we shot pass the end of this buffer page */
1176 if (write > BUF_PAGE_SIZE) {
1177 struct buffer_page *next_page = tail_page;
1179 local_irq_save(flags);
1181 * Since the write to the buffer is still not
1182 * fully lockless, we must be careful with NMIs.
1183 * The locks in the writers are taken when a write
1184 * crosses to a new page. The locks protect against
1185 * races with the readers (this will soon be fixed
1186 * with a lockless solution).
1188 * Because we can not protect against NMIs, and we
1189 * want to keep traces reentrant, we need to manage
1190 * what happens when we are in an NMI.
1192 * NMIs can happen after we take the lock.
1193 * If we are in an NMI, only take the lock
1194 * if it is not already taken. Otherwise
1195 * simply fail.
1197 if (unlikely(in_nmi())) {
1198 if (!__raw_spin_trylock(&cpu_buffer->lock)) {
1199 cpu_buffer->nmi_dropped++;
1200 goto out_reset;
1202 } else
1203 __raw_spin_lock(&cpu_buffer->lock);
1205 lock_taken = true;
1207 rb_inc_page(cpu_buffer, &next_page);
1209 head_page = cpu_buffer->head_page;
1210 reader_page = cpu_buffer->reader_page;
1212 /* we grabbed the lock before incrementing */
1213 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1214 goto out_reset;
1217 * If for some reason, we had an interrupt storm that made
1218 * it all the way around the buffer, bail, and warn
1219 * about it.
1221 if (unlikely(next_page == commit_page)) {
1222 cpu_buffer->commit_overrun++;
1223 goto out_reset;
1226 if (next_page == head_page) {
1227 if (!(buffer->flags & RB_FL_OVERWRITE))
1228 goto out_reset;
1230 /* tail_page has not moved yet? */
1231 if (tail_page == cpu_buffer->tail_page) {
1232 /* count overflows */
1233 cpu_buffer->overrun +=
1234 local_read(&head_page->entries);
1236 rb_inc_page(cpu_buffer, &head_page);
1237 cpu_buffer->head_page = head_page;
1238 cpu_buffer->head_page->read = 0;
1243 * If the tail page is still the same as what we think
1244 * it is, then it is up to us to update the tail
1245 * pointer.
1247 if (tail_page == cpu_buffer->tail_page) {
1248 local_set(&next_page->write, 0);
1249 local_set(&next_page->entries, 0);
1250 local_set(&next_page->page->commit, 0);
1251 cpu_buffer->tail_page = next_page;
1253 /* reread the time stamp */
1254 *ts = ring_buffer_time_stamp(buffer, cpu_buffer->cpu);
1255 cpu_buffer->tail_page->page->time_stamp = *ts;
1259 * The actual tail page has moved forward.
1261 if (tail < BUF_PAGE_SIZE) {
1262 /* Mark the rest of the page with padding */
1263 event = __rb_page_index(tail_page, tail);
1264 rb_event_set_padding(event);
1267 if (tail <= BUF_PAGE_SIZE)
1268 /* Set the write back to the previous setting */
1269 local_set(&tail_page->write, tail);
1272 * If this was a commit entry that failed,
1273 * increment that too
1275 if (tail_page == cpu_buffer->commit_page &&
1276 tail == rb_commit_index(cpu_buffer)) {
1277 rb_set_commit_to_write(cpu_buffer);
1280 __raw_spin_unlock(&cpu_buffer->lock);
1281 local_irq_restore(flags);
1283 /* fail and let the caller try again */
1284 return ERR_PTR(-EAGAIN);
1287 /* We reserved something on the buffer */
1289 if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1290 return NULL;
1292 event = __rb_page_index(tail_page, tail);
1293 rb_update_event(event, type, length);
1295 /* The passed in type is zero for DATA */
1296 if (likely(!type))
1297 local_inc(&tail_page->entries);
1300 * If this is a commit and the tail is zero, then update
1301 * this page's time stamp.
1303 if (!tail && rb_is_commit(cpu_buffer, event))
1304 cpu_buffer->commit_page->page->time_stamp = *ts;
1306 return event;
1308 out_reset:
1309 /* reset write */
1310 if (tail <= BUF_PAGE_SIZE)
1311 local_set(&tail_page->write, tail);
1313 if (likely(lock_taken))
1314 __raw_spin_unlock(&cpu_buffer->lock);
1315 local_irq_restore(flags);
1316 return NULL;
1319 static int
1320 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1321 u64 *ts, u64 *delta)
1323 struct ring_buffer_event *event;
1324 static int once;
1325 int ret;
1327 if (unlikely(*delta > (1ULL << 59) && !once++)) {
1328 printk(KERN_WARNING "Delta way too big! %llu"
1329 " ts=%llu write stamp = %llu\n",
1330 (unsigned long long)*delta,
1331 (unsigned long long)*ts,
1332 (unsigned long long)cpu_buffer->write_stamp);
1333 WARN_ON(1);
1337 * The delta is too big, we to add a
1338 * new timestamp.
1340 event = __rb_reserve_next(cpu_buffer,
1341 RINGBUF_TYPE_TIME_EXTEND,
1342 RB_LEN_TIME_EXTEND,
1343 ts);
1344 if (!event)
1345 return -EBUSY;
1347 if (PTR_ERR(event) == -EAGAIN)
1348 return -EAGAIN;
1350 /* Only a commited time event can update the write stamp */
1351 if (rb_is_commit(cpu_buffer, event)) {
1353 * If this is the first on the page, then we need to
1354 * update the page itself, and just put in a zero.
1356 if (rb_event_index(event)) {
1357 event->time_delta = *delta & TS_MASK;
1358 event->array[0] = *delta >> TS_SHIFT;
1359 } else {
1360 cpu_buffer->commit_page->page->time_stamp = *ts;
1361 event->time_delta = 0;
1362 event->array[0] = 0;
1364 cpu_buffer->write_stamp = *ts;
1365 /* let the caller know this was the commit */
1366 ret = 1;
1367 } else {
1368 /* Darn, this is just wasted space */
1369 event->time_delta = 0;
1370 event->array[0] = 0;
1371 ret = 0;
1374 *delta = 0;
1376 return ret;
1379 static struct ring_buffer_event *
1380 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1381 unsigned type, unsigned long length)
1383 struct ring_buffer_event *event;
1384 u64 ts, delta;
1385 int commit = 0;
1386 int nr_loops = 0;
1388 again:
1390 * We allow for interrupts to reenter here and do a trace.
