Bluetooth: Fix checks for LE support on LE-only controllers
[linux-2.6/btrfs-unstable.git] / fs / splice.c
blobe6b25598c8c413d66026f96e6d6d1b351e28b62c
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
35 #include "internal.h"
38 * Attempt to steal a page from a pipe buffer. This should perhaps go into
39 * a vm helper function, it's already simplified quite a bit by the
40 * addition of remove_mapping(). If success is returned, the caller may
41 * attempt to reuse this page for another destination.
43 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
44 struct pipe_buffer *buf)
46 struct page *page = buf->page;
47 struct address_space *mapping;
49 lock_page(page);
51 mapping = page_mapping(page);
52 if (mapping) {
53 WARN_ON(!PageUptodate(page));
56 * At least for ext2 with nobh option, we need to wait on
57 * writeback completing on this page, since we'll remove it
58 * from the pagecache. Otherwise truncate wont wait on the
59 * page, allowing the disk blocks to be reused by someone else
60 * before we actually wrote our data to them. fs corruption
61 * ensues.
63 wait_on_page_writeback(page);
65 if (page_has_private(page) &&
66 !try_to_release_page(page, GFP_KERNEL))
67 goto out_unlock;
70 * If we succeeded in removing the mapping, set LRU flag
71 * and return good.
73 if (remove_mapping(mapping, page)) {
74 buf->flags |= PIPE_BUF_FLAG_LRU;
75 return 0;
80 * Raced with truncate or failed to remove page from current
81 * address space, unlock and return failure.
83 out_unlock:
84 unlock_page(page);
85 return 1;
88 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
89 struct pipe_buffer *buf)
91 page_cache_release(buf->page);
92 buf->flags &= ~PIPE_BUF_FLAG_LRU;
96 * Check whether the contents of buf is OK to access. Since the content
97 * is a page cache page, IO may be in flight.
99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
100 struct pipe_buffer *buf)
102 struct page *page = buf->page;
103 int err;
105 if (!PageUptodate(page)) {
106 lock_page(page);
109 * Page got truncated/unhashed. This will cause a 0-byte
110 * splice, if this is the first page.
112 if (!page->mapping) {
113 err = -ENODATA;
114 goto error;
118 * Uh oh, read-error from disk.
120 if (!PageUptodate(page)) {
121 err = -EIO;
122 goto error;
126 * Page is ok afterall, we are done.
128 unlock_page(page);
131 return 0;
132 error:
133 unlock_page(page);
134 return err;
137 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
138 .can_merge = 0,
139 .map = generic_pipe_buf_map,
140 .unmap = generic_pipe_buf_unmap,
141 .confirm = page_cache_pipe_buf_confirm,
142 .release = page_cache_pipe_buf_release,
143 .steal = page_cache_pipe_buf_steal,
144 .get = generic_pipe_buf_get,
147 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
148 struct pipe_buffer *buf)
150 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
151 return 1;
153 buf->flags |= PIPE_BUF_FLAG_LRU;
154 return generic_pipe_buf_steal(pipe, buf);
157 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
158 .can_merge = 0,
159 .map = generic_pipe_buf_map,
160 .unmap = generic_pipe_buf_unmap,
161 .confirm = generic_pipe_buf_confirm,
162 .release = page_cache_pipe_buf_release,
163 .steal = user_page_pipe_buf_steal,
164 .get = generic_pipe_buf_get,
167 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
169 smp_mb();
170 if (waitqueue_active(&pipe->wait))
171 wake_up_interruptible(&pipe->wait);
172 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
176 * splice_to_pipe - fill passed data into a pipe
177 * @pipe: pipe to fill
178 * @spd: data to fill
180 * Description:
181 * @spd contains a map of pages and len/offset tuples, along with
182 * the struct pipe_buf_operations associated with these pages. This
183 * function will link that data to the pipe.
186 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
187 struct splice_pipe_desc *spd)
189 unsigned int spd_pages = spd->nr_pages;
190 int ret, do_wakeup, page_nr;
192 ret = 0;
193 do_wakeup = 0;
194 page_nr = 0;
196 pipe_lock(pipe);
198 for (;;) {
199 if (!pipe->readers) {
200 send_sig(SIGPIPE, current, 0);
201 if (!ret)
202 ret = -EPIPE;
203 break;
206 if (pipe->nrbufs < pipe->buffers) {
207 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
208 struct pipe_buffer *buf = pipe->bufs + newbuf;
210 buf->page = spd->pages[page_nr];
211 buf->offset = spd->partial[page_nr].offset;
212 buf->len = spd->partial[page_nr].len;
213 buf->private = spd->partial[page_nr].private;
214 buf->ops = spd->ops;
215 if (spd->flags & SPLICE_F_GIFT)
216 buf->flags |= PIPE_BUF_FLAG_GIFT;
218 pipe->nrbufs++;
219 page_nr++;
220 ret += buf->len;
222 if (pipe->files)
223 do_wakeup = 1;
225 if (!--spd->nr_pages)
226 break;
227 if (pipe->nrbufs < pipe->buffers)
228 continue;
230 break;
233 if (spd->flags & SPLICE_F_NONBLOCK) {
234 if (!ret)
235 ret = -EAGAIN;
236 break;
239 if (signal_pending(current)) {
240 if (!ret)
241 ret = -ERESTARTSYS;
242 break;
245 if (do_wakeup) {
246 smp_mb();
247 if (waitqueue_active(&pipe->wait))
248 wake_up_interruptible_sync(&pipe->wait);
249 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
250 do_wakeup = 0;
253 pipe->waiting_writers++;
254 pipe_wait(pipe);
255 pipe->waiting_writers--;
258 pipe_unlock(pipe);
260 if (do_wakeup)
261 wakeup_pipe_readers(pipe);
263 while (page_nr < spd_pages)
264 spd->spd_release(spd, page_nr++);
266 return ret;
269 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
271 page_cache_release(spd->pages[i]);
275 * Check if we need to grow the arrays holding pages and partial page
276 * descriptions.
