1 // SPDX-License-Identifier: GPL-2.0
4 * Copyright (C) 1992 Krishna Balasubramanian
5 * Copyright (C) 1995 Eric Schenk, Bruno Haible
7 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
9 * SMP-threaded, sysctl's added
10 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
11 * Enforced range limit on SEM_UNDO
12 * (c) 2001 Red Hat Inc
14 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
15 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
16 * Further wakeup optimizations, documentation
17 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
19 * support for audit of ipc object properties and permission changes
20 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
24 * Pavel Emelianov <xemul@openvz.org>
26 * Implementation notes: (May 2010)
27 * This file implements System V semaphores.
29 * User space visible behavior:
30 * - FIFO ordering for semop() operations (just FIFO, not starvation
32 * - multiple semaphore operations that alter the same semaphore in
33 * one semop() are handled.
34 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
36 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37 * - undo adjustments at process exit are limited to 0..SEMVMX.
38 * - namespace are supported.
39 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
40 * to /proc/sys/kernel/sem.
41 * - statistics about the usage are reported in /proc/sysvipc/sem.
45 * - all global variables are read-mostly.
46 * - semop() calls and semctl(RMID) are synchronized by RCU.
47 * - most operations do write operations (actually: spin_lock calls) to
48 * the per-semaphore array structure.
49 * Thus: Perfect SMP scaling between independent semaphore arrays.
50 * If multiple semaphores in one array are used, then cache line
51 * trashing on the semaphore array spinlock will limit the scaling.
52 * - semncnt and semzcnt are calculated on demand in count_semcnt()
53 * - the task that performs a successful semop() scans the list of all
54 * sleeping tasks and completes any pending operations that can be fulfilled.
55 * Semaphores are actively given to waiting tasks (necessary for FIFO).
56 * (see update_queue())
57 * - To improve the scalability, the actual wake-up calls are performed after
58 * dropping all locks. (see wake_up_sem_queue_prepare())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - UNDO values are stored in an array (one per process and per
64 * semaphore array, lazily allocated). For backwards compatibility, multiple
65 * modes for the UNDO variables are supported (per process, per thread)
66 * (see copy_semundo, CLONE_SYSVSEM)
67 * - There are two lists of the pending operations: a per-array list
68 * and per-semaphore list (stored in the array). This allows to achieve FIFO
69 * ordering without always scanning all pending operations.
70 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
73 #include <linux/compat.h>
74 #include <linux/slab.h>
75 #include <linux/spinlock.h>
76 #include <linux/init.h>
77 #include <linux/proc_fs.h>
78 #include <linux/time.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/audit.h>
82 #include <linux/capability.h>
83 #include <linux/seq_file.h>
84 #include <linux/rwsem.h>
85 #include <linux/nsproxy.h>
86 #include <linux/ipc_namespace.h>
87 #include <linux/sched/wake_q.h>
88 #include <linux/nospec.h>
89 #include <linux/rhashtable.h>
91 #include <linux/uaccess.h>
94 /* One semaphore structure for each semaphore in the system. */
96 int semval
; /* current value */
98 * PID of the process that last modified the semaphore. For
99 * Linux, specifically these are:
101 * - semctl, via SETVAL and SETALL.
102 * - at task exit when performing undo adjustments (see exit_sem).
105 spinlock_t lock
; /* spinlock for fine-grained semtimedop */
106 struct list_head pending_alter
; /* pending single-sop operations */
107 /* that alter the semaphore */
108 struct list_head pending_const
; /* pending single-sop operations */
109 /* that do not alter the semaphore*/
110 time64_t sem_otime
; /* candidate for sem_otime */
111 } ____cacheline_aligned_in_smp
;
113 /* One sem_array data structure for each set of semaphores in the system. */
115 struct kern_ipc_perm sem_perm
; /* permissions .. see ipc.h */
116 time64_t sem_ctime
; /* create/last semctl() time */
117 struct list_head pending_alter
; /* pending operations */
118 /* that alter the array */
119 struct list_head pending_const
; /* pending complex operations */
120 /* that do not alter semvals */
121 struct list_head list_id
; /* undo requests on this array */
122 int sem_nsems
; /* no. of semaphores in array */
123 int complex_count
; /* pending complex operations */
124 unsigned int use_global_lock
;/* >0: global lock required */
127 } __randomize_layout
;
129 /* One queue for each sleeping process in the system. */
131 struct list_head list
; /* queue of pending operations */
132 struct task_struct
*sleeper
; /* this process */
133 struct sem_undo
*undo
; /* undo structure */
134 struct pid
*pid
; /* process id of requesting process */
135 int status
; /* completion status of operation */
136 struct sembuf
*sops
; /* array of pending operations */
137 struct sembuf
*blocking
; /* the operation that blocked */
138 int nsops
; /* number of operations */
139 bool alter
; /* does *sops alter the array? */
140 bool dupsop
; /* sops on more than one sem_num */
143 /* Each task has a list of undo requests. They are executed automatically
144 * when the process exits.
147 struct list_head list_proc
; /* per-process list: *
148 * all undos from one process
150 struct rcu_head rcu
; /* rcu struct for sem_undo */
151 struct sem_undo_list
*ulp
; /* back ptr to sem_undo_list */
152 struct list_head list_id
; /* per semaphore array list:
153 * all undos for one array */
154 int semid
; /* semaphore set identifier */
155 short *semadj
; /* array of adjustments */
156 /* one per semaphore */
159 /* sem_undo_list controls shared access to the list of sem_undo structures
160 * that may be shared among all a CLONE_SYSVSEM task group.
162 struct sem_undo_list
{
165 struct list_head list_proc
;
169 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
171 static int newary(struct ipc_namespace
*, struct ipc_params
*);
172 static void freeary(struct ipc_namespace
*, struct kern_ipc_perm
*);
173 #ifdef CONFIG_PROC_FS
174 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
);
177 #define SEMMSL_FAST 256 /* 512 bytes on stack */
178 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
181 * Switching from the mode suitable for simple ops
182 * to the mode for complex ops is costly. Therefore:
183 * use some hysteresis
185 #define USE_GLOBAL_LOCK_HYSTERESIS 10
189 * a) global sem_lock() for read/write
191 * sem_array.complex_count,
192 * sem_array.pending{_alter,_const},
195 * b) global or semaphore sem_lock() for read/write:
196 * sem_array.sems[i].pending_{const,alter}:
199 * sem_undo_list.list_proc:
200 * * undo_list->lock for write
203 * * global sem_lock() for write
204 * * either local or global sem_lock() for read.
207 * Most ordering is enforced by using spin_lock() and spin_unlock().
208 * The special case is use_global_lock:
209 * Setting it from non-zero to 0 is a RELEASE, this is ensured by
210 * using smp_store_release().
211 * Testing if it is non-zero is an ACQUIRE, this is ensured by using
212 * smp_load_acquire().
213 * Setting it from 0 to non-zero must be ordered with regards to
214 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
215 * is inside a spin_lock() and after a write from 0 to non-zero a
216 * spin_lock()+spin_unlock() is done.
219 #define sc_semmsl sem_ctls[0]
220 #define sc_semmns sem_ctls[1]
221 #define sc_semopm sem_ctls[2]
222 #define sc_semmni sem_ctls[3]
224 int sem_init_ns(struct ipc_namespace
*ns
)
226 ns
->sc_semmsl
= SEMMSL
;
227 ns
->sc_semmns
= SEMMNS
;
228 ns
->sc_semopm
= SEMOPM
;
229 ns
->sc_semmni
= SEMMNI
;
231 return ipc_init_ids(&ns
->ids
[IPC_SEM_IDS
]);
235 void sem_exit_ns(struct ipc_namespace
*ns
)
237 free_ipcs(ns
, &sem_ids(ns
), freeary
);
238 idr_destroy(&ns
->ids
[IPC_SEM_IDS
].ipcs_idr
);
239 rhashtable_destroy(&ns
->ids
[IPC_SEM_IDS
].key_ht
);
243 int __init
sem_init(void)
245 const int err
= sem_init_ns(&init_ipc_ns
);
247 ipc_init_proc_interface("sysvipc/sem",
248 " key semid perms nsems uid gid cuid cgid otime ctime\n",
249 IPC_SEM_IDS
, sysvipc_sem_proc_show
);
254 * unmerge_queues - unmerge queues, if possible.