1391 * If one does, it will cause this original code to loop
1392 * back here. Even with heavy interrupts happening, this
1393 * should only happen a few times in a row. If this happens
1394 * 1000 times in a row, there must be either an interrupt
1395 * storm or we have something buggy.
1396 * Bail!
1398 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
1399 return NULL;
1401 ts = ring_buffer_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
1404 * Only the first commit can update the timestamp.
1405 * Yes there is a race here. If an interrupt comes in
1406 * just after the conditional and it traces too, then it
1407 * will also check the deltas. More than one timestamp may
1408 * also be made. But only the entry that did the actual
1409 * commit will be something other than zero.
1411 if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1412 rb_page_write(cpu_buffer->tail_page) ==
1413 rb_commit_index(cpu_buffer)) {
1415 delta = ts - cpu_buffer->write_stamp;
1417 /* make sure this delta is calculated here */
1418 barrier();
1420 /* Did the write stamp get updated already? */
1421 if (unlikely(ts < cpu_buffer->write_stamp))
1422 delta = 0;
1424 if (test_time_stamp(delta)) {
1426 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1428 if (commit == -EBUSY)
1429 return NULL;
1431 if (commit == -EAGAIN)
1432 goto again;
1434 RB_WARN_ON(cpu_buffer, commit < 0);
1436 } else
1437 /* Non commits have zero deltas */
1438 delta = 0;
1440 event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1441 if (PTR_ERR(event) == -EAGAIN)
1442 goto again;
1444 if (!event) {
1445 if (unlikely(commit))
1447 * Ouch! We needed a timestamp and it was commited. But
1448 * we didn't get our event reserved.
1450 rb_set_commit_to_write(cpu_buffer);
1451 return NULL;
1455 * If the timestamp was commited, make the commit our entry
1456 * now so that we will update it when needed.
1458 if (commit)
1459 rb_set_commit_event(cpu_buffer, event);
1460 else if (!rb_is_commit(cpu_buffer, event))
1461 delta = 0;
1463 event->time_delta = delta;
1465 return event;
1468 #define TRACE_RECURSIVE_DEPTH 16
1470 static int trace_recursive_lock(void)
1472 current->trace_recursion++;
1474 if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
1475 return 0;
1477 /* Disable all tracing before we do anything else */
1478 tracing_off_permanent();
1480 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
1481 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
1482 current->trace_recursion,
1483 hardirq_count() >> HARDIRQ_SHIFT,
1484 softirq_count() >> SOFTIRQ_SHIFT,
1485 in_nmi());
1487 WARN_ON_ONCE(1);
1488 return -1;
1491 static void trace_recursive_unlock(void)
1493 WARN_ON_ONCE(!current->trace_recursion);
1495 current->trace_recursion--;
1498 static DEFINE_PER_CPU(int, rb_need_resched);
1501 * ring_buffer_lock_reserve - reserve a part of the buffer
1502 * @buffer: the ring buffer to reserve from
1503 * @length: the length of the data to reserve (excluding event header)
1505 * Returns a reseverd event on the ring buffer to copy directly to.
1506 * The user of this interface will need to get the body to write into
1507 * and can use the ring_buffer_event_data() interface.
1509 * The length is the length of the data needed, not the event length
1510 * which also includes the event header.
1512 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1513 * If NULL is returned, then nothing has been allocated or locked.
1515 struct ring_buffer_event *
1516 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
1518 struct ring_buffer_per_cpu *cpu_buffer;
1519 struct ring_buffer_event *event;
1520 int cpu, resched;
1522 if (ring_buffer_flags != RB_BUFFERS_ON)
1523 return NULL;
1525 if (atomic_read(&buffer->record_disabled))
1526 return NULL;
1528 /* If we are tracing schedule, we don't want to recurse */
1529 resched = ftrace_preempt_disable();
1531 if (trace_recursive_lock())
1532 goto out_nocheck;
1534 cpu = raw_smp_processor_id();
1536 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1537 goto out;
1539 cpu_buffer = buffer->buffers[cpu];
1541 if (atomic_read(&cpu_buffer->record_disabled))
1542 goto out;
1544 length = rb_calculate_event_length(length);
1545 if (length > BUF_PAGE_SIZE)
1546 goto out;
1548 event = rb_reserve_next_event(cpu_buffer, 0, length);
1549 if (!event)
1550 goto out;
1553 * Need to store resched state on this cpu.
1554 * Only the first needs to.
1557 if (preempt_count() == 1)
1558 per_cpu(rb_need_resched, cpu) = resched;
1560 return event;
1562 out:
1563 trace_recursive_unlock();
1565 out_nocheck:
1566 ftrace_preempt_enable(resched);
1567 return NULL;
1569 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
1571 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1572 struct ring_buffer_event *event)
1574 local_inc(&cpu_buffer->entries);
1576 /* Only process further if we own the commit */
1577 if (!rb_is_commit(cpu_buffer, event))
1578 return;
1580 cpu_buffer->write_stamp += event->time_delta;
1582 rb_set_commit_to_write(cpu_buffer);
1586 * ring_buffer_unlock_commit - commit a reserved
1587 * @buffer: The buffer to commit to
1588 * @event: The event pointer to commit.
1590 * This commits the data to the ring buffer, and releases any locks held.
1592 * Must be paired with ring_buffer_lock_reserve.
1594 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1595 struct ring_buffer_event *event)
1597 struct ring_buffer_per_cpu *cpu_buffer;
1598 int cpu = raw_smp_processor_id();
1600 cpu_buffer = buffer->buffers[cpu];
1602 rb_commit(cpu_buffer, event);
1604 trace_recursive_unlock();
1607 * Only the last preempt count needs to restore preemption.
1609 if (preempt_count() == 1)
1610 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1611 else
1612 preempt_enable_no_resched_notrace();
1614 return 0;
1616 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
1618 static inline void rb_event_discard(struct ring_buffer_event *event)
1620 /* array[0] holds the actual length for the discarded event */
1621 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
1622 event->type_len = RINGBUF_TYPE_PADDING;
1623 /* time delta must be non zero */
1624 if (!event->time_delta)
1625 event->time_delta = 1;
1629 * ring_buffer_event_discard - discard any event in the ring buffer
1630 * @event: the event to discard
1632 * Sometimes a event that is in the ring buffer needs to be ignored.
1633 * This function lets the user discard an event in the ring buffer
1634 * and then that event will not be read later.
1636 * Note, it is up to the user to be careful with this, and protect
1637 * against races. If the user discards an event that has been consumed
1638 * it is possible that it could corrupt the ring buffer.