278 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
280 unsigned int buffers = ACCESS_ONCE(pipe->buffers);
282 spd->nr_pages_max = buffers;
283 if (buffers <= PIPE_DEF_BUFFERS)
284 return 0;
286 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
287 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
289 if (spd->pages && spd->partial)
290 return 0;
292 kfree(spd->pages);
293 kfree(spd->partial);
294 return -ENOMEM;
297 void splice_shrink_spd(struct splice_pipe_desc *spd)
299 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
300 return;
302 kfree(spd->pages);
303 kfree(spd->partial);
306 static int
307 __generic_file_splice_read(struct file *in, loff_t *ppos,
308 struct pipe_inode_info *pipe, size_t len,
309 unsigned int flags)
311 struct address_space *mapping = in->f_mapping;
312 unsigned int loff, nr_pages, req_pages;
313 struct page *pages[PIPE_DEF_BUFFERS];
314 struct partial_page partial[PIPE_DEF_BUFFERS];
315 struct page *page;
316 pgoff_t index, end_index;
317 loff_t isize;
318 int error, page_nr;
319 struct splice_pipe_desc spd = {
320 .pages = pages,
321 .partial = partial,
322 .nr_pages_max = PIPE_DEF_BUFFERS,
323 .flags = flags,
324 .ops = &page_cache_pipe_buf_ops,
325 .spd_release = spd_release_page,
328 if (splice_grow_spd(pipe, &spd))
329 return -ENOMEM;
331 index = *ppos >> PAGE_CACHE_SHIFT;
332 loff = *ppos & ~PAGE_CACHE_MASK;
333 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
334 nr_pages = min(req_pages, spd.nr_pages_max);
337 * Lookup the (hopefully) full range of pages we need.
339 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
340 index += spd.nr_pages;
343 * If find_get_pages_contig() returned fewer pages than we needed,
344 * readahead/allocate the rest and fill in the holes.
346 if (spd.nr_pages < nr_pages)
347 page_cache_sync_readahead(mapping, &in->f_ra, in,
348 index, req_pages - spd.nr_pages);
350 error = 0;
351 while (spd.nr_pages < nr_pages) {
353 * Page could be there, find_get_pages_contig() breaks on
354 * the first hole.
356 page = find_get_page(mapping, index);
357 if (!page) {
359 * page didn't exist, allocate one.
361 page = page_cache_alloc_cold(mapping);
362 if (!page)
363 break;
365 error = add_to_page_cache_lru(page, mapping, index,
366 GFP_KERNEL);
367 if (unlikely(error)) {
368 page_cache_release(page);
369 if (error == -EEXIST)
370 continue;
371 break;
374 * add_to_page_cache() locks the page, unlock it
375 * to avoid convoluting the logic below even more.
377 unlock_page(page);
380 spd.pages[spd.nr_pages++] = page;
381 index++;
385 * Now loop over the map and see if we need to start IO on any
386 * pages, fill in the partial map, etc.
388 index = *ppos >> PAGE_CACHE_SHIFT;
389 nr_pages = spd.nr_pages;
390 spd.nr_pages = 0;
391 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
392 unsigned int this_len;
394 if (!len)
395 break;
398 * this_len is the max we'll use from this page
400 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
401 page = spd.pages[page_nr];
403 if (PageReadahead(page))
404 page_cache_async_readahead(mapping, &in->f_ra, in,
405 page, index, req_pages - page_nr);
408 * If the page isn't uptodate, we may need to start io on it
410 if (!PageUptodate(page)) {
411 lock_page(page);
414 * Page was truncated, or invalidated by the
415 * filesystem. Redo the find/create, but this time the
416 * page is kept locked, so there's no chance of another
417 * race with truncate/invalidate.
419 if (!page->mapping) {
420 unlock_page(page);
421 page = find_or_create_page(mapping, index,
422 mapping_gfp_mask(mapping));
424 if (!page) {
425 error = -ENOMEM;
426 break;
428 page_cache_release(spd.pages[page_nr]);
429 spd.pages[page_nr] = page;
432 * page was already under io and is now done, great
434 if (PageUptodate(page)) {
435 unlock_page(page);
436 goto fill_it;
440 * need to read in the page
442 error = mapping->a_ops->readpage(in, page);
443 if (unlikely(error)) {
445 * We really should re-lookup the page here,
446 * but it complicates things a lot. Instead
447 * lets just do what we already stored, and
448 * we'll get it the next time we are called.
450 if (error == AOP_TRUNCATED_PAGE)
451 error = 0;
453 break;
456 fill_it:
458 * i_size must be checked after PageUptodate.
460 isize = i_size_read(mapping->host);
461 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
462 if (unlikely(!isize || index > end_index))
463 break;
466 * if this is the last page, see if we need to shrink
467 * the length and stop
469 if (end_index == index) {
470 unsigned int plen;
473 * max good bytes in this page
475 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
476 if (plen <= loff)
477 break;
480 * force quit after adding this page
482 this_len = min(this_len, plen - loff);
483 len = this_len;
486 spd.partial[page_nr].offset = loff;
487 spd.partial[page_nr].len = this_len;
488 len -= this_len;
489 loff = 0;
490 spd.nr_pages++;
491 index++;
495 * Release any pages at the end, if we quit early. 'page_nr' is how far
496 * we got, 'nr_pages' is how many pages are in the map.
498 while (page_nr < nr_pages)
499 page_cache_release(spd.pages[page_nr++]);
500 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
502 if (spd.nr_pages)
503 error = splice_to_pipe(pipe, &spd);
505 splice_shrink_spd(&spd);
506 return error;
510 * generic_file_splice_read - splice data from file to a pipe
511 * @in: file to splice from
512 * @ppos: position in @in
513 * @pipe: pipe to splice to
514 * @len: number of bytes to splice
515 * @flags: splice modifier flags
517 * Description:
518 * Will read pages from given file and fill them into a pipe. Can be
519 * used as long as the address_space operations for the source implements
520 * a readpage() hook.
