4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
33 static struct kmem_cache
*userfaultfd_ctx_cachep __read_mostly
;
35 enum userfaultfd_state
{
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
44 struct userfaultfd_ctx
{
45 /* waitqueue head for the pending (i.e. not read) userfaults */
46 wait_queue_head_t fault_pending_wqh
;
47 /* waitqueue head for the userfaults */
48 wait_queue_head_t fault_wqh
;
49 /* waitqueue head for the pseudo fd to wakeup poll/read */
50 wait_queue_head_t fd_wqh
;
51 /* waitqueue head for events */
52 wait_queue_head_t event_wqh
;
53 /* a refile sequence protected by fault_pending_wqh lock */
54 struct seqcount refile_seq
;
55 /* pseudo fd refcounting */
57 /* userfaultfd syscall flags */
59 /* features requested from the userspace */
60 unsigned int features
;
62 enum userfaultfd_state state
;
65 /* memory mappings are changing because of non-cooperative event */
67 /* mm with one ore more vmas attached to this userfaultfd_ctx */
71 struct userfaultfd_fork_ctx
{
72 struct userfaultfd_ctx
*orig
;
73 struct userfaultfd_ctx
*new;
74 struct list_head list
;
77 struct userfaultfd_unmap_ctx
{
78 struct userfaultfd_ctx
*ctx
;
81 struct list_head list
;
84 struct userfaultfd_wait_queue
{
86 wait_queue_entry_t wq
;
87 struct userfaultfd_ctx
*ctx
;
91 struct userfaultfd_wake_range
{
96 static int userfaultfd_wake_function(wait_queue_entry_t
*wq
, unsigned mode
,
97 int wake_flags
, void *key
)
99 struct userfaultfd_wake_range
*range
= key
;
101 struct userfaultfd_wait_queue
*uwq
;
102 unsigned long start
, len
;
104 uwq
= container_of(wq
, struct userfaultfd_wait_queue
, wq
);
106 /* len == 0 means wake all */
107 start
= range
->start
;
109 if (len
&& (start
> uwq
->msg
.arg
.pagefault
.address
||
110 start
+ len
<= uwq
->msg
.arg
.pagefault
.address
))
112 WRITE_ONCE(uwq
->waken
, true);
114 * The Program-Order guarantees provided by the scheduler
115 * ensure uwq->waken is visible before the task is woken.
117 ret
= wake_up_state(wq
->private, mode
);
120 * Wake only once, autoremove behavior.
122 * After the effect of list_del_init is visible to the other
123 * CPUs, the waitqueue may disappear from under us, see the
124 * !list_empty_careful() in handle_userfault().
126 * try_to_wake_up() has an implicit smp_mb(), and the
127 * wq->private is read before calling the extern function
128 * "wake_up_state" (which in turns calls try_to_wake_up).
130 list_del_init(&wq
->entry
);
137 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
139 * @ctx: [in] Pointer to the userfaultfd context.
141 static void userfaultfd_ctx_get(struct userfaultfd_ctx
*ctx
)
143 if (!atomic_inc_not_zero(&ctx
->refcount
))
148 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
150 * @ctx: [in] Pointer to userfaultfd context.
152 * The userfaultfd context reference must have been previously acquired either
153 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
155 static void userfaultfd_ctx_put(struct userfaultfd_ctx
*ctx
)
157 if (atomic_dec_and_test(&ctx
->refcount
)) {
158 VM_BUG_ON(spin_is_locked(&ctx
->fault_pending_wqh
.lock
));
159 VM_BUG_ON(waitqueue_active(&ctx
->fault_pending_wqh
));
160 VM_BUG_ON(spin_is_locked(&ctx
->fault_wqh
.lock
));
161 VM_BUG_ON(waitqueue_active(&ctx
->fault_wqh
));
162 VM_BUG_ON(spin_is_locked(&ctx
->event_wqh
.lock
));
163 VM_BUG_ON(waitqueue_active(&ctx
->event_wqh
));
164 VM_BUG_ON(spin_is_locked(&ctx
->fd_wqh
.lock
));
165 VM_BUG_ON(waitqueue_active(&ctx
->fd_wqh
));
167 kmem_cache_free(userfaultfd_ctx_cachep
, ctx
);
171 static inline void msg_init(struct uffd_msg
*msg
)
173 BUILD_BUG_ON(sizeof(struct uffd_msg
) != 32);
175 * Must use memset to zero out the paddings or kernel data is
176 * leaked to userland.
178 memset(msg
, 0, sizeof(struct uffd_msg
));
181 static inline struct uffd_msg
userfault_msg(unsigned long address
,
183 unsigned long reason
,
184 unsigned int features
)
188 msg
.event
= UFFD_EVENT_PAGEFAULT
;
189 msg
.arg
.pagefault
.address
= address
;
190 if (flags
& FAULT_FLAG_WRITE
)
192 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
193 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
194 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
195 * was a read fault, otherwise if set it means it's
198 msg
.arg
.pagefault
.flags
|= UFFD_PAGEFAULT_FLAG_WRITE
;
199 if (reason
& VM_UFFD_WP
)
201 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
202 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
203 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
204 * a missing fault, otherwise if set it means it's a
205 * write protect fault.
207 msg
.arg
.pagefault
.flags
|= UFFD_PAGEFAULT_FLAG_WP
;
208 if (features
& UFFD_FEATURE_THREAD_ID
)
209 msg
.arg
.pagefault
.feat
.ptid
= task_pid_vnr(current
);
213 #ifdef CONFIG_HUGETLB_PAGE
215 * Same functionality as userfaultfd_must_wait below with modifications for
218 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx
*ctx
,
219 struct vm_area_struct
*vma
,
220 unsigned long address
,
222 unsigned long reason
)
224 struct mm_struct
*mm
= ctx
->mm
;
228 VM_BUG_ON(!rwsem_is_locked(&mm
->mmap_sem
));
230 pte
= huge_pte_offset(mm
, address
, vma_mmu_pagesize(vma
));
237 * Lockless access: we're in a wait_event so it's ok if it
240 if (huge_pte_none(*pte
))
242 if (!huge_pte_write(*pte
) && (reason
& VM_UFFD_WP
))
248 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx
*ctx
,
249 struct vm_area_struct
*vma
,
250 unsigned long address
,
252 unsigned long reason
)
254 return false; /* should never get here */
256 #endif /* CONFIG_HUGETLB_PAGE */
259 * Verify the pagetables are still not ok after having reigstered into
260 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
261 * userfault that has already been resolved, if userfaultfd_read and
262 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
265 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx
*ctx
,
266 unsigned long address
,
268 unsigned long reason
)
270 struct mm_struct
*mm
= ctx
->mm
;
278 VM_BUG_ON(!rwsem_is_locked(&mm
->mmap_sem
));
280 pgd
= pgd_offset(mm
, address
);
281 if (!pgd_present(*pgd
))
283 p4d
= p4d_offset(pgd
, address
);
284 if (!p4d_present(*p4d
))
286 pud
= pud_offset(p4d
, address
);
287 if (!pud_present(*pud
))
289 pmd
= pmd_offset(pud
, address
);
291 * READ_ONCE must function as a barrier with narrower scope
292 * and it must be equivalent to:
293 * _pmd = *pmd; barrier();
295 * This is to deal with the instability (as in
296 * pmd_trans_unstable) of the pmd.
