xen: Send spinlock IPI to all waiters
[linux-2.6/btrfs-unstable.git] / include / net / sock.h
blob182ca99405adfb30e7b72181847b4a5ffd5d69ca
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Definitions for the AF_INET socket handler.
8 * Version: @(#)sock.h 1.0.4 05/13/93
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
40 #ifndef _SOCK_H
41 #define _SOCK_H
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/memcontrol.h>
58 #include <linux/res_counter.h>
59 #include <linux/static_key.h>
60 #include <linux/aio.h>
61 #include <linux/sched.h>
63 #include <linux/filter.h>
64 #include <linux/rculist_nulls.h>
65 #include <linux/poll.h>
67 #include <linux/atomic.h>
68 #include <net/dst.h>
69 #include <net/checksum.h>
71 struct cgroup;
72 struct cgroup_subsys;
73 #ifdef CONFIG_NET
74 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
75 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
76 #else
77 static inline
78 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
80 return 0;
82 static inline
83 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
86 #endif
88 * This structure really needs to be cleaned up.
89 * Most of it is for TCP, and not used by any of
90 * the other protocols.
93 /* Define this to get the SOCK_DBG debugging facility. */
94 #define SOCK_DEBUGGING
95 #ifdef SOCK_DEBUGGING
96 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
97 printk(KERN_DEBUG msg); } while (0)
98 #else
99 /* Validate arguments and do nothing */
100 static inline __printf(2, 3)
101 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
104 #endif
106 /* This is the per-socket lock. The spinlock provides a synchronization
107 * between user contexts and software interrupt processing, whereas the
108 * mini-semaphore synchronizes multiple users amongst themselves.
110 typedef struct {
111 spinlock_t slock;
112 int owned;
113 wait_queue_head_t wq;
115 * We express the mutex-alike socket_lock semantics
116 * to the lock validator by explicitly managing
117 * the slock as a lock variant (in addition to
118 * the slock itself):
120 #ifdef CONFIG_DEBUG_LOCK_ALLOC
121 struct lockdep_map dep_map;
122 #endif
123 } socket_lock_t;
125 struct sock;
126 struct proto;
127 struct net;
129 typedef __u32 __bitwise __portpair;
130 typedef __u64 __bitwise __addrpair;
133 * struct sock_common - minimal network layer representation of sockets
134 * @skc_daddr: Foreign IPv4 addr
135 * @skc_rcv_saddr: Bound local IPv4 addr
136 * @skc_hash: hash value used with various protocol lookup tables
137 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
138 * @skc_dport: placeholder for inet_dport/tw_dport
139 * @skc_num: placeholder for inet_num/tw_num
140 * @skc_family: network address family
141 * @skc_state: Connection state
142 * @skc_reuse: %SO_REUSEADDR setting
143 * @skc_bound_dev_if: bound device index if != 0
144 * @skc_bind_node: bind hash linkage for various protocol lookup tables
145 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
146 * @skc_prot: protocol handlers inside a network family
147 * @skc_net: reference to the network namespace of this socket
148 * @skc_node: main hash linkage for various protocol lookup tables
149 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
150 * @skc_tx_queue_mapping: tx queue number for this connection
151 * @skc_refcnt: reference count
153 * This is the minimal network layer representation of sockets, the header
154 * for struct sock and struct inet_timewait_sock.
156 struct sock_common {
157 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
158 * address on 64bit arches : cf INET_MATCH() and INET_TW_MATCH()
160 union {
161 __addrpair skc_addrpair;
162 struct {
163 __be32 skc_daddr;
164 __be32 skc_rcv_saddr;
167 union {
168 unsigned int skc_hash;
169 __u16 skc_u16hashes[2];
171 /* skc_dport && skc_num must be grouped as well */
172 union {
173 __portpair skc_portpair;
174 struct {
175 __be16 skc_dport;
176 __u16 skc_num;
180 unsigned short skc_family;
181 volatile unsigned char skc_state;
182 unsigned char skc_reuse;
183 int skc_bound_dev_if;
184 union {
185 struct hlist_node skc_bind_node;
186 struct hlist_nulls_node skc_portaddr_node;
188 struct proto *skc_prot;
189 #ifdef CONFIG_NET_NS
190 struct net *skc_net;
191 #endif
193 * fields between dontcopy_begin/dontcopy_end
194 * are not copied in sock_copy()
196 /* private: */
197 int skc_dontcopy_begin[0];
198 /* public: */
199 union {
200 struct hlist_node skc_node;
201 struct hlist_nulls_node skc_nulls_node;
203 int skc_tx_queue_mapping;
204 atomic_t skc_refcnt;
205 /* private: */
206 int skc_dontcopy_end[0];
207 /* public: */
210 struct cg_proto;
212 * struct sock - network layer representation of sockets
213 * @__sk_common: shared layout with inet_timewait_sock
214 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
215 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
216 * @sk_lock: synchronizer
217 * @sk_rcvbuf: size of receive buffer in bytes
218 * @sk_wq: sock wait queue and async head
219 * @sk_rx_dst: receive input route used by early tcp demux
220 * @sk_dst_cache: destination cache
221 * @sk_dst_lock: destination cache lock
222 * @sk_policy: flow policy
223 * @sk_receive_queue: incoming packets
224 * @sk_wmem_alloc: transmit queue bytes committed
225 * @sk_write_queue: Packet sending queue
226 * @sk_async_wait_queue: DMA copied packets
227 * @sk_omem_alloc: "o" is "option" or "other"
228 * @sk_wmem_queued: persistent queue size
229 * @sk_forward_alloc: space allocated forward
230 * @sk_allocation: allocation mode
231 * @sk_sndbuf: size of send buffer in bytes
232 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
233 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
234 * @sk_no_check: %SO_NO_CHECK setting, whether or not checkup packets
235 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
236 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
237 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
238 * @sk_gso_max_size: Maximum GSO segment size to build
239 * @sk_gso_max_segs: Maximum number of GSO segments
240 * @sk_lingertime: %SO_LINGER l_linger setting
241 * @sk_backlog: always used with the per-socket spinlock held
242 * @sk_callback_lock: used with the callbacks in the end of this struct
243 * @sk_error_queue: rarely used
244 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
245 * IPV6_ADDRFORM for instance)
246 * @sk_err: last error
247 * @sk_err_soft: errors that don't cause failure but are the cause of a
248 * persistent failure not just 'timed out'
249 * @sk_drops: raw/udp drops counter
250 * @sk_ack_backlog: current listen backlog
251 * @sk_max_ack_backlog: listen backlog set in listen()
252 * @sk_priority: %SO_PRIORITY setting
253 * @sk_cgrp_prioidx: socket group's priority map index
254 * @sk_type: socket type (%SOCK_STREAM, etc)
255 * @sk_protocol: which protocol this socket belongs in this network family
256 * @sk_peer_pid: &struct pid for this socket's peer
257 * @sk_peer_cred: %SO_PEERCRED setting
258 * @sk_rcvlowat: %SO_RCVLOWAT setting
259 * @sk_rcvtimeo: %SO_RCVTIMEO setting
260 * @sk_sndtimeo: %SO_SNDTIMEO setting
261 * @sk_rxhash: flow hash received from netif layer
262 * @sk_filter: socket filtering instructions
263 * @sk_protinfo: private area, net family specific, when not using slab
264 * @sk_timer: sock cleanup timer
265 * @sk_stamp: time stamp of last packet received
266 * @sk_socket: Identd and reporting IO signals
267 * @sk_user_data: RPC layer private data
268 * @sk_frag: cached page frag
269 * @sk_peek_off: current peek_offset value
270 * @sk_send_head: front of stuff to transmit
271 * @sk_security: used by security modules
272 * @sk_mark: generic packet mark
273 * @sk_classid: this socket's cgroup classid
274 * @sk_cgrp: this socket's cgroup-specific proto data
275 * @sk_write_pending: a write to stream socket waits to start
276 * @sk_state_change: callback to indicate change in the state of the sock
277 * @sk_data_ready: callback to indicate there is data to be processed
278 * @sk_write_space: callback to indicate there is bf sending space available
279 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
280 * @sk_backlog_rcv: callback to process the backlog
281 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
283 struct sock {
285 * Now struct inet_timewait_sock also uses sock_common, so please just
286 * don't add nothing before this first member (__sk_common) --acme
288 struct sock_common __sk_common;
289 #define sk_node __sk_common.skc_node
290 #define sk_nulls_node __sk_common.skc_nulls_node
291 #define sk_refcnt __sk_common.skc_refcnt
292 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
294 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
295 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
296 #define sk_hash __sk_common.skc_hash
297 #define sk_family __sk_common.skc_family
298 #define sk_state __sk_common.skc_state
299 #define sk_reuse __sk_common.skc_reuse
300 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
301 #define sk_bind_node __sk_common.skc_bind_node
302 #define sk_prot __sk_common.skc_prot
303 #define sk_net __sk_common.skc_net
304 socket_lock_t sk_lock;
305 struct sk_buff_head sk_receive_queue;
307 * The backlog queue is special, it is always used with
308 * the per-socket spinlock held and requires low latency
309 * access. Therefore we special case it's implementation.
