1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/export.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
16 #include <linux/kmod.h>
17 #include <linux/perf_event.h>
18 #include <linux/resource.h>
19 #include <linux/kernel.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/file.h>
40 #include <linux/mount.h>
41 #include <linux/gfp.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/version.h>
44 #include <linux/ctype.h>
46 #include <linux/compat.h>
47 #include <linux/syscalls.h>
48 #include <linux/kprobes.h>
49 #include <linux/user_namespace.h>
50 #include <linux/binfmts.h>
52 #include <linux/sched.h>
53 #include <linux/sched/autogroup.h>
54 #include <linux/sched/loadavg.h>
55 #include <linux/sched/stat.h>
56 #include <linux/sched/mm.h>
57 #include <linux/sched/coredump.h>
58 #include <linux/sched/task.h>
59 #include <linux/sched/cputime.h>
60 #include <linux/rcupdate.h>
61 #include <linux/uidgid.h>
62 #include <linux/cred.h>
64 #include <linux/nospec.h>
66 #include <linux/kmsg_dump.h>
67 /* Move somewhere else to avoid recompiling? */
68 #include <generated/utsrelease.h>
70 #include <linux/uaccess.h>
72 #include <asm/unistd.h>
76 #ifndef SET_UNALIGN_CTL
77 # define SET_UNALIGN_CTL(a, b) (-EINVAL)
79 #ifndef GET_UNALIGN_CTL
80 # define GET_UNALIGN_CTL(a, b) (-EINVAL)
83 # define SET_FPEMU_CTL(a, b) (-EINVAL)
86 # define GET_FPEMU_CTL(a, b) (-EINVAL)
89 # define SET_FPEXC_CTL(a, b) (-EINVAL)
92 # define GET_FPEXC_CTL(a, b) (-EINVAL)
95 # define GET_ENDIAN(a, b) (-EINVAL)
98 # define SET_ENDIAN(a, b) (-EINVAL)
101 # define GET_TSC_CTL(a) (-EINVAL)
104 # define SET_TSC_CTL(a) (-EINVAL)
106 #ifndef MPX_ENABLE_MANAGEMENT
107 # define MPX_ENABLE_MANAGEMENT() (-EINVAL)
109 #ifndef MPX_DISABLE_MANAGEMENT
110 # define MPX_DISABLE_MANAGEMENT() (-EINVAL)
113 # define GET_FP_MODE(a) (-EINVAL)
116 # define SET_FP_MODE(a,b) (-EINVAL)
119 # define SVE_SET_VL(a) (-EINVAL)
122 # define SVE_GET_VL() (-EINVAL)
126 * this is where the system-wide overflow UID and GID are defined, for
127 * architectures that now have 32-bit UID/GID but didn't in the past
130 int overflowuid
= DEFAULT_OVERFLOWUID
;
131 int overflowgid
= DEFAULT_OVERFLOWGID
;
133 EXPORT_SYMBOL(overflowuid
);
134 EXPORT_SYMBOL(overflowgid
);
137 * the same as above, but for filesystems which can only store a 16-bit
138 * UID and GID. as such, this is needed on all architectures
141 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
142 int fs_overflowgid
= DEFAULT_FS_OVERFLOWGID
;
144 EXPORT_SYMBOL(fs_overflowuid
);
145 EXPORT_SYMBOL(fs_overflowgid
);
148 * Returns true if current's euid is same as p's uid or euid,
149 * or has CAP_SYS_NICE to p's user_ns.
151 * Called with rcu_read_lock, creds are safe
153 static bool set_one_prio_perm(struct task_struct
*p
)
155 const struct cred
*cred
= current_cred(), *pcred
= __task_cred(p
);
157 if (uid_eq(pcred
->uid
, cred
->euid
) ||
158 uid_eq(pcred
->euid
, cred
->euid
))
160 if (ns_capable(pcred
->user_ns
, CAP_SYS_NICE
))
166 * set the priority of a task
167 * - the caller must hold the RCU read lock
169 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
173 if (!set_one_prio_perm(p
)) {
177 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
181 no_nice
= security_task_setnice(p
, niceval
);
188 set_user_nice(p
, niceval
);
193 SYSCALL_DEFINE3(setpriority
, int, which
, int, who
, int, niceval
)
195 struct task_struct
*g
, *p
;
196 struct user_struct
*user
;
197 const struct cred
*cred
= current_cred();
202 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
205 /* normalize: avoid signed division (rounding problems) */
207 if (niceval
< MIN_NICE
)
209 if (niceval
> MAX_NICE
)
213 read_lock(&tasklist_lock
);
217 p
= find_task_by_vpid(who
);
221 error
= set_one_prio(p
, niceval
, error
);
225 pgrp
= find_vpid(who
);
227 pgrp
= task_pgrp(current
);
228 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
229 error
= set_one_prio(p
, niceval
, error
);
230 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
233 uid
= make_kuid(cred
->user_ns
, who
);
237 else if (!uid_eq(uid
, cred
->uid
)) {
238 user
= find_user(uid
);
240 goto out_unlock
; /* No processes for this user */
242 do_each_thread(g
, p
) {
243 if (uid_eq(task_uid(p
), uid
) && task_pid_vnr(p
))
244 error
= set_one_prio(p
, niceval
, error
);
245 } while_each_thread(g
, p
);
246 if (!uid_eq(uid
, cred
->uid
))
247 free_uid(user
); /* For find_user() */
251 read_unlock(&tasklist_lock
);
258 * Ugh. To avoid negative return values, "getpriority()" will
259 * not return the normal nice-value, but a negated value that
260 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
261 * to stay compatible.
263 SYSCALL_DEFINE2(getpriority
, int, which
, int, who
)
265 struct task_struct
*g
, *p
;
266 struct user_struct
*user
;
267 const struct cred
*cred
= current_cred();
268 long niceval
, retval
= -ESRCH
;
272 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
276 read_lock(&tasklist_lock
);
280 p
= find_task_by_vpid(who
);
284 niceval
= nice_to_rlimit(task_nice(p
));
285 if (niceval
> retval
)
291 pgrp
= find_vpid(who
);
293 pgrp
= task_pgrp(current
);
294 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
295 niceval
= nice_to_rlimit(task_nice(p
));
296 if (niceval
> retval
)
298 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
301 uid
= make_kuid(cred
->user_ns
, who
);
305 else if (!uid_eq(uid
, cred
->uid
)) {
306 user
= find_user(uid
);
308 goto out_unlock
; /* No processes for this user */
310 do_each_thread(g
, p
) {
311 if (uid_eq(task_uid(p
), uid
) && task_pid_vnr(p
)) {
312 niceval
= nice_to_rlimit(task_nice(p
));
313 if (niceval
> retval
)
316 } while_each_thread(g
, p
);
317 if (!uid_eq(uid
, cred
->uid
))
318 free_uid(user
); /* for find_user() */
322 read_unlock(&tasklist_lock
);
329 * Unprivileged users may change the real gid to the effective gid
330 * or vice versa. (BSD-style)
332 * If you set the real gid at all, or set the effective gid to a value not
333 * equal to the real gid, then the saved gid is set to the new effective gid.
335 * This makes it possible for a setgid program to completely drop its
336 * privileges, which is often a useful assertion to make when you are doing
337 * a security audit over a program.
339 * The general idea is that a program which uses just setregid() will be
340 * 100% compatible with BSD. A program which uses just setgid() will be
341 * 100% compatible with POSIX with saved IDs.
343 * SMP: There are not races, the GIDs are checked only by filesystem
344 * operations (as far as semantic preservation is concerned).
346 #ifdef CONFIG_MULTIUSER
347 long __sys_setregid(gid_t rgid
, gid_t egid
)
349 struct user_namespace
*ns
= current_user_ns();
350 const struct cred
*old
;
355 krgid
= make_kgid(ns
, rgid
);
356 kegid
= make_kgid(ns
, egid
);
358 if ((rgid
!= (gid_t
) -1) && !gid_valid(krgid
))
360 if ((egid
!= (gid_t
) -1) && !gid_valid(kegid
))
363 new = prepare_creds();
366 old
= current_cred();
369 if (rgid
!= (gid_t
) -1) {
370 if (gid_eq(old
->gid
, krgid
) ||
371 gid_eq(old
->egid
, krgid
) ||
372 ns_capable(old
->user_ns
, CAP_SETGID
))
377 if (egid
!= (gid_t
) -1) {
378 if (gid_eq(old
->gid
, kegid
) ||
379 gid_eq(old
->egid
, kegid
) ||
380 gid_eq(old
->sgid
, kegid
) ||
381 ns_capable(old
->user_ns
, CAP_SETGID
))
387 if (rgid
!= (gid_t
) -1 ||
388 (egid
!= (gid_t
) -1 && !gid_eq(kegid
, old
->gid
)))
389 new->sgid
= new->egid
;
390 new->fsgid
= new->egid
;
392 return commit_creds(new);
399 SYSCALL_DEFINE2(setregid
, gid_t
, rgid
, gid_t
, egid
)
401 return __sys_setregid(rgid
, egid
);
405 * setgid() is implemented like SysV w/ SAVED_IDS
407 * SMP: Same implicit races as above.