298 _pmd
= READ_ONCE(*pmd
);
303 if (!pmd_present(_pmd
))
306 if (pmd_trans_huge(_pmd
))
310 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
311 * and use the standard pte_offset_map() instead of parsing _pmd.
313 pte
= pte_offset_map(pmd
, address
);
315 * Lockless access: we're in a wait_event so it's ok if it
327 * The locking rules involved in returning VM_FAULT_RETRY depending on
328 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
329 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
330 * recommendation in __lock_page_or_retry is not an understatement.
332 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
333 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
336 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
337 * set, VM_FAULT_RETRY can still be returned if and only if there are
338 * fatal_signal_pending()s, and the mmap_sem must be released before
341 int handle_userfault(struct vm_fault
*vmf
, unsigned long reason
)
343 struct mm_struct
*mm
= vmf
->vma
->vm_mm
;
344 struct userfaultfd_ctx
*ctx
;
345 struct userfaultfd_wait_queue uwq
;
347 bool must_wait
, return_to_userland
;
350 ret
= VM_FAULT_SIGBUS
;
353 * We don't do userfault handling for the final child pid update.
355 * We also don't do userfault handling during
356 * coredumping. hugetlbfs has the special
357 * follow_hugetlb_page() to skip missing pages in the
358 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
359 * the no_page_table() helper in follow_page_mask(), but the
360 * shmem_vm_ops->fault method is invoked even during
361 * coredumping without mmap_sem and it ends up here.
363 if (current
->flags
& (PF_EXITING
|PF_DUMPCORE
))
367 * Coredumping runs without mmap_sem so we can only check that
368 * the mmap_sem is held, if PF_DUMPCORE was not set.
370 WARN_ON_ONCE(!rwsem_is_locked(&mm
->mmap_sem
));
372 ctx
= vmf
->vma
->vm_userfaultfd_ctx
.ctx
;
376 BUG_ON(ctx
->mm
!= mm
);
378 VM_BUG_ON(reason
& ~(VM_UFFD_MISSING
|VM_UFFD_WP
));
379 VM_BUG_ON(!(reason
& VM_UFFD_MISSING
) ^ !!(reason
& VM_UFFD_WP
));
381 if (ctx
->features
& UFFD_FEATURE_SIGBUS
)
385 * If it's already released don't get it. This avoids to loop
386 * in __get_user_pages if userfaultfd_release waits on the
387 * caller of handle_userfault to release the mmap_sem.
389 if (unlikely(READ_ONCE(ctx
->released
))) {
391 * Don't return VM_FAULT_SIGBUS in this case, so a non
392 * cooperative manager can close the uffd after the
393 * last UFFDIO_COPY, without risking to trigger an
394 * involuntary SIGBUS if the process was starting the
395 * userfaultfd while the userfaultfd was still armed
396 * (but after the last UFFDIO_COPY). If the uffd
397 * wasn't already closed when the userfault reached
398 * this point, that would normally be solved by
399 * userfaultfd_must_wait returning 'false'.
401 * If we were to return VM_FAULT_SIGBUS here, the non
402 * cooperative manager would be instead forced to
403 * always call UFFDIO_UNREGISTER before it can safely
406 ret
= VM_FAULT_NOPAGE
;
411 * Check that we can return VM_FAULT_RETRY.
413 * NOTE: it should become possible to return VM_FAULT_RETRY
414 * even if FAULT_FLAG_TRIED is set without leading to gup()
415 * -EBUSY failures, if the userfaultfd is to be extended for
416 * VM_UFFD_WP tracking and we intend to arm the userfault
417 * without first stopping userland access to the memory. For
418 * VM_UFFD_MISSING userfaults this is enough for now.
420 if (unlikely(!(vmf
->flags
& FAULT_FLAG_ALLOW_RETRY
))) {
422 * Validate the invariant that nowait must allow retry
423 * to be sure not to return SIGBUS erroneously on
424 * nowait invocations.
426 BUG_ON(vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
);
427 #ifdef CONFIG_DEBUG_VM
428 if (printk_ratelimit()) {
430 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
439 * Handle nowait, not much to do other than tell it to retry
442 ret
= VM_FAULT_RETRY
;
443 if (vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)
446 /* take the reference before dropping the mmap_sem */
447 userfaultfd_ctx_get(ctx
);
449 init_waitqueue_func_entry(&uwq
.wq
, userfaultfd_wake_function
);
450 uwq
.wq
.private = current
;
451 uwq
.msg
= userfault_msg(vmf
->address
, vmf
->flags
, reason
,
457 (vmf
->flags
& (FAULT_FLAG_USER
|FAULT_FLAG_KILLABLE
)) ==
458 (FAULT_FLAG_USER
|FAULT_FLAG_KILLABLE
);
459 blocking_state
= return_to_userland
? TASK_INTERRUPTIBLE
:
462 spin_lock(&ctx
->fault_pending_wqh
.lock
);
464 * After the __add_wait_queue the uwq is visible to userland
465 * through poll/read().
467 __add_wait_queue(&ctx
->fault_pending_wqh
, &uwq
.wq
);
469 * The smp_mb() after __set_current_state prevents the reads
470 * following the spin_unlock to happen before the list_add in
473 set_current_state(blocking_state
);
474 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
476 if (!is_vm_hugetlb_page(vmf
->vma
))
477 must_wait
= userfaultfd_must_wait(ctx
, vmf
->address
, vmf
->flags
,
480 must_wait
= userfaultfd_huge_must_wait(ctx
, vmf
->vma
,
483 up_read(&mm
->mmap_sem
);
485 if (likely(must_wait
&& !READ_ONCE(ctx
->released
) &&
486 (return_to_userland
? !signal_pending(current
) :
487 !fatal_signal_pending(current
)))) {
488 wake_up_poll(&ctx
->fd_wqh
, EPOLLIN
);
490 ret
|= VM_FAULT_MAJOR
;
493 * False wakeups can orginate even from rwsem before
494 * up_read() however userfaults will wait either for a
495 * targeted wakeup on the specific uwq waitqueue from
496 * wake_userfault() or for signals or for uffd
499 while (!READ_ONCE(uwq
.waken
)) {
501 * This needs the full smp_store_mb()
502 * guarantee as the state write must be
503 * visible to other CPUs before reading
504 * uwq.waken from other CPUs.
506 set_current_state(blocking_state
);
507 if (READ_ONCE(uwq
.waken
) ||
508 READ_ONCE(ctx
->released
) ||
509 (return_to_userland
? signal_pending(current
) :
510 fatal_signal_pending(current
)))
516 __set_current_state(TASK_RUNNING
);
518 if (return_to_userland
) {
519 if (signal_pending(current
) &&
520 !fatal_signal_pending(current
)) {
522 * If we got a SIGSTOP or SIGCONT and this is
523 * a normal userland page fault, just let
524 * userland return so the signal will be
525 * handled and gdb debugging works. The page
526 * fault code immediately after we return from
527 * this function is going to release the
528 * mmap_sem and it's not depending on it
529 * (unlike gup would if we were not to return
532 * If a fatal signal is pending we still take
533 * the streamlined VM_FAULT_RETRY failure path
534 * and there's no need to retake the mmap_sem
537 down_read(&mm
->mmap_sem
);
538 ret
= VM_FAULT_NOPAGE
;
543 * Here we race with the list_del; list_add in
544 * userfaultfd_ctx_read(), however because we don't ever run
545 * list_del_init() to refile across the two lists, the prev
546 * and next pointers will never point to self. list_add also
547 * would never let any of the two pointers to point to
548 * self. So list_empty_careful won't risk to see both pointers
549 * pointing to self at any time during the list refile. The
550 * only case where list_del_init() is called is the full
551 * removal in the wake function and there we don't re-list_add
552 * and it's fine not to block on the spinlock. The uwq on this
553 * kernel stack can be released after the list_del_init.