310 * Note : rmem_alloc is in this structure to fill a hole
311 * on 64bit arches, not because its logically part of
312 * backlog.
314 struct {
315 atomic_t rmem_alloc;
316 int len;
317 struct sk_buff *head;
318 struct sk_buff *tail;
319 } sk_backlog;
320 #define sk_rmem_alloc sk_backlog.rmem_alloc
321 int sk_forward_alloc;
322 #ifdef CONFIG_RPS
323 __u32 sk_rxhash;
324 #endif
325 atomic_t sk_drops;
326 int sk_rcvbuf;
328 struct sk_filter __rcu *sk_filter;
329 struct socket_wq __rcu *sk_wq;
331 #ifdef CONFIG_NET_DMA
332 struct sk_buff_head sk_async_wait_queue;
333 #endif
335 #ifdef CONFIG_XFRM
336 struct xfrm_policy *sk_policy[2];
337 #endif
338 unsigned long sk_flags;
339 struct dst_entry *sk_rx_dst;
340 struct dst_entry *sk_dst_cache;
341 spinlock_t sk_dst_lock;
342 atomic_t sk_wmem_alloc;
343 atomic_t sk_omem_alloc;
344 int sk_sndbuf;
345 struct sk_buff_head sk_write_queue;
346 kmemcheck_bitfield_begin(flags);
347 unsigned int sk_shutdown : 2,
348 sk_no_check : 2,
349 sk_userlocks : 4,
350 sk_protocol : 8,
351 sk_type : 16;
352 kmemcheck_bitfield_end(flags);
353 int sk_wmem_queued;
354 gfp_t sk_allocation;
355 netdev_features_t sk_route_caps;
356 netdev_features_t sk_route_nocaps;
357 int sk_gso_type;
358 unsigned int sk_gso_max_size;
359 u16 sk_gso_max_segs;
360 int sk_rcvlowat;
361 unsigned long sk_lingertime;
362 struct sk_buff_head sk_error_queue;
363 struct proto *sk_prot_creator;
364 rwlock_t sk_callback_lock;
365 int sk_err,
366 sk_err_soft;
367 unsigned short sk_ack_backlog;
368 unsigned short sk_max_ack_backlog;
369 __u32 sk_priority;
370 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
371 __u32 sk_cgrp_prioidx;
372 #endif
373 struct pid *sk_peer_pid;
374 const struct cred *sk_peer_cred;
375 long sk_rcvtimeo;
376 long sk_sndtimeo;
377 void *sk_protinfo;
378 struct timer_list sk_timer;
379 ktime_t sk_stamp;
380 struct socket *sk_socket;
381 void *sk_user_data;
382 struct page_frag sk_frag;
383 struct sk_buff *sk_send_head;
384 __s32 sk_peek_off;
385 int sk_write_pending;
386 #ifdef CONFIG_SECURITY
387 void *sk_security;
388 #endif
389 __u32 sk_mark;
390 u32 sk_classid;
391 struct cg_proto *sk_cgrp;
392 void (*sk_state_change)(struct sock *sk);
393 void (*sk_data_ready)(struct sock *sk, int bytes);
394 void (*sk_write_space)(struct sock *sk);
395 void (*sk_error_report)(struct sock *sk);
396 int (*sk_backlog_rcv)(struct sock *sk,
397 struct sk_buff *skb);
398 void (*sk_destruct)(struct sock *sk);
402 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
403 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
404 * on a socket means that the socket will reuse everybody else's port
405 * without looking at the other's sk_reuse value.
408 #define SK_NO_REUSE 0
409 #define SK_CAN_REUSE 1
410 #define SK_FORCE_REUSE 2
412 static inline int sk_peek_offset(struct sock *sk, int flags)
414 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
415 return sk->sk_peek_off;
416 else
417 return 0;
420 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
422 if (sk->sk_peek_off >= 0) {
423 if (sk->sk_peek_off >= val)
424 sk->sk_peek_off -= val;
425 else
426 sk->sk_peek_off = 0;
430 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
432 if (sk->sk_peek_off >= 0)
433 sk->sk_peek_off += val;
437 * Hashed lists helper routines
439 static inline struct sock *sk_entry(const struct hlist_node *node)
441 return hlist_entry(node, struct sock, sk_node);
444 static inline struct sock *__sk_head(const struct hlist_head *head)
446 return hlist_entry(head->first, struct sock, sk_node);
449 static inline struct sock *sk_head(const struct hlist_head *head)
451 return hlist_empty(head) ? NULL : __sk_head(head);
454 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
456 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
459 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
461 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
464 static inline struct sock *sk_next(const struct sock *sk)
466 return sk->sk_node.next ?
467 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
470 static inline struct sock *sk_nulls_next(const struct sock *sk)
472 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
473 hlist_nulls_entry(sk->sk_nulls_node.next,
474 struct sock, sk_nulls_node) :
475 NULL;
478 static inline bool sk_unhashed(const struct sock *sk)
480 return hlist_unhashed(&sk->sk_node);
483 static inline bool sk_hashed(const struct sock *sk)
485 return !sk_unhashed(sk);
488 static inline void sk_node_init(struct hlist_node *node)
490 node->pprev = NULL;
493 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
495 node->pprev = NULL;
498 static inline void __sk_del_node(struct sock *sk)
500 __hlist_del(&sk->sk_node);
503 /* NB: equivalent to hlist_del_init_rcu */
504 static inline bool __sk_del_node_init(struct sock *sk)
506 if (sk_hashed(sk)) {
507 __sk_del_node(sk);
508 sk_node_init(&sk->sk_node);
509 return true;
511 return false;
514 /* Grab socket reference count. This operation is valid only
515 when sk is ALREADY grabbed f.e. it is found in hash table
516 or a list and the lookup is made under lock preventing hash table
517 modifications.