255 * @sma: semaphore array
257 * The function unmerges the wait queues if complex_count is 0.
258 * It must be called prior to dropping the global semaphore array lock.
260 static void unmerge_queues(struct sem_array
*sma
)
262 struct sem_queue
*q
, *tq
;
264 /* complex operations still around? */
265 if (sma
->complex_count
)
268 * We will switch back to simple mode.
269 * Move all pending operation back into the per-semaphore
272 list_for_each_entry_safe(q
, tq
, &sma
->pending_alter
, list
) {
274 curr
= &sma
->sems
[q
->sops
[0].sem_num
];
276 list_add_tail(&q
->list
, &curr
->pending_alter
);
278 INIT_LIST_HEAD(&sma
->pending_alter
);
282 * merge_queues - merge single semop queues into global queue
283 * @sma: semaphore array
285 * This function merges all per-semaphore queues into the global queue.
286 * It is necessary to achieve FIFO ordering for the pending single-sop
287 * operations when a multi-semop operation must sleep.
288 * Only the alter operations must be moved, the const operations can stay.
290 static void merge_queues(struct sem_array
*sma
)
293 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
294 struct sem
*sem
= &sma
->sems
[i
];
296 list_splice_init(&sem
->pending_alter
, &sma
->pending_alter
);
300 static void sem_rcu_free(struct rcu_head
*head
)
302 struct kern_ipc_perm
*p
= container_of(head
, struct kern_ipc_perm
, rcu
);
303 struct sem_array
*sma
= container_of(p
, struct sem_array
, sem_perm
);
305 security_sem_free(&sma
->sem_perm
);
310 * Enter the mode suitable for non-simple operations:
311 * Caller must own sem_perm.lock.
313 static void complexmode_enter(struct sem_array
*sma
)
318 if (sma
->use_global_lock
> 0) {
320 * We are already in global lock mode.
321 * Nothing to do, just reset the
322 * counter until we return to simple mode.
324 sma
->use_global_lock
= USE_GLOBAL_LOCK_HYSTERESIS
;
327 sma
->use_global_lock
= USE_GLOBAL_LOCK_HYSTERESIS
;
329 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
331 spin_lock(&sem
->lock
);
332 spin_unlock(&sem
->lock
);
337 * Try to leave the mode that disallows simple operations:
338 * Caller must own sem_perm.lock.
340 static void complexmode_tryleave(struct sem_array
*sma
)
342 if (sma
->complex_count
) {
343 /* Complex ops are sleeping.
344 * We must stay in complex mode
348 if (sma
->use_global_lock
== 1) {
350 * Immediately after setting use_global_lock to 0,
351 * a simple op can start. Thus: all memory writes
352 * performed by the current operation must be visible
353 * before we set use_global_lock to 0.
355 smp_store_release(&sma
->use_global_lock
, 0);
357 sma
->use_global_lock
--;
361 #define SEM_GLOBAL_LOCK (-1)
363 * If the request contains only one semaphore operation, and there are
364 * no complex transactions pending, lock only the semaphore involved.
365 * Otherwise, lock the entire semaphore array, since we either have
366 * multiple semaphores in our own semops, or we need to look at
367 * semaphores from other pending complex operations.
369 static inline int sem_lock(struct sem_array
*sma
, struct sembuf
*sops
,
376 /* Complex operation - acquire a full lock */
377 ipc_lock_object(&sma
->sem_perm
);
379 /* Prevent parallel simple ops */
380 complexmode_enter(sma
);
381 return SEM_GLOBAL_LOCK
;
385 * Only one semaphore affected - try to optimize locking.
386 * Optimized locking is possible if no complex operation
387 * is either enqueued or processed right now.
389 * Both facts are tracked by use_global_mode.
391 idx
= array_index_nospec(sops
->sem_num
, sma
->sem_nsems
);
392 sem
= &sma
->sems
[idx
];
395 * Initial check for use_global_lock. Just an optimization,
396 * no locking, no memory barrier.
398 if (!sma
->use_global_lock
) {
400 * It appears that no complex operation is around.
401 * Acquire the per-semaphore lock.
403 spin_lock(&sem
->lock
);
405 /* pairs with smp_store_release() */
406 if (!smp_load_acquire(&sma
->use_global_lock
)) {
407 /* fast path successful! */
408 return sops
->sem_num
;
410 spin_unlock(&sem
->lock
);
413 /* slow path: acquire the full lock */
414 ipc_lock_object(&sma
->sem_perm
);
416 if (sma
->use_global_lock
== 0) {
418 * The use_global_lock mode ended while we waited for
419 * sma->sem_perm.lock. Thus we must switch to locking
421 * Unlike in the fast path, there is no need to recheck
422 * sma->use_global_lock after we have acquired sem->lock:
423 * We own sma->sem_perm.lock, thus use_global_lock cannot
426 spin_lock(&sem
->lock
);
428 ipc_unlock_object(&sma
->sem_perm
);
429 return sops
->sem_num
;
432 * Not a false alarm, thus continue to use the global lock
433 * mode. No need for complexmode_enter(), this was done by
434 * the caller that has set use_global_mode to non-zero.
436 return SEM_GLOBAL_LOCK
;
440 static inline void sem_unlock(struct sem_array
*sma
, int locknum
)
442 if (locknum
== SEM_GLOBAL_LOCK
) {
444 complexmode_tryleave(sma
);
445 ipc_unlock_object(&sma
->sem_perm
);
447 struct sem
*sem
= &sma
->sems
[locknum
];
448 spin_unlock(&sem
->lock
);
453 * sem_lock_(check_) routines are called in the paths where the rwsem
456 * The caller holds the RCU read lock.
458 static inline struct sem_array
*sem_obtain_object(struct ipc_namespace
*ns
, int id
)
460 struct kern_ipc_perm
*ipcp
= ipc_obtain_object_idr(&sem_ids(ns
), id
);
463 return ERR_CAST(ipcp
);
465 return container_of(ipcp
, struct sem_array
, sem_perm
);
468 static inline struct sem_array
*sem_obtain_object_check(struct ipc_namespace
*ns
,
471 struct kern_ipc_perm
*ipcp
= ipc_obtain_object_check(&sem_ids(ns
), id
);
474 return ERR_CAST(ipcp
);
476 return container_of(ipcp
, struct sem_array
, sem_perm
);
479 static inline void sem_lock_and_putref(struct sem_array
*sma
)
481 sem_lock(sma
, NULL
, -1);
482 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
485 static inline void sem_rmid(struct ipc_namespace
*ns
, struct sem_array
*s
)
487 ipc_rmid(&sem_ids(ns
), &s
->sem_perm
);
490 static struct sem_array
*sem_alloc(size_t nsems
)
492 struct sem_array
*sma
;
495 if (nsems
> (INT_MAX
- sizeof(*sma
)) / sizeof(sma
->sems
[0]))
498 size
= sizeof(*sma
) + nsems
* sizeof(sma
->sems
[0]);
499 sma
= kvmalloc(size
, GFP_KERNEL
);
503 memset(sma
, 0, size
);
509 * newary - Create a new semaphore set
511 * @params: ptr to the structure that contains key, semflg and nsems
513 * Called with sem_ids.rwsem held (as a writer)
515 static int newary(struct ipc_namespace
*ns
, struct ipc_params
*params
)
518 struct sem_array
*sma
;
519 key_t key
= params
->key
;
520 int nsems
= params
->u
.nsems
;
521 int semflg
= params
->flg
;
526 if (ns
->used_sems
+ nsems
> ns
->sc_semmns
)
529 sma
= sem_alloc(nsems
);
533 sma
->sem_perm
.mode
= (semflg
& S_IRWXUGO
);
534 sma
->sem_perm
.key
= key
;
536 sma
->sem_perm
.security
= NULL
;
537 retval
= security_sem_alloc(&sma
->sem_perm
);
543 for (i
= 0; i
< nsems
; i
++) {
544 INIT_LIST_HEAD(&sma
->sems
[i
].pending_alter
);
545 INIT_LIST_HEAD(&sma
->sems
[i
].pending_const
);
546 spin_lock_init(&sma
->sems
[i
].lock
);
549 sma
->complex_count
= 0;
550 sma
->use_global_lock
= USE_GLOBAL_LOCK_HYSTERESIS
;
551 INIT_LIST_HEAD(&sma
->pending_alter
);
552 INIT_LIST_HEAD(&sma
->pending_const
);
553 INIT_LIST_HEAD(&sma
->list_id
);
554 sma
->sem_nsems
= nsems
;
555 sma
->sem_ctime
= ktime_get_real_seconds();
557 /* ipc_addid() locks sma upon success. */
558 retval
= ipc_addid(&sem_ids(ns
), &sma
->sem_perm
, ns
->sc_semmni
);
560 call_rcu(&sma
->sem_perm
.rcu
, sem_rcu_free
);
563 ns
->used_sems
+= nsems
;
568 return sma
->sem_perm
.id
;
573 * Called with sem_ids.rwsem and ipcp locked.