1640 void ring_buffer_event_discard(struct ring_buffer_event *event)
1642 rb_event_discard(event);
1644 EXPORT_SYMBOL_GPL(ring_buffer_event_discard);
1647 * ring_buffer_commit_discard - discard an event that has not been committed
1648 * @buffer: the ring buffer
1649 * @event: non committed event to discard
1651 * This is similar to ring_buffer_event_discard but must only be
1652 * performed on an event that has not been committed yet. The difference
1653 * is that this will also try to free the event from the ring buffer
1654 * if another event has not been added behind it.
1656 * If another event has been added behind it, it will set the event
1657 * up as discarded, and perform the commit.
1659 * If this function is called, do not call ring_buffer_unlock_commit on
1660 * the event.
1662 void ring_buffer_discard_commit(struct ring_buffer *buffer,
1663 struct ring_buffer_event *event)
1665 struct ring_buffer_per_cpu *cpu_buffer;
1666 unsigned long new_index, old_index;
1667 struct buffer_page *bpage;
1668 unsigned long index;
1669 unsigned long addr;
1670 int cpu;
1672 /* The event is discarded regardless */
1673 rb_event_discard(event);
1676 * This must only be called if the event has not been
1677 * committed yet. Thus we can assume that preemption
1678 * is still disabled.
1680 RB_WARN_ON(buffer, !preempt_count());
1682 cpu = smp_processor_id();
1683 cpu_buffer = buffer->buffers[cpu];
1685 new_index = rb_event_index(event);
1686 old_index = new_index + rb_event_length(event);
1687 addr = (unsigned long)event;
1688 addr &= PAGE_MASK;
1690 bpage = cpu_buffer->tail_page;
1692 if (bpage == (void *)addr && rb_page_write(bpage) == old_index) {
1694 * This is on the tail page. It is possible that
1695 * a write could come in and move the tail page
1696 * and write to the next page. That is fine
1697 * because we just shorten what is on this page.
1699 index = local_cmpxchg(&bpage->write, old_index, new_index);
1700 if (index == old_index)
1701 goto out;
1705 * The commit is still visible by the reader, so we
1706 * must increment entries.
1708 local_inc(&cpu_buffer->entries);
1709 out:
1711 * If a write came in and pushed the tail page
1712 * we still need to update the commit pointer
1713 * if we were the commit.
1715 if (rb_is_commit(cpu_buffer, event))
1716 rb_set_commit_to_write(cpu_buffer);
1718 trace_recursive_unlock();
1721 * Only the last preempt count needs to restore preemption.
1723 if (preempt_count() == 1)
1724 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1725 else
1726 preempt_enable_no_resched_notrace();
1729 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
1732 * ring_buffer_write - write data to the buffer without reserving
1733 * @buffer: The ring buffer to write to.
1734 * @length: The length of the data being written (excluding the event header)
1735 * @data: The data to write to the buffer.
1737 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1738 * one function. If you already have the data to write to the buffer, it
1739 * may be easier to simply call this function.
1741 * Note, like ring_buffer_lock_reserve, the length is the length of the data
1742 * and not the length of the event which would hold the header.
1744 int ring_buffer_write(struct ring_buffer *buffer,
1745 unsigned long length,
1746 void *data)
1748 struct ring_buffer_per_cpu *cpu_buffer;
1749 struct ring_buffer_event *event;
1750 unsigned long event_length;
1751 void *body;
1752 int ret = -EBUSY;
1753 int cpu, resched;
1755 if (ring_buffer_flags != RB_BUFFERS_ON)
1756 return -EBUSY;
1758 if (atomic_read(&buffer->record_disabled))
1759 return -EBUSY;
1761 resched = ftrace_preempt_disable();
1763 cpu = raw_smp_processor_id();
1765 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1766 goto out;
1768 cpu_buffer = buffer->buffers[cpu];
1770 if (atomic_read(&cpu_buffer->record_disabled))
1771 goto out;
1773 event_length = rb_calculate_event_length(length);
1774 event = rb_reserve_next_event(cpu_buffer, 0, event_length);
1775 if (!event)
1776 goto out;
1778 body = rb_event_data(event);
1780 memcpy(body, data, length);
1782 rb_commit(cpu_buffer, event);
1784 ret = 0;
1785 out:
1786 ftrace_preempt_enable(resched);
1788 return ret;
1790 EXPORT_SYMBOL_GPL(ring_buffer_write);
1792 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1794 struct buffer_page *reader = cpu_buffer->reader_page;
1795 struct buffer_page *head = cpu_buffer->head_page;
1796 struct buffer_page *commit = cpu_buffer->commit_page;
1798 return reader->read == rb_page_commit(reader) &&
1799 (commit == reader ||
1800 (commit == head &&
1801 head->read == rb_page_commit(commit)));
1805 * ring_buffer_record_disable - stop all writes into the buffer
1806 * @buffer: The ring buffer to stop writes to.
1808 * This prevents all writes to the buffer. Any attempt to write
1809 * to the buffer after this will fail and return NULL.
1811 * The caller should call synchronize_sched() after this.
1813 void ring_buffer_record_disable(struct ring_buffer *buffer)
1815 atomic_inc(&buffer->record_disabled);
1817 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
1820 * ring_buffer_record_enable - enable writes to the buffer
1821 * @buffer: The ring buffer to enable writes
1823 * Note, multiple disables will need the same number of enables
1824 * to truely enable the writing (much like preempt_disable).
1826 void ring_buffer_record_enable(struct ring_buffer *buffer)
1828 atomic_dec(&buffer->record_disabled);
1830 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
1833 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1834 * @buffer: The ring buffer to stop writes to.
1835 * @cpu: The CPU buffer to stop
1837 * This prevents all writes to the buffer. Any attempt to write
1838 * to the buffer after this will fail and return NULL.
1840 * The caller should call synchronize_sched() after this.
1842 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1844 struct ring_buffer_per_cpu *cpu_buffer;
1846 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1847 return;
1849 cpu_buffer = buffer->buffers[cpu];
1850 atomic_inc(&cpu_buffer->record_disabled);
1852 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
1855 * ring_buffer_record_enable_cpu - enable writes to the buffer
1856 * @buffer: The ring buffer to enable writes
1857 * @cpu: The CPU to enable.
1859 * Note, multiple disables will need the same number of enables
1860 * to truely enable the writing (much like preempt_disable).
1862 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1864 struct ring_buffer_per_cpu *cpu_buffer;
1866 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1867 return;
1869 cpu_buffer = buffer->buffers[cpu];
1870 atomic_dec(&cpu_buffer->record_disabled);
1872 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
1875 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1876 * @buffer: The ring buffer
1877 * @cpu: The per CPU buffer to get the entries from.