523 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
524 struct pipe_inode_info *pipe, size_t len,
525 unsigned int flags)
527 loff_t isize, left;
528 int ret;
530 isize = i_size_read(in->f_mapping->host);
531 if (unlikely(*ppos >= isize))
532 return 0;
534 left = isize - *ppos;
535 if (unlikely(left < len))
536 len = left;
538 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
539 if (ret > 0) {
540 *ppos += ret;
541 file_accessed(in);
544 return ret;
546 EXPORT_SYMBOL(generic_file_splice_read);
548 static const struct pipe_buf_operations default_pipe_buf_ops = {
549 .can_merge = 0,
550 .map = generic_pipe_buf_map,
551 .unmap = generic_pipe_buf_unmap,
552 .confirm = generic_pipe_buf_confirm,
553 .release = generic_pipe_buf_release,
554 .steal = generic_pipe_buf_steal,
555 .get = generic_pipe_buf_get,
558 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
559 unsigned long vlen, loff_t offset)
561 mm_segment_t old_fs;
562 loff_t pos = offset;
563 ssize_t res;
565 old_fs = get_fs();
566 set_fs(get_ds());
567 /* The cast to a user pointer is valid due to the set_fs() */
568 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
569 set_fs(old_fs);
571 return res;
574 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
575 loff_t pos)
577 mm_segment_t old_fs;
578 ssize_t res;
580 old_fs = get_fs();
581 set_fs(get_ds());
582 /* The cast to a user pointer is valid due to the set_fs() */
583 res = vfs_write(file, (__force const char __user *)buf, count, &pos);
584 set_fs(old_fs);
586 return res;
588 EXPORT_SYMBOL(kernel_write);
590 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
591 struct pipe_inode_info *pipe, size_t len,
592 unsigned int flags)
594 unsigned int nr_pages;
595 unsigned int nr_freed;
596 size_t offset;
597 struct page *pages[PIPE_DEF_BUFFERS];
598 struct partial_page partial[PIPE_DEF_BUFFERS];
599 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
600 ssize_t res;
601 size_t this_len;
602 int error;
603 int i;
604 struct splice_pipe_desc spd = {
605 .pages = pages,
606 .partial = partial,
607 .nr_pages_max = PIPE_DEF_BUFFERS,
608 .flags = flags,
609 .ops = &default_pipe_buf_ops,
610 .spd_release = spd_release_page,
613 if (splice_grow_spd(pipe, &spd))
614 return -ENOMEM;
616 res = -ENOMEM;
617 vec = __vec;
618 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
619 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
620 if (!vec)
621 goto shrink_ret;
624 offset = *ppos & ~PAGE_CACHE_MASK;
625 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
627 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
628 struct page *page;
630 page = alloc_page(GFP_USER);
631 error = -ENOMEM;
632 if (!page)
633 goto err;
635 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
636 vec[i].iov_base = (void __user *) page_address(page);
637 vec[i].iov_len = this_len;
638 spd.pages[i] = page;
639 spd.nr_pages++;
640 len -= this_len;
641 offset = 0;
644 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
645 if (res < 0) {
646 error = res;
647 goto err;
650 error = 0;
651 if (!res)
652 goto err;
654 nr_freed = 0;
655 for (i = 0; i < spd.nr_pages; i++) {
656 this_len = min_t(size_t, vec[i].iov_len, res);
657 spd.partial[i].offset = 0;
658 spd.partial[i].len = this_len;
659 if (!this_len) {
660 __free_page(spd.pages[i]);
661 spd.pages[i] = NULL;
662 nr_freed++;
664 res -= this_len;
666 spd.nr_pages -= nr_freed;
668 res = splice_to_pipe(pipe, &spd);
669 if (res > 0)
670 *ppos += res;
672 shrink_ret:
673 if (vec != __vec)
674 kfree(vec);
675 splice_shrink_spd(&spd);
676 return res;
678 err:
679 for (i = 0; i < spd.nr_pages; i++)
680 __free_page(spd.pages[i]);
682 res = error;
683 goto shrink_ret;
685 EXPORT_SYMBOL(default_file_splice_read);
688 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
689 * using sendpage(). Return the number of bytes sent.
691 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
692 struct pipe_buffer *buf, struct splice_desc *sd)
694 struct file *file = sd->u.file;
695 loff_t pos = sd->pos;
696 int more;
698 if (!likely(file->f_op && file->f_op->sendpage))
699 return -EINVAL;
701 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
703 if (sd->len < sd->total_len && pipe->nrbufs > 1)
704 more |= MSG_SENDPAGE_NOTLAST;
706 return file->f_op->sendpage(file, buf->page, buf->offset,
707 sd->len, &pos, more);
711 * This is a little more tricky than the file -> pipe splicing. There are
712 * basically three cases:
714 * - Destination page already exists in the address space and there
715 * are users of it. For that case we have no other option that
716 * copying the data. Tough luck.
717 * - Destination page already exists in the address space, but there
718 * are no users of it. Make sure it's uptodate, then drop it. Fall
719 * through to last case.
720 * - Destination page does not exist, we can add the pipe page to
721 * the page cache and avoid the copy.
723 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
724 * sd->flags), we attempt to migrate pages from the pipe to the output
725 * file address space page cache. This is possible if no one else has
726 * the pipe page referenced outside of the pipe and page cache. If
727 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
728 * a new page in the output file page cache and fill/dirty that.
730 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
731 struct splice_desc *sd)
733 struct file *file = sd->u.file;
734 struct address_space *mapping = file->f_mapping;
735 unsigned int offset, this_len;
736 struct page *page;
737 void *fsdata;
738 int ret;
740 offset = sd->pos & ~PAGE_CACHE_MASK;
742 this_len = sd->len;
743 if (this_len + offset > PAGE_CACHE_SIZE)
744 this_len = PAGE_CACHE_SIZE - offset;
746 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
747 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
748 if (unlikely(ret))
749 goto out;
751 if (buf->page != page) {
752 char *src = buf->ops->map(pipe, buf, 1);
753 char *dst = kmap_atomic(page);
755 memcpy(dst + offset, src + buf->offset, this_len);
756 flush_dcache_page(page);
757 kunmap_atomic(dst);
758 buf->ops->unmap(pipe, buf, src);
760 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
761 page, fsdata);
762 out:
763 return ret;
765 EXPORT_SYMBOL(pipe_to_file);
767 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
769 smp_mb();
770 if (waitqueue_active(&pipe->wait))
771 wake_up_interruptible(&pipe->wait);
772 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
776 * splice_from_pipe_feed - feed available data from a pipe to a file
777 * @pipe: pipe to splice from
778 * @sd: information to @actor
779 * @actor: handler that splices the data
781 * Description:
782 * This function loops over the pipe and calls @actor to do the
783 * actual moving of a single struct pipe_buffer to the desired
784 * destination. It returns when there's no more buffers left in
785 * the pipe or if the requested number of bytes (@sd->total_len)
786 * have been copied. It returns a positive number (one) if the
787 * pipe needs to be filled with more data, zero if the required
788 * number of bytes have been copied and -errno on error.
790 * This, together with splice_from_pipe_{begin,end,next}, may be
791 * used to implement the functionality of __splice_from_pipe() when
792 * locking is required around copying the pipe buffers to the
793 * destination.
