ath9k: use correct hw for tx aggregation TX completion
[linux-2.6/btrfs-unstable.git] / drivers / net / wireless / ath / ath9k / xmit.c
blob6d7f0bcc6dd7b8d6db56e1bdb3c5fd6bd5317886
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include "ath9k.h"
19 #define BITS_PER_BYTE 8
20 #define OFDM_PLCP_BITS 22
21 #define HT_RC_2_MCS(_rc) ((_rc) & 0x0f)
22 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
23 #define L_STF 8
24 #define L_LTF 8
25 #define L_SIG 4
26 #define HT_SIG 8
27 #define HT_STF 4
28 #define HT_LTF(_ns) (4 * (_ns))
29 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
30 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
31 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
32 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
34 #define OFDM_SIFS_TIME 16
36 static u32 bits_per_symbol[][2] = {
37 /* 20MHz 40MHz */
38 { 26, 54 }, /* 0: BPSK */
39 { 52, 108 }, /* 1: QPSK 1/2 */
40 { 78, 162 }, /* 2: QPSK 3/4 */
41 { 104, 216 }, /* 3: 16-QAM 1/2 */
42 { 156, 324 }, /* 4: 16-QAM 3/4 */
43 { 208, 432 }, /* 5: 64-QAM 2/3 */
44 { 234, 486 }, /* 6: 64-QAM 3/4 */
45 { 260, 540 }, /* 7: 64-QAM 5/6 */
46 { 52, 108 }, /* 8: BPSK */
47 { 104, 216 }, /* 9: QPSK 1/2 */
48 { 156, 324 }, /* 10: QPSK 3/4 */
49 { 208, 432 }, /* 11: 16-QAM 1/2 */
50 { 312, 648 }, /* 12: 16-QAM 3/4 */
51 { 416, 864 }, /* 13: 64-QAM 2/3 */
52 { 468, 972 }, /* 14: 64-QAM 3/4 */
53 { 520, 1080 }, /* 15: 64-QAM 5/6 */
56 #define IS_HT_RATE(_rate) ((_rate) & 0x80)
58 static void ath_tx_send_ht_normal(struct ath_softc *sc, struct ath_txq *txq,
59 struct ath_atx_tid *tid,
60 struct list_head *bf_head);
61 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
62 struct ath_txq *txq,
63 struct list_head *bf_q,
64 int txok, int sendbar);
65 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
66 struct list_head *head);
67 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf);
68 static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
69 int txok);
70 static void ath_tx_rc_status(struct ath_buf *bf, struct ath_desc *ds,
71 int nbad, int txok, bool update_rc);
73 /*********************/
74 /* Aggregation logic */
75 /*********************/
77 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
79 struct ath_atx_ac *ac = tid->ac;
81 if (tid->paused)
82 return;
84 if (tid->sched)
85 return;
87 tid->sched = true;
88 list_add_tail(&tid->list, &ac->tid_q);
90 if (ac->sched)
91 return;
93 ac->sched = true;
94 list_add_tail(&ac->list, &txq->axq_acq);
97 static void ath_tx_pause_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
99 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
101 spin_lock_bh(&txq->axq_lock);
102 tid->paused++;
103 spin_unlock_bh(&txq->axq_lock);
106 static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
108 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
110 BUG_ON(tid->paused <= 0);
111 spin_lock_bh(&txq->axq_lock);
113 tid->paused--;
115 if (tid->paused > 0)
116 goto unlock;
118 if (list_empty(&tid->buf_q))
119 goto unlock;
121 ath_tx_queue_tid(txq, tid);
122 ath_txq_schedule(sc, txq);
123 unlock:
124 spin_unlock_bh(&txq->axq_lock);
127 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
129 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
130 struct ath_buf *bf;
131 struct list_head bf_head;
132 INIT_LIST_HEAD(&bf_head);
134 BUG_ON(tid->paused <= 0);
135 spin_lock_bh(&txq->axq_lock);
137 tid->paused--;
139 if (tid->paused > 0) {
140 spin_unlock_bh(&txq->axq_lock);
141 return;
144 while (!list_empty(&tid->buf_q)) {
145 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
146 BUG_ON(bf_isretried(bf));
147 list_move_tail(&bf->list, &bf_head);
148 ath_tx_send_ht_normal(sc, txq, tid, &bf_head);
151 spin_unlock_bh(&txq->axq_lock);
154 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
155 int seqno)
157 int index, cindex;
159 index = ATH_BA_INDEX(tid->seq_start, seqno);
160 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
162 tid->tx_buf[cindex] = NULL;
164 while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) {
165 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
166 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
170 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
171 struct ath_buf *bf)
173 int index, cindex;
175 if (bf_isretried(bf))
176 return;
178 index = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno);
179 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
181 BUG_ON(tid->tx_buf[cindex] != NULL);
182 tid->tx_buf[cindex] = bf;
184 if (index >= ((tid->baw_tail - tid->baw_head) &
185 (ATH_TID_MAX_BUFS - 1))) {
186 tid->baw_tail = cindex;
187 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
192 * TODO: For frame(s) that are in the retry state, we will reuse the
193 * sequence number(s) without setting the retry bit. The
194 * alternative is to give up on these and BAR the receiver's window
195 * forward.
197 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
198 struct ath_atx_tid *tid)
201 struct ath_buf *bf;
202 struct list_head bf_head;
203 INIT_LIST_HEAD(&bf_head);
205 for (;;) {
206 if (list_empty(&tid->buf_q))
207 break;
209 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
210 list_move_tail(&bf->list, &bf_head);
212 if (bf_isretried(bf))
213 ath_tx_update_baw(sc, tid, bf->bf_seqno);
215 spin_unlock(&txq->axq_lock);
216 ath_tx_complete_buf(sc, bf, txq, &bf_head, 0, 0);
217 spin_lock(&txq->axq_lock);
220 tid->seq_next = tid->seq_start;
221 tid->baw_tail = tid->baw_head;
224 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
225 struct ath_buf *bf)
227 struct sk_buff *skb;
228 struct ieee80211_hdr *hdr;
230 bf->bf_state.bf_type |= BUF_RETRY;
231 bf->bf_retries++;
232 TX_STAT_INC(txq->axq_qnum, a_retries);
234 skb = bf->bf_mpdu;
235 hdr = (struct ieee80211_hdr *)skb->data;
236 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
239 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
241 struct ath_buf *tbf;
243 spin_lock_bh(&sc->tx.txbuflock);
244 if (WARN_ON(list_empty(&sc->tx.txbuf))) {
245 spin_unlock_bh(&sc->tx.txbuflock);
246 return NULL;
248 tbf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
249 list_del(&tbf->list);
250 spin_unlock_bh(&sc->tx.txbuflock);
252 ATH_TXBUF_RESET(tbf);
254 tbf->bf_mpdu = bf->bf_mpdu;
255 tbf->bf_buf_addr = bf->bf_buf_addr;
256 *(tbf->bf_desc) = *(bf->bf_desc);
257 tbf->bf_state = bf->bf_state;
258 tbf->bf_dmacontext = bf->bf_dmacontext;
260 return tbf;
263 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
264 struct ath_buf *bf, struct list_head *bf_q,
265 int txok)
267 struct ath_node *an = NULL;
268 struct sk_buff *skb;
269 struct ieee80211_sta *sta;
270 struct ieee80211_hw *hw;
271 struct ieee80211_hdr *hdr;
272 struct ieee80211_tx_info *tx_info;
273 struct ath_tx_info_priv *tx_info_priv;
274 struct ath_atx_tid *tid = NULL;
275 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
276 struct ath_desc *ds = bf_last->bf_desc;
277 struct list_head bf_head, bf_pending;
278 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0;
279 u32 ba[WME_BA_BMP_SIZE >> 5];
280 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
281 bool rc_update = true;
283 skb = bf->bf_mpdu;
284 hdr = (struct ieee80211_hdr *)skb->data;
286 tx_info = IEEE80211_SKB_CB(skb);
287 tx_info_priv = (struct ath_tx_info_priv *) tx_info->rate_driver_data[0];
288 hw = tx_info_priv->aphy->hw;
290 rcu_read_lock();
292 /* XXX: use ieee80211_find_sta! */
293 sta = ieee80211_find_sta_by_hw(hw, hdr->addr1);
294 if (!sta) {
295 rcu_read_unlock();
296 return;
299 an = (struct ath_node *)sta->drv_priv;
300 tid = ATH_AN_2_TID(an, bf->bf_tidno);
302 isaggr = bf_isaggr(bf);
303 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
305 if (isaggr && txok) {
306 if (ATH_DS_TX_BA(ds)) {
307 seq_st = ATH_DS_BA_SEQ(ds);
308 memcpy(ba, ATH_DS_BA_BITMAP(ds),
309 WME_BA_BMP_SIZE >> 3);
310 } else {
312 * AR5416 can become deaf/mute when BA
313 * issue happens. Chip needs to be reset.