1879 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1881 struct ring_buffer_per_cpu *cpu_buffer;
1882 unsigned long ret;
1884 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1885 return 0;
1887 cpu_buffer = buffer->buffers[cpu];
1888 ret = (local_read(&cpu_buffer->entries) - cpu_buffer->overrun)
1889 - cpu_buffer->read;
1891 return ret;
1893 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
1896 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1897 * @buffer: The ring buffer
1898 * @cpu: The per CPU buffer to get the number of overruns from
1900 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1902 struct ring_buffer_per_cpu *cpu_buffer;
1903 unsigned long ret;
1905 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1906 return 0;
1908 cpu_buffer = buffer->buffers[cpu];
1909 ret = cpu_buffer->overrun;
1911 return ret;
1913 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
1916 * ring_buffer_nmi_dropped_cpu - get the number of nmis that were dropped
1917 * @buffer: The ring buffer
1918 * @cpu: The per CPU buffer to get the number of overruns from
1920 unsigned long ring_buffer_nmi_dropped_cpu(struct ring_buffer *buffer, int cpu)
1922 struct ring_buffer_per_cpu *cpu_buffer;
1923 unsigned long ret;
1925 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1926 return 0;
1928 cpu_buffer = buffer->buffers[cpu];
1929 ret = cpu_buffer->nmi_dropped;
1931 return ret;
1933 EXPORT_SYMBOL_GPL(ring_buffer_nmi_dropped_cpu);
1936 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
1937 * @buffer: The ring buffer
1938 * @cpu: The per CPU buffer to get the number of overruns from
1940 unsigned long
1941 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
1943 struct ring_buffer_per_cpu *cpu_buffer;
1944 unsigned long ret;
1946 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1947 return 0;
1949 cpu_buffer = buffer->buffers[cpu];
1950 ret = cpu_buffer->commit_overrun;
1952 return ret;
1954 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
1957 * ring_buffer_entries - get the number of entries in a buffer
1958 * @buffer: The ring buffer
1960 * Returns the total number of entries in the ring buffer
1961 * (all CPU entries)
1963 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1965 struct ring_buffer_per_cpu *cpu_buffer;
1966 unsigned long entries = 0;
1967 int cpu;
1969 /* if you care about this being correct, lock the buffer */
1970 for_each_buffer_cpu(buffer, cpu) {
1971 cpu_buffer = buffer->buffers[cpu];
1972 entries += (local_read(&cpu_buffer->entries) -
1973 cpu_buffer->overrun) - cpu_buffer->read;
1976 return entries;
1978 EXPORT_SYMBOL_GPL(ring_buffer_entries);
1981 * ring_buffer_overrun_cpu - get the number of overruns in buffer
1982 * @buffer: The ring buffer
1984 * Returns the total number of overruns in the ring buffer
1985 * (all CPU entries)
1987 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1989 struct ring_buffer_per_cpu *cpu_buffer;
1990 unsigned long overruns = 0;
1991 int cpu;
1993 /* if you care about this being correct, lock the buffer */
1994 for_each_buffer_cpu(buffer, cpu) {
1995 cpu_buffer = buffer->buffers[cpu];
1996 overruns += cpu_buffer->overrun;
1999 return overruns;
2001 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2003 static void rb_iter_reset(struct ring_buffer_iter *iter)
2005 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2007 /* Iterator usage is expected to have record disabled */
2008 if (list_empty(&cpu_buffer->reader_page->list)) {
2009 iter->head_page = cpu_buffer->head_page;
2010 iter->head = cpu_buffer->head_page->read;
2011 } else {
2012 iter->head_page = cpu_buffer->reader_page;
2013 iter->head = cpu_buffer->reader_page->read;
2015 if (iter->head)
2016 iter->read_stamp = cpu_buffer->read_stamp;
2017 else
2018 iter->read_stamp = iter->head_page->page->time_stamp;
2022 * ring_buffer_iter_reset - reset an iterator
2023 * @iter: The iterator to reset
2025 * Resets the iterator, so that it will start from the beginning
2026 * again.
2028 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2030 struct ring_buffer_per_cpu *cpu_buffer;
2031 unsigned long flags;
2033 if (!iter)
2034 return;
2036 cpu_buffer = iter->cpu_buffer;
2038 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2039 rb_iter_reset(iter);
2040 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2042 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2045 * ring_buffer_iter_empty - check if an iterator has no more to read
2046 * @iter: The iterator to check
2048 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2050 struct ring_buffer_per_cpu *cpu_buffer;
2052 cpu_buffer = iter->cpu_buffer;
2054 return iter->head_page == cpu_buffer->commit_page &&
2055 iter->head == rb_commit_index(cpu_buffer);
2057 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2059 static void
2060 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2061 struct ring_buffer_event *event)
2063 u64 delta;
2065 switch (event->type_len) {
2066 case RINGBUF_TYPE_PADDING:
2067 return;
2069 case RINGBUF_TYPE_TIME_EXTEND:
2070 delta = event->array[0];
2071 delta <<= TS_SHIFT;
2072 delta += event->time_delta;
2073 cpu_buffer->read_stamp += delta;
2074 return;
2076 case RINGBUF_TYPE_TIME_STAMP:
2077 /* FIXME: not implemented */
2078 return;
2080 case RINGBUF_TYPE_DATA:
2081 cpu_buffer->read_stamp += event->time_delta;
2082 return;
2084 default:
2085 BUG();
2087 return;
2090 static void
2091 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2092 struct ring_buffer_event *event)
2094 u64 delta;
2096 switch (event->type_len) {
2097 case RINGBUF_TYPE_PADDING:
2098 return;
2100 case RINGBUF_TYPE_TIME_EXTEND:
2101 delta = event->array[0];
2102 delta <<= TS_SHIFT;
2103 delta += event->time_delta;
2104 iter->read_stamp += delta;
2105 return;
2107 case RINGBUF_TYPE_TIME_STAMP:
2108 /* FIXME: not implemented */
2109 return;
2111 case RINGBUF_TYPE_DATA:
2112 iter->read_stamp += event->time_delta;
2113 return;
2115 default:
2116 BUG();
2118 return;
2121 static struct buffer_page *
2122 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2124 struct buffer_page *reader = NULL;
2125 unsigned long flags;
2126 int nr_loops = 0;
2128 local_irq_save(flags);
2129 __raw_spin_lock(&cpu_buffer->lock);
2131 again:
2133 * This should normally only loop twice. But because the
2134 * start of the reader inserts an empty page, it causes
2135 * a case where we will loop three times. There should be no
2136 * reason to loop four times (that I know of).