409 long __sys_setgid(gid_t gid
)
411 struct user_namespace
*ns
= current_user_ns();
412 const struct cred
*old
;
417 kgid
= make_kgid(ns
, gid
);
418 if (!gid_valid(kgid
))
421 new = prepare_creds();
424 old
= current_cred();
427 if (ns_capable(old
->user_ns
, CAP_SETGID
))
428 new->gid
= new->egid
= new->sgid
= new->fsgid
= kgid
;
429 else if (gid_eq(kgid
, old
->gid
) || gid_eq(kgid
, old
->sgid
))
430 new->egid
= new->fsgid
= kgid
;
434 return commit_creds(new);
441 SYSCALL_DEFINE1(setgid
, gid_t
, gid
)
443 return __sys_setgid(gid
);
447 * change the user struct in a credentials set to match the new UID
449 static int set_user(struct cred
*new)
451 struct user_struct
*new_user
;
453 new_user
= alloc_uid(new->uid
);
458 * We don't fail in case of NPROC limit excess here because too many
459 * poorly written programs don't check set*uid() return code, assuming
460 * it never fails if called by root. We may still enforce NPROC limit
461 * for programs doing set*uid()+execve() by harmlessly deferring the
462 * failure to the execve() stage.
464 if (atomic_read(&new_user
->processes
) >= rlimit(RLIMIT_NPROC
) &&
465 new_user
!= INIT_USER
)
466 current
->flags
|= PF_NPROC_EXCEEDED
;
468 current
->flags
&= ~PF_NPROC_EXCEEDED
;
471 new->user
= new_user
;
476 * Unprivileged users may change the real uid to the effective uid
477 * or vice versa. (BSD-style)
479 * If you set the real uid at all, or set the effective uid to a value not
480 * equal to the real uid, then the saved uid is set to the new effective uid.
482 * This makes it possible for a setuid program to completely drop its
483 * privileges, which is often a useful assertion to make when you are doing
484 * a security audit over a program.
486 * The general idea is that a program which uses just setreuid() will be
487 * 100% compatible with BSD. A program which uses just setuid() will be
488 * 100% compatible with POSIX with saved IDs.
490 long __sys_setreuid(uid_t ruid
, uid_t euid
)
492 struct user_namespace
*ns
= current_user_ns();
493 const struct cred
*old
;
498 kruid
= make_kuid(ns
, ruid
);
499 keuid
= make_kuid(ns
, euid
);
501 if ((ruid
!= (uid_t
) -1) && !uid_valid(kruid
))
503 if ((euid
!= (uid_t
) -1) && !uid_valid(keuid
))
506 new = prepare_creds();
509 old
= current_cred();
512 if (ruid
!= (uid_t
) -1) {
514 if (!uid_eq(old
->uid
, kruid
) &&
515 !uid_eq(old
->euid
, kruid
) &&
516 !ns_capable(old
->user_ns
, CAP_SETUID
))
520 if (euid
!= (uid_t
) -1) {
522 if (!uid_eq(old
->uid
, keuid
) &&
523 !uid_eq(old
->euid
, keuid
) &&
524 !uid_eq(old
->suid
, keuid
) &&
525 !ns_capable(old
->user_ns
, CAP_SETUID
))
529 if (!uid_eq(new->uid
, old
->uid
)) {
530 retval
= set_user(new);
534 if (ruid
!= (uid_t
) -1 ||
535 (euid
!= (uid_t
) -1 && !uid_eq(keuid
, old
->uid
)))
536 new->suid
= new->euid
;
537 new->fsuid
= new->euid
;
539 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RE
);
543 return commit_creds(new);
550 SYSCALL_DEFINE2(setreuid
, uid_t
, ruid
, uid_t
, euid
)
552 return __sys_setreuid(ruid
, euid
);
556 * setuid() is implemented like SysV with SAVED_IDS
558 * Note that SAVED_ID's is deficient in that a setuid root program
559 * like sendmail, for example, cannot set its uid to be a normal
560 * user and then switch back, because if you're root, setuid() sets
561 * the saved uid too. If you don't like this, blame the bright people
562 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
563 * will allow a root program to temporarily drop privileges and be able to
564 * regain them by swapping the real and effective uid.
566 long __sys_setuid(uid_t uid
)
568 struct user_namespace
*ns
= current_user_ns();
569 const struct cred
*old
;
574 kuid
= make_kuid(ns
, uid
);
575 if (!uid_valid(kuid
))
578 new = prepare_creds();
581 old
= current_cred();
584 if (ns_capable(old
->user_ns
, CAP_SETUID
)) {
585 new->suid
= new->uid
= kuid
;
586 if (!uid_eq(kuid
, old
->uid
)) {
587 retval
= set_user(new);
591 } else if (!uid_eq(kuid
, old
->uid
) && !uid_eq(kuid
, new->suid
)) {
595 new->fsuid
= new->euid
= kuid
;
597 retval
= security_task_fix_setuid(new, old
, LSM_SETID_ID
);
601 return commit_creds(new);
608 SYSCALL_DEFINE1(setuid
, uid_t
, uid
)
610 return __sys_setuid(uid
);
615 * This function implements a generic ability to update ruid, euid,
616 * and suid. This allows you to implement the 4.4 compatible seteuid().
618 long __sys_setresuid(uid_t ruid
, uid_t euid
, uid_t suid
)
620 struct user_namespace
*ns
= current_user_ns();
621 const struct cred
*old
;
624 kuid_t kruid
, keuid
, ksuid
;
626 kruid
= make_kuid(ns
, ruid
);
627 keuid
= make_kuid(ns
, euid
);
628 ksuid
= make_kuid(ns
, suid
);
630 if ((ruid
!= (uid_t
) -1) && !uid_valid(kruid
))
633 if ((euid
!= (uid_t
) -1) && !uid_valid(keuid
))
636 if ((suid
!= (uid_t
) -1) && !uid_valid(ksuid
))
639 new = prepare_creds();
643 old
= current_cred();
646 if (!ns_capable(old
->user_ns
, CAP_SETUID
)) {
647 if (ruid
!= (uid_t
) -1 && !uid_eq(kruid
, old
->uid
) &&
648 !uid_eq(kruid
, old
->euid
) && !uid_eq(kruid
, old
->suid
))
650 if (euid
!= (uid_t
) -1 && !uid_eq(keuid
, old
->uid
) &&
651 !uid_eq(keuid
, old
->euid
) && !uid_eq(keuid
, old
->suid
))
653 if (suid
!= (uid_t
) -1 && !uid_eq(ksuid
, old
->uid
) &&
654 !uid_eq(ksuid
, old
->euid
) && !uid_eq(ksuid
, old
->suid
))
658 if (ruid
!= (uid_t
) -1) {
660 if (!uid_eq(kruid
, old
->uid
)) {
661 retval
= set_user(new);
666 if (euid
!= (uid_t
) -1)
668 if (suid
!= (uid_t
) -1)
670 new->fsuid
= new->euid
;
672 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RES
);
676 return commit_creds(new);
683 SYSCALL_DEFINE3(setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
685 return __sys_setresuid(ruid
, euid
, suid
);
688 SYSCALL_DEFINE3(getresuid
, uid_t __user
*, ruidp
, uid_t __user
*, euidp
, uid_t __user
*, suidp
)
690 const struct cred
*cred
= current_cred();
692 uid_t ruid
, euid
, suid
;
694 ruid
= from_kuid_munged(cred
->user_ns
, cred
->uid
);
695 euid
= from_kuid_munged(cred
->user_ns
, cred
->euid
);
696 suid
= from_kuid_munged(cred
->user_ns
, cred
->suid
);
698 retval
= put_user(ruid
, ruidp
);
700 retval
= put_user(euid
, euidp
);
702 return put_user(suid
, suidp
);
708 * Same as above, but for rgid, egid, sgid.