314 * But AP code may have sychronization issues
315 * when perform internal reset in this routine.
316 * Only enable reset in STA mode for now.
318 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
319 needreset = 1;
323 INIT_LIST_HEAD(&bf_pending);
324 INIT_LIST_HEAD(&bf_head);
326 nbad = ath_tx_num_badfrms(sc, bf, txok);
327 while (bf) {
328 txfail = txpending = 0;
329 bf_next = bf->bf_next;
331 if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) {
332 /* transmit completion, subframe is
333 * acked by block ack */
334 acked_cnt++;
335 } else if (!isaggr && txok) {
336 /* transmit completion */
337 acked_cnt++;
338 } else {
339 if (!(tid->state & AGGR_CLEANUP) &&
340 ds->ds_txstat.ts_flags != ATH9K_TX_SW_ABORTED) {
341 if (bf->bf_retries < ATH_MAX_SW_RETRIES) {
342 ath_tx_set_retry(sc, txq, bf);
343 txpending = 1;
344 } else {
345 bf->bf_state.bf_type |= BUF_XRETRY;
346 txfail = 1;
347 sendbar = 1;
348 txfail_cnt++;
350 } else {
352 * cleanup in progress, just fail
353 * the un-acked sub-frames
355 txfail = 1;
359 if (bf_next == NULL) {
361 * Make sure the last desc is reclaimed if it
362 * not a holding desc.
364 if (!bf_last->bf_stale)
365 list_move_tail(&bf->list, &bf_head);
366 else
367 INIT_LIST_HEAD(&bf_head);
368 } else {
369 BUG_ON(list_empty(bf_q));
370 list_move_tail(&bf->list, &bf_head);
373 if (!txpending) {
375 * complete the acked-ones/xretried ones; update
376 * block-ack window
378 spin_lock_bh(&txq->axq_lock);
379 ath_tx_update_baw(sc, tid, bf->bf_seqno);
380 spin_unlock_bh(&txq->axq_lock);
382 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
383 ath_tx_rc_status(bf, ds, nbad, txok, true);
384 rc_update = false;
385 } else {
386 ath_tx_rc_status(bf, ds, nbad, txok, false);
389 ath_tx_complete_buf(sc, bf, txq, &bf_head, !txfail, sendbar);
390 } else {
391 /* retry the un-acked ones */
392 if (bf->bf_next == NULL && bf_last->bf_stale) {
393 struct ath_buf *tbf;
395 tbf = ath_clone_txbuf(sc, bf_last);
397 * Update tx baw and complete the frame with
398 * failed status if we run out of tx buf
400 if (!tbf) {
401 spin_lock_bh(&txq->axq_lock);
402 ath_tx_update_baw(sc, tid,
403 bf->bf_seqno);
404 spin_unlock_bh(&txq->axq_lock);
406 bf->bf_state.bf_type |= BUF_XRETRY;
407 ath_tx_rc_status(bf, ds, nbad,
408 0, false);
409 ath_tx_complete_buf(sc, bf, txq,
410 &bf_head, 0, 0);
411 break;
414 ath9k_hw_cleartxdesc(sc->sc_ah, tbf->bf_desc);
415 list_add_tail(&tbf->list, &bf_head);
416 } else {
418 * Clear descriptor status words for
419 * software retry
421 ath9k_hw_cleartxdesc(sc->sc_ah, bf->bf_desc);
425 * Put this buffer to the temporary pending
426 * queue to retain ordering
428 list_splice_tail_init(&bf_head, &bf_pending);
431 bf = bf_next;
434 if (tid->state & AGGR_CLEANUP) {
435 if (tid->baw_head == tid->baw_tail) {
436 tid->state &= ~AGGR_ADDBA_COMPLETE;
437 tid->state &= ~AGGR_CLEANUP;
439 /* send buffered frames as singles */
440 ath_tx_flush_tid(sc, tid);
442 rcu_read_unlock();
443 return;
446 /* prepend un-acked frames to the beginning of the pending frame queue */
447 if (!list_empty(&bf_pending)) {
448 spin_lock_bh(&txq->axq_lock);
449 list_splice(&bf_pending, &tid->buf_q);
450 ath_tx_queue_tid(txq, tid);
451 spin_unlock_bh(&txq->axq_lock);
454 rcu_read_unlock();
456 if (needreset)
457 ath_reset(sc, false);
460 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
461 struct ath_atx_tid *tid)
463 const struct ath_rate_table *rate_table = sc->cur_rate_table;
464 struct sk_buff *skb;
465 struct ieee80211_tx_info *tx_info;
466 struct ieee80211_tx_rate *rates;
467 struct ath_tx_info_priv *tx_info_priv;
468 u32 max_4ms_framelen, frmlen;
469 u16 aggr_limit, legacy = 0;
470 int i;
472 skb = bf->bf_mpdu;
473 tx_info = IEEE80211_SKB_CB(skb);
474 rates = tx_info->control.rates;
475 tx_info_priv = (struct ath_tx_info_priv *)tx_info->rate_driver_data[0];
478 * Find the lowest frame length among the rate series that will have a
479 * 4ms transmit duration.
480 * TODO - TXOP limit needs to be considered.
482 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
484 for (i = 0; i < 4; i++) {
485 if (rates[i].count) {
486 if (!WLAN_RC_PHY_HT(rate_table->info[rates[i].idx].phy)) {
487 legacy = 1;
488 break;
491 frmlen = rate_table->info[rates[i].idx].max_4ms_framelen;
492 max_4ms_framelen = min(max_4ms_framelen, frmlen);
497 * limit aggregate size by the minimum rate if rate selected is
498 * not a probe rate, if rate selected is a probe rate then
499 * avoid aggregation of this packet.
501 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
502 return 0;
504 if (sc->sc_flags & SC_OP_BT_PRIORITY_DETECTED)
505 aggr_limit = min((max_4ms_framelen * 3) / 8,
506 (u32)ATH_AMPDU_LIMIT_MAX);
507 else
508 aggr_limit = min(max_4ms_framelen,
509 (u32)ATH_AMPDU_LIMIT_MAX);
512 * h/w can accept aggregates upto 16 bit lengths (65535).
513 * The IE, however can hold upto 65536, which shows up here
514 * as zero. Ignore 65536 since we are constrained by hw.
516 if (tid->an->maxampdu)
517 aggr_limit = min(aggr_limit, tid->an->maxampdu);
519 return aggr_limit;
523 * Returns the number of delimiters to be added to
524 * meet the minimum required mpdudensity.
526 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
527 struct ath_buf *bf, u16 frmlen)
529 const struct ath_rate_table *rt = sc->cur_rate_table;
530 struct sk_buff *skb = bf->bf_mpdu;
531 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
532 u32 nsymbits, nsymbols;
533 u16 minlen;
534 u8 rc, flags, rix;
535 int width, half_gi, ndelim, mindelim;
537 /* Select standard number of delimiters based on frame length alone */
538 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
541 * If encryption enabled, hardware requires some more padding between
542 * subframes.
543 * TODO - this could be improved to be dependent on the rate.
544 * The hardware can keep up at lower rates, but not higher rates
546 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR)
547 ndelim += ATH_AGGR_ENCRYPTDELIM;
550 * Convert desired mpdu density from microeconds to bytes based
551 * on highest rate in rate series (i.e. first rate) to determine
552 * required minimum length for subframe. Take into account
553 * whether high rate is 20 or 40Mhz and half or full GI.
555 * If there is no mpdu density restriction, no further calculation
556 * is needed.
559 if (tid->an->mpdudensity == 0)
560 return ndelim;
562 rix = tx_info->control.rates[0].idx;
563 flags = tx_info->control.rates[0].flags;
564 rc = rt->info[rix].ratecode;
565 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
566 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
568 if (half_gi)
569 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
570 else
571 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
573 if (nsymbols == 0)
574 nsymbols = 1;
576 nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
577 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
579 if (frmlen < minlen) {
580 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
581 ndelim = max(mindelim, ndelim);
584 return ndelim;
587 static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
588 struct ath_txq *txq,
589 struct ath_atx_tid *tid,
590 struct list_head *bf_q)
592 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
593 struct ath_buf *bf, *bf_first, *bf_prev = NULL;
594 int rl = 0, nframes = 0, ndelim, prev_al = 0;
595 u16 aggr_limit = 0, al = 0, bpad = 0,
596 al_delta, h_baw = tid->baw_size / 2;
597 enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
599 bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list);
601 do {
602 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
604 /* do not step over block-ack window */
605 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) {
606 status = ATH_AGGR_BAW_CLOSED;
607 break;
610 if (!rl) {
611 aggr_limit = ath_lookup_rate(sc, bf, tid);
612 rl = 1;
615 /* do not exceed aggregation limit */
616 al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen;
618 if (nframes &&
619 (aggr_limit < (al + bpad + al_delta + prev_al))) {
620 status = ATH_AGGR_LIMITED;
621 break;
624 /* do not exceed subframe limit */
625 if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
626 status = ATH_AGGR_LIMITED;
627 break;
629 nframes++;
631 /* add padding for previous frame to aggregation length */
632 al += bpad + al_delta;
635 * Get the delimiters needed to meet the MPDU
636 * density for this node.