555 if (!list_empty_careful(&uwq
.wq
.entry
)) {
556 spin_lock(&ctx
->fault_pending_wqh
.lock
);
558 * No need of list_del_init(), the uwq on the stack
559 * will be freed shortly anyway.
561 list_del(&uwq
.wq
.entry
);
562 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
566 * ctx may go away after this if the userfault pseudo fd is
569 userfaultfd_ctx_put(ctx
);
575 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx
*ctx
,
576 struct userfaultfd_wait_queue
*ewq
)
578 struct userfaultfd_ctx
*release_new_ctx
;
580 if (WARN_ON_ONCE(current
->flags
& PF_EXITING
))
584 init_waitqueue_entry(&ewq
->wq
, current
);
585 release_new_ctx
= NULL
;
587 spin_lock(&ctx
->event_wqh
.lock
);
589 * After the __add_wait_queue the uwq is visible to userland
590 * through poll/read().
592 __add_wait_queue(&ctx
->event_wqh
, &ewq
->wq
);
594 set_current_state(TASK_KILLABLE
);
595 if (ewq
->msg
.event
== 0)
597 if (READ_ONCE(ctx
->released
) ||
598 fatal_signal_pending(current
)) {
600 * &ewq->wq may be queued in fork_event, but
601 * __remove_wait_queue ignores the head
602 * parameter. It would be a problem if it
605 __remove_wait_queue(&ctx
->event_wqh
, &ewq
->wq
);
606 if (ewq
->msg
.event
== UFFD_EVENT_FORK
) {
607 struct userfaultfd_ctx
*new;
609 new = (struct userfaultfd_ctx
*)
611 ewq
->msg
.arg
.reserved
.reserved1
;
612 release_new_ctx
= new;
617 spin_unlock(&ctx
->event_wqh
.lock
);
619 wake_up_poll(&ctx
->fd_wqh
, EPOLLIN
);
622 spin_lock(&ctx
->event_wqh
.lock
);
624 __set_current_state(TASK_RUNNING
);
625 spin_unlock(&ctx
->event_wqh
.lock
);
627 if (release_new_ctx
) {
628 struct vm_area_struct
*vma
;
629 struct mm_struct
*mm
= release_new_ctx
->mm
;
631 /* the various vma->vm_userfaultfd_ctx still points to it */
632 down_write(&mm
->mmap_sem
);
633 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
)
634 if (vma
->vm_userfaultfd_ctx
.ctx
== release_new_ctx
)
635 vma
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
636 up_write(&mm
->mmap_sem
);
638 userfaultfd_ctx_put(release_new_ctx
);
642 * ctx may go away after this if the userfault pseudo fd is
646 WRITE_ONCE(ctx
->mmap_changing
, false);
647 userfaultfd_ctx_put(ctx
);
650 static void userfaultfd_event_complete(struct userfaultfd_ctx
*ctx
,
651 struct userfaultfd_wait_queue
*ewq
)
654 wake_up_locked(&ctx
->event_wqh
);
655 __remove_wait_queue(&ctx
->event_wqh
, &ewq
->wq
);
658 int dup_userfaultfd(struct vm_area_struct
*vma
, struct list_head
*fcs
)
660 struct userfaultfd_ctx
*ctx
= NULL
, *octx
;
661 struct userfaultfd_fork_ctx
*fctx
;
663 octx
= vma
->vm_userfaultfd_ctx
.ctx
;
664 if (!octx
|| !(octx
->features
& UFFD_FEATURE_EVENT_FORK
)) {
665 vma
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
666 vma
->vm_flags
&= ~(VM_UFFD_WP
| VM_UFFD_MISSING
);
670 list_for_each_entry(fctx
, fcs
, list
)
671 if (fctx
->orig
== octx
) {
677 fctx
= kmalloc(sizeof(*fctx
), GFP_KERNEL
);
681 ctx
= kmem_cache_alloc(userfaultfd_ctx_cachep
, GFP_KERNEL
);
687 atomic_set(&ctx
->refcount
, 1);
688 ctx
->flags
= octx
->flags
;
689 ctx
->state
= UFFD_STATE_RUNNING
;
690 ctx
->features
= octx
->features
;
691 ctx
->released
= false;
692 ctx
->mmap_changing
= false;
693 ctx
->mm
= vma
->vm_mm
;
696 userfaultfd_ctx_get(octx
);
697 WRITE_ONCE(octx
->mmap_changing
, true);
700 list_add_tail(&fctx
->list
, fcs
);
703 vma
->vm_userfaultfd_ctx
.ctx
= ctx
;
707 static void dup_fctx(struct userfaultfd_fork_ctx
*fctx
)
709 struct userfaultfd_ctx
*ctx
= fctx
->orig
;
710 struct userfaultfd_wait_queue ewq
;
714 ewq
.msg
.event
= UFFD_EVENT_FORK
;
715 ewq
.msg
.arg
.reserved
.reserved1
= (unsigned long)fctx
->new;
717 userfaultfd_event_wait_completion(ctx
, &ewq
);
720 void dup_userfaultfd_complete(struct list_head
*fcs
)
722 struct userfaultfd_fork_ctx
*fctx
, *n
;
724 list_for_each_entry_safe(fctx
, n
, fcs
, list
) {
726 list_del(&fctx
->list
);
731 void mremap_userfaultfd_prep(struct vm_area_struct
*vma
,
732 struct vm_userfaultfd_ctx
*vm_ctx
)
734 struct userfaultfd_ctx
*ctx
;
736 ctx
= vma
->vm_userfaultfd_ctx
.ctx
;
737 if (ctx
&& (ctx
->features
& UFFD_FEATURE_EVENT_REMAP
)) {
739 userfaultfd_ctx_get(ctx
);
740 WRITE_ONCE(ctx
->mmap_changing
, true);
744 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx
*vm_ctx
,
745 unsigned long from
, unsigned long to
,
748 struct userfaultfd_ctx
*ctx
= vm_ctx
->ctx
;
749 struct userfaultfd_wait_queue ewq
;
754 if (to
& ~PAGE_MASK
) {
755 userfaultfd_ctx_put(ctx
);
761 ewq
.msg
.event
= UFFD_EVENT_REMAP
;
762 ewq
.msg
.arg
.remap
.from
= from
;
763 ewq
.msg
.arg
.remap
.to
= to
;
764 ewq
.msg
.arg
.remap
.len
= len
;
766 userfaultfd_event_wait_completion(ctx
, &ewq
);
769 bool userfaultfd_remove(struct vm_area_struct
*vma
,
770 unsigned long start
, unsigned long end
)
772 struct mm_struct
*mm
= vma
->vm_mm
;
773 struct userfaultfd_ctx
*ctx
;
774 struct userfaultfd_wait_queue ewq
;
776 ctx
= vma
->vm_userfaultfd_ctx