710 long __sys_setresgid(gid_t rgid
, gid_t egid
, gid_t sgid
)
712 struct user_namespace
*ns
= current_user_ns();
713 const struct cred
*old
;
716 kgid_t krgid
, kegid
, ksgid
;
718 krgid
= make_kgid(ns
, rgid
);
719 kegid
= make_kgid(ns
, egid
);
720 ksgid
= make_kgid(ns
, sgid
);
722 if ((rgid
!= (gid_t
) -1) && !gid_valid(krgid
))
724 if ((egid
!= (gid_t
) -1) && !gid_valid(kegid
))
726 if ((sgid
!= (gid_t
) -1) && !gid_valid(ksgid
))
729 new = prepare_creds();
732 old
= current_cred();
735 if (!ns_capable(old
->user_ns
, CAP_SETGID
)) {
736 if (rgid
!= (gid_t
) -1 && !gid_eq(krgid
, old
->gid
) &&
737 !gid_eq(krgid
, old
->egid
) && !gid_eq(krgid
, old
->sgid
))
739 if (egid
!= (gid_t
) -1 && !gid_eq(kegid
, old
->gid
) &&
740 !gid_eq(kegid
, old
->egid
) && !gid_eq(kegid
, old
->sgid
))
742 if (sgid
!= (gid_t
) -1 && !gid_eq(ksgid
, old
->gid
) &&
743 !gid_eq(ksgid
, old
->egid
) && !gid_eq(ksgid
, old
->sgid
))
747 if (rgid
!= (gid_t
) -1)
749 if (egid
!= (gid_t
) -1)
751 if (sgid
!= (gid_t
) -1)
753 new->fsgid
= new->egid
;
755 return commit_creds(new);
762 SYSCALL_DEFINE3(setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
764 return __sys_setresgid(rgid
, egid
, sgid
);
767 SYSCALL_DEFINE3(getresgid
, gid_t __user
*, rgidp
, gid_t __user
*, egidp
, gid_t __user
*, sgidp
)
769 const struct cred
*cred
= current_cred();
771 gid_t rgid
, egid
, sgid
;
773 rgid
= from_kgid_munged(cred
->user_ns
, cred
->gid
);
774 egid
= from_kgid_munged(cred
->user_ns
, cred
->egid
);
775 sgid
= from_kgid_munged(cred
->user_ns
, cred
->sgid
);
777 retval
= put_user(rgid
, rgidp
);
779 retval
= put_user(egid
, egidp
);
781 retval
= put_user(sgid
, sgidp
);
789 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
790 * is used for "access()" and for the NFS daemon (letting nfsd stay at
791 * whatever uid it wants to). It normally shadows "euid", except when
792 * explicitly set by setfsuid() or for access..
794 long __sys_setfsuid(uid_t uid
)
796 const struct cred
*old
;
801 old
= current_cred();
802 old_fsuid
= from_kuid_munged(old
->user_ns
, old
->fsuid
);
804 kuid
= make_kuid(old
->user_ns
, uid
);
805 if (!uid_valid(kuid
))
808 new = prepare_creds();
812 if (uid_eq(kuid
, old
->uid
) || uid_eq(kuid
, old
->euid
) ||
813 uid_eq(kuid
, old
->suid
) || uid_eq(kuid
, old
->fsuid
) ||
814 ns_capable(old
->user_ns
, CAP_SETUID
)) {
815 if (!uid_eq(kuid
, old
->fsuid
)) {
817 if (security_task_fix_setuid(new, old
, LSM_SETID_FS
) == 0)
830 SYSCALL_DEFINE1(setfsuid
, uid_t
, uid
)
832 return __sys_setfsuid(uid
);
836 * Samma på svenska..
838 long __sys_setfsgid(gid_t gid
)
840 const struct cred
*old
;
845 old
= current_cred();
846 old_fsgid
= from_kgid_munged(old
->user_ns
, old
->fsgid
);
848 kgid
= make_kgid(old
->user_ns
, gid
);
849 if (!gid_valid(kgid
))
852 new = prepare_creds();
856 if (gid_eq(kgid
, old
->gid
) || gid_eq(kgid
, old
->egid
) ||
857 gid_eq(kgid
, old
->sgid
) || gid_eq(kgid
, old
->fsgid
) ||
858 ns_capable(old
->user_ns
, CAP_SETGID
)) {
859 if (!gid_eq(kgid
, old
->fsgid
)) {
873 SYSCALL_DEFINE1(setfsgid
, gid_t
, gid
)
875 return __sys_setfsgid(gid
);
877 #endif /* CONFIG_MULTIUSER */
880 * sys_getpid - return the thread group id of the current process
882 * Note, despite the name, this returns the tgid not the pid. The tgid and
883 * the pid are identical unless CLONE_THREAD was specified on clone() in
884 * which case the tgid is the same in all threads of the same group.
886 * This is SMP safe as current->tgid does not change.
888 SYSCALL_DEFINE0(getpid
)
890 return task_tgid_vnr(current
);
893 /* Thread ID - the internal kernel "pid" */
894 SYSCALL_DEFINE0(gettid
)
896 return task_pid_vnr(current
);
900 * Accessing ->real_parent is not SMP-safe, it could
901 * change from under us. However, we can use a stale
902 * value of ->real_parent under rcu_read_lock(), see
903 * release_task()->call_rcu(delayed_put_task_struct).
905 SYSCALL_DEFINE0(getppid
)
910 pid
= task_tgid_vnr(rcu_dereference(current
->real_parent
));
916 SYSCALL_DEFINE0(getuid
)
918 /* Only we change this so SMP safe */
919 return from_kuid_munged(current_user_ns(), current_uid());
922 SYSCALL_DEFINE0(geteuid
)
924 /* Only we change this so SMP safe */
925 return from_kuid_munged(current_user_ns(), current_euid());
928 SYSCALL_DEFINE0(getgid
)
930 /* Only we change this so SMP safe */
931 return from_kgid_munged(current_user_ns(), current_gid());
934 SYSCALL_DEFINE0(getegid
)
936 /* Only we change this so SMP safe */
937 return from_kgid_munged(current_user_ns(), current_egid());
940 static void do_sys_times(struct tms
*tms
)
942 u64 tgutime
, tgstime
, cutime
, cstime
;
944 thread_group_cputime_adjusted(current
, &tgutime
, &tgstime
);
945 cutime
= current
->signal
->cutime
;
946 cstime
= current
->signal
->cstime
;
947 tms
->tms_utime
= nsec_to_clock_t(tgutime
);
948 tms
->tms_stime
= nsec_to_clock_t(tgstime
);
949 tms
->tms_cutime
= nsec_to_clock_t(cutime
);
950 tms
->tms_cstime
= nsec_to_clock_t(cstime
);
953 SYSCALL_DEFINE1(times
, struct tms __user
*, tbuf
)
959 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
962 force_successful_syscall_return();
963 return (long) jiffies_64_to_clock_t(get_jiffies_64());
967 static compat_clock_t
clock_t_to_compat_clock_t(clock_t x
)
969 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x
));
972 COMPAT_SYSCALL_DEFINE1(times
, struct compat_tms __user
*, tbuf
)
976 struct compat_tms tmp
;
979 /* Convert our struct tms to the compat version. */
980 tmp
.tms_utime
= clock_t_to_compat_clock_t(tms
.tms_utime
);
981 tmp
.tms_stime
= clock_t_to_compat_clock_t(tms
.tms_stime
);
982 tmp
.tms_cutime
= clock_t_to_compat_clock_t(tms
.tms_cutime
);
983 tmp
.tms_cstime
= clock_t_to_compat_clock_t(tms
.tms_cstime
);
984 if (copy_to_user(tbuf
, &tmp
, sizeof(tmp
)))
987 force_successful_syscall_return();
988 return compat_jiffies_to_clock_t(jiffies
);
993 * This needs some heavy checking ...
994 * I just haven't the stomach for it. I also don't fully
995 * understand sessions/pgrp etc. Let somebody who does explain it.
997 * OK, I think I have the protection semantics right.... this is really
998 * only important on a multi-user system anyway, to make sure one user
999 * can't send a signal to a process owned by another. -TYT, 12/12/91
1001 * !PF_FORKNOEXEC check to conform completely to POSIX.
1003 SYSCALL_DEFINE2(setpgid
, pid_t
, pid
, pid_t
, pgid
)
1005 struct task_struct
*p
;
1006 struct task_struct
*group_leader
= current
->group_leader
;
1011 pid
= task_pid_vnr(group_leader
);
1018 /* From this point forward we keep holding onto the tasklist lock
1019 * so that our parent does not change from under us. -DaveM
1021 write_lock_irq(&tasklist_lock
);
1024 p
= find_task_by_vpid(pid
);
1029 if (!thread_group_leader(p
))
1032 if (same_thread_group(p
->real_parent
, group_leader
)) {
1034 if (task_session(p
) != task_session(group_leader
))
1037 if (!(p
->flags
& PF_FORKNOEXEC
))
1041 if (p
!= group_leader
)
1046 if (p
->signal
->leader
)
1051 struct task_struct
*g
;
1053 pgrp
= find_vpid(pgid
);
1054 g
= pid_task(pgrp
, PIDTYPE_PGID
);
1055 if (!g
|| task_session(g
) != task_session(group_leader
))
1059 err
= security_task_setpgid(p
, pgid
);
1063 if (task_pgrp(p
) != pgrp
)
1064 change_pid(p
, PIDTYPE_PGID
, pgrp
);
1068 /* All paths lead to here, thus we are safe. -DaveM */
1069 write_unlock_irq(&tasklist_lock
);
1074 static int do_getpgid(pid_t pid
)
1076 struct task_struct
*p
;
1082 grp
= task_pgrp(current
);
1085 p
= find_task_by_vpid(pid
);
1092 retval
= security_task_getpgid(p
);
1096 retval
= pid_vnr(grp
);
1102 SYSCALL_DEFINE1(getpgid
, pid_t
, pid
)
1104 return do_getpgid(pid
);
1107 #ifdef __ARCH_WANT_SYS_GETPGRP
1109 SYSCALL_DEFINE0(getpgrp
)
1111 return do_getpgid(0);
1116 SYSCALL_DEFINE1(getsid
, pid_t
, pid
)
1118 struct task_struct
*p
;
1124 sid
= task_session(current
);
1127 p
= find_task_by_vpid(pid
);
1130 sid
= task_session(p
);
1134 retval
= security_task_getsid(p
);
1138 retval
= pid_vnr(sid
);
1144 static void set_special_pids(struct pid
*pid
)
1146 struct task_struct
*curr
= current
->group_leader
;
1148 if (task_session(curr
) != pid
)
1149 change_pid(curr
, PIDTYPE_SID
, pid
);
1151 if (task_pgrp(curr
) != pid
)
1152 change_pid(curr
, PIDTYPE_PGID
, pid
);
1155 int ksys_setsid(void)
1157 struct task_struct
*group_leader
= current
->group_leader
;
1158 struct pid
*sid
= task_pid(group_leader
);
1159 pid_t session
= pid_vnr(sid
);
1162 write_lock_irq(&tasklist_lock
);
1163 /* Fail if I am already a session leader */
1164 if (group_leader
->signal
->leader
)
1167 /* Fail if a process group id already exists that equals the
1168 * proposed session id.