575 static inline int sem_more_checks(struct kern_ipc_perm
*ipcp
,
576 struct ipc_params
*params
)
578 struct sem_array
*sma
;
580 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
581 if (params
->u
.nsems
> sma
->sem_nsems
)
587 long ksys_semget(key_t key
, int nsems
, int semflg
)
589 struct ipc_namespace
*ns
;
590 static const struct ipc_ops sem_ops
= {
592 .associate
= security_sem_associate
,
593 .more_checks
= sem_more_checks
,
595 struct ipc_params sem_params
;
597 ns
= current
->nsproxy
->ipc_ns
;
599 if (nsems
< 0 || nsems
> ns
->sc_semmsl
)
602 sem_params
.key
= key
;
603 sem_params
.flg
= semflg
;
604 sem_params
.u
.nsems
= nsems
;
606 return ipcget(ns
, &sem_ids(ns
), &sem_ops
, &sem_params
);
609 SYSCALL_DEFINE3(semget
, key_t
, key
, int, nsems
, int, semflg
)
611 return ksys_semget(key
, nsems
, semflg
);
615 * perform_atomic_semop[_slow] - Attempt to perform semaphore
616 * operations on a given array.
617 * @sma: semaphore array
618 * @q: struct sem_queue that describes the operation
620 * Caller blocking are as follows, based the value
621 * indicated by the semaphore operation (sem_op):
623 * (1) >0 never blocks.
624 * (2) 0 (wait-for-zero operation): semval is non-zero.
625 * (3) <0 attempting to decrement semval to a value smaller than zero.
627 * Returns 0 if the operation was possible.
628 * Returns 1 if the operation is impossible, the caller must sleep.
629 * Returns <0 for error codes.
631 static int perform_atomic_semop_slow(struct sem_array
*sma
, struct sem_queue
*q
)
633 int result
, sem_op
, nsops
;
644 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
645 int idx
= array_index_nospec(sop
->sem_num
, sma
->sem_nsems
);
646 curr
= &sma
->sems
[idx
];
647 sem_op
= sop
->sem_op
;
648 result
= curr
->semval
;
650 if (!sem_op
&& result
)
659 if (sop
->sem_flg
& SEM_UNDO
) {
660 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
661 /* Exceeding the undo range is an error. */
662 if (undo
< (-SEMAEM
- 1) || undo
> SEMAEM
)
664 un
->semadj
[sop
->sem_num
] = undo
;
667 curr
->semval
= result
;
672 while (sop
>= sops
) {
673 ipc_update_pid(&sma
->sems
[sop
->sem_num
].sempid
, pid
);
686 if (sop
->sem_flg
& IPC_NOWAIT
)
693 while (sop
>= sops
) {
694 sem_op
= sop
->sem_op
;
695 sma
->sems
[sop
->sem_num
].semval
-= sem_op
;
696 if (sop
->sem_flg
& SEM_UNDO
)
697 un
->semadj
[sop
->sem_num
] += sem_op
;
704 static int perform_atomic_semop(struct sem_array
*sma
, struct sem_queue
*q
)
706 int result
, sem_op
, nsops
;
716 if (unlikely(q
->dupsop
))
717 return perform_atomic_semop_slow(sma
, q
);
720 * We scan the semaphore set twice, first to ensure that the entire
721 * operation can succeed, therefore avoiding any pointless writes
722 * to shared memory and having to undo such changes in order to block
723 * until the operations can go through.
725 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
726 int idx
= array_index_nospec(sop
->sem_num
, sma
->sem_nsems
);
728 curr
= &sma
->sems
[idx
];
729 sem_op
= sop
->sem_op
;
730 result
= curr
->semval
;
732 if (!sem_op
&& result
)
733 goto would_block
; /* wait-for-zero */
742 if (sop
->sem_flg
& SEM_UNDO
) {
743 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
745 /* Exceeding the undo range is an error. */
746 if (undo
< (-SEMAEM
- 1) || undo
> SEMAEM
)
751 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
752 curr
= &sma
->sems
[sop
->sem_num
];
753 sem_op
= sop
->sem_op
;
754 result
= curr
->semval
;
756 if (sop
->sem_flg
& SEM_UNDO
) {
757 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
759 un
->semadj
[sop
->sem_num
] = undo
;
761 curr
->semval
+= sem_op
;
762 ipc_update_pid(&curr
->sempid
, q
->pid
);
769 return sop
->sem_flg
& IPC_NOWAIT
? -EAGAIN
: 1;
772 static inline void wake_up_sem_queue_prepare(struct sem_queue
*q
, int error
,
773 struct wake_q_head
*wake_q
)
775 wake_q_add(wake_q
, q
->sleeper
);
777 * Rely on the above implicit barrier, such that we can
778 * ensure that we hold reference to the task before setting
779 * q->status. Otherwise we could race with do_exit if the
780 * task is awoken by an external event before calling
783 WRITE_ONCE(q
->status
, error
);
786 static void unlink_queue(struct sem_array
*sma
, struct sem_queue
*q
)
790 sma
->complex_count
--;
793 /** check_restart(sma, q)
794 * @sma: semaphore array
795 * @q: the operation that just completed
797 * update_queue is O(N^2) when it restarts scanning the whole queue of
798 * waiting operations. Therefore this function checks if the restart is
799 * really necessary. It is called after a previously waiting operation
800 * modified the array.
801 * Note that wait-for-zero operations are handled without restart.
803 static inline int check_restart(struct sem_array
*sma
, struct sem_queue
*q
)
805 /* pending complex alter operations are too difficult to analyse */
806 if (!list_empty(&sma
->pending_alter
))
809 /* we were a sleeping complex operation. Too difficult */
813 /* It is impossible that someone waits for the new value:
814 * - complex operations always restart.
815 * - wait-for-zero are handled seperately.
816 * - q is a previously sleeping simple operation that
817 * altered the array. It must be a decrement, because
818 * simple increments never sleep.
819 * - If there are older (higher priority) decrements
820 * in the queue, then they have observed the original
821 * semval value and couldn't proceed. The operation
822 * decremented to value - thus they won't proceed either.
828 * wake_const_ops - wake up non-alter tasks
829 * @sma: semaphore array.
830 * @semnum: semaphore that was modified.
831 * @wake_q: lockless wake-queue head.
833 * wake_const_ops must be called after a semaphore in a semaphore array
834 * was set to 0. If complex const operations are pending, wake_const_ops must
835 * be called with semnum = -1, as well as with the number of each modified
837 * The tasks that must be woken up are added to @wake_q. The return code
838 * is stored in q->pid.
839 * The function returns 1 if at least one operation was completed successfully.
841 static int wake_const_ops(struct sem_array
*sma
, int semnum
,
842 struct wake_q_head
*wake_q
)
844 struct sem_queue
*q
, *tmp
;
845 struct list_head
*pending_list
;
846 int semop_completed
= 0;
849 pending_list
= &sma
->pending_const
;
851 pending_list
= &sma
->sems
[semnum
].pending_const
;
853 list_for_each_entry_safe(q
, tmp
, pending_list
, list
) {
854 int error
= perform_atomic_semop(sma
, q
);
858 /* operation completed, remove from queue & wakeup */
859 unlink_queue(sma
, q
);
861 wake_up_sem_queue_prepare(q
, error
, wake_q
);
866 return semop_completed
;
870 * do_smart_wakeup_zero - wakeup all wait for zero tasks
871 * @sma: semaphore array
872 * @sops: operations that were performed
873 * @nsops: number of operations
874 * @wake_q: lockless wake-queue head
876 * Checks all required queue for wait-for-zero operations, based
877 * on the actual changes that were performed on the semaphore array.
878 * The function returns 1 if at least one operation was completed successfully.