.ctx
;
777 if (!ctx
|| !(ctx
->features
& UFFD_FEATURE_EVENT_REMOVE
))
780 userfaultfd_ctx_get(ctx
);
781 WRITE_ONCE(ctx
->mmap_changing
, true);
782 up_read(&mm
->mmap_sem
);
786 ewq
.msg
.event
= UFFD_EVENT_REMOVE
;
787 ewq
.msg
.arg
.remove
.start
= start
;
788 ewq
.msg
.arg
.remove
.end
= end
;
790 userfaultfd_event_wait_completion(ctx
, &ewq
);
795 static bool has_unmap_ctx(struct userfaultfd_ctx
*ctx
, struct list_head
*unmaps
,
796 unsigned long start
, unsigned long end
)
798 struct userfaultfd_unmap_ctx
*unmap_ctx
;
800 list_for_each_entry(unmap_ctx
, unmaps
, list
)
801 if (unmap_ctx
->ctx
== ctx
&& unmap_ctx
->start
== start
&&
802 unmap_ctx
->end
== end
)
808 int userfaultfd_unmap_prep(struct vm_area_struct
*vma
,
809 unsigned long start
, unsigned long end
,
810 struct list_head
*unmaps
)
812 for ( ; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
) {
813 struct userfaultfd_unmap_ctx
*unmap_ctx
;
814 struct userfaultfd_ctx
*ctx
= vma
->vm_userfaultfd_ctx
.ctx
;
816 if (!ctx
|| !(ctx
->features
& UFFD_FEATURE_EVENT_UNMAP
) ||
817 has_unmap_ctx(ctx
, unmaps
, start
, end
))
820 unmap_ctx
= kzalloc(sizeof(*unmap_ctx
), GFP_KERNEL
);
824 userfaultfd_ctx_get(ctx
);
825 WRITE_ONCE(ctx
->mmap_changing
, true);
826 unmap_ctx
->ctx
= ctx
;
827 unmap_ctx
->start
= start
;
828 unmap_ctx
->end
= end
;
829 list_add_tail(&unmap_ctx
->list
, unmaps
);
835 void userfaultfd_unmap_complete(struct mm_struct
*mm
, struct list_head
*uf
)
837 struct userfaultfd_unmap_ctx
*ctx
, *n
;
838 struct userfaultfd_wait_queue ewq
;
840 list_for_each_entry_safe(ctx
, n
, uf
, list
) {
843 ewq
.msg
.event
= UFFD_EVENT_UNMAP
;
844 ewq
.msg
.arg
.remove
.start
= ctx
->start
;
845 ewq
.msg
.arg
.remove
.end
= ctx
->end
;
847 userfaultfd_event_wait_completion(ctx
->ctx
, &ewq
);
849 list_del(&ctx
->list
);
854 static int userfaultfd_release(struct inode
*inode
, struct file
*file
)
856 struct userfaultfd_ctx
*ctx
= file
->private_data
;
857 struct mm_struct
*mm
= ctx
->mm
;
858 struct vm_area_struct
*vma
, *prev
;
859 /* len == 0 means wake all */
860 struct userfaultfd_wake_range range
= { .len
= 0, };
861 unsigned long new_flags
;
863 WRITE_ONCE(ctx
->released
, true);
865 if (!mmget_not_zero(mm
))
869 * Flush page faults out of all CPUs. NOTE: all page faults
870 * must be retried without returning VM_FAULT_SIGBUS if
871 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
872 * changes while handle_userfault released the mmap_sem. So
873 * it's critical that released is set to true (above), before
874 * taking the mmap_sem for writing.
876 down_write(&mm
->mmap_sem
);
878 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
880 BUG_ON(!!vma
->vm_userfaultfd_ctx
.ctx
^
881 !!(vma
->vm_flags
& (VM_UFFD_MISSING
| VM_UFFD_WP
)));
882 if (vma
->vm_userfaultfd_ctx
.ctx
!= ctx
) {
886 new_flags
= vma
->vm_flags
& ~(VM_UFFD_MISSING
| VM_UFFD_WP
);
887 prev
= vma_merge(mm
, prev
, vma
->vm_start
, vma
->vm_end
,
888 new_flags
, vma
->anon_vma
,
889 vma
->vm_file
, vma
->vm_pgoff
,
896 vma
->vm_flags
= new_flags
;
897 vma
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
899 up_write(&mm
->mmap_sem
);
903 * After no new page faults can wait on this fault_*wqh, flush
904 * the last page faults that may have been already waiting on
907 spin_lock(&ctx
->fault_pending_wqh
.lock
);
908 __wake_up_locked_key(&ctx
->fault_pending_wqh
, TASK_NORMAL
, &range
);
909 __wake_up_locked_key(&ctx
->fault_wqh
, TASK_NORMAL
, &range
);
910 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
912 /* Flush pending events that may still wait on event_wqh */
913 wake_up_all(&ctx
->event_wqh
);
915 wake_up_poll(&ctx
->fd_wqh
, EPOLLHUP
);
916 userfaultfd_ctx_put(ctx
);
920 /* fault_pending_wqh.lock must be hold by the caller */
921 static inline struct userfaultfd_wait_queue
*find_userfault_in(
922 wait_queue_head_t
*wqh
)
924 wait_queue_entry_t
*wq
;
925 struct userfaultfd_wait_queue
*uwq
;
927 VM_BUG_ON(!spin_is_locked(&wqh
->lock
));
930 if (!waitqueue_active(wqh
))
932 /* walk in reverse to provide FIFO behavior to read userfaults */
933 wq
= list_last_entry(&wqh
->head
, typeof(*wq
), entry
);
934 uwq
= container_of(wq
, struct userfaultfd_wait_queue
, wq
);
939 static inline struct userfaultfd_wait_queue
*find_userfault(
940 struct userfaultfd_ctx
*ctx
)
942 return find_userfault_in(&ctx
->fault_pending_wqh
);
945 static inline struct userfaultfd_wait_queue
*find_userfault_evt(
946 struct userfaultfd_ctx
*ctx
)
948 return find_userfault_in(&ctx
->event_wqh
);
951 static __poll_t
userfaultfd_poll(struct file
*file
, poll_table
*wait
)
953 struct userfaultfd_ctx
*ctx
= file
->private_data
;
956 poll_wait(file
, &ctx
->fd_wqh
, wait
);
958 switch (ctx
->state
) {
959 case UFFD_STATE_WAIT_API
:
961 case UFFD_STATE_RUNNING
:
963 * poll() never guarantees that read won't block.
964 * userfaults can be waken before they're read().