520 static inline void sock_hold(struct sock *sk)
522 atomic_inc(&sk->sk_refcnt);
525 /* Ungrab socket in the context, which assumes that socket refcnt
526 cannot hit zero, f.e. it is true in context of any socketcall.
528 static inline void __sock_put(struct sock *sk)
530 atomic_dec(&sk->sk_refcnt);
533 static inline bool sk_del_node_init(struct sock *sk)
535 bool rc = __sk_del_node_init(sk);
537 if (rc) {
538 /* paranoid for a while -acme */
539 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
540 __sock_put(sk);
542 return rc;
544 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
546 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
548 if (sk_hashed(sk)) {
549 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
550 return true;
552 return false;
555 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
557 bool rc = __sk_nulls_del_node_init_rcu(sk);
559 if (rc) {
560 /* paranoid for a while -acme */
561 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
562 __sock_put(sk);
564 return rc;
567 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
569 hlist_add_head(&sk->sk_node, list);
572 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
574 sock_hold(sk);
575 __sk_add_node(sk, list);
578 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
580 sock_hold(sk);
581 hlist_add_head_rcu(&sk->sk_node, list);
584 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
586 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
589 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
591 sock_hold(sk);
592 __sk_nulls_add_node_rcu(sk, list);
595 static inline void __sk_del_bind_node(struct sock *sk)
597 __hlist_del(&sk->sk_bind_node);
600 static inline void sk_add_bind_node(struct sock *sk,
601 struct hlist_head *list)
603 hlist_add_head(&sk->sk_bind_node, list);
606 #define sk_for_each(__sk, node, list) \
607 hlist_for_each_entry(__sk, node, list, sk_node)
608 #define sk_for_each_rcu(__sk, node, list) \
609 hlist_for_each_entry_rcu(__sk, node, list, sk_node)
610 #define sk_nulls_for_each(__sk, node, list) \
611 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
612 #define sk_nulls_for_each_rcu(__sk, node, list) \
613 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
614 #define sk_for_each_from(__sk, node) \
615 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
616 hlist_for_each_entry_from(__sk, node, sk_node)
617 #define sk_nulls_for_each_from(__sk, node) \
618 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
619 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
620 #define sk_for_each_safe(__sk, node, tmp, list) \
621 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
622 #define sk_for_each_bound(__sk, node, list) \
623 hlist_for_each_entry(__sk, node, list, sk_bind_node)
625 static inline struct user_namespace *sk_user_ns(struct sock *sk)
627 /* Careful only use this in a context where these parameters
628 * can not change and must all be valid, such as recvmsg from
629 * userspace.
631 return sk->sk_socket->file->f_cred->user_ns;
634 /* Sock flags */
635 enum sock_flags {
636 SOCK_DEAD,
637 SOCK_DONE,
638 SOCK_URGINLINE,
639 SOCK_KEEPOPEN,
640 SOCK_LINGER,
641 SOCK_DESTROY,
642 SOCK_BROADCAST,
643 SOCK_TIMESTAMP,
644 SOCK_ZAPPED,
645 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
646 SOCK_DBG, /* %SO_DEBUG setting */
647 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
648 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
649 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
650 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
651 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
652 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
653 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
654 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
655 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
656 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
657 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
658 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
659 SOCK_FASYNC, /* fasync() active */
660 SOCK_RXQ_OVFL,
661 SOCK_ZEROCOPY, /* buffers from userspace */
662 SOCK_WIFI_STATUS, /* push wifi status to userspace */
663 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
664 * Will use last 4 bytes of packet sent from
665 * user-space instead.
669 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
671 nsk->sk_flags = osk->sk_flags;
674 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
676 __set_bit(flag, &sk->sk_flags);
679 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
681 __clear_bit(flag, &sk->sk_flags);
684 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
686 return test_bit(flag, &sk->sk_flags);
689 #ifdef CONFIG_NET
690 extern struct static_key memalloc_socks;
691 static inline int sk_memalloc_socks(void)
693 return static_key_false(&memalloc_socks);
695 #else
697 static inline int sk_memalloc_socks(void)
699 return 0;
702 #endif
704 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
706 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
709 static inline void sk_acceptq_removed(struct sock *sk)
711 sk->sk_ack_backlog--;
714 static inline void sk_acceptq_added(struct sock *sk)
716 sk->sk_ack_backlog++;
719 static inline bool sk_acceptq_is_full(const struct sock *sk)
721 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
725 * Compute minimal free write space needed to queue new packets.
727 static inline int sk_stream_min_wspace(const struct sock *sk)
729 return sk->sk_wmem_queued >> 1;
732 static inline int sk_stream_wspace(const struct sock *sk)
734 return sk->sk_sndbuf - sk->sk_wmem_queued;
737 extern void sk_stream_write_space(struct sock *sk);
739 static inline bool sk_stream_memory_free(const struct sock *sk)
741 return sk->sk_wmem_queued < sk->sk_sndbuf;
744 /* OOB backlog add */
745 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
747 /* dont let skb dst not refcounted, we are going to leave rcu lock */
748 skb_dst_force(skb);
750 if (!sk->sk_backlog.tail)
751 sk->sk_backlog.head = skb;
752 else
753 sk->sk_backlog.tail->next = skb;
755 sk->sk_backlog.tail = skb;
756 skb->next = NULL;
760 * Take into account size of receive queue and backlog queue
761 * Do not take into account this skb truesize,
762 * to allow even a single big packet to come.
764 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb,
765 unsigned int limit)
767 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
769 return qsize > limit;
772 /* The per-socket spinlock must be held here. */
773 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
774 unsigned int limit)
776 if (sk_rcvqueues_full(sk, skb, limit))
777 return -ENOBUFS;
779 __sk_add_backlog(sk, skb);
780 sk->sk_backlog.len += skb->truesize;
781 return 0;
784 extern int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
786 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
788 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
789 return __sk_backlog_rcv(sk, skb);
791 return sk->sk_backlog_rcv(sk, skb);
794 static inline void sock_rps_record_flow(const struct sock *sk)
796 #ifdef CONFIG_RPS
797 struct rps_sock_flow_table *sock_flow_table;
799 rcu_read_lock();
800 sock_flow_table = rcu_dereference(rps_sock_flow_table);
801 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
802 rcu_read_unlock();
803 #endif
806 static inline void sock_rps_reset_flow(const struct sock *sk)
808 #ifdef CONFIG_RPS
809 struct rps_sock_flow_table *sock_flow_table;
811 rcu_read_lock();
812 sock_flow_table = rcu_dereference(rps_sock_flow_table);
813 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
814 rcu_read_unlock();
815 #endif
818 static inline void sock_rps_save_rxhash(struct sock *sk,
819 const struct sk_buff *skb)
821 #ifdef CONFIG_RPS
822 if (unlikely(sk->sk_rxhash != skb->rxhash)) {
823 sock_rps_reset_flow(sk);
824 sk->sk_rxhash = skb->rxhash;
826 #endif
829 static inline void sock_rps_reset_rxhash(struct sock *sk)
831 #ifdef CONFIG_RPS
832 sock_rps_reset_flow(sk);
833 sk->sk_rxhash = 0;
834 #endif
837 #define sk_wait_event(__sk, __timeo, __condition) \
838 ({ int __rc; \
839 release_sock(__sk); \
840 __rc = __condition; \
841 if (!__rc) { \
842 *(__timeo) = schedule_timeout(*(__timeo)); \
844 lock_sock(__sk); \
845 __rc = __condition; \
846 __rc; \
849 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
850 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
851 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
852 extern int sk_stream_error(struct sock *sk, int flags, int err);
853 extern void sk_stream_kill_queues(struct sock *sk);
854 extern void sk_set_memalloc(struct sock *sk);
855 extern void sk_clear_memalloc(struct sock *sk);
857 extern int sk_wait_data(struct sock *sk, long *timeo);
859 struct request_sock_ops;
860 struct timewait_sock_ops;
861 struct inet_hashinfo;
862 struct raw_hashinfo;
863 struct module;
865 /* Networking protocol blocks we attach to sockets.