880 static int do_smart_wakeup_zero(struct sem_array
*sma
, struct sembuf
*sops
,
881 int nsops
, struct wake_q_head
*wake_q
)
884 int semop_completed
= 0;
887 /* first: the per-semaphore queues, if known */
889 for (i
= 0; i
< nsops
; i
++) {
890 int num
= sops
[i
].sem_num
;
892 if (sma
->sems
[num
].semval
== 0) {
894 semop_completed
|= wake_const_ops(sma
, num
, wake_q
);
899 * No sops means modified semaphores not known.
900 * Assume all were changed.
902 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
903 if (sma
->sems
[i
].semval
== 0) {
905 semop_completed
|= wake_const_ops(sma
, i
, wake_q
);
910 * If one of the modified semaphores got 0,
911 * then check the global queue, too.
914 semop_completed
|= wake_const_ops(sma
, -1, wake_q
);
916 return semop_completed
;
921 * update_queue - look for tasks that can be completed.
922 * @sma: semaphore array.
923 * @semnum: semaphore that was modified.
924 * @wake_q: lockless wake-queue head.
926 * update_queue must be called after a semaphore in a semaphore array
927 * was modified. If multiple semaphores were modified, update_queue must
928 * be called with semnum = -1, as well as with the number of each modified
930 * The tasks that must be woken up are added to @wake_q. The return code
931 * is stored in q->pid.
932 * The function internally checks if const operations can now succeed.
934 * The function return 1 if at least one semop was completed successfully.
936 static int update_queue(struct sem_array
*sma
, int semnum
, struct wake_q_head
*wake_q
)
938 struct sem_queue
*q
, *tmp
;
939 struct list_head
*pending_list
;
940 int semop_completed
= 0;
943 pending_list
= &sma
->pending_alter
;
945 pending_list
= &sma
->sems
[semnum
].pending_alter
;
948 list_for_each_entry_safe(q
, tmp
, pending_list
, list
) {
951 /* If we are scanning the single sop, per-semaphore list of
952 * one semaphore and that semaphore is 0, then it is not
953 * necessary to scan further: simple increments
954 * that affect only one entry succeed immediately and cannot
955 * be in the per semaphore pending queue, and decrements
956 * cannot be successful if the value is already 0.
958 if (semnum
!= -1 && sma
->sems
[semnum
].semval
== 0)
961 error
= perform_atomic_semop(sma
, q
);
963 /* Does q->sleeper still need to sleep? */
967 unlink_queue(sma
, q
);
973 do_smart_wakeup_zero(sma
, q
->sops
, q
->nsops
, wake_q
);
974 restart
= check_restart(sma
, q
);
977 wake_up_sem_queue_prepare(q
, error
, wake_q
);
981 return semop_completed
;
985 * set_semotime - set sem_otime
986 * @sma: semaphore array
987 * @sops: operations that modified the array, may be NULL
989 * sem_otime is replicated to avoid cache line trashing.
990 * This function sets one instance to the current time.
992 static void set_semotime(struct sem_array
*sma
, struct sembuf
*sops
)
995 sma
->sems
[0].sem_otime
= ktime_get_real_seconds();
997 sma
->sems
[sops
[0].sem_num
].sem_otime
=
998 ktime_get_real_seconds();
1003 * do_smart_update - optimized update_queue
1004 * @sma: semaphore array
1005 * @sops: operations that were performed
1006 * @nsops: number of operations
1007 * @otime: force setting otime
1008 * @wake_q: lockless wake-queue head
1010 * do_smart_update() does the required calls to update_queue and wakeup_zero,
1011 * based on the actual changes that were performed on the semaphore array.
1012 * Note that the function does not do the actual wake-up: the caller is
1013 * responsible for calling wake_up_q().
1014 * It is safe to perform this call after dropping all locks.
1016 static void do_smart_update(struct sem_array
*sma
, struct sembuf
*sops
, int nsops
,
1017 int otime
, struct wake_q_head
*wake_q
)
1021 otime
|= do_smart_wakeup_zero(sma
, sops
, nsops
, wake_q
);
1023 if (!list_empty(&sma
->pending_alter
)) {
1024 /* semaphore array uses the global queue - just process it. */
1025 otime
|= update_queue(sma
, -1, wake_q
);
1029 * No sops, thus the modified semaphores are not
1032 for (i
= 0; i
< sma
->sem_nsems
; i
++)
1033 otime
|= update_queue(sma
, i
, wake_q
);
1036 * Check the semaphores that were increased:
1037 * - No complex ops, thus all sleeping ops are
1039 * - if we decreased the value, then any sleeping
1040 * semaphore ops wont be able to run: If the
1041 * previous value was too small, then the new
1042 * value will be too small, too.
1044 for (i
= 0; i
< nsops
; i
++) {
1045 if (sops
[i
].sem_op
> 0) {
1046 otime
|= update_queue(sma
,
1047 sops
[i
].sem_num
, wake_q
);
1053 set_semotime(sma
, sops
);
1057 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1059 static int check_qop(struct sem_array
*sma
, int semnum
, struct sem_queue
*q
,
1062 struct sembuf
*sop
= q
->blocking
;
1065 * Linux always (since 0.99.10) reported a task as sleeping on all
1066 * semaphores. This violates SUS, therefore it was changed to the
1067 * standard compliant behavior.
1068 * Give the administrators a chance to notice that an application
1069 * might misbehave because it relies on the Linux behavior.
1071 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1072 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1073 current
->comm
, task_pid_nr(current
));
1075 if (sop
->sem_num
!= semnum
)
1078 if (count_zero
&& sop
->sem_op
== 0)
1080 if (!count_zero
&& sop
->sem_op
< 0)
1086 /* The following counts are associated to each semaphore:
1087 * semncnt number of tasks waiting on semval being nonzero
1088 * semzcnt number of tasks waiting on semval being zero
1090 * Per definition, a task waits only on the semaphore of the first semop
1091 * that cannot proceed, even if additional operation would block, too.
1093 static int count_semcnt(struct sem_array
*sma
, ushort semnum
,
1096 struct list_head
*l
;
1097 struct sem_queue
*q
;
1101 /* First: check the simple operations. They are easy to evaluate */
1103 l
= &sma
->sems
[semnum
].pending_const
;
1105 l
= &sma
->sems
[semnum
].pending_alter
;
1107 list_for_each_entry(q
, l
, list
) {
1108 /* all task on a per-semaphore list sleep on exactly
1114 /* Then: check the complex operations. */
1115 list_for_each_entry(q
, &sma
->pending_alter
, list
) {
1116 semcnt
+= check_qop(sma
, semnum
, q
, count_zero
);
1119 list_for_each_entry(q
, &sma
->pending_const
, list
) {
1120 semcnt
+= check_qop(sma
, semnum
, q
, count_zero
);
1126 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1127 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1128 * remains locked on exit.