966 if (unlikely(!(file
->f_flags
& O_NONBLOCK
)))
969 * lockless access to see if there are pending faults
970 * __pollwait last action is the add_wait_queue but
971 * the spin_unlock would allow the waitqueue_active to
972 * pass above the actual list_add inside
973 * add_wait_queue critical section. So use a full
974 * memory barrier to serialize the list_add write of
975 * add_wait_queue() with the waitqueue_active read
980 if (waitqueue_active(&ctx
->fault_pending_wqh
))
982 else if (waitqueue_active(&ctx
->event_wqh
))
992 static const struct file_operations userfaultfd_fops
;
994 static int resolve_userfault_fork(struct userfaultfd_ctx
*ctx
,
995 struct userfaultfd_ctx
*new,
996 struct uffd_msg
*msg
)
1000 fd
= anon_inode_getfd("[userfaultfd]", &userfaultfd_fops
, new,
1001 O_RDWR
| (new->flags
& UFFD_SHARED_FCNTL_FLAGS
));
1005 msg
->arg
.reserved
.reserved1
= 0;
1006 msg
->arg
.fork
.ufd
= fd
;
1010 static ssize_t
userfaultfd_ctx_read(struct userfaultfd_ctx
*ctx
, int no_wait
,
1011 struct uffd_msg
*msg
)
1014 DECLARE_WAITQUEUE(wait
, current
);
1015 struct userfaultfd_wait_queue
*uwq
;
1017 * Handling fork event requires sleeping operations, so
1018 * we drop the event_wqh lock, then do these ops, then
1019 * lock it back and wake up the waiter. While the lock is
1020 * dropped the ewq may go away so we keep track of it
1023 LIST_HEAD(fork_event
);
1024 struct userfaultfd_ctx
*fork_nctx
= NULL
;
1026 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1027 spin_lock(&ctx
->fd_wqh
.lock
);
1028 __add_wait_queue(&ctx
->fd_wqh
, &wait
);
1030 set_current_state(TASK_INTERRUPTIBLE
);
1031 spin_lock(&ctx
->fault_pending_wqh
.lock
);
1032 uwq
= find_userfault(ctx
);
1035 * Use a seqcount to repeat the lockless check
1036 * in wake_userfault() to avoid missing
1037 * wakeups because during the refile both
1038 * waitqueue could become empty if this is the
1041 write_seqcount_begin(&ctx
->refile_seq
);
1044 * The fault_pending_wqh.lock prevents the uwq
1045 * to disappear from under us.
1047 * Refile this userfault from
1048 * fault_pending_wqh to fault_wqh, it's not
1049 * pending anymore after we read it.
1051 * Use list_del() by hand (as
1052 * userfaultfd_wake_function also uses
1053 * list_del_init() by hand) to be sure nobody
1054 * changes __remove_wait_queue() to use
1055 * list_del_init() in turn breaking the
1056 * !list_empty_careful() check in
1057 * handle_userfault(). The uwq->wq.head list
1058 * must never be empty at any time during the
1059 * refile, or the waitqueue could disappear
1060 * from under us. The "wait_queue_head_t"
1061 * parameter of __remove_wait_queue() is unused
1064 list_del(&uwq
->wq
.entry
);
1065 __add_wait_queue(&ctx
->fault_wqh
, &uwq
->wq
);
1067 write_seqcount_end(&ctx
->refile_seq
);
1069 /* careful to always initialize msg if ret == 0 */
1071 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
1075 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
1077 spin_lock(&ctx
->event_wqh
.lock
);
1078 uwq
= find_userfault_evt(ctx
);
1082 if (uwq
->msg
.event
== UFFD_EVENT_FORK
) {
1083 fork_nctx
= (struct userfaultfd_ctx
*)
1085 uwq
->msg
.arg
.reserved
.reserved1
;
1086 list_move(&uwq
->wq
.entry
, &fork_event
);
1088 * fork_nctx can be freed as soon as
1089 * we drop the lock, unless we take a
1092 userfaultfd_ctx_get(fork_nctx
);
1093 spin_unlock(&ctx
->event_wqh
.lock
);
1098 userfaultfd_event_complete(ctx
, uwq
);
1099 spin_unlock(&ctx
->event_wqh
.lock
);
1103 spin_unlock(&ctx
->event_wqh
.lock
);
1105 if (signal_pending(current
)) {
1113 spin_unlock(&ctx
->fd_wqh
.lock
);
1115 spin_lock(&ctx
->fd_wqh
.lock
);
1117 __remove_wait_queue(&ctx
->fd_wqh
, &wait
);
1118 __set_current_state(TASK_RUNNING
);
1119 spin_unlock(&ctx
->fd_wqh
.lock
);
1121 if (!ret
&& msg
->event
== UFFD_EVENT_FORK
) {
1122 ret
= resolve_userfault_fork(ctx
, fork_nctx
, msg
);
1123 spin_lock(&ctx
->event_wqh
.lock
);
1124 if (!list_empty(&fork_event
)) {
1126 * The fork thread didn't abort, so we can
1127 * drop the temporary refcount.
1129 userfaultfd_ctx_put(fork_nctx
);
1131 uwq
= list_first_entry(&fork_event
,
1135 * If fork_event list wasn't empty and in turn
1136 * the event wasn't already released by fork
1137 * (the event is allocated on fork kernel
1138 * stack), put the event back to its place in
1139 * the event_wq. fork_event head will be freed
1140 * as soon as we return so the event cannot
1141 * stay queued there no matter the current
1144 list_del(&uwq
->wq
.entry
);
1145 __add_wait_queue(&ctx
->event_wqh
, &uwq
->wq
);
1148 * Leave the event in the waitqueue and report
1149 * error to userland if we failed to resolve
1150 * the userfault fork.
1153 userfaultfd_event_complete(ctx
, uwq
);
1156 * Here the fork thread aborted and the
1157 * refcount from the fork thread on fork_nctx
1158 * has already been released. We still hold
1159 * the reference we took before releasing the
1160 * lock above. If resolve_userfault_fork
1161 * failed we've to drop it because the
1162 * fork_nctx has to be freed in such case. If
1163 * it succeeded we'll hold it because the new
1164 * uffd references it.
1167 userfaultfd_ctx_put(fork_nctx
);
1169 spin_unlock(&ctx
->event_wqh
.lock
);
1175 static ssize_t
userfaultfd_read(struct file
*file
, char __user
*buf
,
1176 size_t count
, loff_t
*ppos
)
1178 struct userfaultfd_ctx
*ctx
= file
->private_data
;
1179 ssize_t _ret
, ret
= 0;
1180 struct uffd_msg msg
;
1181 int no_wait
= file
->f_flags
& O_NONBLOCK
;
1183 if (ctx
->state
== UFFD_STATE_WAIT_API
)
1187 if (count
< sizeof(msg
))
1188 return ret
? ret
: -EINVAL
;
1189 _ret
= userfaultfd_ctx_read(ctx
, no_wait
, &msg
);
1191 return ret
? ret
: _ret
;
1192 if (copy_to_user((__u64 __user
*) buf
, &msg
, sizeof(msg
)))
1193 return ret
? ret
: -EFAULT
;
1196 count
-= sizeof(msg
);
1198 * Allow to read more than one fault at time but only
1199 * block if waiting for the very first one.