866 * socket layer -> transport layer interface
867 * transport -> network interface is defined by struct inet_proto
869 struct proto {
870 void (*close)(struct sock *sk,
871 long timeout);
872 int (*connect)(struct sock *sk,
873 struct sockaddr *uaddr,
874 int addr_len);
875 int (*disconnect)(struct sock *sk, int flags);
877 struct sock * (*accept)(struct sock *sk, int flags, int *err);
879 int (*ioctl)(struct sock *sk, int cmd,
880 unsigned long arg);
881 int (*init)(struct sock *sk);
882 void (*destroy)(struct sock *sk);
883 void (*shutdown)(struct sock *sk, int how);
884 int (*setsockopt)(struct sock *sk, int level,
885 int optname, char __user *optval,
886 unsigned int optlen);
887 int (*getsockopt)(struct sock *sk, int level,
888 int optname, char __user *optval,
889 int __user *option);
890 #ifdef CONFIG_COMPAT
891 int (*compat_setsockopt)(struct sock *sk,
892 int level,
893 int optname, char __user *optval,
894 unsigned int optlen);
895 int (*compat_getsockopt)(struct sock *sk,
896 int level,
897 int optname, char __user *optval,
898 int __user *option);
899 int (*compat_ioctl)(struct sock *sk,
900 unsigned int cmd, unsigned long arg);
901 #endif
902 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
903 struct msghdr *msg, size_t len);
904 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
905 struct msghdr *msg,
906 size_t len, int noblock, int flags,
907 int *addr_len);
908 int (*sendpage)(struct sock *sk, struct page *page,
909 int offset, size_t size, int flags);
910 int (*bind)(struct sock *sk,
911 struct sockaddr *uaddr, int addr_len);
913 int (*backlog_rcv) (struct sock *sk,
914 struct sk_buff *skb);
916 void (*release_cb)(struct sock *sk);
917 void (*mtu_reduced)(struct sock *sk);
919 /* Keeping track of sk's, looking them up, and port selection methods. */
920 void (*hash)(struct sock *sk);
921 void (*unhash)(struct sock *sk);
922 void (*rehash)(struct sock *sk);
923 int (*get_port)(struct sock *sk, unsigned short snum);
924 void (*clear_sk)(struct sock *sk, int size);
926 /* Keeping track of sockets in use */
927 #ifdef CONFIG_PROC_FS
928 unsigned int inuse_idx;
929 #endif
931 /* Memory pressure */
932 void (*enter_memory_pressure)(struct sock *sk);
933 atomic_long_t *memory_allocated; /* Current allocated memory. */
934 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
936 * Pressure flag: try to collapse.
937 * Technical note: it is used by multiple contexts non atomically.
938 * All the __sk_mem_schedule() is of this nature: accounting
939 * is strict, actions are advisory and have some latency.
941 int *memory_pressure;
942 long *sysctl_mem;
943 int *sysctl_wmem;
944 int *sysctl_rmem;
945 int max_header;
946 bool no_autobind;
948 struct kmem_cache *slab;
949 unsigned int obj_size;
950 int slab_flags;
952 struct percpu_counter *orphan_count;
954 struct request_sock_ops *rsk_prot;
955 struct timewait_sock_ops *twsk_prot;
957 union {
958 struct inet_hashinfo *hashinfo;
959 struct udp_table *udp_table;
960 struct raw_hashinfo *raw_hash;
961 } h;
963 struct module *owner;
965 char name[32];
967 struct list_head node;
968 #ifdef SOCK_REFCNT_DEBUG
969 atomic_t socks;
970 #endif
971 #ifdef CONFIG_MEMCG_KMEM
973 * cgroup specific init/deinit functions. Called once for all
974 * protocols that implement it, from cgroups populate function.
975 * This function has to setup any files the protocol want to
976 * appear in the kmem cgroup filesystem.
978 int (*init_cgroup)(struct mem_cgroup *memcg,
979 struct cgroup_subsys *ss);
980 void (*destroy_cgroup)(struct mem_cgroup *memcg);
981 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
982 #endif
986 * Bits in struct cg_proto.flags
988 enum cg_proto_flags {
989 /* Currently active and new sockets should be assigned to cgroups */
990 MEMCG_SOCK_ACTIVE,
991 /* It was ever activated; we must disarm static keys on destruction */
992 MEMCG_SOCK_ACTIVATED,
995 struct cg_proto {
996 void (*enter_memory_pressure)(struct sock *sk);
997 struct res_counter *memory_allocated; /* Current allocated memory. */
998 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
999 int *memory_pressure;
1000 long *sysctl_mem;
1001 unsigned long flags;
1003 * memcg field is used to find which memcg we belong directly
1004 * Each memcg struct can hold more than one cg_proto, so container_of
1005 * won't really cut.
1007 * The elegant solution would be having an inverse function to
1008 * proto_cgroup in struct proto, but that means polluting the structure
1009 * for everybody, instead of just for memcg users.