2138 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2139 reader = NULL;
2140 goto out;
2143 reader = cpu_buffer->reader_page;
2145 /* If there's more to read, return this page */
2146 if (cpu_buffer->reader_page->read < rb_page_size(reader))
2147 goto out;
2149 /* Never should we have an index greater than the size */
2150 if (RB_WARN_ON(cpu_buffer,
2151 cpu_buffer->reader_page->read > rb_page_size(reader)))
2152 goto out;
2154 /* check if we caught up to the tail */
2155 reader = NULL;
2156 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2157 goto out;
2160 * Splice the empty reader page into the list around the head.
2161 * Reset the reader page to size zero.
2164 reader = cpu_buffer->head_page;
2165 cpu_buffer->reader_page->list.next = reader->list.next;
2166 cpu_buffer->reader_page->list.prev = reader->list.prev;
2168 local_set(&cpu_buffer->reader_page->write, 0);
2169 local_set(&cpu_buffer->reader_page->entries, 0);
2170 local_set(&cpu_buffer->reader_page->page->commit, 0);
2172 /* Make the reader page now replace the head */
2173 reader->list.prev->next = &cpu_buffer->reader_page->list;
2174 reader->list.next->prev = &cpu_buffer->reader_page->list;
2177 * If the tail is on the reader, then we must set the head
2178 * to the inserted page, otherwise we set it one before.
2180 cpu_buffer->head_page = cpu_buffer->reader_page;
2182 if (cpu_buffer->commit_page != reader)
2183 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2185 /* Finally update the reader page to the new head */
2186 cpu_buffer->reader_page = reader;
2187 rb_reset_reader_page(cpu_buffer);
2189 goto again;
2191 out:
2192 __raw_spin_unlock(&cpu_buffer->lock);
2193 local_irq_restore(flags);
2195 return reader;
2198 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2200 struct ring_buffer_event *event;
2201 struct buffer_page *reader;
2202 unsigned length;
2204 reader = rb_get_reader_page(cpu_buffer);
2206 /* This function should not be called when buffer is empty */
2207 if (RB_WARN_ON(cpu_buffer, !reader))
2208 return;
2210 event = rb_reader_event(cpu_buffer);
2212 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
2213 || rb_discarded_event(event))
2214 cpu_buffer->read++;
2216 rb_update_read_stamp(cpu_buffer, event);
2218 length = rb_event_length(event);
2219 cpu_buffer->reader_page->read += length;
2222 static void rb_advance_iter(struct ring_buffer_iter *iter)
2224 struct ring_buffer *buffer;
2225 struct ring_buffer_per_cpu *cpu_buffer;
2226 struct ring_buffer_event *event;
2227 unsigned length;
2229 cpu_buffer = iter->cpu_buffer;
2230 buffer = cpu_buffer->buffer;
2233 * Check if we are at the end of the buffer.
2235 if (iter->head >= rb_page_size(iter->head_page)) {
2236 if (RB_WARN_ON(buffer,
2237 iter->head_page == cpu_buffer->commit_page))
2238 return;
2239 rb_inc_iter(iter);
2240 return;
2243 event = rb_iter_head_event(iter);
2245 length = rb_event_length(event);
2248 * This should not be called to advance the header if we are
2249 * at the tail of the buffer.
2251 if (RB_WARN_ON(cpu_buffer,
2252 (iter->head_page == cpu_buffer->commit_page) &&
2253 (iter->head + length > rb_commit_index(cpu_buffer))))
2254 return;
2256 rb_update_iter_read_stamp(iter, event);
2258 iter->head += length;
2260 /* check for end of page padding */
2261 if ((iter->head >= rb_page_size(iter->head_page)) &&
2262 (iter->head_page != cpu_buffer->commit_page))
2263 rb_advance_iter(iter);
2266 static struct ring_buffer_event *
2267 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2269 struct ring_buffer_per_cpu *cpu_buffer;
2270 struct ring_buffer_event *event;
2271 struct buffer_page *reader;
2272 int nr_loops = 0;
2274 cpu_buffer = buffer->buffers[cpu];
2276 again:
2278 * We repeat when a timestamp is encountered. It is possible
2279 * to get multiple timestamps from an interrupt entering just
2280 * as one timestamp is about to be written. The max times
2281 * that this can happen is the number of nested interrupts we
2282 * can have. Nesting 10 deep of interrupts is clearly
2283 * an anomaly.
2285 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
2286 return NULL;
2288 reader = rb_get_reader_page(cpu_buffer);
2289 if (!reader)
2290 return NULL;
2292 event = rb_reader_event(cpu_buffer);
2294 switch (event->type_len) {
2295 case RINGBUF_TYPE_PADDING:
2296 if (rb_null_event(event))
2297 RB_WARN_ON(cpu_buffer, 1);
2299 * Because the writer could be discarding every
2300 * event it creates (which would probably be bad)
2301 * if we were to go back to "again" then we may never
2302 * catch up, and will trigger the warn on, or lock
2303 * the box. Return the padding, and we will release
2304 * the current locks, and try again.
2306 rb_advance_reader(cpu_buffer);
2307 return event;
2309 case RINGBUF_TYPE_TIME_EXTEND:
2310 /* Internal data, OK to advance */
2311 rb_advance_reader(cpu_buffer);
2312 goto again;
2314 case RINGBUF_TYPE_TIME_STAMP:
2315 /* FIXME: not implemented */
2316 rb_advance_reader(cpu_buffer);
2317 goto again;
2319 case RINGBUF_TYPE_DATA:
2320 if (ts) {
2321 *ts = cpu_buffer->read_stamp + event->time_delta;
2322 ring_buffer_normalize_time_stamp(buffer,
2323 cpu_buffer->cpu, ts);
2325 return event;
2327 default:
2328 BUG();
2331 return NULL;
2333 EXPORT_SYMBOL_GPL(ring_buffer_peek);
2335 static struct ring_buffer_event *
2336 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2338 struct ring_buffer *buffer;
2339 struct ring_buffer_per_cpu *cpu_buffer;
2340 struct ring_buffer_event *event;
2341 int nr_loops = 0;
2343 if (ring_buffer_iter_empty(iter))
2344 return NULL;
2346 cpu_buffer = iter->cpu_buffer;
2347 buffer = cpu_buffer->buffer;
2349 again:
2351 * We repeat when a timestamp is encountered. It is possible
2352 * to get multiple timestamps from an interrupt entering just
2353 * as one timestamp is about to be written. The max times
2354 * that this can happen is the number of nested interrupts we
2355 * can have. Nesting 10 deep of interrupts is clearly
2356 * an anomaly.