1130 static void freeary(struct ipc_namespace
*ns
, struct kern_ipc_perm
*ipcp
)
1132 struct sem_undo
*un
, *tu
;
1133 struct sem_queue
*q
, *tq
;
1134 struct sem_array
*sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
1136 DEFINE_WAKE_Q(wake_q
);
1138 /* Free the existing undo structures for this semaphore set. */
1139 ipc_assert_locked_object(&sma
->sem_perm
);
1140 list_for_each_entry_safe(un
, tu
, &sma
->list_id
, list_id
) {
1141 list_del(&un
->list_id
);
1142 spin_lock(&un
->ulp
->lock
);
1144 list_del_rcu(&un
->list_proc
);
1145 spin_unlock(&un
->ulp
->lock
);
1149 /* Wake up all pending processes and let them fail with EIDRM. */
1150 list_for_each_entry_safe(q
, tq
, &sma
->pending_const
, list
) {
1151 unlink_queue(sma
, q
);
1152 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1155 list_for_each_entry_safe(q
, tq
, &sma
->pending_alter
, list
) {
1156 unlink_queue(sma
, q
);
1157 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1159 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
1160 struct sem
*sem
= &sma
->sems
[i
];
1161 list_for_each_entry_safe(q
, tq
, &sem
->pending_const
, list
) {
1162 unlink_queue(sma
, q
);
1163 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1165 list_for_each_entry_safe(q
, tq
, &sem
->pending_alter
, list
) {
1166 unlink_queue(sma
, q
);
1167 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1169 ipc_update_pid(&sem
->sempid
, NULL
);
1172 /* Remove the semaphore set from the IDR */
1174 sem_unlock(sma
, -1);
1178 ns
->used_sems
-= sma
->sem_nsems
;
1179 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1182 static unsigned long copy_semid_to_user(void __user
*buf
, struct semid64_ds
*in
, int version
)
1186 return copy_to_user(buf
, in
, sizeof(*in
));
1189 struct semid_ds out
;
1191 memset(&out
, 0, sizeof(out
));
1193 ipc64_perm_to_ipc_perm(&in
->sem_perm
, &out
.sem_perm
);
1195 out
.sem_otime
= in
->sem_otime
;
1196 out
.sem_ctime
= in
->sem_ctime
;
1197 out
.sem_nsems
= in
->sem_nsems
;
1199 return copy_to_user(buf
, &out
, sizeof(out
));
1206 static time64_t
get_semotime(struct sem_array
*sma
)
1211 res
= sma
->sems
[0].sem_otime
;
1212 for (i
= 1; i
< sma
->sem_nsems
; i
++) {
1213 time64_t to
= sma
->sems
[i
].sem_otime
;
1221 static int semctl_stat(struct ipc_namespace
*ns
, int semid
,
1222 int cmd
, struct semid64_ds
*semid64
)
1224 struct sem_array
*sma
;
1229 memset(semid64
, 0, sizeof(*semid64
));
1232 if (cmd
== SEM_STAT
|| cmd
== SEM_STAT_ANY
) {
1233 sma
= sem_obtain_object(ns
, semid
);
1238 id
= sma
->sem_perm
.id
;
1239 } else { /* IPC_STAT */
1240 sma
= sem_obtain_object_check(ns
, semid
);
1247 /* see comment for SHM_STAT_ANY */
1248 if (cmd
== SEM_STAT_ANY
)
1249 audit_ipc_obj(&sma
->sem_perm
);
1252 if (ipcperms(ns
, &sma
->sem_perm
, S_IRUGO
))
1256 err
= security_sem_semctl(&sma
->sem_perm
, cmd
);
1260 ipc_lock_object(&sma
->sem_perm
);
1262 if (!ipc_valid_object(&sma
->sem_perm
)) {
1263 ipc_unlock_object(&sma
->sem_perm
);
1268 kernel_to_ipc64_perm(&sma
->sem_perm
, &semid64
->sem_perm
);
1269 semotime
= get_semotime(sma
);
1270 semid64
->sem_otime
= semotime
;
1271 semid64
->sem_ctime
= sma
->sem_ctime
;
1272 #ifndef CONFIG_64BIT
1273 semid64
->sem_otime_high
= semotime
>> 32;
1274 semid64
->sem_ctime_high
= sma
->sem_ctime
>> 32;
1276 semid64
->sem_nsems
= sma
->sem_nsems
;
1278 ipc_unlock_object(&sma
->sem_perm
);
1287 static int semctl_info(struct ipc_namespace
*ns
, int semid
,
1288 int cmd
, void __user
*p
)
1290 struct seminfo seminfo
;
1294 err
= security_sem_semctl(NULL
, cmd
);
1298 memset(&seminfo
, 0, sizeof(seminfo
));
1299 seminfo
.semmni
= ns
->sc_semmni
;
1300 seminfo
.semmns
= ns
->sc_semmns
;
1301 seminfo
.semmsl
= ns
->sc_semmsl
;
1302 seminfo
.semopm
= ns
->sc_semopm
;
1303 seminfo
.semvmx
= SEMVMX
;
1304 seminfo
.semmnu
= SEMMNU
;
1305 seminfo
.semmap
= SEMMAP
;
1306 seminfo
.semume
= SEMUME
;
1307 down_read(&sem_ids(ns
).rwsem
);
1308 if (cmd
== SEM_INFO
) {
1309 seminfo
.semusz
= sem_ids(ns
).in_use
;
1310 seminfo
.semaem
= ns
->used_sems
;
1312 seminfo
.semusz
= SEMUSZ
;
1313 seminfo
.semaem
= SEMAEM
;
1315 max_id
= ipc_get_maxid(&sem_ids(ns
));
1316 up_read(&sem_ids(ns
).rwsem
);
1317 if (copy_to_user(p
, &seminfo
, sizeof(struct seminfo
)))
1319 return (max_id
< 0) ? 0 : max_id
;
1322 static int semctl_setval(struct ipc_namespace
*ns
, int semid
, int semnum
,
1325 struct sem_undo
*un
;
1326 struct sem_array
*sma
;
1329 DEFINE_WAKE_Q(wake_q
);
1331 if (val
> SEMVMX
|| val
< 0)
1335 sma
= sem_obtain_object_check(ns
, semid
);
1338 return PTR_ERR(sma
);
1341 if (semnum
< 0 || semnum
>= sma
->sem_nsems
) {
1347 if (ipcperms(ns
, &sma
->sem_perm
, S_IWUGO
)) {
1352 err
= security_sem_semctl(&sma
->sem_perm
, SETVAL
);
1358 sem_lock(sma
, NULL
, -1);
1360 if (!ipc_valid_object(&sma
->sem_perm
)) {
1361 sem_unlock(sma
, -1);
1366 semnum
= array_index_nospec(semnum
, sma
->sem_nsems
);
1367 curr
= &sma
->sems
[semnum
];
1369 ipc_assert_locked_object(&sma
->sem_perm
);
1370 list_for_each_entry(un
, &sma
->list_id
, list_id
)
1371 un
->semadj
[semnum
] = 0;
1374 ipc_update_pid(&curr
->sempid
, task_tgid(current
));
1375 sma
->sem_ctime
= ktime_get_real_seconds();
1376 /* maybe some queued-up processes were waiting for this */
1377 do_smart_update(sma
, NULL
, 0, 0, &wake_q
);
1378 sem_unlock(sma
, -1);
1384 static int semctl_main(struct ipc_namespace
*ns
, int semid
, int semnum
,
1385 int cmd
, void __user
*p
)
1387 struct sem_array
*sma
;
1390 ushort fast_sem_io
[SEMMSL_FAST
];
1391 ushort
*sem_io
= fast_sem_io
;
1392 DEFINE_WAKE_Q(wake_q
);
1395 sma
= sem_obtain_object_check(ns
, semid
);
1398 return PTR_ERR(sma
);
1401 nsems
= sma
->sem_nsems
;
1404 if (ipcperms(ns
, &sma
->sem_perm
, cmd
== SETALL
? S_IWUGO
: S_IRUGO
))
1405 goto out_rcu_wakeup
;
1407 err
= security_sem_semctl(&sma
->sem_perm
, cmd
);
1409 goto out_rcu_wakeup
;
1415 ushort __user
*array
= p
;
1418 sem_lock(sma
, NULL
, -1);
1419 if (!ipc_valid_object(&sma
->sem_perm
)) {
1423 if (nsems
> SEMMSL_FAST
) {
1424 if (!ipc_rcu_getref(&sma
->sem_perm
)) {
1428 sem_unlock(sma
, -1);
1430 sem_io
= kvmalloc_array(nsems
, sizeof(ushort
),
1432 if (sem_io
== NULL
) {
1433 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1438 sem_lock_and_putref(sma
);
1439 if (!ipc_valid_object(&sma
->sem_perm
)) {
1444 for (i
= 0; i
< sma
->sem_nsems
; i
++)
1445 sem_io
[i
] = sma
->sems
[i
].semval
;
1446 sem_unlock(sma
, -1);
1449 if (copy_to_user(array
, sem_io
, nsems
*sizeof(ushort
)))
1456 struct sem_undo
*un
;
1458 if (!ipc_rcu_getref(&sma
->sem_perm
)) {
1460 goto out_rcu_wakeup
;
1464 if (nsems
> SEMMSL_FAST
) {
1465 sem_io
= kvmalloc_array(nsems
, sizeof(ushort
),
1467 if (sem_io
== NULL
) {
1468 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1473 if (copy_from_user(sem_io
, p
, nsems
*sizeof(ushort
))) {
1474 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1479 for (i
= 0; i
< nsems
; i
++) {
1480 if (sem_io
[i
] > SEMVMX
) {
1481 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1487 sem_lock_and_putref(sma
);
1488 if (!ipc_valid_object(&sma
->sem_perm
)) {
1493 for (i
= 0; i
< nsems
; i
++) {
1494 sma
->sems
[i
].semval
= sem_io
[i
];
1495 ipc_update_pid(&sma
->sems
[i
].sempid
, task_tgid(current
));
1498 ipc_assert_locked_object(&sma
->sem_perm
);
1499 list_for_each_entry(un
, &sma
->list_id
, list_id
) {
1500 for (i
= 0; i
< nsems
; i
++)
1503 sma
->sem_ctime
= ktime_get_real_seconds();
1504 /* maybe some queued-up processes were waiting for this */
1505 do_smart_update(sma
, NULL
, 0, 0, &wake_q
);
1509 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1512 if (semnum
< 0 || semnum
>= nsems
)
1513 goto out_rcu_wakeup
;
1515 sem_lock(sma
, NULL
, -1);
1516 if (!ipc_valid_object(&sma
->sem_perm
)) {
1521 semnum
= array_index_nospec(semnum
, nsems
);
1522 curr
= &sma
->sems
[semnum
];
1529 err
= pid_vnr(curr
->sempid
);
1532 err
= count_semcnt(sma
, semnum
, 0);
1535 err
= count_semcnt(sma
, semnum
, 1);
1540 sem_unlock(sma
, -1);
1545 if (sem_io
!= fast_sem_io
)
1550 static inline unsigned long
1551 copy_semid_from_user(struct semid64_ds
*out
, void __user
*buf
, int version
)
1555 if (copy_from_user(out
, buf
, sizeof(*out
)))
1560 struct semid_ds tbuf_old
;
1562 if (copy_from_user(&tbuf_old
, buf
, sizeof(tbuf_old
)))
1565 out
->sem_perm
.uid
= tbuf_old
.sem_perm
.uid
;
1566 out
->sem_perm
.gid
= tbuf_old
.sem_perm
.gid
;
1567 out
->sem_perm
.mode
= tbuf_old
.sem_perm
.mode
;
1577 * This function handles some semctl commands which require the rwsem
1578 * to be held in write mode.