1170 if (pid_task(sid
, PIDTYPE_PGID
))
1173 group_leader
->signal
->leader
= 1;
1174 set_special_pids(sid
);
1176 proc_clear_tty(group_leader
);
1180 write_unlock_irq(&tasklist_lock
);
1182 proc_sid_connector(group_leader
);
1183 sched_autogroup_create_attach(group_leader
);
1188 SYSCALL_DEFINE0(setsid
)
1190 return ksys_setsid();
1193 DECLARE_RWSEM(uts_sem
);
1195 #ifdef COMPAT_UTS_MACHINE
1196 #define override_architecture(name) \
1197 (personality(current->personality) == PER_LINUX32 && \
1198 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1199 sizeof(COMPAT_UTS_MACHINE)))
1201 #define override_architecture(name) 0
1205 * Work around broken programs that cannot handle "Linux 3.0".
1206 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1207 * And we map 4.x to 2.6.60+x, so 4.0 would be 2.6.60.
1209 static int override_release(char __user
*release
, size_t len
)
1213 if (current
->personality
& UNAME26
) {
1214 const char *rest
= UTS_RELEASE
;
1215 char buf
[65] = { 0 };
1221 if (*rest
== '.' && ++ndots
>= 3)
1223 if (!isdigit(*rest
) && *rest
!= '.')
1227 v
= ((LINUX_VERSION_CODE
>> 8) & 0xff) + 60;
1228 copy
= clamp_t(size_t, len
, 1, sizeof(buf
));
1229 copy
= scnprintf(buf
, copy
, "2.6.%u%s", v
, rest
);
1230 ret
= copy_to_user(release
, buf
, copy
+ 1);
1235 SYSCALL_DEFINE1(newuname
, struct new_utsname __user
*, name
)
1237 struct new_utsname tmp
;
1239 down_read(&uts_sem
);
1240 memcpy(&tmp
, utsname(), sizeof(tmp
));
1242 if (copy_to_user(name
, &tmp
, sizeof(tmp
)))
1245 if (override_release(name
->release
, sizeof(name
->release
)))
1247 if (override_architecture(name
))
1252 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1256 SYSCALL_DEFINE1(uname
, struct old_utsname __user
*, name
)
1258 struct old_utsname tmp
;
1263 down_read(&uts_sem
);
1264 memcpy(&tmp
, utsname(), sizeof(tmp
));
1266 if (copy_to_user(name
, &tmp
, sizeof(tmp
)))
1269 if (override_release(name
->release
, sizeof(name
->release
)))
1271 if (override_architecture(name
))
1276 SYSCALL_DEFINE1(olduname
, struct oldold_utsname __user
*, name
)
1278 struct oldold_utsname tmp
= {};
1283 down_read(&uts_sem
);
1284 memcpy(&tmp
.sysname
, &utsname()->sysname
, __OLD_UTS_LEN
);
1285 memcpy(&tmp
.nodename
, &utsname()->nodename
, __OLD_UTS_LEN
);
1286 memcpy(&tmp
.release
, &utsname()->release
, __OLD_UTS_LEN
);
1287 memcpy(&tmp
.version
, &utsname()->version
, __OLD_UTS_LEN
);
1288 memcpy(&tmp
.machine
, &utsname()->machine
, __OLD_UTS_LEN
);
1290 if (copy_to_user(name
, &tmp
, sizeof(tmp
)))
1293 if (override_architecture(name
))
1295 if (override_release(name
->release
, sizeof(name
->release
)))
1301 SYSCALL_DEFINE2(sethostname
, char __user
*, name
, int, len
)
1304 char tmp
[__NEW_UTS_LEN
];
1306 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1309 if (len
< 0 || len
> __NEW_UTS_LEN
)
1312 if (!copy_from_user(tmp
, name
, len
)) {
1313 struct new_utsname
*u
;
1315 down_write(&uts_sem
);
1317 memcpy(u
->nodename
, tmp
, len
);
1318 memset(u
->nodename
+ len
, 0, sizeof(u
->nodename
) - len
);
1320 uts_proc_notify(UTS_PROC_HOSTNAME
);
1326 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1328 SYSCALL_DEFINE2(gethostname
, char __user
*, name
, int, len
)
1331 struct new_utsname
*u
;
1332 char tmp
[__NEW_UTS_LEN
+ 1];
1336 down_read(&uts_sem
);
1338 i
= 1 + strlen(u
->nodename
);
1341 memcpy(tmp
, u
->nodename
, i
);
1343 if (copy_to_user(name
, tmp
, i
))
1351 * Only setdomainname; getdomainname can be implemented by calling
1354 SYSCALL_DEFINE2(setdomainname
, char __user
*, name
, int, len
)
1357 char tmp
[__NEW_UTS_LEN
];
1359 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1361 if (len
< 0 || len
> __NEW_UTS_LEN
)
1365 if (!copy_from_user(tmp
, name
, len
)) {
1366 struct new_utsname
*u
;
1368 down_write(&uts_sem
);
1370 memcpy(u
->domainname
, tmp
, len
);
1371 memset(u
->domainname
+ len
, 0, sizeof(u
->domainname
) - len
);
1373 uts_proc_notify(UTS_PROC_DOMAINNAME
);
1379 SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1381 struct rlimit value
;
1384 ret
= do_prlimit(current
, resource
, NULL
, &value
);
1386 ret
= copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1391 #ifdef CONFIG_COMPAT
1393 COMPAT_SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
,
1394 struct compat_rlimit __user
*, rlim
)
1397 struct compat_rlimit r32
;
1399 if (copy_from_user(&r32
, rlim
, sizeof(struct compat_rlimit
)))
1402 if (r32
.rlim_cur
== COMPAT_RLIM_INFINITY
)
1403 r
.rlim_cur
= RLIM_INFINITY
;
1405 r
.rlim_cur
= r32
.rlim_cur
;
1406 if (r32
.rlim_max
== COMPAT_RLIM_INFINITY
)
1407 r
.rlim_max
= RLIM_INFINITY
;
1409 r
.rlim_max
= r32
.rlim_max
;
1410 return do_prlimit(current
, resource
, &r
, NULL
);
1413 COMPAT_SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
,
1414 struct compat_rlimit __user
*, rlim
)
1419 ret
= do_prlimit(current
, resource
, NULL
, &r
);
1421 struct compat_rlimit r32
;
1422 if (r
.rlim_cur
> COMPAT_RLIM_INFINITY
)
1423 r32
.rlim_cur
= COMPAT_RLIM_INFINITY
;
1425 r32
.rlim_cur
= r
.rlim_cur
;
1426 if (r
.rlim_max
> COMPAT_RLIM_INFINITY
)
1427 r32
.rlim_max
= COMPAT_RLIM_INFINITY
;
1429 r32
.rlim_max
= r
.rlim_max
;
1431 if (copy_to_user(rlim
, &r32
, sizeof(struct compat_rlimit
)))
1439 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1442 * Back compatibility for getrlimit. Needed for some apps.