795 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
796 splice_actor *actor)
798 int ret;
800 while (pipe->nrbufs) {
801 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
802 const struct pipe_buf_operations *ops = buf->ops;
804 sd->len = buf->len;
805 if (sd->len > sd->total_len)
806 sd->len = sd->total_len;
808 ret = buf->ops->confirm(pipe, buf);
809 if (unlikely(ret)) {
810 if (ret == -ENODATA)
811 ret = 0;
812 return ret;
815 ret = actor(pipe, buf, sd);
816 if (ret <= 0)
817 return ret;
819 buf->offset += ret;
820 buf->len -= ret;
822 sd->num_spliced += ret;
823 sd->len -= ret;
824 sd->pos += ret;
825 sd->total_len -= ret;
827 if (!buf->len) {
828 buf->ops = NULL;
829 ops->release(pipe, buf);
830 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
831 pipe->nrbufs--;
832 if (pipe->files)
833 sd->need_wakeup = true;
836 if (!sd->total_len)
837 return 0;
840 return 1;
842 EXPORT_SYMBOL(splice_from_pipe_feed);
845 * splice_from_pipe_next - wait for some data to splice from
846 * @pipe: pipe to splice from
847 * @sd: information about the splice operation
849 * Description:
850 * This function will wait for some data and return a positive
851 * value (one) if pipe buffers are available. It will return zero
852 * or -errno if no more data needs to be spliced.
854 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
856 while (!pipe->nrbufs) {
857 if (!pipe->writers)
858 return 0;
860 if (!pipe->waiting_writers && sd->num_spliced)
861 return 0;
863 if (sd->flags & SPLICE_F_NONBLOCK)
864 return -EAGAIN;
866 if (signal_pending(current))
867 return -ERESTARTSYS;
869 if (sd->need_wakeup) {
870 wakeup_pipe_writers(pipe);
871 sd->need_wakeup = false;
874 pipe_wait(pipe);
877 return 1;
879 EXPORT_SYMBOL(splice_from_pipe_next);
882 * splice_from_pipe_begin - start splicing from pipe
883 * @sd: information about the splice operation
885 * Description:
886 * This function should be called before a loop containing
887 * splice_from_pipe_next() and splice_from_pipe_feed() to
888 * initialize the necessary fields of @sd.
890 void splice_from_pipe_begin(struct splice_desc *sd)
892 sd->num_spliced = 0;
893 sd->need_wakeup = false;
895 EXPORT_SYMBOL(splice_from_pipe_begin);
898 * splice_from_pipe_end - finish splicing from pipe
899 * @pipe: pipe to splice from
900 * @sd: information about the splice operation
902 * Description:
903 * This function will wake up pipe writers if necessary. It should
904 * be called after a loop containing splice_from_pipe_next() and
905 * splice_from_pipe_feed().
907 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
909 if (sd->need_wakeup)
910 wakeup_pipe_writers(pipe);
912 EXPORT_SYMBOL(splice_from_pipe_end);
915 * __splice_from_pipe - splice data from a pipe to given actor
916 * @pipe: pipe to splice from
917 * @sd: information to @actor
918 * @actor: handler that splices the data
920 * Description:
921 * This function does little more than loop over the pipe and call
922 * @actor to do the actual moving of a single struct pipe_buffer to
923 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
924 * pipe_to_user.
927 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
928 splice_actor *actor)
930 int ret;
932 splice_from_pipe_begin(sd);
933 do {
934 ret = splice_from_pipe_next(pipe, sd);
935 if (ret > 0)
936 ret = splice_from_pipe_feed(pipe, sd, actor);
937 } while (ret > 0);
938 splice_from_pipe_end(pipe, sd);
940 return sd->num_spliced ? sd->num_spliced : ret;
942 EXPORT_SYMBOL(__splice_from_pipe);
945 * splice_from_pipe - splice data from a pipe to a file
946 * @pipe: pipe to splice from
947 * @out: file to splice to
948 * @ppos: position in @out
949 * @len: how many bytes to splice
950 * @flags: splice modifier flags
951 * @actor: handler that splices the data
953 * Description:
954 * See __splice_from_pipe. This function locks the pipe inode,
955 * otherwise it's identical to __splice_from_pipe().
958 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
959 loff_t *ppos, size_t len, unsigned int flags,
960 splice_actor *actor)
962 ssize_t ret;
963 struct splice_desc sd = {
964 .total_len = len,
965 .flags = flags,
966 .pos = *ppos,
967 .u.file = out,
970 pipe_lock(pipe);
971 ret = __splice_from_pipe(pipe, &sd, actor);
972 pipe_unlock(pipe);
974 return ret;
978 * generic_file_splice_write - splice data from a pipe to a file
979 * @pipe: pipe info
980 * @out: file to write to
981 * @ppos: position in @out
982 * @len: number of bytes to splice
983 * @flags: splice modifier flags
985 * Description:
986 * Will either move or copy pages (determined by @flags options) from
987 * the given pipe inode to the given file.
990 ssize_t
991 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
992 loff_t *ppos, size_t len, unsigned int flags)
994 struct address_space *mapping = out->f_mapping;
995 struct inode *inode = mapping->host;
996 struct splice_desc sd = {
997 .total_len = len,
998 .flags = flags,
999 .pos = *ppos,
1000 .u.file = out,
1002 ssize_t ret;
1004 pipe_lock(pipe);
1006 splice_from_pipe_begin(&sd);
1007 do {
1008 ret = splice_from_pipe_next(pipe, &sd);
1009 if (ret <= 0)
1010 break;
1012 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1013 ret = file_remove_suid(out);
1014 if (!ret) {
1015 ret = file_update_time(out);
1016 if (!ret)
1017 ret = splice_from_pipe_feed(pipe, &sd,
1018 pipe_to_file);
1020 mutex_unlock(&inode->i_mutex);
1021 } while (ret > 0);
1022 splice_from_pipe_end(pipe, &sd);
1024 pipe_unlock(pipe);
1026 if (sd.num_spliced)
1027 ret = sd.num_spliced;
1029 if (ret > 0) {
1030 int err;
1032 err = generic_write_sync(out, *ppos, ret);
1033 if (err)
1034 ret = err;
1035 else
1036 *ppos += ret;
1037 balance_dirty_pages_ratelimited(mapping);
1040 return ret;
1043 EXPORT_SYMBOL(generic_file_splice_write);
1045 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1046 struct splice_desc *sd)
1048 int ret;
1049 void *data;
1050 loff_t tmp = sd->pos;
1052 data = buf->ops->map(pipe, buf, 0);
1053 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1054 buf->ops->unmap(pipe, buf, data);
1056 return ret;
1059 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1060 struct file *out, loff_t *ppos,
1061 size_t len, unsigned int flags)
1063 ssize_t ret;
1065 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1066 if (ret > 0)
1067 *ppos += ret;
1069 return ret;
1073 * generic_splice_sendpage - splice data from a pipe to a socket
1074 * @pipe: pipe to splice from
1075 * @out: socket to write to
1076 * @ppos: position in @out
1077 * @len: number of bytes to splice
1078 * @flags: splice modifier flags
1080 * Description:
1081 * Will send @len bytes from the pipe to a network socket. No data copying
1082 * is involved.