1201 no_wait
= O_NONBLOCK
;
1205 static void __wake_userfault(struct userfaultfd_ctx
*ctx
,
1206 struct userfaultfd_wake_range
*range
)
1208 spin_lock(&ctx
->fault_pending_wqh
.lock
);
1209 /* wake all in the range and autoremove */
1210 if (waitqueue_active(&ctx
->fault_pending_wqh
))
1211 __wake_up_locked_key(&ctx
->fault_pending_wqh
, TASK_NORMAL
,
1213 if (waitqueue_active(&ctx
->fault_wqh
))
1214 __wake_up_locked_key(&ctx
->fault_wqh
, TASK_NORMAL
, range
);
1215 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
1218 static __always_inline
void wake_userfault(struct userfaultfd_ctx
*ctx
,
1219 struct userfaultfd_wake_range
*range
)
1225 * To be sure waitqueue_active() is not reordered by the CPU
1226 * before the pagetable update, use an explicit SMP memory
1227 * barrier here. PT lock release or up_read(mmap_sem) still
1228 * have release semantics that can allow the
1229 * waitqueue_active() to be reordered before the pte update.
1234 * Use waitqueue_active because it's very frequent to
1235 * change the address space atomically even if there are no
1236 * userfaults yet. So we take the spinlock only when we're
1237 * sure we've userfaults to wake.
1240 seq
= read_seqcount_begin(&ctx
->refile_seq
);
1241 need_wakeup
= waitqueue_active(&ctx
->fault_pending_wqh
) ||
1242 waitqueue_active(&ctx
->fault_wqh
);
1244 } while (read_seqcount_retry(&ctx
->refile_seq
, seq
));
1246 __wake_userfault(ctx
, range
);
1249 static __always_inline
int validate_range(struct mm_struct
*mm
,
1250 __u64 start
, __u64 len
)
1252 __u64 task_size
= mm
->task_size
;
1254 if (start
& ~PAGE_MASK
)
1256 if (len
& ~PAGE_MASK
)
1260 if (start
< mmap_min_addr
)
1262 if (start
>= task_size
)
1264 if (len
> task_size
- start
)
1269 static inline bool vma_can_userfault(struct vm_area_struct
*vma
)
1271 return vma_is_anonymous(vma
) || is_vm_hugetlb_page(vma
) ||
1275 static int userfaultfd_register(struct userfaultfd_ctx
*ctx
,
1278 struct mm_struct
*mm
= ctx
->mm
;
1279 struct vm_area_struct
*vma
, *prev
, *cur
;
1281 struct uffdio_register uffdio_register
;
1282 struct uffdio_register __user
*user_uffdio_register
;
1283 unsigned long vm_flags
, new_flags
;
1286 unsigned long start
, end
, vma_end
;
1288 user_uffdio_register
= (struct uffdio_register __user
*) arg
;
1291 if (copy_from_user(&uffdio_register
, user_uffdio_register
,
1292 sizeof(uffdio_register
)-sizeof(__u64
)))
1296 if (!uffdio_register
.mode
)
1298 if (uffdio_register
.mode
& ~(UFFDIO_REGISTER_MODE_MISSING
|
1299 UFFDIO_REGISTER_MODE_WP
))
1302 if (uffdio_register
.mode
& UFFDIO_REGISTER_MODE_MISSING
)
1303 vm_flags
|= VM_UFFD_MISSING
;
1304 if (uffdio_register
.mode
& UFFDIO_REGISTER_MODE_WP
) {
1305 vm_flags
|= VM_UFFD_WP
;
1307 * FIXME: remove the below error constraint by
1308 * implementing the wprotect tracking mode.
1314 ret
= validate_range(mm
, uffdio_register
.range
.start
,
1315 uffdio_register
.range
.len
);
1319 start
= uffdio_register
.range
.start
;
1320 end
= start
+ uffdio_register
.range
.len
;
1323 if (!mmget_not_zero(mm
))
1326 down_write(&mm
->mmap_sem
);
1327 vma
= find_vma_prev(mm
, start
, &prev
);
1331 /* check that there's at least one vma in the range */
1333 if (vma
->vm_start
>= end
)
1337 * If the first vma contains huge pages, make sure start address
1338 * is aligned to huge page size.
1340 if (is_vm_hugetlb_page(vma
)) {
1341 unsigned long vma_hpagesize
= vma_kernel_pagesize(vma
);
1343 if (start
& (vma_hpagesize
- 1))
1348 * Search for not compatible vmas.
1351 basic_ioctls
= false;
1352 for (cur
= vma
; cur
&& cur
->vm_start
< end
; cur
= cur
->vm_next
) {
1355 BUG_ON(!!cur
->vm_userfaultfd_ctx
.ctx
^
1356 !!(cur
->vm_flags
& (VM_UFFD_MISSING
| VM_UFFD_WP
)));
1358 /* check not compatible vmas */
1360 if (!vma_can_userfault(cur
))
1363 * If this vma contains ending address, and huge pages
1366 if (is_vm_hugetlb_page(cur
) && end
<= cur
->vm_end
&&
1367 end
> cur
->vm_start
) {
1368 unsigned long vma_hpagesize
= vma_kernel_pagesize(cur
);
1372 if (end
& (vma_hpagesize
- 1))
1377 * Check that this vma isn't already owned by a
1378 * different userfaultfd. We can't allow more than one
1379 * userfaultfd to own a single vma simultaneously or we
1380 * wouldn't know which one to deliver the userfaults to.
1383 if (cur
->vm_userfaultfd_ctx
.ctx
&&
1384 cur
->vm_userfaultfd_ctx
.ctx
!= ctx
)
1388 * Note vmas containing huge pages
1390 if (is_vm_hugetlb_page(cur
))
1391 basic_ioctls
= true;
1397 if (vma
->vm_start
< start
)
1404 BUG_ON(!vma_can_userfault(vma
));
1405 BUG_ON(vma
->vm_userfaultfd_ctx
.ctx
&&
1406 vma
->vm_userfaultfd_ctx
.ctx
!= ctx
);
1409 * Nothing to do: this vma is already registered into this
1410 * userfaultfd and with the right tracking mode too.
1412 if (vma
->vm_userfaultfd_ctx
.ctx
== ctx
&&
1413 (vma
->vm_flags
& vm_flags
) == vm_flags
)
1416 if (vma
->vm_start
> start
)
1417 start
= vma
->vm_start
;
1418 vma_end
= min(end
, vma
->vm_end
);
1420 new_flags
= (vma
->vm_flags
& ~vm_flags
) | vm_flags
;
1421 prev
= vma_merge(mm
, prev
, start
, vma_end
, new_flags
,
1422 vma
->anon_vma
, vma
->vm_file
, vma
->vm_pgoff
,
1424 ((struct vm_userfaultfd_ctx
){ ctx
}));
1429 if (vma
->vm_start
< start
) {
1430 ret
= split_vma(mm
, vma
, start
, 1);
1434 if (vma
->vm_end
> end
) {
1435 ret
= split_vma(mm
, vma
, end
, 0);
1441 * In the vma_merge() successful mprotect-like case 8:
1442 * the next vma was merged into the current one and
1443 * the current one has not been updated yet.
1445 vma
->vm_flags
= new_flags
;
1446 vma
->vm_userfaultfd_ctx
.ctx
= ctx
;
1450 start
= vma
->vm_end
;
1452 } while (vma
&& vma
->vm_start
< end
);
1454 up_write(&mm
->mmap_sem
);
1458 * Now that we scanned all vmas we can already tell
1459 * userland which ioctls methods are guaranteed to
1460 * succeed on this range.