1444 SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1445 struct rlimit __user
*, rlim
)
1448 if (resource
>= RLIM_NLIMITS
)
1451 resource
= array_index_nospec(resource
, RLIM_NLIMITS
);
1452 task_lock(current
->group_leader
);
1453 x
= current
->signal
->rlim
[resource
];
1454 task_unlock(current
->group_leader
);
1455 if (x
.rlim_cur
> 0x7FFFFFFF)
1456 x
.rlim_cur
= 0x7FFFFFFF;
1457 if (x
.rlim_max
> 0x7FFFFFFF)
1458 x
.rlim_max
= 0x7FFFFFFF;
1459 return copy_to_user(rlim
, &x
, sizeof(x
)) ? -EFAULT
: 0;
1462 #ifdef CONFIG_COMPAT
1463 COMPAT_SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1464 struct compat_rlimit __user
*, rlim
)
1468 if (resource
>= RLIM_NLIMITS
)
1471 resource
= array_index_nospec(resource
, RLIM_NLIMITS
);
1472 task_lock(current
->group_leader
);
1473 r
= current
->signal
->rlim
[resource
];
1474 task_unlock(current
->group_leader
);
1475 if (r
.rlim_cur
> 0x7FFFFFFF)
1476 r
.rlim_cur
= 0x7FFFFFFF;
1477 if (r
.rlim_max
> 0x7FFFFFFF)
1478 r
.rlim_max
= 0x7FFFFFFF;
1480 if (put_user(r
.rlim_cur
, &rlim
->rlim_cur
) ||
1481 put_user(r
.rlim_max
, &rlim
->rlim_max
))
1489 static inline bool rlim64_is_infinity(__u64 rlim64
)
1491 #if BITS_PER_LONG < 64
1492 return rlim64
>= ULONG_MAX
;
1494 return rlim64
== RLIM64_INFINITY
;
1498 static void rlim_to_rlim64(const struct rlimit
*rlim
, struct rlimit64
*rlim64
)
1500 if (rlim
->rlim_cur
== RLIM_INFINITY
)
1501 rlim64
->rlim_cur
= RLIM64_INFINITY
;
1503 rlim64
->rlim_cur
= rlim
->rlim_cur
;
1504 if (rlim
->rlim_max
== RLIM_INFINITY
)
1505 rlim64
->rlim_max
= RLIM64_INFINITY
;
1507 rlim64
->rlim_max
= rlim
->rlim_max
;
1510 static void rlim64_to_rlim(const struct rlimit64
*rlim64
, struct rlimit
*rlim
)
1512 if (rlim64_is_infinity(rlim64
->rlim_cur
))
1513 rlim
->rlim_cur
= RLIM_INFINITY
;
1515 rlim
->rlim_cur
= (unsigned long)rlim64
->rlim_cur
;
1516 if (rlim64_is_infinity(rlim64
->rlim_max
))
1517 rlim
->rlim_max
= RLIM_INFINITY
;
1519 rlim
->rlim_max
= (unsigned long)rlim64
->rlim_max
;
1522 /* make sure you are allowed to change @tsk limits before calling this */
1523 int do_prlimit(struct task_struct
*tsk
, unsigned int resource
,
1524 struct rlimit
*new_rlim
, struct rlimit
*old_rlim
)
1526 struct rlimit
*rlim
;
1529 if (resource
>= RLIM_NLIMITS
)
1532 if (new_rlim
->rlim_cur
> new_rlim
->rlim_max
)
1534 if (resource
== RLIMIT_NOFILE
&&
1535 new_rlim
->rlim_max
> sysctl_nr_open
)
1539 /* protect tsk->signal and tsk->sighand from disappearing */
1540 read_lock(&tasklist_lock
);
1541 if (!tsk
->sighand
) {
1546 rlim
= tsk
->signal
->rlim
+ resource
;
1547 task_lock(tsk
->group_leader
);
1549 /* Keep the capable check against init_user_ns until
1550 cgroups can contain all limits */
1551 if (new_rlim
->rlim_max
> rlim
->rlim_max
&&
1552 !capable(CAP_SYS_RESOURCE
))
1555 retval
= security_task_setrlimit(tsk
, resource
, new_rlim
);
1556 if (resource
== RLIMIT_CPU
&& new_rlim
->rlim_cur
== 0) {
1558 * The caller is asking for an immediate RLIMIT_CPU
1559 * expiry. But we use the zero value to mean "it was
1560 * never set". So let's cheat and make it one second
1563 new_rlim
->rlim_cur
= 1;
1572 task_unlock(tsk
->group_leader
);
1575 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1576 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1577 * very long-standing error, and fixing it now risks breakage of
1578 * applications, so we live with it
1580 if (!retval
&& new_rlim
&& resource
== RLIMIT_CPU
&&
1581 new_rlim
->rlim_cur
!= RLIM_INFINITY
&&
1582 IS_ENABLED(CONFIG_POSIX_TIMERS
))
1583 update_rlimit_cpu(tsk
, new_rlim
->rlim_cur
);
1585 read_unlock(&tasklist_lock
);
1589 /* rcu lock must be held */
1590 static int check_prlimit_permission(struct task_struct
*task
,
1593 const struct cred
*cred
= current_cred(), *tcred
;
1596 if (current
== task
)
1599 tcred
= __task_cred(task
);
1600 id_match
= (uid_eq(cred
->uid
, tcred
->euid
) &&
1601 uid_eq(cred
->uid
, tcred
->suid
) &&
1602 uid_eq(cred
->uid
, tcred
->uid
) &&
1603 gid_eq(cred
->gid
, tcred
->egid
) &&
1604 gid_eq(cred
->gid
, tcred
->sgid
) &&
1605 gid_eq(cred
->gid
, tcred
->gid
));
1606 if (!id_match
&& !ns_capable(tcred
->user_ns
, CAP_SYS_RESOURCE
))
1609 return security_task_prlimit(cred
, tcred
, flags
);
1612 SYSCALL_DEFINE4(prlimit64
, pid_t
, pid
, unsigned int, resource
,
1613 const struct rlimit64 __user
*, new_rlim
,
1614 struct rlimit64 __user
*, old_rlim
)
1616 struct rlimit64 old64
, new64
;
1617 struct rlimit old
, new;
1618 struct task_struct
*tsk
;
1619 unsigned int checkflags
= 0;
1623 checkflags
|= LSM_PRLIMIT_READ
;
1626 if (copy_from_user(&new64
, new_rlim
, sizeof(new64
)))
1628 rlim64_to_rlim(&new64
, &new);
1629 checkflags
|= LSM_PRLIMIT_WRITE
;
1633 tsk
= pid
? find_task_by_vpid(pid
) : current
;
1638 ret
= check_prlimit_permission(tsk
, checkflags
);
1643 get_task_struct(tsk
);
1646 ret
= do_prlimit(tsk
, resource
, new_rlim
? &new : NULL
,
1647 old_rlim
? &old
: NULL
);
1649 if (!ret
&& old_rlim
) {
1650 rlim_to_rlim64(&old
, &old64
);
1651 if (copy_to_user(old_rlim
, &old64
, sizeof(old64
)))
1655 put_task_struct(tsk
);
1659 SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1661 struct rlimit new_rlim
;
1663 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1665 return do_prlimit(current
, resource
, &new_rlim
, NULL
);
1669 * It would make sense to put struct rusage in the task_struct,
1670 * except that would make the task_struct be *really big*. After
1671 * task_struct gets moved into malloc'ed memory, it would
1672 * make sense to do this. It will make moving the rest of the information
1673 * a lot simpler! (Which we're not doing right now because we're not
1674 * measuring them yet).
1676 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1677 * races with threads incrementing their own counters. But since word
1678 * reads are atomic, we either get new values or old values and we don't
1679 * care which for the sums. We always take the siglock to protect reading
1680 * the c* fields from p->signal from races with exit.c updating those
1681 * fields when reaping, so a sample either gets all the additions of a
1682 * given child after it's reaped, or none so this sample is before reaping.
1685 * We need to take the siglock for CHILDEREN, SELF and BOTH
1686 * for the cases current multithreaded, non-current single threaded
1687 * non-current multithreaded. Thread traversal is now safe with
1689 * Strictly speaking, we donot need to take the siglock if we are current and
1690 * single threaded, as no one else can take our signal_struct away, no one
1691 * else can reap the children to update signal->c* counters, and no one else
1692 * can race with the signal-> fields. If we do not take any lock, the
1693 * signal-> fields could be read out of order while another thread was just
1694 * exiting. So we should place a read memory barrier when we avoid the lock.
1695 * On the writer side, write memory barrier is implied in __exit_signal
1696 * as __exit_signal releases the siglock spinlock after updating the signal->
1697 * fields. But we don't do this yet to keep things simple.