2358 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
2359 return NULL;
2361 if (rb_per_cpu_empty(cpu_buffer))
2362 return NULL;
2364 event = rb_iter_head_event(iter);
2366 switch (event->type_len) {
2367 case RINGBUF_TYPE_PADDING:
2368 if (rb_null_event(event)) {
2369 rb_inc_iter(iter);
2370 goto again;
2372 rb_advance_iter(iter);
2373 return event;
2375 case RINGBUF_TYPE_TIME_EXTEND:
2376 /* Internal data, OK to advance */
2377 rb_advance_iter(iter);
2378 goto again;
2380 case RINGBUF_TYPE_TIME_STAMP:
2381 /* FIXME: not implemented */
2382 rb_advance_iter(iter);
2383 goto again;
2385 case RINGBUF_TYPE_DATA:
2386 if (ts) {
2387 *ts = iter->read_stamp + event->time_delta;
2388 ring_buffer_normalize_time_stamp(buffer,
2389 cpu_buffer->cpu, ts);
2391 return event;
2393 default:
2394 BUG();
2397 return NULL;
2399 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
2402 * ring_buffer_peek - peek at the next event to be read
2403 * @buffer: The ring buffer to read
2404 * @cpu: The cpu to peak at
2405 * @ts: The timestamp counter of this event.
2407 * This will return the event that will be read next, but does
2408 * not consume the data.
2410 struct ring_buffer_event *
2411 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2413 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2414 struct ring_buffer_event *event;
2415 unsigned long flags;
2417 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2418 return NULL;
2420 again:
2421 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2422 event = rb_buffer_peek(buffer, cpu, ts);
2423 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2425 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2426 cpu_relax();
2427 goto again;
2430 return event;
2434 * ring_buffer_iter_peek - peek at the next event to be read
2435 * @iter: The ring buffer iterator
2436 * @ts: The timestamp counter of this event.
2438 * This will return the event that will be read next, but does
2439 * not increment the iterator.
2441 struct ring_buffer_event *
2442 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2444 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2445 struct ring_buffer_event *event;
2446 unsigned long flags;
2448 again:
2449 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2450 event = rb_iter_peek(iter, ts);
2451 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2453 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2454 cpu_relax();
2455 goto again;
2458 return event;
2462 * ring_buffer_consume - return an event and consume it
2463 * @buffer: The ring buffer to get the next event from
2465 * Returns the next event in the ring buffer, and that event is consumed.
2466 * Meaning, that sequential reads will keep returning a different event,
2467 * and eventually empty the ring buffer if the producer is slower.
2469 struct ring_buffer_event *
2470 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2472 struct ring_buffer_per_cpu *cpu_buffer;
2473 struct ring_buffer_event *event = NULL;
2474 unsigned long flags;
2476 again:
2477 /* might be called in atomic */
2478 preempt_disable();
2480 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2481 goto out;
2483 cpu_buffer = buffer->buffers[cpu];
2484 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2486 event = rb_buffer_peek(buffer, cpu, ts);
2487 if (!event)
2488 goto out_unlock;
2490 rb_advance_reader(cpu_buffer);
2492 out_unlock:
2493 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2495 out:
2496 preempt_enable();
2498 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2499 cpu_relax();
2500 goto again;
2503 return event;
2505 EXPORT_SYMBOL_GPL(ring_buffer_consume);
2508 * ring_buffer_read_start - start a non consuming read of the buffer
2509 * @buffer: The ring buffer to read from
2510 * @cpu: The cpu buffer to iterate over
2512 * This starts up an iteration through the buffer. It also disables
2513 * the recording to the buffer until the reading is finished.
2514 * This prevents the reading from being corrupted. This is not
2515 * a consuming read, so a producer is not expected.
2517 * Must be paired with ring_buffer_finish.
2519 struct ring_buffer_iter *
2520 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2522 struct ring_buffer_per_cpu *cpu_buffer;
2523 struct ring_buffer_iter *iter;
2524 unsigned long flags;
2526 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2527 return NULL;
2529 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2530 if (!iter)
2531 return NULL;
2533 cpu_buffer = buffer->buffers[cpu];
2535 iter->cpu_buffer = cpu_buffer;
2537 atomic_inc(&cpu_buffer->record_disabled);
2538 synchronize_sched();
2540 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2541 __raw_spin_lock(&cpu_buffer->lock);
2542 rb_iter_reset(iter);
2543 __raw_spin_unlock(&cpu_buffer->lock);
2544 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2546 return iter;
2548 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
2551 * ring_buffer_finish - finish reading the iterator of the buffer
2552 * @iter: The iterator retrieved by ring_buffer_start
2554 * This re-enables the recording to the buffer, and frees the
2555 * iterator.
2557 void
2558 ring_buffer_read_finish(struct ring_buffer_iter *iter)
2560 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2562 atomic_dec(&cpu_buffer->record_disabled);
2563 kfree(iter);
2565 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
2568 * ring_buffer_read - read the next item in the ring buffer by the iterator
2569 * @iter: The ring buffer iterator
2570 * @ts: The time stamp of the event read.
2572 * This reads the next event in the ring buffer and increments the iterator.
2574 struct ring_buffer_event *
2575 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2577 struct ring_buffer_event *event;
2578 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2579 unsigned long flags;
2581 again:
2582 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2583 event = rb_iter_peek(iter, ts);
2584 if (!event)
2585 goto out;
2587 rb_advance_iter(iter);
2588 out:
2589 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2591 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2592 cpu_relax();
2593 goto again;
2596 return event;
2598 EXPORT_SYMBOL_GPL(ring_buffer_read);
2601 * ring_buffer_size - return the size of the ring buffer (in bytes)
2602 * @buffer: The ring buffer.