1085 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1086 loff_t *ppos, size_t len, unsigned int flags)
1088 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1091 EXPORT_SYMBOL(generic_splice_sendpage);
1094 * Attempt to initiate a splice from pipe to file.
1096 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1097 loff_t *ppos, size_t len, unsigned int flags)
1099 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1100 loff_t *, size_t, unsigned int);
1101 int ret;
1103 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1104 return -EBADF;
1106 if (unlikely(out->f_flags & O_APPEND))
1107 return -EINVAL;
1109 ret = rw_verify_area(WRITE, out, ppos, len);
1110 if (unlikely(ret < 0))
1111 return ret;
1113 if (out->f_op && out->f_op->splice_write)
1114 splice_write = out->f_op->splice_write;
1115 else
1116 splice_write = default_file_splice_write;
1118 file_start_write(out);
1119 ret = splice_write(pipe, out, ppos, len, flags);
1120 file_end_write(out);
1121 return ret;
1125 * Attempt to initiate a splice from a file to a pipe.
1127 static long do_splice_to(struct file *in, loff_t *ppos,
1128 struct pipe_inode_info *pipe, size_t len,
1129 unsigned int flags)
1131 ssize_t (*splice_read)(struct file *, loff_t *,
1132 struct pipe_inode_info *, size_t, unsigned int);
1133 int ret;
1135 if (unlikely(!(in->f_mode & FMODE_READ)))
1136 return -EBADF;
1138 ret = rw_verify_area(READ, in, ppos, len);
1139 if (unlikely(ret < 0))
1140 return ret;
1142 if (in->f_op && in->f_op->splice_read)
1143 splice_read = in->f_op->splice_read;
1144 else
1145 splice_read = default_file_splice_read;
1147 return splice_read(in, ppos, pipe, len, flags);
1151 * splice_direct_to_actor - splices data directly between two non-pipes
1152 * @in: file to splice from
1153 * @sd: actor information on where to splice to
1154 * @actor: handles the data splicing
1156 * Description:
1157 * This is a special case helper to splice directly between two
1158 * points, without requiring an explicit pipe. Internally an allocated
1159 * pipe is cached in the process, and reused during the lifetime of
1160 * that process.
1163 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1164 splice_direct_actor *actor)
1166 struct pipe_inode_info *pipe;
1167 long ret, bytes;
1168 umode_t i_mode;
1169 size_t len;
1170 int i, flags;
1173 * We require the input being a regular file, as we don't want to
1174 * randomly drop data for eg socket -> socket splicing. Use the
1175 * piped splicing for that!
1177 i_mode = file_inode(in)->i_mode;
1178 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1179 return -EINVAL;
1182 * neither in nor out is a pipe, setup an internal pipe attached to
1183 * 'out' and transfer the wanted data from 'in' to 'out' through that
1185 pipe = current->splice_pipe;
1186 if (unlikely(!pipe)) {
1187 pipe = alloc_pipe_info();
1188 if (!pipe)
1189 return -ENOMEM;
1192 * We don't have an immediate reader, but we'll read the stuff
1193 * out of the pipe right after the splice_to_pipe(). So set
1194 * PIPE_READERS appropriately.
1196 pipe->readers = 1;
1198 current->splice_pipe = pipe;
1202 * Do the splice.
1204 ret = 0;
1205 bytes = 0;
1206 len = sd->total_len;
1207 flags = sd->flags;
1210 * Don't block on output, we have to drain the direct pipe.
1212 sd->flags &= ~SPLICE_F_NONBLOCK;
1214 while (len) {
1215 size_t read_len;
1216 loff_t pos = sd->pos, prev_pos = pos;
1218 ret = do_splice_to(in, &pos, pipe, len, flags);
1219 if (unlikely(ret <= 0))
1220 goto out_release;
1222 read_len = ret;
1223 sd->total_len = read_len;
1226 * NOTE: nonblocking mode only applies to the input. We
1227 * must not do the output in nonblocking mode as then we
1228 * could get stuck data in the internal pipe:
1230 ret = actor(pipe, sd);
1231 if (unlikely(ret <= 0)) {
1232 sd->pos = prev_pos;
1233 goto out_release;
1236 bytes += ret;
1237 len -= ret;
1238 sd->pos = pos;
1240 if (ret < read_len) {
1241 sd->pos = prev_pos + ret;
1242 goto out_release;
1246 done:
1247 pipe->nrbufs = pipe->curbuf = 0;
1248 file_accessed(in);
1249 return bytes;
1251 out_release:
1253 * If we did an incomplete transfer we must release
1254 * the pipe buffers in question:
1256 for (i = 0; i < pipe->buffers; i++) {
1257 struct pipe_buffer *buf = pipe->bufs + i;
1259 if (buf->ops) {
1260 buf->ops->release(pipe, buf);
1261 buf->ops = NULL;
1265 if (!bytes)
1266 bytes = ret;
1268 goto done;
1270 EXPORT_SYMBOL(splice_direct_to_actor);
1272 static int direct_splice_actor(struct pipe_inode_info *pipe,
1273 struct splice_desc *sd)
1275 struct file *file = sd->u.file;
1277 return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1278 sd->flags);
1282 * do_splice_direct - splices data directly between two files
1283 * @in: file to splice from
1284 * @ppos: input file offset
1285 * @out: file to splice to
1286 * @len: number of bytes to splice
1287 * @flags: splice modifier flags
1289 * Description:
1290 * For use by do_sendfile(). splice can easily emulate sendfile, but
1291 * doing it in the application would incur an extra system call
1292 * (splice in + splice out, as compared to just sendfile()). So this helper
1293 * can splice directly through a process-private pipe.