1579 * NOTE: no locks must be held, the rwsem is taken inside this function.
1581 static int semctl_down(struct ipc_namespace
*ns
, int semid
,
1582 int cmd
, struct semid64_ds
*semid64
)
1584 struct sem_array
*sma
;
1586 struct kern_ipc_perm
*ipcp
;
1588 down_write(&sem_ids(ns
).rwsem
);
1591 ipcp
= ipcctl_pre_down_nolock(ns
, &sem_ids(ns
), semid
, cmd
,
1592 &semid64
->sem_perm
, 0);
1594 err
= PTR_ERR(ipcp
);
1598 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
1600 err
= security_sem_semctl(&sma
->sem_perm
, cmd
);
1606 sem_lock(sma
, NULL
, -1);
1607 /* freeary unlocks the ipc object and rcu */
1611 sem_lock(sma
, NULL
, -1);
1612 err
= ipc_update_perm(&semid64
->sem_perm
, ipcp
);
1615 sma
->sem_ctime
= ktime_get_real_seconds();
1623 sem_unlock(sma
, -1);
1627 up_write(&sem_ids(ns
).rwsem
);
1631 long ksys_semctl(int semid
, int semnum
, int cmd
, unsigned long arg
)
1634 struct ipc_namespace
*ns
;
1635 void __user
*p
= (void __user
*)arg
;
1636 struct semid64_ds semid64
;
1642 version
= ipc_parse_version(&cmd
);
1643 ns
= current
->nsproxy
->ipc_ns
;
1648 return semctl_info(ns
, semid
, cmd
, p
);
1652 err
= semctl_stat(ns
, semid
, cmd
, &semid64
);
1655 if (copy_semid_to_user(p
, &semid64
, version
))
1664 return semctl_main(ns
, semid
, semnum
, cmd
, p
);
1667 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1668 /* big-endian 64bit */
1671 /* 32bit or little-endian 64bit */
1674 return semctl_setval(ns
, semid
, semnum
, val
);
1677 if (copy_semid_from_user(&semid64
, p
, version
))
1680 return semctl_down(ns
, semid
, cmd
, &semid64
);
1686 SYSCALL_DEFINE4(semctl
, int, semid
, int, semnum
, int, cmd
, unsigned long, arg
)
1688 return ksys_semctl(semid
, semnum
, cmd
, arg
);
1691 #ifdef CONFIG_COMPAT
1693 struct compat_semid_ds
{
1694 struct compat_ipc_perm sem_perm
;
1695 compat_time_t sem_otime
;
1696 compat_time_t sem_ctime
;
1697 compat_uptr_t sem_base
;
1698 compat_uptr_t sem_pending
;
1699 compat_uptr_t sem_pending_last
;
1701 unsigned short sem_nsems
;
1704 static int copy_compat_semid_from_user(struct semid64_ds
*out
, void __user
*buf
,
1707 memset(out
, 0, sizeof(*out
));
1708 if (version
== IPC_64
) {
1709 struct compat_semid64_ds __user
*p
= buf
;
1710 return get_compat_ipc64_perm(&out
->sem_perm
, &p
->sem_perm
);
1712 struct compat_semid_ds __user
*p
= buf
;
1713 return get_compat_ipc_perm(&out
->sem_perm
, &p
->sem_perm
);
1717 static int copy_compat_semid_to_user(void __user
*buf
, struct semid64_ds
*in
,
1720 if (version
== IPC_64
) {
1721 struct compat_semid64_ds v
;
1722 memset(&v
, 0, sizeof(v
));
1723 to_compat_ipc64_perm(&v
.sem_perm
, &in
->sem_perm
);
1724 v
.sem_otime
= lower_32_bits(in
->sem_otime
);
1725 v
.sem_otime_high
= upper_32_bits(in
->sem_otime
);
1726 v
.sem_ctime
= lower_32_bits(in
->sem_ctime
);
1727 v
.sem_ctime_high
= upper_32_bits(in
->sem_ctime
);
1728 v
.sem_nsems
= in
->sem_nsems
;
1729 return copy_to_user(buf
, &v
, sizeof(v
));
1731 struct compat_semid_ds v
;
1732 memset(&v
, 0, sizeof(v
));
1733 to_compat_ipc_perm(&v
.sem_perm
, &in
->sem_perm
);
1734 v
.sem_otime
= in
->sem_otime
;
1735 v
.sem_ctime
= in
->sem_ctime
;
1736 v
.sem_nsems
= in
->sem_nsems
;
1737 return copy_to_user(buf
, &v
, sizeof(v
));
1741 long compat_ksys_semctl(int semid
, int semnum
, int cmd
, int arg
)
1743 void __user
*p
= compat_ptr(arg
);
1744 struct ipc_namespace
*ns
;
1745 struct semid64_ds semid64
;
1746 int version
= compat_ipc_parse_version(&cmd
);
1749 ns
= current
->nsproxy
->ipc_ns
;
1754 switch (cmd
& (~IPC_64
)) {
1757 return semctl_info(ns
, semid
, cmd
, p
);
1761 err
= semctl_stat(ns
, semid
, cmd
, &semid64
);
1764 if (copy_compat_semid_to_user(p
, &semid64
, version
))
1773 return semctl_main(ns
, semid
, semnum
, cmd
, p
);
1775 return semctl_setval(ns
, semid
, semnum
, arg
);
1777 if (copy_compat_semid_from_user(&semid64
, p
, version
))
1781 return semctl_down(ns
, semid
, cmd
, &semid64
);
1787 COMPAT_SYSCALL_DEFINE4(semctl
, int, semid
, int, semnum
, int, cmd
, int, arg
)
1789 return compat_ksys_semctl(semid
, semnum
, cmd
, arg
);
1793 /* If the task doesn't already have a undo_list, then allocate one
1794 * here. We guarantee there is only one thread using this undo list,
1795 * and current is THE ONE
1797 * If this allocation and assignment succeeds, but later
1798 * portions of this code fail, there is no need to free the sem_undo_list.
1799 * Just let it stay associated with the task, and it'll be freed later
1802 * This can block, so callers must hold no locks.