638 ndelim = ath_compute_num_delims(sc, tid, bf_first, bf->bf_frmlen);
639 bpad = PADBYTES(al_delta) + (ndelim << 2);
641 bf->bf_next = NULL;
642 bf->bf_desc->ds_link = 0;
644 /* link buffers of this frame to the aggregate */
645 ath_tx_addto_baw(sc, tid, bf);
646 ath9k_hw_set11n_aggr_middle(sc->sc_ah, bf->bf_desc, ndelim);
647 list_move_tail(&bf->list, bf_q);
648 if (bf_prev) {
649 bf_prev->bf_next = bf;
650 bf_prev->bf_desc->ds_link = bf->bf_daddr;
652 bf_prev = bf;
654 } while (!list_empty(&tid->buf_q));
656 bf_first->bf_al = al;
657 bf_first->bf_nframes = nframes;
659 return status;
660 #undef PADBYTES
663 static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
664 struct ath_atx_tid *tid)
666 struct ath_buf *bf;
667 enum ATH_AGGR_STATUS status;
668 struct list_head bf_q;
670 do {
671 if (list_empty(&tid->buf_q))
672 return;
674 INIT_LIST_HEAD(&bf_q);
676 status = ath_tx_form_aggr(sc, txq, tid, &bf_q);
679 * no frames picked up to be aggregated;
680 * block-ack window is not open.
682 if (list_empty(&bf_q))
683 break;
685 bf = list_first_entry(&bf_q, struct ath_buf, list);
686 bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
688 /* if only one frame, send as non-aggregate */
689 if (bf->bf_nframes == 1) {
690 bf->bf_state.bf_type &= ~BUF_AGGR;
691 ath9k_hw_clr11n_aggr(sc->sc_ah, bf->bf_desc);
692 ath_buf_set_rate(sc, bf);
693 ath_tx_txqaddbuf(sc, txq, &bf_q);
694 continue;
697 /* setup first desc of aggregate */
698 bf->bf_state.bf_type |= BUF_AGGR;
699 ath_buf_set_rate(sc, bf);
700 ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al);
702 /* anchor last desc of aggregate */
703 ath9k_hw_set11n_aggr_last(sc->sc_ah, bf->bf_lastbf->bf_desc);
705 txq->axq_aggr_depth++;
706 ath_tx_txqaddbuf(sc, txq, &bf_q);
707 TX_STAT_INC(txq->axq_qnum, a_aggr);
709 } while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH &&
710 status != ATH_AGGR_BAW_CLOSED);
713 void ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
714 u16 tid, u16 *ssn)
716 struct ath_atx_tid *txtid;
717 struct ath_node *an;
719 an = (struct ath_node *)sta->drv_priv;
720 txtid = ATH_AN_2_TID(an, tid);
721 txtid->state |= AGGR_ADDBA_PROGRESS;
722 ath_tx_pause_tid(sc, txtid);
723 *ssn = txtid->seq_start;
726 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
728 struct ath_node *an = (struct ath_node *)sta->drv_priv;
729 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
730 struct ath_txq *txq = &sc->tx.txq[txtid->ac->qnum];
731 struct ath_buf *bf;
732 struct list_head bf_head;
733 INIT_LIST_HEAD(&bf_head);
735 if (txtid->state & AGGR_CLEANUP)
736 return;
738 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
739 txtid->state &= ~AGGR_ADDBA_PROGRESS;
740 return;
743 ath_tx_pause_tid(sc, txtid);
745 /* drop all software retried frames and mark this TID */
746 spin_lock_bh(&txq->axq_lock);
747 while (!list_empty(&txtid->buf_q)) {
748 bf = list_first_entry(&txtid->buf_q, struct ath_buf, list);
749 if (!bf_isretried(bf)) {
751 * NB: it's based on the assumption that
752 * software retried frame will always stay
753 * at the head of software queue.
755 break;
757 list_move_tail(&bf->list, &bf_head);
758 ath_tx_update_baw(sc, txtid, bf->bf_seqno);
759 ath_tx_complete_buf(sc, bf, txq, &bf_head, 0, 0);
761 spin_unlock_bh(&txq->axq_lock);
763 if (txtid->baw_head != txtid->baw_tail) {
764 txtid->state |= AGGR_CLEANUP;
765 } else {
766 txtid->state &= ~AGGR_ADDBA_COMPLETE;
767 ath_tx_flush_tid(sc, txtid);
771 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
773 struct ath_atx_tid *txtid;
774 struct ath_node *an;
776 an = (struct ath_node *)sta->drv_priv;
778 if (sc->sc_flags & SC_OP_TXAGGR) {
779 txtid = ATH_AN_2_TID(an, tid);
780 txtid->baw_size =
781 IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
782 txtid->state |= AGGR_ADDBA_COMPLETE;
783 txtid->state &= ~AGGR_ADDBA_PROGRESS;
784 ath_tx_resume_tid(sc, txtid);
788 bool ath_tx_aggr_check(struct ath_softc *sc, struct ath_node *an, u8 tidno)
790 struct ath_atx_tid *txtid;
792 if (!(sc->sc_flags & SC_OP_TXAGGR))
793 return false;
795 txtid = ATH_AN_2_TID(an, tidno);
797 if (!(txtid->state & (AGGR_ADDBA_COMPLETE | AGGR_ADDBA_PROGRESS)))
798 return true;
799 return false;
802 /********************/
803 /* Queue Management */
804 /********************/
806 static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
807 struct ath_txq *txq)
809 struct ath_atx_ac *ac, *ac_tmp;
810 struct ath_atx_tid *tid, *tid_tmp;
812 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
813 list_del(&ac->list);
814 ac->sched = false;
815 list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
816 list_del(&tid->list);
817 tid->sched = false;
818 ath_tid_drain(sc, txq, tid);
823 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
825 struct ath_hw *ah = sc->sc_ah;
826 struct ath_common *common = ath9k_hw_common(ah);
827 struct ath9k_tx_queue_info qi;
828 int qnum;
830 memset(&qi, 0, sizeof(qi));
831 qi.tqi_subtype = subtype;
832 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
833 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
834 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
835 qi.tqi_physCompBuf = 0;
838 * Enable interrupts only for EOL and DESC conditions.
839 * We mark tx descriptors to receive a DESC interrupt
840 * when a tx queue gets deep; otherwise waiting for the
841 * EOL to reap descriptors. Note that this is done to
842 * reduce interrupt load and this only defers reaping
843 * descriptors, never transmitting frames. Aside from
844 * reducing interrupts this also permits more concurrency.
845 * The only potential downside is if the tx queue backs
846 * up in which case the top half of the kernel may backup
847 * due to a lack of tx descriptors.
849 * The UAPSD queue is an exception, since we take a desc-
850 * based intr on the EOSP frames.