1296 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1297 size_t len, unsigned int flags)
1299 struct splice_desc sd = {
1300 .len = len,
1301 .total_len = len,
1302 .flags = flags,
1303 .pos = *ppos,
1304 .u.file = out,
1306 long ret;
1308 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1309 if (ret > 0)
1310 *ppos = sd.pos;
1312 return ret;
1315 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1316 struct pipe_inode_info *opipe,
1317 size_t len, unsigned int flags);
1320 * Determine where to splice to/from.
1322 static long do_splice(struct file *in, loff_t __user *off_in,
1323 struct file *out, loff_t __user *off_out,
1324 size_t len, unsigned int flags)
1326 struct pipe_inode_info *ipipe;
1327 struct pipe_inode_info *opipe;
1328 loff_t offset, *off;
1329 long ret;
1331 ipipe = get_pipe_info(in);
1332 opipe = get_pipe_info(out);
1334 if (ipipe && opipe) {
1335 if (off_in || off_out)
1336 return -ESPIPE;
1338 if (!(in->f_mode & FMODE_READ))
1339 return -EBADF;
1341 if (!(out->f_mode & FMODE_WRITE))
1342 return -EBADF;
1344 /* Splicing to self would be fun, but... */
1345 if (ipipe == opipe)
1346 return -EINVAL;
1348 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1351 if (ipipe) {
1352 if (off_in)
1353 return -ESPIPE;
1354 if (off_out) {
1355 if (!(out->f_mode & FMODE_PWRITE))
1356 return -EINVAL;
1357 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1358 return -EFAULT;
1359 off = &offset;
1360 } else
1361 off = &out->f_pos;
1363 ret = do_splice_from(ipipe, out, off, len, flags);
1365 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1366 ret = -EFAULT;
1368 return ret;
1371 if (opipe) {
1372 if (off_out)
1373 return -ESPIPE;
1374 if (off_in) {
1375 if (!(in->f_mode & FMODE_PREAD))
1376 return -EINVAL;
1377 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1378 return -EFAULT;
1379 off = &offset;
1380 } else
1381 off = &in->f_pos;
1383 ret = do_splice_to(in, off, opipe, len, flags);
1385 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1386 ret = -EFAULT;
1388 return ret;
1391 return -EINVAL;
1395 * Map an iov into an array of pages and offset/length tupples. With the
1396 * partial_page structure, we can map several non-contiguous ranges into
1397 * our ones pages[] map instead of splitting that operation into pieces.
1398 * Could easily be exported as a generic helper for other users, in which
1399 * case one would probably want to add a 'max_nr_pages' parameter as well.
1401 static int get_iovec_page_array(const struct iovec __user *iov,
1402 unsigned int nr_vecs, struct page **pages,
1403 struct partial_page *partial, bool aligned,
1404 unsigned int pipe_buffers)
1406 int buffers = 0, error = 0;
1408 while (nr_vecs) {
1409 unsigned long off, npages;
1410 struct iovec entry;
1411 void __user *base;
1412 size_t len;
1413 int i;
1415 error = -EFAULT;
1416 if (copy_from_user(&entry, iov, sizeof(entry)))
1417 break;
1419 base = entry.iov_base;
1420 len = entry.iov_len;
1423 * Sanity check this iovec. 0 read succeeds.
1425 error = 0;
1426 if (unlikely(!len))
1427 break;
1428 error = -EFAULT;
1429 if (!access_ok(VERIFY_READ, base, len))
1430 break;
1433 * Get this base offset and number of pages, then map
1434 * in the user pages.
1436 off = (unsigned long) base & ~PAGE_MASK;
1439 * If asked for alignment, the offset must be zero and the
1440 * length a multiple of the PAGE_SIZE.
1442 error = -EINVAL;
1443 if (aligned && (off || len & ~PAGE_MASK))
1444 break;
1446 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1447 if (npages > pipe_buffers - buffers)
1448 npages = pipe_buffers - buffers;
1450 error = get_user_pages_fast((unsigned long)base, npages,
1451 0, &pages[buffers]);
1453 if (unlikely(error <= 0))
1454 break;
1457 * Fill this contiguous range into the partial page map.
1459 for (i = 0; i < error; i++) {
1460 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1462 partial[buffers].offset = off;
1463 partial[buffers].len = plen;
1465 off = 0;
1466 len -= plen;
1467 buffers++;
1471 * We didn't complete this iov, stop here since it probably
1472 * means we have to move some of this into a pipe to
1473 * be able to continue.
1475 if (len)
1476 break;
1479 * Don't continue if we mapped fewer pages than we asked for,
1480 * or if we mapped the max number of pages that we have
1481 * room for.
1483 if (error < npages || buffers == pipe_buffers)
1484 break;
1486 nr_vecs--;
1487 iov++;
1490 if (buffers)
1491 return buffers;
1493 return error;
1496 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1497 struct splice_desc *sd)
1499 char *src;
1500 int ret;
1503 * See if we can use the atomic maps, by prefaulting in the
1504 * pages and doing an atomic copy
1506 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1507 src = buf->ops->map(pipe, buf, 1);
1508 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1509 sd->len);
1510 buf->ops->unmap(pipe, buf, src);
1511 if (!ret) {
1512 ret = sd->len;
1513 goto out;
1518 * No dice, use slow non-atomic map and copy
1520 src = buf->ops->map(pipe, buf, 0);
1522 ret = sd->len;
1523 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1524 ret = -EFAULT;
1526 buf->ops->unmap(pipe, buf, src);
1527 out:
1528 if (ret > 0)
1529 sd->u.userptr += ret;
1530 return ret;
1534 * For lack of a better implementation, implement vmsplice() to userspace
1535 * as a simple copy of the pipes pages to the user iov.
1537 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1538 unsigned long nr_segs, unsigned int flags)
1540 struct pipe_inode_info *pipe;
1541 struct splice_desc sd;
1542 ssize_t size;
1543 int error;
1544 long ret;
1546 pipe = get_pipe_info(file);
1547 if (!pipe)
1548 return -EBADF;
1550 pipe_lock(pipe);
1552 error = ret = 0;
1553 while (nr_segs) {
1554 void __user *base;
1555 size_t len;
1558 * Get user address base and length for this iovec.