1804 static inline int get_undo_list(struct sem_undo_list
**undo_listp
)
1806 struct sem_undo_list
*undo_list
;
1808 undo_list
= current
->sysvsem
.undo_list
;
1810 undo_list
= kzalloc(sizeof(*undo_list
), GFP_KERNEL
);
1811 if (undo_list
== NULL
)
1813 spin_lock_init(&undo_list
->lock
);
1814 refcount_set(&undo_list
->refcnt
, 1);
1815 INIT_LIST_HEAD(&undo_list
->list_proc
);
1817 current
->sysvsem
.undo_list
= undo_list
;
1819 *undo_listp
= undo_list
;
1823 static struct sem_undo
*__lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1825 struct sem_undo
*un
;
1827 list_for_each_entry_rcu(un
, &ulp
->list_proc
, list_proc
) {
1828 if (un
->semid
== semid
)
1834 static struct sem_undo
*lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1836 struct sem_undo
*un
;
1838 assert_spin_locked(&ulp
->lock
);
1840 un
= __lookup_undo(ulp
, semid
);
1842 list_del_rcu(&un
->list_proc
);
1843 list_add_rcu(&un
->list_proc
, &ulp
->list_proc
);
1849 * find_alloc_undo - lookup (and if not present create) undo array
1851 * @semid: semaphore array id
1853 * The function looks up (and if not present creates) the undo structure.
1854 * The size of the undo structure depends on the size of the semaphore
1855 * array, thus the alloc path is not that straightforward.
1856 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1857 * performs a rcu_read_lock().
1859 static struct sem_undo
*find_alloc_undo(struct ipc_namespace
*ns
, int semid
)
1861 struct sem_array
*sma
;
1862 struct sem_undo_list
*ulp
;
1863 struct sem_undo
*un
, *new;
1866 error
= get_undo_list(&ulp
);
1868 return ERR_PTR(error
);
1871 spin_lock(&ulp
->lock
);
1872 un
= lookup_undo(ulp
, semid
);
1873 spin_unlock(&ulp
->lock
);
1874 if (likely(un
!= NULL
))
1877 /* no undo structure around - allocate one. */
1878 /* step 1: figure out the size of the semaphore array */
1879 sma
= sem_obtain_object_check(ns
, semid
);
1882 return ERR_CAST(sma
);
1885 nsems
= sma
->sem_nsems
;
1886 if (!ipc_rcu_getref(&sma
->sem_perm
)) {
1888 un
= ERR_PTR(-EIDRM
);
1893 /* step 2: allocate new undo structure */
1894 new = kzalloc(sizeof(struct sem_undo
) + sizeof(short)*nsems
, GFP_KERNEL
);
1896 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1897 return ERR_PTR(-ENOMEM
);
1900 /* step 3: Acquire the lock on semaphore array */
1902 sem_lock_and_putref(sma
);
1903 if (!ipc_valid_object(&sma
->sem_perm
)) {
1904 sem_unlock(sma
, -1);
1907 un
= ERR_PTR(-EIDRM
);
1910 spin_lock(&ulp
->lock
);
1913 * step 4: check for races: did someone else allocate the undo struct?
1915 un
= lookup_undo(ulp
, semid
);
1920 /* step 5: initialize & link new undo structure */
1921 new->semadj
= (short *) &new[1];
1924 assert_spin_locked(&ulp
->lock
);
1925 list_add_rcu(&new->list_proc
, &ulp
->list_proc
);
1926 ipc_assert_locked_object(&sma
->sem_perm
);
1927 list_add(&new->list_id
, &sma
->list_id
);
1931 spin_unlock(&ulp
->lock
);
1932 sem_unlock(sma
, -1);
1937 static long do_semtimedop(int semid
, struct sembuf __user
*tsops
,
1938 unsigned nsops
, const struct timespec64
*timeout
)
1940 int error
= -EINVAL
;
1941 struct sem_array
*sma
;
1942 struct sembuf fast_sops
[SEMOPM_FAST
];
1943 struct sembuf
*sops
= fast_sops
, *sop
;
1944 struct sem_undo
*un
;
1946 bool undos
= false, alter
= false, dupsop
= false;
1947 struct sem_queue queue
;
1948 unsigned long dup
= 0, jiffies_left
= 0;
1949 struct ipc_namespace
*ns
;
1951 ns
= current
->nsproxy
->ipc_ns
;
1953 if (nsops
< 1 || semid
< 0)
1955 if (nsops
> ns
->sc_semopm
)
1957 if (nsops
> SEMOPM_FAST
) {
1958 sops
= kvmalloc_array(nsops
, sizeof(*sops
), GFP_KERNEL
);
1963 if (copy_from_user(sops
, tsops
, nsops
* sizeof(*tsops
))) {
1969 if (timeout
->tv_sec
< 0 || timeout
->tv_nsec
< 0 ||
1970 timeout
->tv_nsec
>= 1000000000L) {
1974 jiffies_left
= timespec64_to_jiffies(timeout
);
1978 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
1979 unsigned long mask
= 1ULL << ((sop
->sem_num
) % BITS_PER_LONG
);
1981 if (sop
->sem_num
>= max
)
1983 if (sop
->sem_flg
& SEM_UNDO
)
1987 * There was a previous alter access that appears
1988 * to have accessed the same semaphore, thus use
1989 * the dupsop logic. "appears", because the detection
1990 * can only check % BITS_PER_LONG.
1994 if (sop
->sem_op
!= 0) {
2001 /* On success, find_alloc_undo takes the rcu_read_lock */
2002 un
= find_alloc_undo(ns
, semid
);
2004 error
= PTR_ERR(un
);
2012 sma
= sem_obtain_object_check(ns
, semid
);
2015 error
= PTR_ERR(sma
);
2020 if (max
>= sma
->sem_nsems
) {
2026 if (ipcperms(ns
, &sma
->sem_perm
, alter
? S_IWUGO
: S_IRUGO
)) {
2031 error
= security_sem_semop(&sma
->sem_perm
, sops
, nsops
, alter
);
2038 locknum
= sem_lock(sma
, sops
, nsops
);
2040 * We eventually might perform the following check in a lockless
2041 * fashion, considering ipc_valid_object() locking constraints.
2042 * If nsops == 1 and there is no contention for sem_perm.lock, then
2043 * only a per-semaphore lock is held and it's OK to proceed with the
2044 * check below. More details on the fine grained locking scheme
2045 * entangled here and why it's RMID race safe on comments at sem_lock()
2047 if (!ipc_valid_object(&sma
->sem_perm
))
2048 goto out_unlock_free
;
2050 * semid identifiers are not unique - find_alloc_undo may have
2051 * allocated an undo structure, it was invalidated by an RMID
2052 * and now a new array with received the same id. Check and fail.
2053 * This case can be detected checking un->semid. The existence of
2054 * "un" itself is guaranteed by rcu.
2056 if (un
&& un
->semid
== -1)
2057 goto out_unlock_free
;
2060 queue
.nsops
= nsops
;
2062 queue
.pid
= task_tgid(current
);
2063 queue
.alter
= alter
;
2064 queue
.dupsop
= dupsop
;
2066 error
= perform_atomic_semop(sma
, &queue
);
2067 if (error
== 0) { /* non-blocking succesfull path */
2068 DEFINE_WAKE_Q(wake_q
);
2071 * If the operation was successful, then do
2072 * the required updates.
2075 do_smart_update(sma
, sops
, nsops
, 1, &wake_q
);
2077 set_semotime(sma
, sops
);
2079 sem_unlock(sma
, locknum
);
2085 if (error
< 0) /* non-blocking error path */
2086 goto out_unlock_free
;
2089 * We need to sleep on this operation, so we put the current
2090 * task into the pending queue and go to sleep.
2094 int idx
= array_index_nospec(sops
->sem_num
, sma
->sem_nsems
);
2095 curr
= &sma
->sems
[idx
];
2098 if (sma
->complex_count
) {
2099 list_add_tail(&queue
.list
,
2100 &sma
->pending_alter
);
2103 list_add_tail(&queue
.list
,
2104 &curr
->pending_alter
);
2107 list_add_tail(&queue
.list
, &curr
->pending_const
);
2110 if (!sma
->complex_count
)
2114 list_add_tail(&queue
.list
, &sma
->pending_alter
);
2116 list_add_tail(&queue
.list
, &sma
->pending_const
);
2118 sma
->complex_count
++;
2122 queue
.status
= -EINTR
;
2123 queue
.sleeper
= current
;
2125 __set_current_state(TASK_INTERRUPTIBLE
);
2126 sem_unlock(sma
, locknum
);
2130 jiffies_left
= schedule_timeout(jiffies_left
);
2135 * fastpath: the semop has completed, either successfully or
2136 * not, from the syscall pov, is quite irrelevant to us at this
2137 * point; we're done.