852 if (qtype == ATH9K_TX_QUEUE_UAPSD)
853 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
854 else
855 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
856 TXQ_FLAG_TXDESCINT_ENABLE;
857 qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
858 if (qnum == -1) {
860 * NB: don't print a message, this happens
861 * normally on parts with too few tx queues
863 return NULL;
865 if (qnum >= ARRAY_SIZE(sc->tx.txq)) {
866 ath_print(common, ATH_DBG_FATAL,
867 "qnum %u out of range, max %u!\n",
868 qnum, (unsigned int)ARRAY_SIZE(sc->tx.txq));
869 ath9k_hw_releasetxqueue(ah, qnum);
870 return NULL;
872 if (!ATH_TXQ_SETUP(sc, qnum)) {
873 struct ath_txq *txq = &sc->tx.txq[qnum];
875 txq->axq_qnum = qnum;
876 txq->axq_link = NULL;
877 INIT_LIST_HEAD(&txq->axq_q);
878 INIT_LIST_HEAD(&txq->axq_acq);
879 spin_lock_init(&txq->axq_lock);
880 txq->axq_depth = 0;
881 txq->axq_aggr_depth = 0;
882 txq->axq_linkbuf = NULL;
883 txq->axq_tx_inprogress = false;
884 sc->tx.txqsetup |= 1<<qnum;
886 return &sc->tx.txq[qnum];
889 int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype)
891 int qnum;
893 switch (qtype) {
894 case ATH9K_TX_QUEUE_DATA:
895 if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
896 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
897 "HAL AC %u out of range, max %zu!\n",
898 haltype, ARRAY_SIZE(sc->tx.hwq_map));
899 return -1;
901 qnum = sc->tx.hwq_map[haltype];
902 break;
903 case ATH9K_TX_QUEUE_BEACON:
904 qnum = sc->beacon.beaconq;
905 break;
906 case ATH9K_TX_QUEUE_CAB:
907 qnum = sc->beacon.cabq->axq_qnum;
908 break;
909 default:
910 qnum = -1;
912 return qnum;
915 struct ath_txq *ath_test_get_txq(struct ath_softc *sc, struct sk_buff *skb)
917 struct ath_txq *txq = NULL;
918 int qnum;
920 qnum = ath_get_hal_qnum(skb_get_queue_mapping(skb), sc);
921 txq = &sc->tx.txq[qnum];
923 spin_lock_bh(&txq->axq_lock);
925 if (txq->axq_depth >= (ATH_TXBUF - 20)) {
926 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_XMIT,
927 "TX queue: %d is full, depth: %d\n",
928 qnum, txq->axq_depth);
929 ieee80211_stop_queue(sc->hw, skb_get_queue_mapping(skb));
930 txq->stopped = 1;
931 spin_unlock_bh(&txq->axq_lock);
932 return NULL;
935 spin_unlock_bh(&txq->axq_lock);
937 return txq;
940 int ath_txq_update(struct ath_softc *sc, int qnum,
941 struct ath9k_tx_queue_info *qinfo)
943 struct ath_hw *ah = sc->sc_ah;
944 int error = 0;
945 struct ath9k_tx_queue_info qi;
947 if (qnum == sc->beacon.beaconq) {
949 * XXX: for beacon queue, we just save the parameter.
950 * It will be picked up by ath_beaconq_config when
951 * it's necessary.
953 sc->beacon.beacon_qi = *qinfo;
954 return 0;
957 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
959 ath9k_hw_get_txq_props(ah, qnum, &qi);
960 qi.tqi_aifs = qinfo->tqi_aifs;
961 qi.tqi_cwmin = qinfo->tqi_cwmin;
962 qi.tqi_cwmax = qinfo->tqi_cwmax;
963 qi.tqi_burstTime = qinfo->tqi_burstTime;
964 qi.tqi_readyTime = qinfo->tqi_readyTime;
966 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
967 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
968 "Unable to update hardware queue %u!\n", qnum);
969 error = -EIO;
970 } else {
971 ath9k_hw_resettxqueue(ah, qnum);
974 return error;
977 int ath_cabq_update(struct ath_softc *sc)
979 struct ath9k_tx_queue_info qi;
980 int qnum = sc->beacon.cabq->axq_qnum;
982 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
984 * Ensure the readytime % is within the bounds.
986 if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
987 sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
988 else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
989 sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
991 qi.tqi_readyTime = (sc->beacon_interval *
992 sc->config.cabqReadytime) / 100;
993 ath_txq_update(sc, qnum, &qi);
995 return 0;
999 * Drain a given TX queue (could be Beacon or Data)
1001 * This assumes output has been stopped and
1002 * we do not need to block ath_tx_tasklet.
1004 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
1006 struct ath_buf *bf, *lastbf;
1007 struct list_head bf_head;
1009 INIT_LIST_HEAD(&bf_head);
1011 for (;;) {
1012 spin_lock_bh(&txq->axq_lock);
1014 if (list_empty(&txq->axq_q)) {
1015 txq->axq_link = NULL;
1016 txq->axq_linkbuf = NULL;
1017 spin_unlock_bh(&txq->axq_lock);
1018 break;
1021 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
1023 if (bf->bf_stale) {
1024 list_del(&bf->list);
1025 spin_unlock_bh(&txq->axq_lock);
1027 spin_lock_bh(&sc->tx.txbuflock);
1028 list_add_tail(&bf->list, &sc->tx.txbuf);
1029 spin_unlock_bh(&sc->tx.txbuflock);
1030 continue;
1033 lastbf = bf->bf_lastbf;
1034 if (!retry_tx)
1035 lastbf->bf_desc->ds_txstat.ts_flags =
1036 ATH9K_TX_SW_ABORTED;
1038 /* remove ath_buf's of the same mpdu from txq */
1039 list_cut_position(&bf_head, &txq->axq_q, &lastbf->list);
1040 txq->axq_depth--;
1042 spin_unlock_bh(&txq->axq_lock);
1044 if (bf_isampdu(bf))
1045 ath_tx_complete_aggr(sc, txq, bf, &bf_head, 0);
1046 else
1047 ath_tx_complete_buf(sc, bf, txq, &bf_head, 0, 0);
1050 spin_lock_bh(&txq->axq_lock);
1051 txq->axq_tx_inprogress = false;
1052 spin_unlock_bh(&txq->axq_lock);
1054 /* flush any pending frames if aggregation is enabled */
1055 if (sc->sc_flags & SC_OP_TXAGGR) {
1056 if (!retry_tx) {
1057 spin_lock_bh(&txq->axq_lock);
1058 ath_txq_drain_pending_buffers(sc, txq);
1059 spin_unlock_bh(&txq->axq_lock);
1064 void ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
1066 struct ath_hw *ah = sc->sc_ah;
1067 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1068 struct ath_txq *txq;
1069 int i, npend = 0;
1071 if (sc->sc_flags & SC_OP_INVALID)
1072 return;
1074 /* Stop beacon queue */
1075 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
1077 /* Stop data queues */
1078 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1079 if (ATH_TXQ_SETUP(sc, i)) {
1080 txq = &sc->tx.txq[i];
1081 ath9k_hw_stoptxdma(ah, txq->axq_qnum);
1082 npend += ath9k_hw_numtxpending(ah, txq->axq_qnum);
1086 if (npend) {
1087 int r;
1089 ath_print(common, ATH_DBG_XMIT,
1090 "Unable to stop TxDMA. Reset HAL!\n");
1092 spin_lock_bh(&sc->sc_resetlock);
1093 r = ath9k_hw_reset(ah, sc->sc_ah->curchan, true);
1094 if (r)
1095 ath_print(common, ATH_DBG_FATAL,
1096 "Unable to reset hardware; reset status %d\n",
1098 spin_unlock_bh(&sc->sc_resetlock);
1101 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1102 if (ATH_TXQ_SETUP(sc, i))
1103 ath_draintxq(sc, &sc->tx.txq[i], retry_tx);
1107 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1109 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1110 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1113 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1115 struct ath_atx_ac *ac;
1116 struct ath_atx_tid *tid;
1118 if (list_empty(&txq->axq_acq))
1119 return;
1121 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1122 list_del(&ac->list);
1123 ac->sched = false;
1125 do {
1126 if (list_empty(&ac->tid_q))
1127 return;
1129 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list);
1130 list_del(&tid->list);
1131 tid->sched = false;
1133 if (tid->paused)
1134 continue;
1136 ath_tx_sched_aggr(sc, txq, tid);
1139 * add tid to round-robin queue if more frames
1140 * are pending for the tid
1142 if (!list_empty(&tid->buf_q))
1143 ath_tx_queue_tid(txq, tid);
1145 break;
1146 } while (!list_empty(&ac->tid_q));
1148 if (!list_empty(&ac->tid_q)) {
1149 if (!ac->sched) {
1150 ac->sched = true;
1151 list_add_tail(&ac->list, &txq->axq_acq);
1156 int ath_tx_setup(struct ath_softc *sc, int haltype)
1158 struct ath_txq *txq;
1160 if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
1161 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
1162 "HAL AC %u out of range, max %zu!\n",
1163 haltype, ARRAY_SIZE(sc->tx.hwq_map));
1164 return 0;
1166 txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype);
1167 if (txq != NULL) {
1168 sc->tx.hwq_map[haltype] = txq->axq_qnum;
1169 return 1;
1170 } else
1171 return 0;
1174 /***********/
1175 /* TX, DMA */
1176 /***********/
1179 * Insert a chain of ath_buf (descriptors) on a txq and
1180 * assume the descriptors are already chained together by caller.
1182 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1183 struct list_head *head)
1185 struct ath_hw *ah = sc->sc_ah;
1186 struct ath_common *common = ath9k_hw_common(ah);
1187 struct ath_buf *bf;
1190 * Insert the frame on the outbound list and
1191 * pass it on to the hardware.