1701 static void accumulate_thread_rusage(struct task_struct
*t
, struct rusage
*r
)
1703 r
->ru_nvcsw
+= t
->nvcsw
;
1704 r
->ru_nivcsw
+= t
->nivcsw
;
1705 r
->ru_minflt
+= t
->min_flt
;
1706 r
->ru_majflt
+= t
->maj_flt
;
1707 r
->ru_inblock
+= task_io_get_inblock(t
);
1708 r
->ru_oublock
+= task_io_get_oublock(t
);
1711 void getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1713 struct task_struct
*t
;
1714 unsigned long flags
;
1715 u64 tgutime
, tgstime
, utime
, stime
;
1716 unsigned long maxrss
= 0;
1718 memset((char *)r
, 0, sizeof (*r
));
1721 if (who
== RUSAGE_THREAD
) {
1722 task_cputime_adjusted(current
, &utime
, &stime
);
1723 accumulate_thread_rusage(p
, r
);
1724 maxrss
= p
->signal
->maxrss
;
1728 if (!lock_task_sighand(p
, &flags
))
1733 case RUSAGE_CHILDREN
:
1734 utime
= p
->signal
->cutime
;
1735 stime
= p
->signal
->cstime
;
1736 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1737 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1738 r
->ru_minflt
= p
->signal
->cmin_flt
;
1739 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1740 r
->ru_inblock
= p
->signal
->cinblock
;
1741 r
->ru_oublock
= p
->signal
->coublock
;
1742 maxrss
= p
->signal
->cmaxrss
;
1744 if (who
== RUSAGE_CHILDREN
)
1748 thread_group_cputime_adjusted(p
, &tgutime
, &tgstime
);
1751 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1752 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1753 r
->ru_minflt
+= p
->signal
->min_flt
;
1754 r
->ru_majflt
+= p
->signal
->maj_flt
;
1755 r
->ru_inblock
+= p
->signal
->inblock
;
1756 r
->ru_oublock
+= p
->signal
->oublock
;
1757 if (maxrss
< p
->signal
->maxrss
)
1758 maxrss
= p
->signal
->maxrss
;
1761 accumulate_thread_rusage(t
, r
);
1762 } while_each_thread(p
, t
);
1768 unlock_task_sighand(p
, &flags
);
1771 r
->ru_utime
= ns_to_timeval(utime
);
1772 r
->ru_stime
= ns_to_timeval(stime
);
1774 if (who
!= RUSAGE_CHILDREN
) {
1775 struct mm_struct
*mm
= get_task_mm(p
);
1778 setmax_mm_hiwater_rss(&maxrss
, mm
);
1782 r
->ru_maxrss
= maxrss
* (PAGE_SIZE
/ 1024); /* convert pages to KBs */
1785 SYSCALL_DEFINE2(getrusage
, int, who
, struct rusage __user
*, ru
)
1789 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1790 who
!= RUSAGE_THREAD
)
1793 getrusage(current
, who
, &r
);
1794 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1797 #ifdef CONFIG_COMPAT
1798 COMPAT_SYSCALL_DEFINE2(getrusage
, int, who
, struct compat_rusage __user
*, ru
)
1802 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1803 who
!= RUSAGE_THREAD
)
1806 getrusage(current
, who
, &r
);
1807 return put_compat_rusage(&r
, ru
);
1811 SYSCALL_DEFINE1(umask
, int, mask
)
1813 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1817 static int prctl_set_mm_exe_file(struct mm_struct
*mm
, unsigned int fd
)
1820 struct file
*old_exe
, *exe_file
;
1821 struct inode
*inode
;
1828 inode
= file_inode(exe
.file
);
1831 * Because the original mm->exe_file points to executable file, make
1832 * sure that this one is executable as well, to avoid breaking an
1836 if (!S_ISREG(inode
->i_mode
) || path_noexec(&exe
.file
->f_path
))
1839 err
= inode_permission(inode
, MAY_EXEC
);
1844 * Forbid mm->exe_file change if old file still mapped.
1846 exe_file
= get_mm_exe_file(mm
);
1849 struct vm_area_struct
*vma
;
1851 down_read(&mm
->mmap_sem
);
1852 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1855 if (path_equal(&vma
->vm_file
->f_path
,
1860 up_read(&mm
->mmap_sem
);
1865 /* set the new file, lockless */
1867 old_exe
= xchg(&mm
->exe_file
, exe
.file
);
1874 up_read(&mm
->mmap_sem
);
1880 * WARNING: we don't require any capability here so be very careful
1881 * in what is allowed for modification from userspace.
1883 static int validate_prctl_map(struct prctl_mm_map
*prctl_map
)
1885 unsigned long mmap_max_addr
= TASK_SIZE
;
1886 struct mm_struct
*mm
= current
->mm
;
1887 int error
= -EINVAL
, i
;
1889 static const unsigned char offsets
[] = {
1890 offsetof(struct prctl_mm_map
, start_code
),
1891 offsetof(struct prctl_mm_map
, end_code
),
1892 offsetof(struct prctl_mm_map
, start_data
),
1893 offsetof(struct prctl_mm_map
, end_data
),
1894 offsetof(struct prctl_mm_map
, start_brk
),
1895 offsetof(struct prctl_mm_map
, brk
),
1896 offsetof(struct prctl_mm_map
, start_stack
),
1897 offsetof(struct prctl_mm_map
, arg_start
),
1898 offsetof(struct prctl_mm_map
, arg_end
),
1899 offsetof(struct prctl_mm_map
, env_start
),
1900 offsetof(struct prctl_mm_map
, env_end
),
1904 * Make sure the members are not somewhere outside
1905 * of allowed address space.
1907 for (i
= 0; i
< ARRAY_SIZE(offsets
); i
++) {
1908 u64 val
= *(u64
*)((char *)prctl_map
+ offsets
[i
]);
1910 if ((unsigned long)val
>= mmap_max_addr
||
1911 (unsigned long)val
< mmap_min_addr
)
1916 * Make sure the pairs are ordered.
1918 #define __prctl_check_order(__m1, __op, __m2) \
1919 ((unsigned long)prctl_map->__m1 __op \
1920 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1921 error
= __prctl_check_order(start_code
, <, end_code
);
1922 error
|= __prctl_check_order(start_data
, <, end_data
);
1923 error
|= __prctl_check_order(start_brk
, <=, brk
);
1924 error
|= __prctl_check_order(arg_start
, <=, arg_end
);
1925 error
|= __prctl_check_order(env_start
, <=, env_end
);
1928 #undef __prctl_check_order
1933 * @brk should be after @end_data in traditional maps.
1935 if (prctl_map
->start_brk
<= prctl_map
->end_data
||
1936 prctl_map
->brk
<= prctl_map
->end_data
)
1940 * Neither we should allow to override limits if they set.
1942 if (check_data_rlimit(rlimit(RLIMIT_DATA
), prctl_map
->brk
,
1943 prctl_map
->start_brk
, prctl_map
->end_data
,
1944 prctl_map
->start_data
))
1948 * Someone is trying to cheat the auxv vector.
1950 if (prctl_map
->auxv_size
) {
1951 if (!prctl_map
->auxv
|| prctl_map
->auxv_size
> sizeof(mm
->saved_auxv
))
1956 * Finally, make sure the caller has the rights to
1957 * change /proc/pid/exe link: only local sys admin should
1960 if (prctl_map
->exe_fd
!= (u32
)-1) {
1961 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN
))
1970 #ifdef CONFIG_CHECKPOINT_RESTORE
1971 static int prctl_set_mm_map(int opt
, const void __user
*addr
, unsigned long data_size
)
1973 struct prctl_mm_map prctl_map
= { .exe_fd
= (u32
)-1, };
1974 unsigned long user_auxv
[AT_VECTOR_SIZE
];
1975 struct mm_struct
*mm
= current
->mm
;
1978 BUILD_BUG_ON(sizeof(user_auxv
) != sizeof(mm
->saved_auxv
));
1979 BUILD_BUG_ON(sizeof(struct prctl_mm_map
) > 256);
1981 if (opt
== PR_SET_MM_MAP_SIZE
)
1982 return put_user((unsigned int)sizeof(prctl_map
),
1983 (unsigned int __user
*)addr
);
1985 if (data_size
!= sizeof(prctl_map
))
1988 if (copy_from_user(&prctl_map
, addr
, sizeof(prctl_map
)))
1991 error
= validate_prctl_map(&prctl_map
);
1995 if (prctl_map
.auxv_size
) {
1996 memset(user_auxv
, 0, sizeof(user_auxv
));
1997 if (copy_from_user(user_auxv
,
1998 (const void __user
*)prctl_map
.auxv
,
1999 prctl_map
.auxv_size
))
2002 /* Last entry must be AT_NULL as specification requires */
2003 user_auxv
[AT_VECTOR_SIZE
- 2] = AT_NULL
;
2004 user_auxv
[AT_VECTOR_SIZE
- 1] = AT_NULL
;
2007 if (prctl_map
.exe_fd
!= (u32
)-1) {
2008 error
= prctl_set_mm_exe_file(mm
, prctl_map
.exe_fd
);
2014 * arg_lock protects concurent updates but we still need mmap_sem for
2015 * read to exclude races with sys_brk.
2017 down_read(&mm
->mmap_sem
);
2020 * We don't validate if these members are pointing to
2021 * real present VMAs because application may have correspond
2022 * VMAs already unmapped and kernel uses these members for statistics
2023 * output in procfs mostly, except
2025 * - @start_brk/@brk which are used in do_brk but kernel lookups
2026 * for VMAs when updating these memvers so anything wrong written
2027 * here cause kernel to swear at userspace program but won't lead
2028 * to any problem in kernel itself
2031 spin_lock(&mm
->arg_lock
);
2032 mm
->start_code
= prctl_map
.start_code
;
2033 mm
->end_code
= prctl_map
.end_code
;
2034 mm
->start_data
= prctl_map
.start_data
;
2035 mm
->end_data
= prctl_map
.end_data
;
2036 mm
->start_brk
= prctl_map
.start_brk
;
2037 mm
->brk
= prctl_map
.brk
;
2038 mm
->start_stack
= prctl_map
.start_stack
;
2039 mm
->arg_start
= prctl_map
.arg_start
;
2040 mm
->arg_end
= prctl_map
.arg_end
;
2041 mm
->env_start
= prctl_map
.env_start
;
2042 mm
->env_end
= prctl_map
.env_end
;
2043 spin_unlock(&mm
->arg_lock
);
2046 * Note this update of @saved_auxv is lockless thus
2047 * if someone reads this member in procfs while we're
2048 * updating -- it may get partly updated results. It's
2049 * known and acceptable trade off: we leave it as is to
2050 * not introduce additional locks here making the kernel
2053 if (prctl_map
.auxv_size
)
2054 memcpy(mm
->saved_auxv
, user_auxv
, sizeof(user_auxv
));
2056 up_read(&mm
->mmap_sem
);
2059 #endif /* CONFIG_CHECKPOINT_RESTORE */
2061 static int prctl_set_auxv(struct mm_struct
*mm
, unsigned long addr
,
2065 * This doesn't move the auxiliary vector itself since it's pinned to
2066 * mm_struct, but it permits filling the vector with new values. It's
2067 * up to the caller to provide sane values here, otherwise userspace
2068 * tools which use this vector might be unhappy.