1462 if (put_user(basic_ioctls
? UFFD_API_RANGE_IOCTLS_BASIC
:
1463 UFFD_API_RANGE_IOCTLS
,
1464 &user_uffdio_register
->ioctls
))
1471 static int userfaultfd_unregister(struct userfaultfd_ctx
*ctx
,
1474 struct mm_struct
*mm
= ctx
->mm
;
1475 struct vm_area_struct
*vma
, *prev
, *cur
;
1477 struct uffdio_range uffdio_unregister
;
1478 unsigned long new_flags
;
1480 unsigned long start
, end
, vma_end
;
1481 const void __user
*buf
= (void __user
*)arg
;
1484 if (copy_from_user(&uffdio_unregister
, buf
, sizeof(uffdio_unregister
)))
1487 ret
= validate_range(mm
, uffdio_unregister
.start
,
1488 uffdio_unregister
.len
);
1492 start
= uffdio_unregister
.start
;
1493 end
= start
+ uffdio_unregister
.len
;
1496 if (!mmget_not_zero(mm
))
1499 down_write(&mm
->mmap_sem
);
1500 vma
= find_vma_prev(mm
, start
, &prev
);
1504 /* check that there's at least one vma in the range */
1506 if (vma
->vm_start
>= end
)
1510 * If the first vma contains huge pages, make sure start address
1511 * is aligned to huge page size.
1513 if (is_vm_hugetlb_page(vma
)) {
1514 unsigned long vma_hpagesize
= vma_kernel_pagesize(vma
);
1516 if (start
& (vma_hpagesize
- 1))
1521 * Search for not compatible vmas.
1525 for (cur
= vma
; cur
&& cur
->vm_start
< end
; cur
= cur
->vm_next
) {
1528 BUG_ON(!!cur
->vm_userfaultfd_ctx
.ctx
^
1529 !!(cur
->vm_flags
& (VM_UFFD_MISSING
| VM_UFFD_WP
)));
1532 * Check not compatible vmas, not strictly required
1533 * here as not compatible vmas cannot have an
1534 * userfaultfd_ctx registered on them, but this
1535 * provides for more strict behavior to notice
1536 * unregistration errors.
1538 if (!vma_can_userfault(cur
))
1545 if (vma
->vm_start
< start
)
1552 BUG_ON(!vma_can_userfault(vma
));
1555 * Nothing to do: this vma is already registered into this
1556 * userfaultfd and with the right tracking mode too.
1558 if (!vma
->vm_userfaultfd_ctx
.ctx
)
1561 if (vma
->vm_start
> start
)
1562 start
= vma
->vm_start
;
1563 vma_end
= min(end
, vma
->vm_end
);
1565 if (userfaultfd_missing(vma
)) {
1567 * Wake any concurrent pending userfault while
1568 * we unregister, so they will not hang
1569 * permanently and it avoids userland to call
1570 * UFFDIO_WAKE explicitly.
1572 struct userfaultfd_wake_range range
;
1573 range
.start
= start
;
1574 range
.len
= vma_end
- start
;
1575 wake_userfault(vma
->vm_userfaultfd_ctx
.ctx
, &range
);
1578 new_flags
= vma
->vm_flags
& ~(VM_UFFD_MISSING
| VM_UFFD_WP
);
1579 prev
= vma_merge(mm
, prev
, start
, vma_end
, new_flags
,
1580 vma
->anon_vma
, vma
->vm_file
, vma
->vm_pgoff
,
1587 if (vma
->vm_start
< start
) {
1588 ret
= split_vma(mm
, vma
, start
, 1);
1592 if (vma
->vm_end
> end
) {
1593 ret
= split_vma(mm
, vma
, end
, 0);
1599 * In the vma_merge() successful mprotect-like case 8:
1600 * the next vma was merged into the current one and
1601 * the current one has not been updated yet.
1603 vma
->vm_flags
= new_flags
;
1604 vma
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
1608 start
= vma
->vm_end
;
1610 } while (vma
&& vma
->vm_start
< end
);
1612 up_write(&mm
->mmap_sem
);
1619 * userfaultfd_wake may be used in combination with the
1620 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1622 static int userfaultfd_wake(struct userfaultfd_ctx
*ctx
,
1626 struct uffdio_range uffdio_wake
;
1627 struct userfaultfd_wake_range range
;
1628 const void __user
*buf
= (void __user
*)arg
;
1631 if (copy_from_user(&uffdio_wake
, buf
, sizeof(uffdio_wake
)))
1634 ret
= validate_range(ctx
->mm
, uffdio_wake
.start
, uffdio_wake
.len
);
1638 range
.start
= uffdio_wake
.start
;
1639 range
.len
= uffdio_wake
.len
;
1642 * len == 0 means wake all and we don't want to wake all here,
1643 * so check it again to be sure.
1645 VM_BUG_ON(!range
.len
);
1647 wake_userfault(ctx
, &range
);
1654 static int userfaultfd_copy(struct userfaultfd_ctx
*ctx
,
1658 struct uffdio_copy uffdio_copy
;
1659 struct uffdio_copy __user
*user_uffdio_copy
;
1660 struct userfaultfd_wake_range range
;
1662 user_uffdio_copy
= (struct uffdio_copy __user
*) arg
;
1665 if (READ_ONCE(ctx
->mmap_changing
))
1669 if (copy_from_user(&uffdio_copy
, user_uffdio_copy
,
1670 /* don't copy "copy" last field */
1671 sizeof(uffdio_copy
)-sizeof(__s64
)))
1674 ret
= validate_range(ctx
->mm
, uffdio_copy
.dst
, uffdio_copy
.len
);
1678 * double check for wraparound just in case. copy_from_user()
1679 * will later check uffdio_copy.src + uffdio_copy.len to fit
1680 * in the userland range.
1683 if (uffdio_copy
.src
+ uffdio_copy
.len
<= uffdio_copy
.src
)
1685 if (uffdio_copy
.mode
& ~UFFDIO_COPY_MODE_DONTWAKE
)
1687 if (mmget_not_zero(ctx
->mm
)) {
1688 ret
= mcopy_atomic(ctx
->mm
, uffdio_copy
.dst
, uffdio_copy
.src
,
1689 uffdio_copy
.len
, &ctx
->mmap_changing
);
1694 if (unlikely(put_user(ret
, &user_uffdio_copy
->copy
)))
1699 /* len == 0 would wake all */
1701 if (!(uffdio_copy
.mode
& UFFDIO_COPY_MODE_DONTWAKE
)) {
1702 range
.start
= uffdio_copy
.dst
;
1703 wake_userfault(ctx
, &range
);
1705 ret
= range
.len
== uffdio_copy
.len
? 0 : -EAGAIN
;
1710 static int userfaultfd_zeropage(struct userfaultfd_ctx
*ctx
,
1714 struct uffdio_zeropage uffdio_zeropage
;
1715 struct uffdio_zeropage __user
*user_uffdio_zeropage
;
1716 struct userfaultfd_wake_range range
;
1718 user_uffdio_zeropage
= (struct uffdio_zeropage __user
*) arg
;
1721 if (READ_ONCE(ctx
->mmap_changing
))
1725 if (copy_from_user(&uffdio_zeropage
, user_uffdio_zeropage
,
1726 /* don't copy "zeropage" last field */
1727 sizeof(uffdio_zeropage
)-sizeof(__s64
)))
1730 ret
= validate_range(ctx
->mm
, uffdio_zeropage
.range
.start
,
1731 uffdio_zeropage
.range
.len
);
1735 if (uffdio_zeropage
.mode
& ~UFFDIO_ZEROPAGE_MODE_DONTWAKE
)
1738 if (mmget_not_zero(ctx
->mm
)) {
1739 ret
= mfill_zeropage(ctx
->mm
, uffdio_zeropage
.range
.start
,
1740 uffdio_zeropage
.range
.len
,
1741 &ctx
->mmap_changing
);
1746 if (unlikely(put_user(ret
, &user_uffdio_zeropage
->zeropage
)))
1750 /* len == 0 would wake all */
1753 if (!(uffdio_zeropage
.mode
& UFFDIO_ZEROPAGE_MODE_DONTWAKE
)) {
1754 range
.start
= uffdio_zeropage
.range
.start
;
1755 wake_userfault(ctx
, &range
);
1757 ret
= range
.len
== uffdio_zeropage
.range
.len
? 0 : -EAGAIN
;
1762 static inline unsigned int uffd_ctx_features(__u64 user_features
)
1765 * For the current set of features the bits just coincide
1767 return (unsigned int)user_features
;
1771 * userland asks for a certain API version and we return which bits
1772 * and ioctl commands are implemented in this kernel for such API
1773 * version or -EINVAL if unknown.