1194 if (list_empty(head))
1195 return;
1197 bf = list_first_entry(head, struct ath_buf, list);
1199 list_splice_tail_init(head, &txq->axq_q);
1200 txq->axq_depth++;
1201 txq->axq_linkbuf = list_entry(txq->axq_q.prev, struct ath_buf, list);
1203 ath_print(common, ATH_DBG_QUEUE,
1204 "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth);
1206 if (txq->axq_link == NULL) {
1207 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1208 ath_print(common, ATH_DBG_XMIT,
1209 "TXDP[%u] = %llx (%p)\n",
1210 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1211 } else {
1212 *txq->axq_link = bf->bf_daddr;
1213 ath_print(common, ATH_DBG_XMIT, "link[%u] (%p)=%llx (%p)\n",
1214 txq->axq_qnum, txq->axq_link,
1215 ito64(bf->bf_daddr), bf->bf_desc);
1217 txq->axq_link = &(bf->bf_lastbf->bf_desc->ds_link);
1218 ath9k_hw_txstart(ah, txq->axq_qnum);
1221 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
1223 struct ath_buf *bf = NULL;
1225 spin_lock_bh(&sc->tx.txbuflock);
1227 if (unlikely(list_empty(&sc->tx.txbuf))) {
1228 spin_unlock_bh(&sc->tx.txbuflock);
1229 return NULL;
1232 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
1233 list_del(&bf->list);
1235 spin_unlock_bh(&sc->tx.txbuflock);
1237 return bf;
1240 static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
1241 struct list_head *bf_head,
1242 struct ath_tx_control *txctl)
1244 struct ath_buf *bf;
1246 bf = list_first_entry(bf_head, struct ath_buf, list);
1247 bf->bf_state.bf_type |= BUF_AMPDU;
1248 TX_STAT_INC(txctl->txq->axq_qnum, a_queued);
1251 * Do not queue to h/w when any of the following conditions is true:
1252 * - there are pending frames in software queue
1253 * - the TID is currently paused for ADDBA/BAR request
1254 * - seqno is not within block-ack window
1255 * - h/w queue depth exceeds low water mark
1257 if (!list_empty(&tid->buf_q) || tid->paused ||
1258 !BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) ||
1259 txctl->txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) {
1261 * Add this frame to software queue for scheduling later
1262 * for aggregation.
1264 list_move_tail(&bf->list, &tid->buf_q);
1265 ath_tx_queue_tid(txctl->txq, tid);
1266 return;
1269 /* Add sub-frame to BAW */
1270 ath_tx_addto_baw(sc, tid, bf);
1272 /* Queue to h/w without aggregation */
1273 bf->bf_nframes = 1;
1274 bf->bf_lastbf = bf;
1275 ath_buf_set_rate(sc, bf);
1276 ath_tx_txqaddbuf(sc, txctl->txq, bf_head);
1279 static void ath_tx_send_ht_normal(struct ath_softc *sc, struct ath_txq *txq,
1280 struct ath_atx_tid *tid,
1281 struct list_head *bf_head)
1283 struct ath_buf *bf;
1285 bf = list_first_entry(bf_head, struct ath_buf, list);
1286 bf->bf_state.bf_type &= ~BUF_AMPDU;
1288 /* update starting sequence number for subsequent ADDBA request */
1289 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
1291 bf->bf_nframes = 1;
1292 bf->bf_lastbf = bf;
1293 ath_buf_set_rate(sc, bf);
1294 ath_tx_txqaddbuf(sc, txq, bf_head);
1295 TX_STAT_INC(txq->axq_qnum, queued);
1298 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1299 struct list_head *bf_head)
1301 struct ath_buf *bf;
1303 bf = list_first_entry(bf_head, struct ath_buf, list);
1305 bf->bf_lastbf = bf;
1306 bf->bf_nframes = 1;
1307 ath_buf_set_rate(sc, bf);
1308 ath_tx_txqaddbuf(sc, txq, bf_head);
1309 TX_STAT_INC(txq->axq_qnum, queued);
1312 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1314 struct ieee80211_hdr *hdr;
1315 enum ath9k_pkt_type htype;
1316 __le16 fc;
1318 hdr = (struct ieee80211_hdr *)skb->data;
1319 fc = hdr->frame_control;
1321 if (ieee80211_is_beacon(fc))
1322 htype = ATH9K_PKT_TYPE_BEACON;
1323 else if (ieee80211_is_probe_resp(fc))
1324 htype = ATH9K_PKT_TYPE_PROBE_RESP;
1325 else if (ieee80211_is_atim(fc))
1326 htype = ATH9K_PKT_TYPE_ATIM;
1327 else if (ieee80211_is_pspoll(fc))
1328 htype = ATH9K_PKT_TYPE_PSPOLL;
1329 else
1330 htype = ATH9K_PKT_TYPE_NORMAL;
1332 return htype;
1335 static bool is_pae(struct sk_buff *skb)
1337 struct ieee80211_hdr *hdr;
1338 __le16 fc;
1340 hdr = (struct ieee80211_hdr *)skb->data;
1341 fc = hdr->frame_control;
1343 if (ieee80211_is_data(fc)) {
1344 if (ieee80211_is_nullfunc(fc) ||
1345 /* Port Access Entity (IEEE 802.1X) */
1346 (skb->protocol == cpu_to_be16(ETH_P_PAE))) {
1347 return true;
1351 return false;
1354 static int get_hw_crypto_keytype(struct sk_buff *skb)
1356 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1358 if (tx_info->control.hw_key) {
1359 if (tx_info->control.hw_key->alg == ALG_WEP)
1360 return ATH9K_KEY_TYPE_WEP;
1361 else if (tx_info->control.hw_key->alg == ALG_TKIP)
1362 return ATH9K_KEY_TYPE_TKIP;
1363 else if (tx_info->control.hw_key->alg == ALG_CCMP)
1364 return ATH9K_KEY_TYPE_AES;
1367 return ATH9K_KEY_TYPE_CLEAR;
1370 static void assign_aggr_tid_seqno(struct sk_buff *skb,
1371 struct ath_buf *bf)
1373 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1374 struct ieee80211_hdr *hdr;
1375 struct ath_node *an;
1376 struct ath_atx_tid *tid;
1377 __le16 fc;
1378 u8 *qc;
1380 if (!tx_info->control.sta)
1381 return;
1383 an = (struct ath_node *)tx_info->control.sta->drv_priv;
1384 hdr = (struct ieee80211_hdr *)skb->data;
1385 fc = hdr->frame_control;
1387 if (ieee80211_is_data_qos(fc)) {
1388 qc = ieee80211_get_qos_ctl(hdr);
1389 bf->bf_tidno = qc[0] & 0xf;
1393 * For HT capable stations, we save tidno for later use.
1394 * We also override seqno set by upper layer with the one
1395 * in tx aggregation state.
1397 * If fragmentation is on, the sequence number is
1398 * not overridden, since it has been
1399 * incremented by the fragmentation routine.
1401 * FIXME: check if the fragmentation threshold exceeds
1402 * IEEE80211 max.
1404 tid = ATH_AN_2_TID(an, bf->bf_tidno);
1405 hdr->seq_ctrl = cpu_to_le16(tid->seq_next <<
1406 IEEE80211_SEQ_SEQ_SHIFT);
1407 bf->bf_seqno = tid->seq_next;
1408 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
1411 static int setup_tx_flags(struct ath_softc *sc, struct sk_buff *skb,
1412 struct ath_txq *txq)
1414 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1415 int flags = 0;
1417 flags |= ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */
1418 flags |= ATH9K_TXDESC_INTREQ;
1420 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1421 flags |= ATH9K_TXDESC_NOACK;
1423 return flags;
1427 * rix - rate index
1428 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1429 * width - 0 for 20 MHz, 1 for 40 MHz
1430 * half_gi - to use 4us v/s 3.6 us for symbol time
1432 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, struct ath_buf *bf,
1433 int width, int half_gi, bool shortPreamble)
1435 const struct ath_rate_table *rate_table = sc->cur_rate_table;
1436 u32 nbits, nsymbits, duration, nsymbols;
1437 u8 rc;
1438 int streams, pktlen;
1440 pktlen = bf_isaggr(bf) ? bf->bf_al : bf->bf_frmlen;
1441 rc = rate_table->info[rix].ratecode;
1443 /* for legacy rates, use old function to compute packet duration */
1444 if (!IS_HT_RATE(rc))
1445 return ath9k_hw_computetxtime(sc->sc_ah, rate_table, pktlen,
1446 rix, shortPreamble);
1448 /* find number of symbols: PLCP + data */
1449 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1450 nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
1451 nsymbols = (nbits + nsymbits - 1) / nsymbits;
1453 if (!half_gi)
1454 duration = SYMBOL_TIME(nsymbols);
1455 else
1456 duration = SYMBOL_TIME_HALFGI(nsymbols);
1458 /* addup duration for legacy/ht training and signal fields */
1459 streams = HT_RC_2_STREAMS(rc);
1460 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1462 return duration;
1465 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
1467 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1468 const struct ath_rate_table *rt = sc->cur_rate_table;
1469 struct ath9k_11n_rate_series series[4];
1470 struct sk_buff *skb;
1471 struct ieee80211_tx_info *tx_info;
1472 struct ieee80211_tx_rate *rates;
1473 struct ieee80211_hdr *hdr;
1474 int i, flags = 0;
1475 u8 rix = 0, ctsrate = 0;
1476 bool is_pspoll;
1478 memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4);
1480 skb = bf->bf_mpdu;
1481 tx_info = IEEE80211_SKB_CB(skb);
1482 rates = tx_info->control.rates;
1483 hdr = (struct ieee80211_hdr *)skb->data;
1484 is_pspoll = ieee80211_is_pspoll(hdr->frame_control);
1487 * We check if Short Preamble is needed for the CTS rate by
1488 * checking the BSS's global flag.