1011 struct mem_cgroup *memcg;
1014 extern int proto_register(struct proto *prot, int alloc_slab);
1015 extern void proto_unregister(struct proto *prot);
1017 static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1019 return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1022 static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
1024 return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
1027 #ifdef SOCK_REFCNT_DEBUG
1028 static inline void sk_refcnt_debug_inc(struct sock *sk)
1030 atomic_inc(&sk->sk_prot->socks);
1033 static inline void sk_refcnt_debug_dec(struct sock *sk)
1035 atomic_dec(&sk->sk_prot->socks);
1036 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1037 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1040 inline void sk_refcnt_debug_release(const struct sock *sk)
1042 if (atomic_read(&sk->sk_refcnt) != 1)
1043 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1044 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1046 #else /* SOCK_REFCNT_DEBUG */
1047 #define sk_refcnt_debug_inc(sk) do { } while (0)
1048 #define sk_refcnt_debug_dec(sk) do { } while (0)
1049 #define sk_refcnt_debug_release(sk) do { } while (0)
1050 #endif /* SOCK_REFCNT_DEBUG */
1052 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1053 extern struct static_key memcg_socket_limit_enabled;
1054 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1055 struct cg_proto *cg_proto)
1057 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1059 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1060 #else
1061 #define mem_cgroup_sockets_enabled 0
1062 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1063 struct cg_proto *cg_proto)
1065 return NULL;
1067 #endif
1070 static inline bool sk_has_memory_pressure(const struct sock *sk)
1072 return sk->sk_prot->memory_pressure != NULL;
1075 static inline bool sk_under_memory_pressure(const struct sock *sk)
1077 if (!sk->sk_prot->memory_pressure)
1078 return false;
1080 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1081 return !!*sk->sk_cgrp->memory_pressure;
1083 return !!*sk->sk_prot->memory_pressure;
1086 static inline void sk_leave_memory_pressure(struct sock *sk)
1088 int *memory_pressure = sk->sk_prot->memory_pressure;
1090 if (!memory_pressure)
1091 return;
1093 if (*memory_pressure)
1094 *memory_pressure = 0;
1096 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1097 struct cg_proto *cg_proto = sk->sk_cgrp;
1098 struct proto *prot = sk->sk_prot;
1100 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1101 if (*cg_proto->memory_pressure)
1102 *cg_proto->memory_pressure = 0;
1107 static inline void sk_enter_memory_pressure(struct sock *sk)
1109 if (!sk->sk_prot->enter_memory_pressure)
1110 return;
1112 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1113 struct cg_proto *cg_proto = sk->sk_cgrp;
1114 struct proto *prot = sk->sk_prot;
1116 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1117 cg_proto->enter_memory_pressure(sk);
1120 sk->sk_prot->enter_memory_pressure(sk);
1123 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1125 long *prot = sk->sk_prot->sysctl_mem;
1126 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1127 prot = sk->sk_cgrp->sysctl_mem;
1128 return prot[index];
1131 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1132 unsigned long amt,
1133 int *parent_status)
1135 struct res_counter *fail;
1136 int ret;
1138 ret = res_counter_charge_nofail(prot->memory_allocated,
1139 amt << PAGE_SHIFT, &fail);
1140 if (ret < 0)
1141 *parent_status = OVER_LIMIT;
1144 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1145 unsigned long amt)
1147 res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT);
1150 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1152 u64 ret;
1153 ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE);
1154 return ret >> PAGE_SHIFT;
1157 static inline long
1158 sk_memory_allocated(const struct sock *sk)
1160 struct proto *prot = sk->sk_prot;
1161 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1162 return memcg_memory_allocated_read(sk->sk_cgrp);
1164 return atomic_long_read(prot->memory_allocated);
1167 static inline long
1168 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1170 struct proto *prot = sk->sk_prot;
1172 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1173 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1174 /* update the root cgroup regardless */
1175 atomic_long_add_return(amt, prot->memory_allocated);
1176 return memcg_memory_allocated_read(sk->sk_cgrp);
1179 return atomic_long_add_return(amt, prot->memory_allocated);
1182 static inline void
1183 sk_memory_allocated_sub(struct sock *sk, int amt)
1185 struct proto *prot = sk->sk_prot;
1187 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1188 memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1190 atomic_long_sub(amt, prot->memory_allocated);
1193 static inline void sk_sockets_allocated_dec(struct sock *sk)
1195 struct proto *prot = sk->sk_prot;
1197 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1198 struct cg_proto *cg_proto = sk->sk_cgrp;
1200 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1201 percpu_counter_dec(cg_proto->sockets_allocated);
1204 percpu_counter_dec(prot->sockets_allocated);
1207 static inline void sk_sockets_allocated_inc(struct sock *sk)
1209 struct proto *prot = sk->sk_prot;
1211 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1212 struct cg_proto *cg_proto = sk->sk_cgrp;
1214 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1215 percpu_counter_inc(cg_proto->sockets_allocated);
1218 percpu_counter_inc(prot->sockets_allocated);
1221 static inline int
1222 sk_sockets_allocated_read_positive(struct sock *sk)
1224 struct proto *prot = sk->sk_prot;
1226 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1227 return percpu_counter_read_positive(sk->sk_cgrp->sockets_allocated);
1229 return percpu_counter_read_positive(prot->sockets_allocated);
1232 static inline int
1233 proto_sockets_allocated_sum_positive(struct proto *prot)
1235 return percpu_counter_sum_positive(prot->sockets_allocated);
1238 static inline long
1239 proto_memory_allocated(struct proto *prot)
1241 return atomic_long_read(prot->memory_allocated);
1244 static inline bool
1245 proto_memory_pressure(struct proto *prot)
1247 if (!prot->memory_pressure)
1248 return false;
1249 return !!*prot->memory_pressure;
1253 #ifdef CONFIG_PROC_FS
1254 /* Called with local bh disabled */
1255 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1256 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
1257 #else
1258 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1259 int inc)
1262 #endif
1265 /* With per-bucket locks this operation is not-atomic, so that
1266 * this version is not worse.
1268 static inline void __sk_prot_rehash(struct sock *sk)
1270 sk->sk_prot->unhash(sk);
1271 sk->sk_prot->hash(sk);
1274 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1276 /* About 10 seconds */
1277 #define SOCK_DESTROY_TIME (10*HZ)
1279 /* Sockets 0-1023 can't be bound to unless you are superuser */
1280 #define PROT_SOCK 1024
1282 #define SHUTDOWN_MASK 3
1283 #define RCV_SHUTDOWN 1
1284 #define SEND_SHUTDOWN 2
1286 #define SOCK_SNDBUF_LOCK 1
1287 #define SOCK_RCVBUF_LOCK 2
1288 #define SOCK_BINDADDR_LOCK 4
1289 #define SOCK_BINDPORT_LOCK 8
1291 /* sock_iocb: used to kick off async processing of socket ios */
1292 struct sock_iocb {
1293 struct list_head list;
1295 int flags;
1296 int size;
1297 struct socket *sock;
1298 struct sock *sk;
1299 struct scm_cookie *scm;
1300 struct msghdr *msg, async_msg;
1301 struct kiocb *kiocb;
1304 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1306 return (struct sock_iocb *)iocb->private;
1309 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1311 return si->kiocb;
1314 struct socket_alloc {
1315 struct socket socket;
1316 struct inode vfs_inode;
1319 static inline struct socket *SOCKET_I(struct inode *inode)
1321 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1324 static inline struct inode *SOCK_INODE(struct socket *socket)
1326 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1330 * Functions for memory accounting
1332 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
1333 extern void __sk_mem_reclaim(struct sock *sk);
1335 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1336 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1337 #define SK_MEM_SEND 0
1338 #define SK_MEM_RECV 1
1340 static inline int sk_mem_pages(int amt)
1342 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1345 static inline bool sk_has_account(struct sock *sk)
1347 /* return true if protocol supports memory accounting */
1348 return !!sk->sk_prot->memory_allocated;
1351 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1353 if (!sk_has_account(sk))
1354 return true;
1355 return size <= sk->sk_forward_alloc ||
1356 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1359 static inline bool
1360 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1362 if (!sk_has_account(sk))
1363 return true;
1364 return size<= sk->sk_forward_alloc ||
1365 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1366 skb_pfmemalloc(skb);
1369 static inline void sk_mem_reclaim(struct sock *sk)
1371 if (!sk_has_account(sk))
1372 return;
1373 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1374 __sk_mem_reclaim(sk);
1377 static inline void sk_mem_reclaim_partial(struct sock *sk)
1379 if (!sk_has_account(sk))
1380 return;
1381 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1382 __sk_mem_reclaim(sk);
1385 static inline void sk_mem_charge(struct sock *sk, int size)
1387 if (!sk_has_account(sk))
1388 return;
1389 sk->sk_forward_alloc -= size;
1392 static inline void sk_mem_uncharge(struct sock *sk, int size)
1394 if (!sk_has_account(sk))
1395 return;
1396 sk->sk_forward_alloc += size;
1399 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1401 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1402 sk->sk_wmem_queued -= skb->truesize;
1403 sk_mem_uncharge(sk, skb->truesize);
1404 __kfree_skb(skb);
1407 /* Used by processes to "lock" a socket state, so that
1408 * interrupts and bottom half handlers won't change it
1409 * from under us. It essentially blocks any incoming
1410 * packets, so that we won't get any new data or any
1411 * packets that change the state of the socket.