2604 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2606 return BUF_PAGE_SIZE * buffer->pages;
2608 EXPORT_SYMBOL_GPL(ring_buffer_size);
2610 static void
2611 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2613 cpu_buffer->head_page
2614 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2615 local_set(&cpu_buffer->head_page->write, 0);
2616 local_set(&cpu_buffer->head_page->entries, 0);
2617 local_set(&cpu_buffer->head_page->page->commit, 0);
2619 cpu_buffer->head_page->read = 0;
2621 cpu_buffer->tail_page = cpu_buffer->head_page;
2622 cpu_buffer->commit_page = cpu_buffer->head_page;
2624 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2625 local_set(&cpu_buffer->reader_page->write, 0);
2626 local_set(&cpu_buffer->reader_page->entries, 0);
2627 local_set(&cpu_buffer->reader_page->page->commit, 0);
2628 cpu_buffer->reader_page->read = 0;
2630 cpu_buffer->nmi_dropped = 0;
2631 cpu_buffer->commit_overrun = 0;
2632 cpu_buffer->overrun = 0;
2633 cpu_buffer->read = 0;
2634 local_set(&cpu_buffer->entries, 0);
2636 cpu_buffer->write_stamp = 0;
2637 cpu_buffer->read_stamp = 0;
2641 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2642 * @buffer: The ring buffer to reset a per cpu buffer of
2643 * @cpu: The CPU buffer to be reset
2645 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2647 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2648 unsigned long flags;
2650 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2651 return;
2653 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2655 __raw_spin_lock(&cpu_buffer->lock);
2657 rb_reset_cpu(cpu_buffer);
2659 __raw_spin_unlock(&cpu_buffer->lock);
2661 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2663 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
2666 * ring_buffer_reset - reset a ring buffer
2667 * @buffer: The ring buffer to reset all cpu buffers
2669 void ring_buffer_reset(struct ring_buffer *buffer)
2671 int cpu;
2673 for_each_buffer_cpu(buffer, cpu)
2674 ring_buffer_reset_cpu(buffer, cpu);
2676 EXPORT_SYMBOL_GPL(ring_buffer_reset);
2679 * rind_buffer_empty - is the ring buffer empty?
2680 * @buffer: The ring buffer to test
2682 int ring_buffer_empty(struct ring_buffer *buffer)
2684 struct ring_buffer_per_cpu *cpu_buffer;
2685 int cpu;
2687 /* yes this is racy, but if you don't like the race, lock the buffer */
2688 for_each_buffer_cpu(buffer, cpu) {
2689 cpu_buffer = buffer->buffers[cpu];
2690 if (!rb_per_cpu_empty(cpu_buffer))
2691 return 0;
2694 return 1;
2696 EXPORT_SYMBOL_GPL(ring_buffer_empty);
2699 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2700 * @buffer: The ring buffer
2701 * @cpu: The CPU buffer to test
2703 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2705 struct ring_buffer_per_cpu *cpu_buffer;
2706 int ret;
2708 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2709 return 1;
2711 cpu_buffer = buffer->buffers[cpu];
2712 ret = rb_per_cpu_empty(cpu_buffer);
2715 return ret;
2717 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
2720 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2721 * @buffer_a: One buffer to swap with
2722 * @buffer_b: The other buffer to swap with
2724 * This function is useful for tracers that want to take a "snapshot"
2725 * of a CPU buffer and has another back up buffer lying around.
2726 * it is expected that the tracer handles the cpu buffer not being
2727 * used at the moment.
2729 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2730 struct ring_buffer *buffer_b, int cpu)
2732 struct ring_buffer_per_cpu *cpu_buffer_a;
2733 struct ring_buffer_per_cpu *cpu_buffer_b;
2734 int ret = -EINVAL;
2736 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2737 !cpumask_test_cpu(cpu, buffer_b->cpumask))
2738 goto out;
2740 /* At least make sure the two buffers are somewhat the same */
2741 if (buffer_a->pages != buffer_b->pages)
2742 goto out;
2744 ret = -EAGAIN;
2746 if (ring_buffer_flags != RB_BUFFERS_ON)
2747 goto out;
2749 if (atomic_read(&buffer_a->record_disabled))
2750 goto out;
2752 if (atomic_read(&buffer_b->record_disabled))
2753 goto out;
2755 cpu_buffer_a = buffer_a->buffers[cpu];
2756 cpu_buffer_b = buffer_b->buffers[cpu];
2758 if (atomic_read(&cpu_buffer_a->record_disabled))
2759 goto out;
2761 if (atomic_read(&cpu_buffer_b->record_disabled))
2762 goto out;
2765 * We can't do a synchronize_sched here because this
2766 * function can be called in atomic context.
2767 * Normally this will be called from the same CPU as cpu.
2768 * If not it's up to the caller to protect this.
2770 atomic_inc(&cpu_buffer_a->record_disabled);
2771 atomic_inc(&cpu_buffer_b->record_disabled);
2773 buffer_a->buffers[cpu] = cpu_buffer_b;
2774 buffer_b->buffers[cpu] = cpu_buffer_a;
2776 cpu_buffer_b->buffer = buffer_a;
2777 cpu_buffer_a->buffer = buffer_b;
2779 atomic_dec(&cpu_buffer_a->record_disabled);
2780 atomic_dec(&cpu_buffer_b->record_disabled);
2782 ret = 0;
2783 out:
2784 return ret;
2786 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
2788 static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer,
2789 struct buffer_data_page *bpage,
2790 unsigned int offset)
2792 struct ring_buffer_event *event;
2793 unsigned long head;
2795 __raw_spin_lock(&cpu_buffer->lock);
2796 for (head = offset; head < local_read(&bpage->commit);
2797 head += rb_event_length(event)) {
2799 event = __rb_data_page_index(bpage, head);
2800 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
2801 return;
2802 /* Only count data entries */
2803 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
2804 continue;
2805 cpu_buffer->read++;
2807 __raw_spin_unlock(&cpu_buffer->lock);
2811 * ring_buffer_alloc_read_page - allocate a page to read from buffer
2812 * @buffer: the buffer to allocate for.
2814 * This function is used in conjunction with ring_buffer_read_page.
2815 * When reading a full page from the ring buffer, these functions
2816 * can be used to speed up the process. The calling function should
2817 * allocate a few pages first with this function. Then when it
2818 * needs to get pages from the ring buffer, it passes the result
2819 * of this function into ring_buffer_read_page, which will swap
2820 * the page that was allocated, with the read page of the buffer.
2822 * Returns:
2823 * The page allocated, or NULL on error.
2825 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2827 struct buffer_data_page *bpage;
2828 unsigned long addr;
2830 addr = __get_free_page(GFP_KERNEL);
2831 if (!addr)
2832 return NULL;
2834 bpage = (void *)addr;
2836 rb_init_page(bpage);
2838 return bpage;
2840 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
2843 * ring_buffer_free_read_page - free an allocated read page
2844 * @buffer: the buffer the page was allocate for
2845 * @data: the page to free
2847 * Free a page allocated from ring_buffer_alloc_read_page.
2849 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2851 free_page((unsigned long)data);
2853 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
2856 * ring_buffer_read_page - extract a page from the ring buffer
2857 * @buffer: buffer to extract from
2858 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2859 * @len: amount to extract
2860 * @cpu: the cpu of the buffer to extract
2861 * @full: should the extraction only happen when the page is full.
2863 * This function will pull out a page from the ring buffer and consume it.