1489 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
1491 if (sc->sc_flags & SC_OP_PREAMBLE_SHORT)
1492 ctsrate = rt->info[tx_info->control.rts_cts_rate_idx].ratecode |
1493 rt->info[tx_info->control.rts_cts_rate_idx].short_preamble;
1494 else
1495 ctsrate = rt->info[tx_info->control.rts_cts_rate_idx].ratecode;
1498 * ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive.
1499 * Check the first rate in the series to decide whether RTS/CTS
1500 * or CTS-to-self has to be used.
1502 if (rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
1503 flags = ATH9K_TXDESC_CTSENA;
1504 else if (rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
1505 flags = ATH9K_TXDESC_RTSENA;
1507 /* FIXME: Handle aggregation protection */
1508 if (sc->config.ath_aggr_prot &&
1509 (!bf_isaggr(bf) || (bf_isaggr(bf) && bf->bf_al < 8192))) {
1510 flags = ATH9K_TXDESC_RTSENA;
1513 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1514 if (bf_isaggr(bf) && (bf->bf_al > sc->sc_ah->caps.rts_aggr_limit))
1515 flags &= ~(ATH9K_TXDESC_RTSENA);
1517 for (i = 0; i < 4; i++) {
1518 if (!rates[i].count || (rates[i].idx < 0))
1519 continue;
1521 rix = rates[i].idx;
1522 series[i].Tries = rates[i].count;
1523 series[i].ChSel = common->tx_chainmask;
1525 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1526 series[i].Rate = rt->info[rix].ratecode |
1527 rt->info[rix].short_preamble;
1528 else
1529 series[i].Rate = rt->info[rix].ratecode;
1531 if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS)
1532 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1533 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1534 series[i].RateFlags |= ATH9K_RATESERIES_2040;
1535 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1536 series[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1538 series[i].PktDuration = ath_pkt_duration(sc, rix, bf,
1539 (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) != 0,
1540 (rates[i].flags & IEEE80211_TX_RC_SHORT_GI),
1541 (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE));
1544 /* set dur_update_en for l-sig computation except for PS-Poll frames */
1545 ath9k_hw_set11n_ratescenario(sc->sc_ah, bf->bf_desc,
1546 bf->bf_lastbf->bf_desc,
1547 !is_pspoll, ctsrate,
1548 0, series, 4, flags);
1550 if (sc->config.ath_aggr_prot && flags)
1551 ath9k_hw_set11n_burstduration(sc->sc_ah, bf->bf_desc, 8192);
1554 static int ath_tx_setup_buffer(struct ieee80211_hw *hw, struct ath_buf *bf,
1555 struct sk_buff *skb,
1556 struct ath_tx_control *txctl)
1558 struct ath_wiphy *aphy = hw->priv;
1559 struct ath_softc *sc = aphy->sc;
1560 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1561 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1562 struct ath_tx_info_priv *tx_info_priv;
1563 int hdrlen;
1564 __le16 fc;
1566 tx_info_priv = kzalloc(sizeof(*tx_info_priv), GFP_ATOMIC);
1567 if (unlikely(!tx_info_priv))
1568 return -ENOMEM;
1569 tx_info->rate_driver_data[0] = tx_info_priv;
1570 tx_info_priv->aphy = aphy;
1571 tx_info_priv->frame_type = txctl->frame_type;
1572 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1573 fc = hdr->frame_control;
1575 ATH_TXBUF_RESET(bf);
1577 bf->bf_frmlen = skb->len + FCS_LEN - (hdrlen & 3);
1579 if (conf_is_ht(&sc->hw->conf) && !is_pae(skb))
1580 bf->bf_state.bf_type |= BUF_HT;
1582 bf->bf_flags = setup_tx_flags(sc, skb, txctl->txq);
1584 bf->bf_keytype = get_hw_crypto_keytype(skb);
1585 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) {
1586 bf->bf_frmlen += tx_info->control.hw_key->icv_len;
1587 bf->bf_keyix = tx_info->control.hw_key->hw_key_idx;
1588 } else {
1589 bf->bf_keyix = ATH9K_TXKEYIX_INVALID;
1592 if (ieee80211_is_data_qos(fc) && (sc->sc_flags & SC_OP_TXAGGR))
1593 assign_aggr_tid_seqno(skb, bf);
1595 bf->bf_mpdu = skb;
1597 bf->bf_dmacontext = dma_map_single(sc->dev, skb->data,
1598 skb->len, DMA_TO_DEVICE);
1599 if (unlikely(dma_mapping_error(sc->dev, bf->bf_dmacontext))) {
1600 bf->bf_mpdu = NULL;
1601 kfree(tx_info_priv);
1602 tx_info->rate_driver_data[0] = NULL;
1603 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
1604 "dma_mapping_error() on TX\n");
1605 return -ENOMEM;
1608 bf->bf_buf_addr = bf->bf_dmacontext;
1609 return 0;
1612 /* FIXME: tx power */
1613 static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf,
1614 struct ath_tx_control *txctl)
1616 struct sk_buff *skb = bf->bf_mpdu;
1617 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1618 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1619 struct ath_node *an = NULL;
1620 struct list_head bf_head;
1621 struct ath_desc *ds;
1622 struct ath_atx_tid *tid;
1623 struct ath_hw *ah = sc->sc_ah;
1624 int frm_type;
1625 __le16 fc;
1627 frm_type = get_hw_packet_type(skb);
1628 fc = hdr->frame_control;
1630 INIT_LIST_HEAD(&bf_head);
1631 list_add_tail(&bf->list, &bf_head);
1633 ds = bf->bf_desc;
1634 ds->ds_link = 0;
1635 ds->ds_data = bf->bf_buf_addr;
1637 ath9k_hw_set11n_txdesc(ah, ds, bf->bf_frmlen, frm_type, MAX_RATE_POWER,
1638 bf->bf_keyix, bf->bf_keytype, bf->bf_flags);
1640 ath9k_hw_filltxdesc(ah, ds,
1641 skb->len, /* segment length */
1642 true, /* first segment */
1643 true, /* last segment */
1644 ds); /* first descriptor */
1646 spin_lock_bh(&txctl->txq->axq_lock);
1648 if (bf_isht(bf) && (sc->sc_flags & SC_OP_TXAGGR) &&
1649 tx_info->control.sta) {
1650 an = (struct ath_node *)tx_info->control.sta->drv_priv;
1651 tid = ATH_AN_2_TID(an, bf->bf_tidno);
1653 if (!ieee80211_is_data_qos(fc)) {
1654 ath_tx_send_normal(sc, txctl->txq, &bf_head);
1655 goto tx_done;
1658 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
1660 * Try aggregation if it's a unicast data frame
1661 * and the destination is HT capable.
1663 ath_tx_send_ampdu(sc, tid, &bf_head, txctl);
1664 } else {
1666 * Send this frame as regular when ADDBA
1667 * exchange is neither complete nor pending.