1413 * While locked, BH processing will add new packets to
1414 * the backlog queue. This queue is processed by the
1415 * owner of the socket lock right before it is released.
1417 * Since ~2.3.5 it is also exclusive sleep lock serializing
1418 * accesses from user process context.
1420 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1423 * Macro so as to not evaluate some arguments when
1424 * lockdep is not enabled.
1426 * Mark both the sk_lock and the sk_lock.slock as a
1427 * per-address-family lock class.
1429 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1430 do { \
1431 sk->sk_lock.owned = 0; \
1432 init_waitqueue_head(&sk->sk_lock.wq); \
1433 spin_lock_init(&(sk)->sk_lock.slock); \
1434 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1435 sizeof((sk)->sk_lock)); \
1436 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1437 (skey), (sname)); \
1438 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1439 } while (0)
1441 extern void lock_sock_nested(struct sock *sk, int subclass);
1443 static inline void lock_sock(struct sock *sk)
1445 lock_sock_nested(sk, 0);
1448 extern void release_sock(struct sock *sk);
1450 /* BH context may only use the following locking interface. */
1451 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1452 #define bh_lock_sock_nested(__sk) \
1453 spin_lock_nested(&((__sk)->sk_lock.slock), \
1454 SINGLE_DEPTH_NESTING)
1455 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1457 extern bool lock_sock_fast(struct sock *sk);
1459 * unlock_sock_fast - complement of lock_sock_fast
1460 * @sk: socket
1461 * @slow: slow mode
1463 * fast unlock socket for user context.
1464 * If slow mode is on, we call regular release_sock()
1466 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1468 if (slow)
1469 release_sock(sk);
1470 else
1471 spin_unlock_bh(&sk->sk_lock.slock);
1475 extern struct sock *sk_alloc(struct net *net, int family,
1476 gfp_t priority,
1477 struct proto *prot);
1478 extern void sk_free(struct sock *sk);
1479 extern void sk_release_kernel(struct sock *sk);
1480 extern struct sock *sk_clone_lock(const struct sock *sk,
1481 const gfp_t priority);
1483 extern struct sk_buff *sock_wmalloc(struct sock *sk,
1484 unsigned long size, int force,
1485 gfp_t priority);
1486 extern struct sk_buff *sock_rmalloc(struct sock *sk,
1487 unsigned long size, int force,
1488 gfp_t priority);
1489 extern void sock_wfree(struct sk_buff *skb);
1490 extern void sock_rfree(struct sk_buff *skb);
1491 extern void sock_edemux(struct sk_buff *skb);
1493 extern int sock_setsockopt(struct socket *sock, int level,
1494 int op, char __user *optval,
1495 unsigned int optlen);
1497 extern int sock_getsockopt(struct socket *sock, int level,
1498 int op, char __user *optval,
1499 int __user *optlen);
1500 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1501 unsigned long size,
1502 int noblock,
1503 int *errcode);
1504 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1505 unsigned long header_len,
1506 unsigned long data_len,
1507 int noblock,
1508 int *errcode);
1509 extern void *sock_kmalloc(struct sock *sk, int size,
1510 gfp_t priority);
1511 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1512 extern void sk_send_sigurg(struct sock *sk);
1515 * Functions to fill in entries in struct proto_ops when a protocol
1516 * does not implement a particular function.
1518 extern int sock_no_bind(struct socket *,
1519 struct sockaddr *, int);
1520 extern int sock_no_connect(struct socket *,
1521 struct sockaddr *, int, int);
1522 extern int sock_no_socketpair(struct socket *,
1523 struct socket *);
1524 extern int sock_no_accept(struct socket *,
1525 struct socket *, int);
1526 extern int sock_no_getname(struct socket *,
1527 struct sockaddr *, int *, int);
1528 extern unsigned int sock_no_poll(struct file *, struct socket *,
1529 struct poll_table_struct *);
1530 extern int sock_no_ioctl(struct socket *, unsigned int,
1531 unsigned long);
1532 extern int sock_no_listen(struct socket *, int);
1533 extern int sock_no_shutdown(struct socket *, int);
1534 extern int sock_no_getsockopt(struct socket *, int , int,
1535 char __user *, int __user *);
1536 extern int sock_no_setsockopt(struct socket *, int, int,
1537 char __user *, unsigned int);
1538 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
1539 struct msghdr *, size_t);
1540 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
1541 struct msghdr *, size_t, int);
1542 extern int sock_no_mmap(struct file *file,
1543 struct socket *sock,
1544 struct vm_area_struct *vma);
1545 extern ssize_t sock_no_sendpage(struct socket *sock,
1546 struct page *page,
1547 int offset, size_t size,
1548 int flags);
1551 * Functions to fill in entries in struct proto_ops when a protocol
1552 * uses the inet style.
1554 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1555 char __user *optval, int __user *optlen);
1556 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1557 struct msghdr *msg, size_t size, int flags);
1558 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1559 char __user *optval, unsigned int optlen);
1560 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1561 int optname, char __user *optval, int __user *optlen);
1562 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1563 int optname, char __user *optval, unsigned int optlen);
1565 extern void sk_common_release(struct sock *sk);
1568 * Default socket callbacks and setup code
1571 /* Initialise core socket variables */
1572 extern void sock_init_data(struct socket *sock, struct sock *sk);
1574 extern void sk_filter_release_rcu(struct rcu_head *rcu);
1577 * sk_filter_release - release a socket filter
1578 * @fp: filter to remove
1580 * Remove a filter from a socket and release its resources.
1583 static inline void sk_filter_release(struct sk_filter *fp)
1585 if (atomic_dec_and_test(&fp->refcnt))
1586 call_rcu(&fp->rcu, sk_filter_release_rcu);
1589 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1591 unsigned int size = sk_filter_len(fp);
1593 atomic_sub(size, &sk->sk_omem_alloc);
1594 sk_filter_release(fp);
1597 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1599 atomic_inc(&fp->refcnt);
1600 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1604 * Socket reference counting postulates.
1606 * * Each user of socket SHOULD hold a reference count.
1607 * * Each access point to socket (an hash table bucket, reference from a list,
1608 * running timer, skb in flight MUST hold a reference count.
1609 * * When reference count hits 0, it means it will never increase back.
1610 * * When reference count hits 0, it means that no references from
1611 * outside exist to this socket and current process on current CPU
1612 * is last user and may/should destroy this socket.
1613 * * sk_free is called from any context: process, BH, IRQ. When
1614 * it is called, socket has no references from outside -> sk_free
1615 * may release descendant resources allocated by the socket, but
1616 * to the time when it is called, socket is NOT referenced by any
1617 * hash tables, lists etc.
1618 * * Packets, delivered from outside (from network or from another process)
1619 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1620 * when they sit in queue. Otherwise, packets will leak to hole, when
1621 * socket is looked up by one cpu and unhasing is made by another CPU.