1775 static int userfaultfd_api(struct userfaultfd_ctx
*ctx
,
1778 struct uffdio_api uffdio_api
;
1779 void __user
*buf
= (void __user
*)arg
;
1784 if (ctx
->state
!= UFFD_STATE_WAIT_API
)
1787 if (copy_from_user(&uffdio_api
, buf
, sizeof(uffdio_api
)))
1789 features
= uffdio_api
.features
;
1790 if (uffdio_api
.api
!= UFFD_API
|| (features
& ~UFFD_API_FEATURES
)) {
1791 memset(&uffdio_api
, 0, sizeof(uffdio_api
));
1792 if (copy_to_user(buf
, &uffdio_api
, sizeof(uffdio_api
)))
1797 /* report all available features and ioctls to userland */
1798 uffdio_api
.features
= UFFD_API_FEATURES
;
1799 uffdio_api
.ioctls
= UFFD_API_IOCTLS
;
1801 if (copy_to_user(buf
, &uffdio_api
, sizeof(uffdio_api
)))
1803 ctx
->state
= UFFD_STATE_RUNNING
;
1804 /* only enable the requested features for this uffd context */
1805 ctx
->features
= uffd_ctx_features(features
);
1811 static long userfaultfd_ioctl(struct file
*file
, unsigned cmd
,
1815 struct userfaultfd_ctx
*ctx
= file
->private_data
;
1817 if (cmd
!= UFFDIO_API
&& ctx
->state
== UFFD_STATE_WAIT_API
)
1822 ret
= userfaultfd_api(ctx
, arg
);
1824 case UFFDIO_REGISTER
:
1825 ret
= userfaultfd_register(ctx
, arg
);
1827 case UFFDIO_UNREGISTER
:
1828 ret
= userfaultfd_unregister(ctx
, arg
);
1831 ret
= userfaultfd_wake(ctx
, arg
);
1834 ret
= userfaultfd_copy(ctx
, arg
);
1836 case UFFDIO_ZEROPAGE
:
1837 ret
= userfaultfd_zeropage(ctx
, arg
);
1843 #ifdef CONFIG_PROC_FS
1844 static void userfaultfd_show_fdinfo(struct seq_file
*m
, struct file
*f
)
1846 struct userfaultfd_ctx
*ctx
= f
->private_data
;
1847 wait_queue_entry_t
*wq
;
1848 struct userfaultfd_wait_queue
*uwq
;
1849 unsigned long pending
= 0, total
= 0;
1851 spin_lock(&ctx
->fault_pending_wqh
.lock
);
1852 list_for_each_entry(wq
, &ctx
->fault_pending_wqh
.head
, entry
) {
1853 uwq
= container_of(wq
, struct userfaultfd_wait_queue
, wq
);
1857 list_for_each_entry(wq
, &ctx
->fault_wqh
.head
, entry
) {
1858 uwq
= container_of(wq
, struct userfaultfd_wait_queue
, wq
);
1861 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
1864 * If more protocols will be added, there will be all shown
1865 * separated by a space. Like this:
1866 * protocols: aa:... bb:...
1868 seq_printf(m
, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1869 pending
, total
, UFFD_API
, ctx
->features
,
1870 UFFD_API_IOCTLS
|UFFD_API_RANGE_IOCTLS
);
1874 static const struct file_operations userfaultfd_fops
= {
1875 #ifdef CONFIG_PROC_FS
1876 .show_fdinfo
= userfaultfd_show_fdinfo
,
1878 .release
= userfaultfd_release
,
1879 .poll
= userfaultfd_poll
,
1880 .read
= userfaultfd_read
,
1881 .unlocked_ioctl
= userfaultfd_ioctl
,
1882 .compat_ioctl
= userfaultfd_ioctl
,
1883 .llseek
= noop_llseek
,
1886 static void init_once_userfaultfd_ctx(void *mem
)
1888 struct userfaultfd_ctx
*ctx
= (struct userfaultfd_ctx
*) mem
;
1890 init_waitqueue_head(&ctx
->fault_pending_wqh
);
1891 init_waitqueue_head(&ctx
->fault_wqh
);
1892 init_waitqueue_head(&ctx
->event_wqh
);
1893 init_waitqueue_head(&ctx
->fd_wqh
);
1894 seqcount_init(&ctx
->refile_seq
);
1897 SYSCALL_DEFINE1(userfaultfd
, int, flags
)
1899 struct userfaultfd_ctx
*ctx
;
1902 BUG_ON(!current
->mm
);
1904 /* Check the UFFD_* constants for consistency. */
1905 BUILD_BUG_ON(UFFD_CLOEXEC
!= O_CLOEXEC
);
1906 BUILD_BUG_ON(UFFD_NONBLOCK
!= O_NONBLOCK
);
1908 if (flags
& ~UFFD_SHARED_FCNTL_FLAGS
)
1911 ctx
= kmem_cache_alloc(userfaultfd_ctx_cachep
, GFP_KERNEL
);
1915 atomic_set(&ctx
->refcount
, 1);
1918 ctx
->state
= UFFD_STATE_WAIT_API
;
1919 ctx
->released
= false;
1920 ctx
->mmap_changing
= false;
1921 ctx
->mm
= current
->mm
;
1922 /* prevent the mm struct to be freed */
1925 fd
= anon_inode_getfd("[userfaultfd]", &userfaultfd_fops
, ctx
,
1926 O_RDWR
| (flags
& UFFD_SHARED_FCNTL_FLAGS
));
1929 kmem_cache_free(userfaultfd_ctx_cachep
, ctx
);
1934 static int __init
userfaultfd_init(void)
1936 userfaultfd_ctx_cachep
= kmem_cache_create("userfaultfd_ctx_cache",
1937 sizeof(struct userfaultfd_ctx
),
1939 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
1940 init_once_userfaultfd_ctx
);
1943 __initcall(userfaultfd_init
);