1669 ath_tx_send_ht_normal(sc, txctl->txq,
1670 tid, &bf_head);
1672 } else {
1673 ath_tx_send_normal(sc, txctl->txq, &bf_head);
1676 tx_done:
1677 spin_unlock_bh(&txctl->txq->axq_lock);
1680 /* Upon failure caller should free skb */
1681 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
1682 struct ath_tx_control *txctl)
1684 struct ath_wiphy *aphy = hw->priv;
1685 struct ath_softc *sc = aphy->sc;
1686 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1687 struct ath_buf *bf;
1688 int r;
1690 bf = ath_tx_get_buffer(sc);
1691 if (!bf) {
1692 ath_print(common, ATH_DBG_XMIT, "TX buffers are full\n");
1693 return -1;
1696 r = ath_tx_setup_buffer(hw, bf, skb, txctl);
1697 if (unlikely(r)) {
1698 struct ath_txq *txq = txctl->txq;
1700 ath_print(common, ATH_DBG_FATAL, "TX mem alloc failure\n");
1702 /* upon ath_tx_processq() this TX queue will be resumed, we
1703 * guarantee this will happen by knowing beforehand that
1704 * we will at least have to run TX completionon one buffer
1705 * on the queue */
1706 spin_lock_bh(&txq->axq_lock);
1707 if (sc->tx.txq[txq->axq_qnum].axq_depth > 1) {
1708 ieee80211_stop_queue(sc->hw,
1709 skb_get_queue_mapping(skb));
1710 txq->stopped = 1;
1712 spin_unlock_bh(&txq->axq_lock);
1714 spin_lock_bh(&sc->tx.txbuflock);
1715 list_add_tail(&bf->list, &sc->tx.txbuf);
1716 spin_unlock_bh(&sc->tx.txbuflock);
1718 return r;
1721 ath_tx_start_dma(sc, bf, txctl);
1723 return 0;
1726 void ath_tx_cabq(struct ieee80211_hw *hw, struct sk_buff *skb)
1728 struct ath_wiphy *aphy = hw->priv;
1729 struct ath_softc *sc = aphy->sc;
1730 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1731 int hdrlen, padsize;
1732 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1733 struct ath_tx_control txctl;
1735 memset(&txctl, 0, sizeof(struct ath_tx_control));
1738 * As a temporary workaround, assign seq# here; this will likely need
1739 * to be cleaned up to work better with Beacon transmission and virtual
1740 * BSSes.
1742 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1743 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1744 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1745 sc->tx.seq_no += 0x10;
1746 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1747 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1750 /* Add the padding after the header if this is not already done */
1751 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1752 if (hdrlen & 3) {
1753 padsize = hdrlen % 4;
1754 if (skb_headroom(skb) < padsize) {
1755 ath_print(common, ATH_DBG_XMIT,
1756 "TX CABQ padding failed\n");
1757 dev_kfree_skb_any(skb);
1758 return;
1760 skb_push(skb, padsize);
1761 memmove(skb->data, skb->data + padsize, hdrlen);
1764 txctl.txq = sc->beacon.cabq;
1766 ath_print(common, ATH_DBG_XMIT,
1767 "transmitting CABQ packet, skb: %p\n", skb);
1769 if (ath_tx_start(hw, skb, &txctl) != 0) {
1770 ath_print(common, ATH_DBG_XMIT, "CABQ TX failed\n");
1771 goto exit;
1774 return;
1775 exit:
1776 dev_kfree_skb_any(skb);
1779 /*****************/
1780 /* TX Completion */
1781 /*****************/
1783 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
1784 int tx_flags)
1786 struct ieee80211_hw *hw = sc->hw;
1787 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1788 struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
1789 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1790 int hdrlen, padsize;
1791 int frame_type = ATH9K_NOT_INTERNAL;
1793 ath_print(common, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb);
1795 if (tx_info_priv) {
1796 hw = tx_info_priv->aphy->hw;
1797 frame_type = tx_info_priv->frame_type;
1800 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK ||
1801 tx_info->flags & IEEE80211_TX_STAT_TX_FILTERED) {
1802 kfree(tx_info_priv);
1803 tx_info->rate_driver_data[0] = NULL;
1806 if (tx_flags & ATH_TX_BAR)
1807 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
1809 if (!(tx_flags & (ATH_TX_ERROR | ATH_TX_XRETRY))) {
1810 /* Frame was ACKed */
1811 tx_info->flags |= IEEE80211_TX_STAT_ACK;
1814 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1815 padsize = hdrlen & 3;
1816 if (padsize && hdrlen >= 24) {
1818 * Remove MAC header padding before giving the frame back to
1819 * mac80211.
1821 memmove(skb->data + padsize, skb->data, hdrlen);
1822 skb_pull(skb, padsize);
1825 if (sc->sc_flags & SC_OP_WAIT_FOR_TX_ACK) {
1826 sc->sc_flags &= ~SC_OP_WAIT_FOR_TX_ACK;
1827 ath_print(common, ATH_DBG_PS,
1828 "Going back to sleep after having "
1829 "received TX status (0x%x)\n",
1830 sc->sc_flags & (SC_OP_WAIT_FOR_BEACON |
1831 SC_OP_WAIT_FOR_CAB |
1832 SC_OP_WAIT_FOR_PSPOLL_DATA |
1833 SC_OP_WAIT_FOR_TX_ACK));
1836 if (frame_type == ATH9K_NOT_INTERNAL)
1837 ieee80211_tx_status(hw, skb);
1838 else
1839 ath9k_tx_status(hw, skb);
1842 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
1843 struct ath_txq *txq,
1844 struct list_head *bf_q,
1845 int txok, int sendbar)
1847 struct sk_buff *skb = bf->bf_mpdu;
1848 unsigned long flags;
1849 int tx_flags = 0;
1851 if (sendbar)
1852 tx_flags = ATH_TX_BAR;
1854 if (!txok) {
1855 tx_flags |= ATH_TX_ERROR;
1857 if (bf_isxretried(bf))
1858 tx_flags |= ATH_TX_XRETRY;
1861 dma_unmap_single(sc->dev, bf->bf_dmacontext, skb->len, DMA_TO_DEVICE);
1862 ath_tx_complete(sc, skb, tx_flags);
1863 ath_debug_stat_tx(sc, txq, bf);
1866 * Return the list of ath_buf of this mpdu to free queue
1868 spin_lock_irqsave(&sc->tx.txbuflock, flags);
1869 list_splice_tail_init(bf_q, &sc->tx.txbuf);
1870 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
1873 static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
1874 int txok)
1876 struct ath_buf *bf_last = bf->bf_lastbf;
1877 struct ath_desc *ds = bf_last->bf_desc;
1878 u16 seq_st = 0;
1879 u32 ba[WME_BA_BMP_SIZE >> 5];
1880 int ba_index;
1881 int nbad = 0;
1882 int isaggr = 0;
1884 if (ds->ds_txstat.ts_flags == ATH9K_TX_SW_ABORTED)
1885 return 0;
1887 isaggr = bf_isaggr(bf);
1888 if (isaggr) {
1889 seq_st = ATH_DS_BA_SEQ(ds);
1890 memcpy(ba, ATH_DS_BA_BITMAP(ds), WME_BA_BMP_SIZE >> 3);
1893 while (bf) {
1894 ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno);
1895 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
1896 nbad++;
1898 bf = bf->bf_next;
1901 return nbad;
1904 static void ath_tx_rc_status(struct ath_buf *bf, struct ath_desc *ds,
1905 int nbad, int txok, bool update_rc)
1907 struct sk_buff *skb = bf->bf_mpdu;
1908 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1909 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1910 struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
1911 struct ieee80211_hw *hw = tx_info_priv->aphy->hw;
1912 u8 i, tx_rateindex;
1914 if (txok)
1915 tx_info->status.ack_signal = ds->ds_txstat.ts_rssi;
1917 tx_rateindex = ds->ds_txstat.ts_rateindex;
1918 WARN_ON(tx_rateindex >= hw->max_rates);
1920 tx_info_priv->update_rc = update_rc;
1921 if (ds->ds_txstat.ts_status & ATH9K_TXERR_FILT)
1922 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1924 if ((ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) == 0 &&
1925 (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0 && update_rc) {
1926 if (ieee80211_is_data(hdr->frame_control)) {
1927 memcpy(&tx_info_priv->tx, &ds->ds_txstat,
1928 sizeof(tx_info_priv->tx));
1929 tx_info_priv->n_frames = bf->bf_nframes;
1930 tx_info_priv->n_bad_frames = nbad;
1934 for (i = tx_rateindex + 1; i < hw->max_rates; i++)
1935 tx_info->status.rates[i].count = 0;
1937 tx_info->status.rates[tx_rateindex].count = bf->bf_retries + 1;
1940 static void ath_wake_mac80211_queue(struct ath_softc *sc, struct ath_txq *txq)
1942 int qnum;
1944 spin_lock_bh(&txq->axq_lock);
1945 if (txq->stopped &&
1946 sc->tx.txq[txq->axq_qnum].axq_depth <= (ATH_TXBUF - 20)) {
1947 qnum = ath_get_mac80211_qnum(txq->axq_qnum, sc);
1948 if (qnum != -1) {
1949 ieee80211_wake_queue(sc->hw, qnum);
1950 txq->stopped = 0;
1953 spin_unlock_bh(&txq->axq_lock);
1956 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
1958 struct ath_hw *ah = sc->sc_ah;
1959 struct ath_common *common = ath9k_hw_common(ah);
1960 struct ath_buf *bf, *lastbf, *bf_held = NULL;
1961 struct list_head bf_head;
1962 struct ath_desc *ds;
1963 int txok;
1964 int status;
1966 ath_print(common, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n",
1967 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
1968 txq->axq_link);
1970 for (;;) {
1971 spin_lock_bh(&txq->axq_lock);
1972 if (list_empty(&txq->axq_q)) {
1973 txq->axq_link = NULL;
1974 txq->axq_linkbuf = NULL;
1975 spin_unlock_bh(&txq->axq_lock);
1976 break;
1978 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
1981 * There is a race condition that a BH gets scheduled
1982 * after sw writes TxE and before hw re-load the last
1983 * descriptor to get the newly chained one.