2139 * We _do_ care, nonetheless, about being awoken by a signal or
2140 * spuriously. The queue.status is checked again in the
2141 * slowpath (aka after taking sem_lock), such that we can detect
2142 * scenarios where we were awakened externally, during the
2143 * window between wake_q_add() and wake_up_q().
2145 error
= READ_ONCE(queue
.status
);
2146 if (error
!= -EINTR
) {
2148 * User space could assume that semop() is a memory
2149 * barrier: Without the mb(), the cpu could
2150 * speculatively read in userspace stale data that was
2151 * overwritten by the previous owner of the semaphore.
2158 locknum
= sem_lock(sma
, sops
, nsops
);
2160 if (!ipc_valid_object(&sma
->sem_perm
))
2161 goto out_unlock_free
;
2163 error
= READ_ONCE(queue
.status
);
2166 * If queue.status != -EINTR we are woken up by another process.
2167 * Leave without unlink_queue(), but with sem_unlock().
2169 if (error
!= -EINTR
)
2170 goto out_unlock_free
;
2173 * If an interrupt occurred we have to clean up the queue.
2175 if (timeout
&& jiffies_left
== 0)
2177 } while (error
== -EINTR
&& !signal_pending(current
)); /* spurious */
2179 unlink_queue(sma
, &queue
);
2182 sem_unlock(sma
, locknum
);
2185 if (sops
!= fast_sops
)
2190 long ksys_semtimedop(int semid
, struct sembuf __user
*tsops
,
2191 unsigned int nsops
, const struct __kernel_timespec __user
*timeout
)
2194 struct timespec64 ts
;
2195 if (get_timespec64(&ts
, timeout
))
2197 return do_semtimedop(semid
, tsops
, nsops
, &ts
);
2199 return do_semtimedop(semid
, tsops
, nsops
, NULL
);
2202 SYSCALL_DEFINE4(semtimedop
, int, semid
, struct sembuf __user
*, tsops
,
2203 unsigned int, nsops
, const struct __kernel_timespec __user
*, timeout
)
2205 return ksys_semtimedop(semid
, tsops
, nsops
, timeout
);
2208 #ifdef CONFIG_COMPAT_32BIT_TIME
2209 long compat_ksys_semtimedop(int semid
, struct sembuf __user
*tsems
,
2211 const struct compat_timespec __user
*timeout
)
2214 struct timespec64 ts
;
2215 if (compat_get_timespec64(&ts
, timeout
))
2217 return do_semtimedop(semid
, tsems
, nsops
, &ts
);
2219 return do_semtimedop(semid
, tsems
, nsops
, NULL
);
2222 COMPAT_SYSCALL_DEFINE4(semtimedop
, int, semid
, struct sembuf __user
*, tsems
,
2223 unsigned int, nsops
,
2224 const struct compat_timespec __user
*, timeout
)
2226 return compat_ksys_semtimedop(semid
, tsems
, nsops
, timeout
);
2230 SYSCALL_DEFINE3(semop
, int, semid
, struct sembuf __user
*, tsops
,
2233 return do_semtimedop(semid
, tsops
, nsops
, NULL
);
2236 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2237 * parent and child tasks.
2240 int copy_semundo(unsigned long clone_flags
, struct task_struct
*tsk
)
2242 struct sem_undo_list
*undo_list
;
2245 if (clone_flags
& CLONE_SYSVSEM
) {
2246 error
= get_undo_list(&undo_list
);
2249 refcount_inc(&undo_list
->refcnt
);
2250 tsk
->sysvsem
.undo_list
= undo_list
;
2252 tsk
->sysvsem
.undo_list
= NULL
;
2258 * add semadj values to semaphores, free undo structures.
2259 * undo structures are not freed when semaphore arrays are destroyed
2260 * so some of them may be out of date.
2261 * IMPLEMENTATION NOTE: There is some confusion over whether the
2262 * set of adjustments that needs to be done should be done in an atomic
2263 * manner or not. That is, if we are attempting to decrement the semval
2264 * should we queue up and wait until we can do so legally?
2265 * The original implementation attempted to do this (queue and wait).
2266 * The current implementation does not do so. The POSIX standard
2267 * and SVID should be consulted to determine what behavior is mandated.
2269 void exit_sem(struct task_struct
*tsk
)
2271 struct sem_undo_list
*ulp
;
2273 ulp
= tsk
->sysvsem
.undo_list
;
2276 tsk
->sysvsem
.undo_list
= NULL
;
2278 if (!refcount_dec_and_test(&ulp
->refcnt
))
2282 struct sem_array
*sma
;
2283 struct sem_undo
*un
;
2285 DEFINE_WAKE_Q(wake_q
);
2290 un
= list_entry_rcu(ulp
->list_proc
.next
,
2291 struct sem_undo
, list_proc
);
2292 if (&un
->list_proc
== &ulp
->list_proc
) {
2294 * We must wait for freeary() before freeing this ulp,
2295 * in case we raced with last sem_undo. There is a small
2296 * possibility where we exit while freeary() didn't
2297 * finish unlocking sem_undo_list.
2299 spin_lock(&ulp
->lock
);
2300 spin_unlock(&ulp
->lock
);
2304 spin_lock(&ulp
->lock
);
2306 spin_unlock(&ulp
->lock
);
2308 /* exit_sem raced with IPC_RMID, nothing to do */
2314 sma
= sem_obtain_object_check(tsk
->nsproxy
->ipc_ns
, semid
);
2315 /* exit_sem raced with IPC_RMID, nothing to do */
2321 sem_lock(sma
, NULL
, -1);
2322 /* exit_sem raced with IPC_RMID, nothing to do */
2323 if (!ipc_valid_object(&sma
->sem_perm
)) {
2324 sem_unlock(sma
, -1);
2328 un
= __lookup_undo(ulp
, semid
);
2330 /* exit_sem raced with IPC_RMID+semget() that created
2331 * exactly the same semid. Nothing to do.
2333 sem_unlock(sma
, -1);
2338 /* remove un from the linked lists */
2339 ipc_assert_locked_object(&sma
->sem_perm
);
2340 list_del(&un
->list_id
);
2342 /* we are the last process using this ulp, acquiring ulp->lock
2343 * isn't required. Besides that, we are also protected against
2344 * IPC_RMID as we hold sma->sem_perm lock now
2346 list_del_rcu(&un
->list_proc
);
2348 /* perform adjustments registered in un */
2349 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
2350 struct sem
*semaphore
= &sma
->sems
[i
];
2351 if (un
->semadj
[i
]) {
2352 semaphore
->semval
+= un
->semadj
[i
];
2354 * Range checks of the new semaphore value,
2355 * not defined by sus:
2356 * - Some unices ignore the undo entirely
2357 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2358 * - some cap the value (e.g. FreeBSD caps
2359 * at 0, but doesn't enforce SEMVMX)
2361 * Linux caps the semaphore value, both at 0
2364 * Manfred <manfred@colorfullife.com>
2366 if (semaphore
->semval
< 0)
2367 semaphore
->semval
= 0;
2368 if (semaphore
->semval
> SEMVMX
)
2369 semaphore
->semval
= SEMVMX
;
2370 ipc_update_pid(&semaphore
->sempid
, task_tgid(current
));
2373 /* maybe some queued-up processes were waiting for this */
2374 do_smart_update(sma
, NULL
, 0, 1, &wake_q
);
2375 sem_unlock(sma
, -1);
2384 #ifdef CONFIG_PROC_FS
2385 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
)
2387 struct user_namespace
*user_ns
= seq_user_ns(s
);
2388 struct kern_ipc_perm
*ipcp
= it
;
2389 struct sem_array
*sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
2393 * The proc interface isn't aware of sem_lock(), it calls
2394 * ipc_lock_object() directly (in sysvipc_find_ipc).
2395 * In order to stay compatible with sem_lock(), we must
2396 * enter / leave complex_mode.
2398 complexmode_enter(sma
);
2400 sem_otime
= get_semotime(sma
);
2403 "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
2408 from_kuid_munged(user_ns
, sma
->sem_perm
.uid
),
2409 from_kgid_munged(user_ns
, sma
->sem_perm
.gid
),
2410 from_kuid_munged(user_ns
, sma
->sem_perm
.cuid
),
2411 from_kgid_munged(user_ns
, sma
->sem_perm
.cgid
),
2415 complexmode_tryleave(sma
);