1560 error = get_user(base, &iov->iov_base);
1561 if (unlikely(error))
1562 break;
1563 error = get_user(len, &iov->iov_len);
1564 if (unlikely(error))
1565 break;
1568 * Sanity check this iovec. 0 read succeeds.
1570 if (unlikely(!len))
1571 break;
1572 if (unlikely(!base)) {
1573 error = -EFAULT;
1574 break;
1577 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1578 error = -EFAULT;
1579 break;
1582 sd.len = 0;
1583 sd.total_len = len;
1584 sd.flags = flags;
1585 sd.u.userptr = base;
1586 sd.pos = 0;
1588 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1589 if (size < 0) {
1590 if (!ret)
1591 ret = size;
1593 break;
1596 ret += size;
1598 if (size < len)
1599 break;
1601 nr_segs--;
1602 iov++;
1605 pipe_unlock(pipe);
1607 if (!ret)
1608 ret = error;
1610 return ret;
1614 * vmsplice splices a user address range into a pipe. It can be thought of
1615 * as splice-from-memory, where the regular splice is splice-from-file (or
1616 * to file). In both cases the output is a pipe, naturally.
1618 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1619 unsigned long nr_segs, unsigned int flags)
1621 struct pipe_inode_info *pipe;
1622 struct page *pages[PIPE_DEF_BUFFERS];
1623 struct partial_page partial[PIPE_DEF_BUFFERS];
1624 struct splice_pipe_desc spd = {
1625 .pages = pages,
1626 .partial = partial,
1627 .nr_pages_max = PIPE_DEF_BUFFERS,
1628 .flags = flags,
1629 .ops = &user_page_pipe_buf_ops,
1630 .spd_release = spd_release_page,
1632 long ret;
1634 pipe = get_pipe_info(file);
1635 if (!pipe)
1636 return -EBADF;
1638 if (splice_grow_spd(pipe, &spd))
1639 return -ENOMEM;
1641 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1642 spd.partial, false,
1643 spd.nr_pages_max);
1644 if (spd.nr_pages <= 0)
1645 ret = spd.nr_pages;
1646 else
1647 ret = splice_to_pipe(pipe, &spd);
1649 splice_shrink_spd(&spd);
1650 return ret;
1654 * Note that vmsplice only really supports true splicing _from_ user memory
1655 * to a pipe, not the other way around. Splicing from user memory is a simple
1656 * operation that can be supported without any funky alignment restrictions
1657 * or nasty vm tricks. We simply map in the user memory and fill them into
1658 * a pipe. The reverse isn't quite as easy, though. There are two possible
1659 * solutions for that:
1661 * - memcpy() the data internally, at which point we might as well just
1662 * do a regular read() on the buffer anyway.
1663 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1664 * has restriction limitations on both ends of the pipe).
1666 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1669 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1670 unsigned long, nr_segs, unsigned int, flags)
1672 struct fd f;
1673 long error;
1675 if (unlikely(nr_segs > UIO_MAXIOV))
1676 return -EINVAL;
1677 else if (unlikely(!nr_segs))
1678 return 0;
1680 error = -EBADF;
1681 f = fdget(fd);
1682 if (f.file) {
1683 if (f.file->f_mode & FMODE_WRITE)
1684 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1685 else if (f.file->f_mode & FMODE_READ)
1686 error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1688 fdput(f);
1691 return error;
1694 #ifdef CONFIG_COMPAT
1695 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1696 unsigned int, nr_segs, unsigned int, flags)
1698 unsigned i;
1699 struct iovec __user *iov;
1700 if (nr_segs > UIO_MAXIOV)
1701 return -EINVAL;
1702 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1703 for (i = 0; i < nr_segs; i++) {
1704 struct compat_iovec v;
1705 if (get_user(v.iov_base, &iov32[i].iov_base) ||
1706 get_user(v.iov_len, &iov32[i].iov_len) ||
1707 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1708 put_user(v.iov_len, &iov[i].iov_len))
1709 return -EFAULT;
1711 return sys_vmsplice(fd, iov, nr_segs, flags);
1713 #endif
1715 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1716 int, fd_out, loff_t __user *, off_out,
1717 size_t, len, unsigned int, flags)
1719 struct fd in, out;
1720 long error;
1722 if (unlikely(!len))
1723 return 0;
1725 error = -EBADF;
1726 in = fdget(fd_in);
1727 if (in.file) {
1728 if (in.file->f_mode & FMODE_READ) {
1729 out = fdget(fd_out);
1730 if (out.file) {
1731 if (out.file->f_mode & FMODE_WRITE)
1732 error = do_splice(in.file, off_in,
1733 out.file, off_out,
1734 len, flags);
1735 fdput(out);
1738 fdput(in);
1740 return error;
1744 * Make sure there's data to read. Wait for input if we can, otherwise
1745 * return an appropriate error.
1747 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1749 int ret;
1752 * Check ->nrbufs without the inode lock first. This function
1753 * is speculative anyways, so missing one is ok.
1755 if (pipe->nrbufs)
1756 return 0;
1758 ret = 0;
1759 pipe_lock(pipe);
1761 while (!pipe->nrbufs) {
1762 if (signal_pending(current)) {
1763 ret = -ERESTARTSYS;
1764 break;
1766 if (!pipe->writers)
1767 break;
1768 if (!pipe->waiting_writers) {
1769 if (flags & SPLICE_F_NONBLOCK) {
1770 ret = -EAGAIN;
1771 break;
1774 pipe_wait(pipe);
1777 pipe_unlock(pipe);
1778 return ret;
1782 * Make sure there's writeable room. Wait for room if we can, otherwise
1783 * return an appropriate error.
1785 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1787 int ret;
1790 * Check ->nrbufs without the inode lock first. This function
1791 * is speculative anyways, so missing one is ok.
1793 if (pipe->nrbufs < pipe->buffers)
1794 return 0;
1796 ret = 0;
1797 pipe_lock(pipe);
1799 while (pipe->nrbufs >= pipe->buffers) {
1800 if (!pipe->readers) {
1801 send_sig(SIGPIPE, current, 0);
1802 ret = -EPIPE;
1803 break;
1805 if (flags & SPLICE_F_NONBLOCK) {
1806 ret = -EAGAIN;
1807 break;
1809 if (signal_pending(current)) {
1810 ret = -ERESTARTSYS;
1811 break;
1813 pipe->waiting_writers++;
1814 pipe_wait(pipe);
1815 pipe->waiting_writers--;
1818 pipe_unlock(pipe);
1819 return ret;
1823 * Splice contents of ipipe to opipe.