2070 unsigned long user_auxv
[AT_VECTOR_SIZE
];
2072 if (len
> sizeof(user_auxv
))
2075 if (copy_from_user(user_auxv
, (const void __user
*)addr
, len
))
2078 /* Make sure the last entry is always AT_NULL */
2079 user_auxv
[AT_VECTOR_SIZE
- 2] = 0;
2080 user_auxv
[AT_VECTOR_SIZE
- 1] = 0;
2082 BUILD_BUG_ON(sizeof(user_auxv
) != sizeof(mm
->saved_auxv
));
2085 memcpy(mm
->saved_auxv
, user_auxv
, len
);
2086 task_unlock(current
);
2091 static int prctl_set_mm(int opt
, unsigned long addr
,
2092 unsigned long arg4
, unsigned long arg5
)
2094 struct mm_struct
*mm
= current
->mm
;
2095 struct prctl_mm_map prctl_map
;
2096 struct vm_area_struct
*vma
;
2099 if (arg5
|| (arg4
&& (opt
!= PR_SET_MM_AUXV
&&
2100 opt
!= PR_SET_MM_MAP
&&
2101 opt
!= PR_SET_MM_MAP_SIZE
)))
2104 #ifdef CONFIG_CHECKPOINT_RESTORE
2105 if (opt
== PR_SET_MM_MAP
|| opt
== PR_SET_MM_MAP_SIZE
)
2106 return prctl_set_mm_map(opt
, (const void __user
*)addr
, arg4
);
2109 if (!capable(CAP_SYS_RESOURCE
))
2112 if (opt
== PR_SET_MM_EXE_FILE
)
2113 return prctl_set_mm_exe_file(mm
, (unsigned int)addr
);
2115 if (opt
== PR_SET_MM_AUXV
)
2116 return prctl_set_auxv(mm
, addr
, arg4
);
2118 if (addr
>= TASK_SIZE
|| addr
< mmap_min_addr
)
2123 down_write(&mm
->mmap_sem
);
2124 vma
= find_vma(mm
, addr
);
2126 prctl_map
.start_code
= mm
->start_code
;
2127 prctl_map
.end_code
= mm
->end_code
;
2128 prctl_map
.start_data
= mm
->start_data
;
2129 prctl_map
.end_data
= mm
->end_data
;
2130 prctl_map
.start_brk
= mm
->start_brk
;
2131 prctl_map
.brk
= mm
->brk
;
2132 prctl_map
.start_stack
= mm
->start_stack
;
2133 prctl_map
.arg_start
= mm
->arg_start
;
2134 prctl_map
.arg_end
= mm
->arg_end
;
2135 prctl_map
.env_start
= mm
->env_start
;
2136 prctl_map
.env_end
= mm
->env_end
;
2137 prctl_map
.auxv
= NULL
;
2138 prctl_map
.auxv_size
= 0;
2139 prctl_map
.exe_fd
= -1;
2142 case PR_SET_MM_START_CODE
:
2143 prctl_map
.start_code
= addr
;
2145 case PR_SET_MM_END_CODE
:
2146 prctl_map
.end_code
= addr
;
2148 case PR_SET_MM_START_DATA
:
2149 prctl_map
.start_data
= addr
;
2151 case PR_SET_MM_END_DATA
:
2152 prctl_map
.end_data
= addr
;
2154 case PR_SET_MM_START_STACK
:
2155 prctl_map
.start_stack
= addr
;
2157 case PR_SET_MM_START_BRK
:
2158 prctl_map
.start_brk
= addr
;
2161 prctl_map
.brk
= addr
;
2163 case PR_SET_MM_ARG_START
:
2164 prctl_map
.arg_start
= addr
;
2166 case PR_SET_MM_ARG_END
:
2167 prctl_map
.arg_end
= addr
;
2169 case PR_SET_MM_ENV_START
:
2170 prctl_map
.env_start
= addr
;
2172 case PR_SET_MM_ENV_END
:
2173 prctl_map
.env_end
= addr
;
2179 error
= validate_prctl_map(&prctl_map
);
2185 * If command line arguments and environment
2186 * are placed somewhere else on stack, we can
2187 * set them up here, ARG_START/END to setup
2188 * command line argumets and ENV_START/END
2191 case PR_SET_MM_START_STACK
:
2192 case PR_SET_MM_ARG_START
:
2193 case PR_SET_MM_ARG_END
:
2194 case PR_SET_MM_ENV_START
:
2195 case PR_SET_MM_ENV_END
:
2202 mm
->start_code
= prctl_map
.start_code
;
2203 mm
->end_code
= prctl_map
.end_code
;
2204 mm
->start_data
= prctl_map
.start_data
;
2205 mm
->end_data
= prctl_map
.end_data
;
2206 mm
->start_brk
= prctl_map
.start_brk
;
2207 mm
->brk
= prctl_map
.brk
;
2208 mm
->start_stack
= prctl_map
.start_stack
;
2209 mm
->arg_start
= prctl_map
.arg_start
;
2210 mm
->arg_end
= prctl_map
.arg_end
;
2211 mm
->env_start
= prctl_map
.env_start
;
2212 mm
->env_end
= prctl_map
.env_end
;
2216 up_write(&mm
->mmap_sem
);
2220 #ifdef CONFIG_CHECKPOINT_RESTORE
2221 static int prctl_get_tid_address(struct task_struct
*me
, int __user
**tid_addr
)
2223 return put_user(me
->clear_child_tid
, tid_addr
);
2226 static int prctl_get_tid_address(struct task_struct
*me
, int __user
**tid_addr
)
2232 static int propagate_has_child_subreaper(struct task_struct
*p
, void *data
)
2235 * If task has has_child_subreaper - all its decendants
2236 * already have these flag too and new decendants will
2237 * inherit it on fork, skip them.
2239 * If we've found child_reaper - skip descendants in
2240 * it's subtree as they will never get out pidns.
2242 if (p
->signal
->has_child_subreaper
||
2243 is_child_reaper(task_pid(p
)))
2246 p
->signal
->has_child_subreaper
= 1;
2250 int __weak
arch_prctl_spec_ctrl_get(struct task_struct
*t
, unsigned long which
)
2255 int __weak
arch_prctl_spec_ctrl_set(struct task_struct
*t
, unsigned long which
,
2261 SYSCALL_DEFINE5(prctl
, int, option
, unsigned long, arg2
, unsigned long, arg3
,
2262 unsigned long, arg4
, unsigned long, arg5
)
2264 struct task_struct
*me
= current
;
2265 unsigned char comm
[sizeof(me
->comm
)];
2268 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
2269 if (error
!= -ENOSYS
)
2274 case PR_SET_PDEATHSIG
:
2275 if (!valid_signal(arg2
)) {
2279 me
->pdeath_signal
= arg2
;
2281 case PR_GET_PDEATHSIG
:
2282 error
= put_user(me
->pdeath_signal
, (int __user
*)arg2
);
2284 case PR_GET_DUMPABLE
:
2285 error
= get_dumpable(me
->mm
);
2287 case PR_SET_DUMPABLE
:
2288 if (arg2
!= SUID_DUMP_DISABLE
&& arg2
!= SUID_DUMP_USER
) {
2292 set_dumpable(me
->mm
, arg2
);
2295 case PR_SET_UNALIGN
:
2296 error
= SET_UNALIGN_CTL(me
, arg2
);
2298 case PR_GET_UNALIGN
:
2299 error
= GET_UNALIGN_CTL(me
, arg2
);
2302 error
= SET_FPEMU_CTL(me
, arg2
);
2305 error
= GET_FPEMU_CTL(me
, arg2
);
2308 error
= SET_FPEXC_CTL(me
, arg2
);
2311 error
= GET_FPEXC_CTL(me
, arg2
);
2314 error
= PR_TIMING_STATISTICAL
;
2317 if (arg2
!= PR_TIMING_STATISTICAL
)
2321 comm
[sizeof(me
->comm
) - 1] = 0;
2322 if (strncpy_from_user(comm
, (char __user
*)arg2
,
2323 sizeof(me
->comm
) - 1) < 0)
2325 set_task_comm(me
, comm
);
2326 proc_comm_connector(me
);
2329 get_task_comm(comm
, me
);
2330 if (copy_to_user((char __user
*)arg2
, comm
, sizeof(comm
)))
2334 error
= GET_ENDIAN(me
, arg2
);
2337 error
= SET_ENDIAN(me
, arg2
);
2339 case PR_GET_SECCOMP
:
2340 error
= prctl_get_seccomp();
2342 case PR_SET_SECCOMP
:
2343 error
= prctl_set_seccomp(arg2
, (char __user
*)arg3
);
2346 error
= GET_TSC_CTL(arg2
);
2349 error
= SET_TSC_CTL(arg2
);
2351 case PR_TASK_PERF_EVENTS_DISABLE
:
2352 error
= perf_event_task_disable();
2354 case PR_TASK_PERF_EVENTS_ENABLE
:
2355 error
= perf_event_task_enable();
2357 case PR_GET_TIMERSLACK
:
2358 if (current
->timer_slack_ns
> ULONG_MAX
)
2361 error
= current
->timer_slack_ns
;
2363 case PR_SET_TIMERSLACK
:
2365 current
->timer_slack_ns
=
2366 current
->default_timer_slack_ns
;
2368 current
->timer_slack_ns
= arg2
;
2374 case PR_MCE_KILL_CLEAR
:
2377 current
->flags
&= ~PF_MCE_PROCESS
;
2379 case PR_MCE_KILL_SET
:
2380 current
->flags
|= PF_MCE_PROCESS
;
2381 if (arg3
== PR_MCE_KILL_EARLY
)
2382 current
->flags
|= PF_MCE_EARLY
;
2383 else if (arg3
== PR_MCE_KILL_LATE
)
2384 current
->flags
&= ~PF_MCE_EARLY
;
2385 else if (arg3
== PR_MCE_KILL_DEFAULT
)
2387 ~(PF_MCE_EARLY
|PF_MCE_PROCESS
);
2395 case PR_MCE_KILL_GET
:
2396 if (arg2
| arg3
| arg4
| arg5
)
2398 if (current
->flags
& PF_MCE_PROCESS
)
2399 error
= (current
->flags
& PF_MCE_EARLY
) ?