2864 * @data_page must be the address of the variable that was returned
2865 * from ring_buffer_alloc_read_page. This is because the page might be used
2866 * to swap with a page in the ring buffer.
2868 * for example:
2869 * rpage = ring_buffer_alloc_read_page(buffer);
2870 * if (!rpage)
2871 * return error;
2872 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
2873 * if (ret >= 0)
2874 * process_page(rpage, ret);
2876 * When @full is set, the function will not return true unless
2877 * the writer is off the reader page.
2879 * Note: it is up to the calling functions to handle sleeps and wakeups.
2880 * The ring buffer can be used anywhere in the kernel and can not
2881 * blindly call wake_up. The layer that uses the ring buffer must be
2882 * responsible for that.
2884 * Returns:
2885 * >=0 if data has been transferred, returns the offset of consumed data.
2886 * <0 if no data has been transferred.
2888 int ring_buffer_read_page(struct ring_buffer *buffer,
2889 void **data_page, size_t len, int cpu, int full)
2891 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2892 struct ring_buffer_event *event;
2893 struct buffer_data_page *bpage;
2894 struct buffer_page *reader;
2895 unsigned long flags;
2896 unsigned int commit;
2897 unsigned int read;
2898 u64 save_timestamp;
2899 int ret = -1;
2901 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2902 goto out;
2905 * If len is not big enough to hold the page header, then
2906 * we can not copy anything.
2908 if (len <= BUF_PAGE_HDR_SIZE)
2909 goto out;
2911 len -= BUF_PAGE_HDR_SIZE;
2913 if (!data_page)
2914 goto out;
2916 bpage = *data_page;
2917 if (!bpage)
2918 goto out;
2920 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2922 reader = rb_get_reader_page(cpu_buffer);
2923 if (!reader)
2924 goto out_unlock;
2926 event = rb_reader_event(cpu_buffer);
2928 read = reader->read;
2929 commit = rb_page_commit(reader);
2932 * If this page has been partially read or
2933 * if len is not big enough to read the rest of the page or
2934 * a writer is still on the page, then
2935 * we must copy the data from the page to the buffer.
2936 * Otherwise, we can simply swap the page with the one passed in.
2938 if (read || (len < (commit - read)) ||
2939 cpu_buffer->reader_page == cpu_buffer->commit_page) {
2940 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
2941 unsigned int rpos = read;
2942 unsigned int pos = 0;
2943 unsigned int size;
2945 if (full)
2946 goto out_unlock;
2948 if (len > (commit - read))
2949 len = (commit - read);
2951 size = rb_event_length(event);
2953 if (len < size)
2954 goto out_unlock;
2956 /* save the current timestamp, since the user will need it */
2957 save_timestamp = cpu_buffer->read_stamp;
2959 /* Need to copy one event at a time */
2960 do {
2961 memcpy(bpage->data + pos, rpage->data + rpos, size);
2963 len -= size;
2965 rb_advance_reader(cpu_buffer);
2966 rpos = reader->read;
2967 pos += size;
2969 event = rb_reader_event(cpu_buffer);
2970 size = rb_event_length(event);
2971 } while (len > size);
2973 /* update bpage */
2974 local_set(&bpage->commit, pos);
2975 bpage->time_stamp = save_timestamp;
2977 /* we copied everything to the beginning */
2978 read = 0;
2979 } else {
2980 /* swap the pages */
2981 rb_init_page(bpage);
2982 bpage = reader->page;
2983 reader->page = *data_page;
2984 local_set(&reader->write, 0);
2985 local_set(&reader->entries, 0);
2986 reader->read = 0;
2987 *data_page = bpage;
2989 /* update the entry counter */
2990 rb_remove_entries(cpu_buffer, bpage, read);
2992 ret = read;
2994 out_unlock:
2995 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2997 out:
2998 return ret;
3000 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3002 static ssize_t
3003 rb_simple_read(struct file *filp, char __user *ubuf,
3004 size_t cnt, loff_t *ppos)
3006 unsigned long *p = filp->private_data;
3007 char buf[64];
3008 int r;
3010 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3011 r = sprintf(buf, "permanently disabled\n");
3012 else
3013 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3015 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3018 static ssize_t
3019 rb_simple_write(struct file *filp, const char __user *ubuf,
3020 size_t cnt, loff_t *ppos)
3022 unsigned long *p = filp->private_data;
3023 char buf[64];
3024 unsigned long val;
3025 int ret;
3027 if (cnt >= sizeof(buf))
3028 return -EINVAL;
3030 if (copy_from_user(&buf, ubuf, cnt))
3031 return -EFAULT;
3033 buf[cnt] = 0;
3035 ret = strict_strtoul(buf, 10, &val);
3036 if (ret < 0)
3037 return ret;
3039 if (val)
3040 set_bit(RB_BUFFERS_ON_BIT, p);
3041 else
3042 clear_bit(RB_BUFFERS_ON_BIT, p);
3044 (*ppos)++;
3046 return cnt;
3049 static const struct file_operations rb_simple_fops = {
3050 .open = tracing_open_generic,
3051 .read = rb_simple_read,
3052 .write = rb_simple_write,
3056 static __init int rb_init_debugfs(void)
3058 struct dentry *d_tracer;
3060 d_tracer = tracing_init_dentry();
3062 trace_create_file("tracing_on", 0644, d_tracer,
3063 &ring_buffer_flags, &rb_simple_fops);
3065 return 0;
3068 fs_initcall(rb_init_debugfs);
3070 #ifdef CONFIG_HOTPLUG_CPU
3071 static int rb_cpu_notify(struct notifier_block *self,
3072 unsigned long action, void *hcpu)
3074 struct ring_buffer *buffer =
3075 container_of(self, struct ring_buffer, cpu_notify);
3076 long cpu = (long)hcpu;
3078 switch (action) {
3079 case CPU_UP_PREPARE:
3080 case CPU_UP_PREPARE_FROZEN:
3081 if (cpu_isset(cpu, *buffer->cpumask))
3082 return NOTIFY_OK;
3084 buffer->buffers[cpu] =
3085 rb_allocate_cpu_buffer(buffer, cpu);
3086 if (!buffer->buffers[cpu]) {
3087 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3088 cpu);
3089 return NOTIFY_OK;
3091 smp_wmb();
3092 cpu_set(cpu, *buffer->cpumask);
3093 break;
3094 case CPU_DOWN_PREPARE:
3095 case CPU_DOWN_PREPARE_FROZEN:
3097 * Do nothing.
3098 * If we were to free the buffer, then the user would
3099 * lose any trace that was in the buffer.
3101 break;
3102 default:
3103 break;
3105 return NOTIFY_OK;
3107 #endif