1825 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1826 struct pipe_inode_info *opipe,
1827 size_t len, unsigned int flags)
1829 struct pipe_buffer *ibuf, *obuf;
1830 int ret = 0, nbuf;
1831 bool input_wakeup = false;
1834 retry:
1835 ret = ipipe_prep(ipipe, flags);
1836 if (ret)
1837 return ret;
1839 ret = opipe_prep(opipe, flags);
1840 if (ret)
1841 return ret;
1844 * Potential ABBA deadlock, work around it by ordering lock
1845 * grabbing by pipe info address. Otherwise two different processes
1846 * could deadlock (one doing tee from A -> B, the other from B -> A).
1848 pipe_double_lock(ipipe, opipe);
1850 do {
1851 if (!opipe->readers) {
1852 send_sig(SIGPIPE, current, 0);
1853 if (!ret)
1854 ret = -EPIPE;
1855 break;
1858 if (!ipipe->nrbufs && !ipipe->writers)
1859 break;
1862 * Cannot make any progress, because either the input
1863 * pipe is empty or the output pipe is full.
1865 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1866 /* Already processed some buffers, break */
1867 if (ret)
1868 break;
1870 if (flags & SPLICE_F_NONBLOCK) {
1871 ret = -EAGAIN;
1872 break;
1876 * We raced with another reader/writer and haven't
1877 * managed to process any buffers. A zero return
1878 * value means EOF, so retry instead.
1880 pipe_unlock(ipipe);
1881 pipe_unlock(opipe);
1882 goto retry;
1885 ibuf = ipipe->bufs + ipipe->curbuf;
1886 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1887 obuf = opipe->bufs + nbuf;
1889 if (len >= ibuf->len) {
1891 * Simply move the whole buffer from ipipe to opipe
1893 *obuf = *ibuf;
1894 ibuf->ops = NULL;
1895 opipe->nrbufs++;
1896 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1897 ipipe->nrbufs--;
1898 input_wakeup = true;
1899 } else {
1901 * Get a reference to this pipe buffer,
1902 * so we can copy the contents over.
1904 ibuf->ops->get(ipipe, ibuf);
1905 *obuf = *ibuf;
1908 * Don't inherit the gift flag, we need to
1909 * prevent multiple steals of this page.
1911 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1913 obuf->len = len;
1914 opipe->nrbufs++;
1915 ibuf->offset += obuf->len;
1916 ibuf->len -= obuf->len;
1918 ret += obuf->len;
1919 len -= obuf->len;
1920 } while (len);
1922 pipe_unlock(ipipe);
1923 pipe_unlock(opipe);
1926 * If we put data in the output pipe, wakeup any potential readers.
1928 if (ret > 0)
1929 wakeup_pipe_readers(opipe);
1931 if (input_wakeup)
1932 wakeup_pipe_writers(ipipe);
1934 return ret;
1938 * Link contents of ipipe to opipe.
1940 static int link_pipe(struct pipe_inode_info *ipipe,
1941 struct pipe_inode_info *opipe,
1942 size_t len, unsigned int flags)
1944 struct pipe_buffer *ibuf, *obuf;
1945 int ret = 0, i = 0, nbuf;
1948 * Potential ABBA deadlock, work around it by ordering lock
1949 * grabbing by pipe info address. Otherwise two different processes
1950 * could deadlock (one doing tee from A -> B, the other from B -> A).
1952 pipe_double_lock(ipipe, opipe);
1954 do {
1955 if (!opipe->readers) {
1956 send_sig(SIGPIPE, current, 0);
1957 if (!ret)
1958 ret = -EPIPE;
1959 break;
1963 * If we have iterated all input buffers or ran out of
1964 * output room, break.
1966 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1967 break;
1969 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1970 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1973 * Get a reference to this pipe buffer,
1974 * so we can copy the contents over.
1976 ibuf->ops->get(ipipe, ibuf);
1978 obuf = opipe->bufs + nbuf;
1979 *obuf = *ibuf;
1982 * Don't inherit the gift flag, we need to
1983 * prevent multiple steals of this page.
1985 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1987 if (obuf->len > len)
1988 obuf->len = len;
1990 opipe->nrbufs++;
1991 ret += obuf->len;
1992 len -= obuf->len;
1993 i++;
1994 } while (len);
1997 * return EAGAIN if we have the potential of some data in the
1998 * future, otherwise just return 0
2000 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
2001 ret = -EAGAIN;
2003 pipe_unlock(ipipe);
2004 pipe_unlock(opipe);
2007 * If we put data in the output pipe, wakeup any potential readers.
2009 if (ret > 0)
2010 wakeup_pipe_readers(opipe);
2012 return ret;
2016 * This is a tee(1) implementation that works on pipes. It doesn't copy
2017 * any data, it simply references the 'in' pages on the 'out' pipe.
2018 * The 'flags' used are the SPLICE_F_* variants, currently the only
2019 * applicable one is SPLICE_F_NONBLOCK.
2021 static long do_tee(struct file *in, struct file *out, size_t len,
2022 unsigned int flags)
2024 struct pipe_inode_info *ipipe = get_pipe_info(in);
2025 struct pipe_inode_info *opipe = get_pipe_info(out);
2026 int ret = -EINVAL;
2029 * Duplicate the contents of ipipe to opipe without actually
2030 * copying the data.
2032 if (ipipe && opipe && ipipe != opipe) {
2034 * Keep going, unless we encounter an error. The ipipe/opipe
2035 * ordering doesn't really matter.
2037 ret = ipipe_prep(ipipe, flags);
2038 if (!ret) {
2039 ret = opipe_prep(opipe, flags);
2040 if (!ret)
2041 ret = link_pipe(ipipe, opipe, len, flags);
2045 return ret;
2048 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2050 struct fd in;
2051 int error;
2053 if (unlikely(!len))
2054 return 0;
2056 error = -EBADF;
2057 in = fdget(fdin);
2058 if (in.file) {
2059 if (in.file->f_mode & FMODE_READ) {
2060 struct fd out = fdget(fdout);
2061 if (out.file) {
2062 if (out.file->f_mode & FMODE_WRITE)
2063 error = do_tee(in.file, out.file,
2064 len, flags);
2065 fdput(out);
2068 fdput(in);
2071 return error;