1622 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1623 * (leak to backlog). Packet socket does all the processing inside
1624 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1625 * use separate SMP lock, so that they are prone too.
1628 /* Ungrab socket and destroy it, if it was the last reference. */
1629 static inline void sock_put(struct sock *sk)
1631 if (atomic_dec_and_test(&sk->sk_refcnt))
1632 sk_free(sk);
1635 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1636 const int nested);
1638 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1640 sk->sk_tx_queue_mapping = tx_queue;
1643 static inline void sk_tx_queue_clear(struct sock *sk)
1645 sk->sk_tx_queue_mapping = -1;
1648 static inline int sk_tx_queue_get(const struct sock *sk)
1650 return sk ? sk->sk_tx_queue_mapping : -1;
1653 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1655 sk_tx_queue_clear(sk);
1656 sk->sk_socket = sock;
1659 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1661 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1662 return &rcu_dereference_raw(sk->sk_wq)->wait;
1664 /* Detach socket from process context.
1665 * Announce socket dead, detach it from wait queue and inode.
1666 * Note that parent inode held reference count on this struct sock,
1667 * we do not release it in this function, because protocol
1668 * probably wants some additional cleanups or even continuing
1669 * to work with this socket (TCP).
1671 static inline void sock_orphan(struct sock *sk)
1673 write_lock_bh(&sk->sk_callback_lock);
1674 sock_set_flag(sk, SOCK_DEAD);
1675 sk_set_socket(sk, NULL);
1676 sk->sk_wq = NULL;
1677 write_unlock_bh(&sk->sk_callback_lock);
1680 static inline void sock_graft(struct sock *sk, struct socket *parent)
1682 write_lock_bh(&sk->sk_callback_lock);
1683 sk->sk_wq = parent->wq;
1684 parent->sk = sk;
1685 sk_set_socket(sk, parent);
1686 security_sock_graft(sk, parent);
1687 write_unlock_bh(&sk->sk_callback_lock);
1690 extern kuid_t sock_i_uid(struct sock *sk);
1691 extern unsigned long sock_i_ino(struct sock *sk);
1693 static inline struct dst_entry *
1694 __sk_dst_get(struct sock *sk)
1696 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1697 lockdep_is_held(&sk->sk_lock.slock));
1700 static inline struct dst_entry *
1701 sk_dst_get(struct sock *sk)
1703 struct dst_entry *dst;
1705 rcu_read_lock();
1706 dst = rcu_dereference(sk->sk_dst_cache);
1707 if (dst)
1708 dst_hold(dst);
1709 rcu_read_unlock();
1710 return dst;
1713 extern void sk_reset_txq(struct sock *sk);
1715 static inline void dst_negative_advice(struct sock *sk)
1717 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1719 if (dst && dst->ops->negative_advice) {
1720 ndst = dst->ops->negative_advice(dst);
1722 if (ndst != dst) {
1723 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1724 sk_reset_txq(sk);
1729 static inline void
1730 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1732 struct dst_entry *old_dst;
1734 sk_tx_queue_clear(sk);
1736 * This can be called while sk is owned by the caller only,
1737 * with no state that can be checked in a rcu_dereference_check() cond
1739 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1740 rcu_assign_pointer(sk->sk_dst_cache, dst);
1741 dst_release(old_dst);
1744 static inline void
1745 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1747 spin_lock(&sk->sk_dst_lock);
1748 __sk_dst_set(sk, dst);
1749 spin_unlock(&sk->sk_dst_lock);
1752 static inline void
1753 __sk_dst_reset(struct sock *sk)
1755 __sk_dst_set(sk, NULL);
1758 static inline void
1759 sk_dst_reset(struct sock *sk)
1761 spin_lock(&sk->sk_dst_lock);
1762 __sk_dst_reset(sk);
1763 spin_unlock(&sk->sk_dst_lock);
1766 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1768 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1770 static inline bool sk_can_gso(const struct sock *sk)
1772 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1775 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1777 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1779 sk->sk_route_nocaps |= flags;
1780 sk->sk_route_caps &= ~flags;
1783 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1784 char __user *from, char *to,
1785 int copy, int offset)
1787 if (skb->ip_summed == CHECKSUM_NONE) {
1788 int err = 0;
1789 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1790 if (err)
1791 return err;
1792 skb->csum = csum_block_add(skb->csum, csum, offset);
1793 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1794 if (!access_ok(VERIFY_READ, from, copy) ||
1795 __copy_from_user_nocache(to, from, copy))
1796 return -EFAULT;
1797 } else if (copy_from_user(to, from, copy))
1798 return -EFAULT;
1800 return 0;
1803 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1804 char __user *from, int copy)
1806 int err, offset = skb->len;
1808 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1809 copy, offset);
1810 if (err)
1811 __skb_trim(skb, offset);
1813 return err;
1816 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1817 struct sk_buff *skb,
1818 struct page *page,
1819 int off, int copy)
1821 int err;
1823 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1824 copy, skb->len);
1825 if (err)
1826 return err;
1828 skb->len += copy;
1829 skb->data_len += copy;
1830 skb->truesize += copy;
1831 sk->sk_wmem_queued += copy;
1832 sk_mem_charge(sk, copy);
1833 return 0;
1836 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1837 struct sk_buff *skb, struct page *page,
1838 int off, int copy)
1840 if (skb->ip_summed == CHECKSUM_NONE) {
1841 int err = 0;
1842 __wsum csum = csum_and_copy_from_user(from,
1843 page_address(page) + off,
1844 copy, 0, &err);
1845 if (err)
1846 return err;
1847 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1848 } else if (copy_from_user(page_address(page) + off, from, copy))
1849 return -EFAULT;
1851 skb->len += copy;
1852 skb->data_len += copy;
1853 skb->truesize += copy;
1854 sk->sk_wmem_queued += copy;
1855 sk_mem_charge(sk, copy);
1856 return 0;
1860 * sk_wmem_alloc_get - returns write allocations
1861 * @sk: socket
1863 * Returns sk_wmem_alloc minus initial offset of one
1865 static inline int sk_wmem_alloc_get(const struct sock *sk)
1867 return atomic_read(&sk->sk_wmem_alloc) - 1;
1871 * sk_rmem_alloc_get - returns read allocations
1872 * @sk: socket
1874 * Returns sk_rmem_alloc
1876 static inline int sk_rmem_alloc_get(const struct sock *sk)
1878 return atomic_read(&sk->sk_rmem_alloc);
1882 * sk_has_allocations - check if allocations are outstanding
1883 * @sk: socket
1885 * Returns true if socket has write or read allocations
1887 static inline bool sk_has_allocations(const struct sock *sk)
1889 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1893 * wq_has_sleeper - check if there are any waiting processes
1894 * @wq: struct socket_wq
1896 * Returns true if socket_wq has waiting processes
1898 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1899 * barrier call. They were added due to the race found within the tcp code.
1901 * Consider following tcp code paths:
1903 * CPU1 CPU2
1905 * sys_select receive packet
1906 * ... ...
1907 * __add_wait_queue update tp->rcv_nxt
1908 * ... ...
1909 * tp->rcv_nxt check sock_def_readable
1910 * ... {
1911 * schedule rcu_read_lock();
1912 * wq = rcu_dereference(sk->sk_wq);
1913 * if (wq && waitqueue_active(&wq->wait))
1914 * wake_up_interruptible(&wq->wait)
1915 * ...