1984 * Software must keep the last DONE descriptor as a
1985 * holding descriptor - software does so by marking
1986 * it with the STALE flag.
1988 bf_held = NULL;
1989 if (bf->bf_stale) {
1990 bf_held = bf;
1991 if (list_is_last(&bf_held->list, &txq->axq_q)) {
1992 spin_unlock_bh(&txq->axq_lock);
1993 break;
1994 } else {
1995 bf = list_entry(bf_held->list.next,
1996 struct ath_buf, list);
2000 lastbf = bf->bf_lastbf;
2001 ds = lastbf->bf_desc;
2003 status = ath9k_hw_txprocdesc(ah, ds);
2004 if (status == -EINPROGRESS) {
2005 spin_unlock_bh(&txq->axq_lock);
2006 break;
2008 if (bf->bf_desc == txq->axq_lastdsWithCTS)
2009 txq->axq_lastdsWithCTS = NULL;
2010 if (ds == txq->axq_gatingds)
2011 txq->axq_gatingds = NULL;
2014 * Remove ath_buf's of the same transmit unit from txq,
2015 * however leave the last descriptor back as the holding
2016 * descriptor for hw.
2018 lastbf->bf_stale = true;
2019 INIT_LIST_HEAD(&bf_head);
2020 if (!list_is_singular(&lastbf->list))
2021 list_cut_position(&bf_head,
2022 &txq->axq_q, lastbf->list.prev);
2024 txq->axq_depth--;
2025 if (bf_isaggr(bf))
2026 txq->axq_aggr_depth--;
2028 txok = (ds->ds_txstat.ts_status == 0);
2029 txq->axq_tx_inprogress = false;
2030 spin_unlock_bh(&txq->axq_lock);
2032 if (bf_held) {
2033 spin_lock_bh(&sc->tx.txbuflock);
2034 list_move_tail(&bf_held->list, &sc->tx.txbuf);
2035 spin_unlock_bh(&sc->tx.txbuflock);
2038 if (!bf_isampdu(bf)) {
2040 * This frame is sent out as a single frame.
2041 * Use hardware retry status for this frame.
2043 bf->bf_retries = ds->ds_txstat.ts_longretry;
2044 if (ds->ds_txstat.ts_status & ATH9K_TXERR_XRETRY)
2045 bf->bf_state.bf_type |= BUF_XRETRY;
2046 ath_tx_rc_status(bf, ds, 0, txok, true);
2049 if (bf_isampdu(bf))
2050 ath_tx_complete_aggr(sc, txq, bf, &bf_head, txok);
2051 else
2052 ath_tx_complete_buf(sc, bf, txq, &bf_head, txok, 0);
2054 ath_wake_mac80211_queue(sc, txq);
2056 spin_lock_bh(&txq->axq_lock);
2057 if (sc->sc_flags & SC_OP_TXAGGR)
2058 ath_txq_schedule(sc, txq);
2059 spin_unlock_bh(&txq->axq_lock);
2063 static void ath_tx_complete_poll_work(struct work_struct *work)
2065 struct ath_softc *sc = container_of(work, struct ath_softc,
2066 tx_complete_work.work);
2067 struct ath_txq *txq;
2068 int i;
2069 bool needreset = false;
2071 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
2072 if (ATH_TXQ_SETUP(sc, i)) {
2073 txq = &sc->tx.txq[i];
2074 spin_lock_bh(&txq->axq_lock);
2075 if (txq->axq_depth) {
2076 if (txq->axq_tx_inprogress) {
2077 needreset = true;
2078 spin_unlock_bh(&txq->axq_lock);
2079 break;
2080 } else {
2081 txq->axq_tx_inprogress = true;
2084 spin_unlock_bh(&txq->axq_lock);
2087 if (needreset) {
2088 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_RESET,
2089 "tx hung, resetting the chip\n");
2090 ath9k_ps_wakeup(sc);
2091 ath_reset(sc, false);
2092 ath9k_ps_restore(sc);
2095 ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
2096 msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT));
2101 void ath_tx_tasklet(struct ath_softc *sc)
2103 int i;
2104 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
2106 ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
2108 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2109 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2110 ath_tx_processq(sc, &sc->tx.txq[i]);
2114 /*****************/
2115 /* Init, Cleanup */
2116 /*****************/
2118 int ath_tx_init(struct ath_softc *sc, int nbufs)
2120 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2121 int error = 0;
2123 spin_lock_init(&sc->tx.txbuflock);
2125 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2126 "tx", nbufs, 1);
2127 if (error != 0) {
2128 ath_print(common, ATH_DBG_FATAL,
2129 "Failed to allocate tx descriptors: %d\n", error);
2130 goto err;
2133 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2134 "beacon", ATH_BCBUF, 1);
2135 if (error != 0) {
2136 ath_print(common, ATH_DBG_FATAL,
2137 "Failed to allocate beacon descriptors: %d\n", error);
2138 goto err;
2141 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2143 err:
2144 if (error != 0)
2145 ath_tx_cleanup(sc);
2147 return error;
2150 void ath_tx_cleanup(struct ath_softc *sc)
2152 if (sc->beacon.bdma.dd_desc_len != 0)
2153 ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
2155 if (sc->tx.txdma.dd_desc_len != 0)
2156 ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
2159 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2161 struct ath_atx_tid *tid;
2162 struct ath_atx_ac *ac;
2163 int tidno, acno;
2165 for (tidno = 0, tid = &an->tid[tidno];
2166 tidno < WME_NUM_TID;
2167 tidno++, tid++) {
2168 tid->an = an;
2169 tid->tidno = tidno;
2170 tid->seq_start = tid->seq_next = 0;
2171 tid->baw_size = WME_MAX_BA;
2172 tid->baw_head = tid->baw_tail = 0;
2173 tid->sched = false;
2174 tid->paused = false;
2175 tid->state &= ~AGGR_CLEANUP;
2176 INIT_LIST_HEAD(&tid->buf_q);
2177 acno = TID_TO_WME_AC(tidno);
2178 tid->ac = &an->ac[acno];
2179 tid->state &= ~AGGR_ADDBA_COMPLETE;
2180 tid->state &= ~AGGR_ADDBA_PROGRESS;
2183 for (acno = 0, ac = &an->ac[acno];
2184 acno < WME_NUM_AC; acno++, ac++) {
2185 ac->sched = false;
2186 INIT_LIST_HEAD(&ac->tid_q);
2188 switch (acno) {
2189 case WME_AC_BE:
2190 ac->qnum = ath_tx_get_qnum(sc,
2191 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE);
2192 break;
2193 case WME_AC_BK:
2194 ac->qnum = ath_tx_get_qnum(sc,
2195 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BK);
2196 break;
2197 case WME_AC_VI:
2198 ac->qnum = ath_tx_get_qnum(sc,
2199 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VI);
2200 break;
2201 case WME_AC_VO:
2202 ac->qnum = ath_tx_get_qnum(sc,
2203 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VO);
2204 break;
2209 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2211 int i;
2212 struct ath_atx_ac *ac, *ac_tmp;
2213 struct ath_atx_tid *tid, *tid_tmp;
2214 struct ath_txq *txq;
2216 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2217 if (ATH_TXQ_SETUP(sc, i)) {
2218 txq = &sc->tx.txq[i];
2220 spin_lock(&txq->axq_lock);
2222 list_for_each_entry_safe(ac,
2223 ac_tmp, &txq->axq_acq, list) {
2224 tid = list_first_entry(&ac->tid_q,
2225 struct ath_atx_tid, list);
2226 if (tid && tid->an != an)
2227 continue;
2228 list_del(&ac->list);
2229 ac->sched = false;
2231 list_for_each_entry_safe(tid,
2232 tid_tmp, &ac->tid_q, list) {
2233 list_del(&tid->list);
2234 tid->sched = false;
2235 ath_tid_drain(sc, txq, tid);
2236 tid->state &= ~AGGR_ADDBA_COMPLETE;
2237 tid->state &= ~AGGR_CLEANUP;
2241 spin_unlock(&txq->axq_lock);