2400 PR_MCE_KILL_EARLY
: PR_MCE_KILL_LATE
;
2402 error
= PR_MCE_KILL_DEFAULT
;
2405 error
= prctl_set_mm(arg2
, arg3
, arg4
, arg5
);
2407 case PR_GET_TID_ADDRESS
:
2408 error
= prctl_get_tid_address(me
, (int __user
**)arg2
);
2410 case PR_SET_CHILD_SUBREAPER
:
2411 me
->signal
->is_child_subreaper
= !!arg2
;
2415 walk_process_tree(me
, propagate_has_child_subreaper
, NULL
);
2417 case PR_GET_CHILD_SUBREAPER
:
2418 error
= put_user(me
->signal
->is_child_subreaper
,
2419 (int __user
*)arg2
);
2421 case PR_SET_NO_NEW_PRIVS
:
2422 if (arg2
!= 1 || arg3
|| arg4
|| arg5
)
2425 task_set_no_new_privs(current
);
2427 case PR_GET_NO_NEW_PRIVS
:
2428 if (arg2
|| arg3
|| arg4
|| arg5
)
2430 return task_no_new_privs(current
) ? 1 : 0;
2431 case PR_GET_THP_DISABLE
:
2432 if (arg2
|| arg3
|| arg4
|| arg5
)
2434 error
= !!test_bit(MMF_DISABLE_THP
, &me
->mm
->flags
);
2436 case PR_SET_THP_DISABLE
:
2437 if (arg3
|| arg4
|| arg5
)
2439 if (down_write_killable(&me
->mm
->mmap_sem
))
2442 set_bit(MMF_DISABLE_THP
, &me
->mm
->flags
);
2444 clear_bit(MMF_DISABLE_THP
, &me
->mm
->flags
);
2445 up_write(&me
->mm
->mmap_sem
);
2447 case PR_MPX_ENABLE_MANAGEMENT
:
2448 if (arg2
|| arg3
|| arg4
|| arg5
)
2450 error
= MPX_ENABLE_MANAGEMENT();
2452 case PR_MPX_DISABLE_MANAGEMENT
:
2453 if (arg2
|| arg3
|| arg4
|| arg5
)
2455 error
= MPX_DISABLE_MANAGEMENT();
2457 case PR_SET_FP_MODE
:
2458 error
= SET_FP_MODE(me
, arg2
);
2460 case PR_GET_FP_MODE
:
2461 error
= GET_FP_MODE(me
);
2464 error
= SVE_SET_VL(arg2
);
2467 error
= SVE_GET_VL();
2469 case PR_GET_SPECULATION_CTRL
:
2470 if (arg3
|| arg4
|| arg5
)
2472 error
= arch_prctl_spec_ctrl_get(me
, arg2
);
2474 case PR_SET_SPECULATION_CTRL
:
2477 error
= arch_prctl_spec_ctrl_set(me
, arg2
, arg3
);
2486 SYSCALL_DEFINE3(getcpu
, unsigned __user
*, cpup
, unsigned __user
*, nodep
,
2487 struct getcpu_cache __user
*, unused
)
2490 int cpu
= raw_smp_processor_id();
2493 err
|= put_user(cpu
, cpup
);
2495 err
|= put_user(cpu_to_node(cpu
), nodep
);
2496 return err
? -EFAULT
: 0;
2500 * do_sysinfo - fill in sysinfo struct
2501 * @info: pointer to buffer to fill
2503 static int do_sysinfo(struct sysinfo
*info
)
2505 unsigned long mem_total
, sav_total
;
2506 unsigned int mem_unit
, bitcount
;
2507 struct timespec64 tp
;
2509 memset(info
, 0, sizeof(struct sysinfo
));
2511 ktime_get_boottime_ts64(&tp
);
2512 info
->uptime
= tp
.tv_sec
+ (tp
.tv_nsec
? 1 : 0);
2514 get_avenrun(info
->loads
, 0, SI_LOAD_SHIFT
- FSHIFT
);
2516 info
->procs
= nr_threads
;
2522 * If the sum of all the available memory (i.e. ram + swap)
2523 * is less than can be stored in a 32 bit unsigned long then
2524 * we can be binary compatible with 2.2.x kernels. If not,
2525 * well, in that case 2.2.x was broken anyways...
2527 * -Erik Andersen <andersee@debian.org>
2530 mem_total
= info
->totalram
+ info
->totalswap
;
2531 if (mem_total
< info
->totalram
|| mem_total
< info
->totalswap
)
2534 mem_unit
= info
->mem_unit
;
2535 while (mem_unit
> 1) {
2538 sav_total
= mem_total
;
2540 if (mem_total
< sav_total
)
2545 * If mem_total did not overflow, multiply all memory values by
2546 * info->mem_unit and set it to 1. This leaves things compatible
2547 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2552 info
->totalram
<<= bitcount
;
2553 info
->freeram
<<= bitcount
;
2554 info
->sharedram
<<= bitcount
;
2555 info
->bufferram
<<= bitcount
;
2556 info
->totalswap
<<= bitcount
;
2557 info
->freeswap
<<= bitcount
;
2558 info
->totalhigh
<<= bitcount
;
2559 info
->freehigh
<<= bitcount
;
2565 SYSCALL_DEFINE1(sysinfo
, struct sysinfo __user
*, info
)
2571 if (copy_to_user(info
, &val
, sizeof(struct sysinfo
)))
2577 #ifdef CONFIG_COMPAT
2578 struct compat_sysinfo
{
2592 char _f
[20-2*sizeof(u32
)-sizeof(int)];
2595 COMPAT_SYSCALL_DEFINE1(sysinfo
, struct compat_sysinfo __user
*, info
)
2601 /* Check to see if any memory value is too large for 32-bit and scale
2604 if (upper_32_bits(s
.totalram
) || upper_32_bits(s
.totalswap
)) {
2607 while (s
.mem_unit
< PAGE_SIZE
) {
2612 s
.totalram
>>= bitcount
;
2613 s
.freeram
>>= bitcount
;
2614 s
.sharedram
>>= bitcount
;
2615 s
.bufferram
>>= bitcount
;
2616 s
.totalswap
>>= bitcount
;
2617 s
.freeswap
>>= bitcount
;
2618 s
.totalhigh
>>= bitcount
;
2619 s
.freehigh
>>= bitcount
;
2622 if (!access_ok(VERIFY_WRITE
, info
, sizeof(struct compat_sysinfo
)) ||
2623 __put_user(s
.uptime
, &info
->uptime
) ||
2624 __put_user(s
.loads
[0], &info
->loads
[0]) ||
2625 __put_user(s
.loads
[1], &info
->loads
[1]) ||
2626 __put_user(s
.loads
[2], &info
->loads
[2]) ||
2627 __put_user(s
.totalram
, &info
->totalram
) ||
2628 __put_user(s
.freeram
, &info
->freeram
) ||
2629 __put_user(s
.sharedram
, &info
->sharedram
) ||
2630 __put_user(s
.bufferram
, &info
->bufferram
) ||
2631 __put_user(s
.totalswap
, &info
->totalswap
) ||
2632 __put_user(s
.freeswap
, &info
->freeswap
) ||
2633 __put_user(s
.procs
, &info
->procs
) ||
2634 __put_user(s
.totalhigh
, &info
->totalhigh
) ||
2635 __put_user(s
.freehigh
, &info
->freehigh
) ||
2636 __put_user(s
.mem_unit
, &info
->mem_unit
))
2641 #endif /* CONFIG_COMPAT */