1918 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1919 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1920 * could then endup calling schedule and sleep forever if there are no more
1921 * data on the socket.
1924 static inline bool wq_has_sleeper(struct socket_wq *wq)
1926 /* We need to be sure we are in sync with the
1927 * add_wait_queue modifications to the wait queue.
1929 * This memory barrier is paired in the sock_poll_wait.
1931 smp_mb();
1932 return wq && waitqueue_active(&wq->wait);
1936 * sock_poll_wait - place memory barrier behind the poll_wait call.
1937 * @filp: file
1938 * @wait_address: socket wait queue
1939 * @p: poll_table
1941 * See the comments in the wq_has_sleeper function.
1943 static inline void sock_poll_wait(struct file *filp,
1944 wait_queue_head_t *wait_address, poll_table *p)
1946 if (!poll_does_not_wait(p) && wait_address) {
1947 poll_wait(filp, wait_address, p);
1948 /* We need to be sure we are in sync with the
1949 * socket flags modification.
1951 * This memory barrier is paired in the wq_has_sleeper.
1953 smp_mb();
1958 * Queue a received datagram if it will fit. Stream and sequenced
1959 * protocols can't normally use this as they need to fit buffers in
1960 * and play with them.
1962 * Inlined as it's very short and called for pretty much every
1963 * packet ever received.
1966 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1968 skb_orphan(skb);
1969 skb->sk = sk;
1970 skb->destructor = sock_wfree;
1972 * We used to take a refcount on sk, but following operation
1973 * is enough to guarantee sk_free() wont free this sock until
1974 * all in-flight packets are completed
1976 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1979 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1981 skb_orphan(skb);
1982 skb->sk = sk;
1983 skb->destructor = sock_rfree;
1984 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1985 sk_mem_charge(sk, skb->truesize);
1988 extern void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1989 unsigned long expires);
1991 extern void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1993 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1995 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1998 * Recover an error report and clear atomically
2001 static inline int sock_error(struct sock *sk)
2003 int err;
2004 if (likely(!sk->sk_err))
2005 return 0;
2006 err = xchg(&sk->sk_err, 0);
2007 return -err;
2010 static inline unsigned long sock_wspace(struct sock *sk)
2012 int amt = 0;
2014 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2015 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2016 if (amt < 0)
2017 amt = 0;
2019 return amt;
2022 static inline void sk_wake_async(struct sock *sk, int how, int band)
2024 if (sock_flag(sk, SOCK_FASYNC))
2025 sock_wake_async(sk->sk_socket, how, band);
2028 #define SOCK_MIN_SNDBUF 2048
2030 * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
2031 * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
2033 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
2035 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2037 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2038 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2039 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2043 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2046 * sk_page_frag - return an appropriate page_frag
2047 * @sk: socket
2049 * If socket allocation mode allows current thread to sleep, it means its
2050 * safe to use the per task page_frag instead of the per socket one.
2052 static inline struct page_frag *sk_page_frag(struct sock *sk)
2054 if (sk->sk_allocation & __GFP_WAIT)
2055 return &current->task_frag;
2057 return &sk->sk_frag;
2060 extern bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2063 * Default write policy as shown to user space via poll/select/SIGIO
2065 static inline bool sock_writeable(const struct sock *sk)
2067 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2070 static inline gfp_t gfp_any(void)
2072 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2075 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2077 return noblock ? 0 : sk->sk_rcvtimeo;
2080 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2082 return noblock ? 0 : sk->sk_sndtimeo;
2085 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2087 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2090 /* Alas, with timeout socket operations are not restartable.
2091 * Compare this to poll().
2093 static inline int sock_intr_errno(long timeo)
2095 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2098 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2099 struct sk_buff *skb);
2100 extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2101 struct sk_buff *skb);
2103 static inline void
2104 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2106 ktime_t kt = skb->tstamp;
2107 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2110 * generate control messages if
2111 * - receive time stamping in software requested (SOCK_RCVTSTAMP
2112 * or SOCK_TIMESTAMPING_RX_SOFTWARE)
2113 * - software time stamp available and wanted
2114 * (SOCK_TIMESTAMPING_SOFTWARE)
2115 * - hardware time stamps available and wanted
2116 * (SOCK_TIMESTAMPING_SYS_HARDWARE or
2117 * SOCK_TIMESTAMPING_RAW_HARDWARE)
2119 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2120 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
2121 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
2122 (hwtstamps->hwtstamp.tv64 &&
2123 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2124 (hwtstamps->syststamp.tv64 &&
2125 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2126 __sock_recv_timestamp(msg, sk, skb);
2127 else
2128 sk->sk_stamp = kt;
2130 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2131 __sock_recv_wifi_status(msg, sk, skb);
2134 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2135 struct sk_buff *skb);
2137 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2138 struct sk_buff *skb)
2140 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2141 (1UL << SOCK_RCVTSTAMP) | \
2142 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \
2143 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \
2144 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \
2145 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2147 if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2148 __sock_recv_ts_and_drops(msg, sk, skb);
2149 else
2150 sk->sk_stamp = skb->tstamp;
2154 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2155 * @sk: socket sending this packet
2156 * @tx_flags: filled with instructions for time stamping
2158 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
2159 * parameters are invalid.
2161 extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2164 * sk_eat_skb - Release a skb if it is no longer needed
2165 * @sk: socket to eat this skb from
2166 * @skb: socket buffer to eat
2167 * @copied_early: flag indicating whether DMA operations copied this data early
2169 * This routine must be called with interrupts disabled or with the socket
2170 * locked so that the sk_buff queue operation is ok.
2172 #ifdef CONFIG_NET_DMA
2173 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2175 __skb_unlink(skb, &sk->sk_receive_queue);
2176 if (!copied_early)
2177 __kfree_skb(skb);
2178 else
2179 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
2181 #else
2182 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2184 __skb_unlink(skb, &sk->sk_receive_queue);
2185 __kfree_skb(skb);
2187 #endif
2189 static inline
2190 struct net *sock_net(const struct sock *sk)
2192 return read_pnet(&sk->sk_net);
2195 static inline
2196 void sock_net_set(struct sock *sk, struct net *net)
2198 write_pnet(&sk->sk_net, net);
2202 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2203 * They should not hold a reference to a namespace in order to allow
2204 * to stop it.
2205 * Sockets after sk_change_net should be released using sk_release_kernel
2207 static inline void sk_change_net(struct sock *sk, struct net *net)
2209 put_net(sock_net(sk));
2210 sock_net_set(sk, hold_net(net));
2213 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2215 if (skb->sk) {
2216 struct sock *sk = skb->sk;
2218 skb->destructor = NULL;
2219 skb->sk = NULL;
2220 return sk;
2222 return NULL;
2225 extern void sock_enable_timestamp(struct sock *sk, int flag);
2226 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
2227 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
2230 * Enable debug/info messages
2232 extern int net_msg_warn;
2233 #define NETDEBUG(fmt, args...) \
2234 do { if (net_msg_warn) printk(fmt,##args); } while (0)
2236 #define LIMIT_NETDEBUG(fmt, args...) \
2237 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2239 extern __u32 sysctl_wmem_max;
2240 extern __u32 sysctl_rmem_max;
2242 extern int sysctl_optmem_max;
2244 extern __u32 sysctl_wmem_default;
2245 extern __u32 sysctl_rmem_default;
2247 #endif /* _SOCK_H */