ARM: omap2plus_defconfig: Enable PWM and ir-rx51 as loadable modules
[linux-2.6/btrfs-unstable.git] / net / sched / sch_netem.c
blob9640bb39a5d293d55a96edc5164d369c1cded127
1 /*
2 * net/sched/sch_netem.c Network emulator
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License.
9 * Many of the algorithms and ideas for this came from
10 * NIST Net which is not copyrighted.
12 * Authors: Stephen Hemminger <shemminger@osdl.org>
13 * Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/rtnetlink.h>
25 #include <linux/reciprocal_div.h>
26 #include <linux/rbtree.h>
28 #include <net/netlink.h>
29 #include <net/pkt_sched.h>
30 #include <net/inet_ecn.h>
32 #define VERSION "1.3"
34 /* Network Emulation Queuing algorithm.
35 ====================================
37 Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
38 Network Emulation Tool
39 [2] Luigi Rizzo, DummyNet for FreeBSD
41 ----------------------------------------------------------------
43 This started out as a simple way to delay outgoing packets to
44 test TCP but has grown to include most of the functionality
45 of a full blown network emulator like NISTnet. It can delay
46 packets and add random jitter (and correlation). The random
47 distribution can be loaded from a table as well to provide
48 normal, Pareto, or experimental curves. Packet loss,
49 duplication, and reordering can also be emulated.
51 This qdisc does not do classification that can be handled in
52 layering other disciplines. It does not need to do bandwidth
53 control either since that can be handled by using token
54 bucket or other rate control.
56 Correlated Loss Generator models
58 Added generation of correlated loss according to the
59 "Gilbert-Elliot" model, a 4-state markov model.
61 References:
62 [1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
63 [2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
64 and intuitive loss model for packet networks and its implementation
65 in the Netem module in the Linux kernel", available in [1]
67 Authors: Stefano Salsano <stefano.salsano at uniroma2.it
68 Fabio Ludovici <fabio.ludovici at yahoo.it>
71 struct netem_sched_data {
72 /* internal t(ime)fifo qdisc uses t_root and sch->limit */
73 struct rb_root t_root;
75 /* optional qdisc for classful handling (NULL at netem init) */
76 struct Qdisc *qdisc;
78 struct qdisc_watchdog watchdog;
80 psched_tdiff_t latency;
81 psched_tdiff_t jitter;
83 u32 loss;
84 u32 ecn;
85 u32 limit;
86 u32 counter;
87 u32 gap;
88 u32 duplicate;
89 u32 reorder;
90 u32 corrupt;
91 u64 rate;
92 s32 packet_overhead;
93 u32 cell_size;
94 struct reciprocal_value cell_size_reciprocal;
95 s32 cell_overhead;
97 struct crndstate {
98 u32 last;
99 u32 rho;
100 } delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
102 struct disttable {
103 u32 size;
104 s16 table[0];
105 } *delay_dist;
107 enum {
108 CLG_RANDOM,
109 CLG_4_STATES,
110 CLG_GILB_ELL,
111 } loss_model;
113 enum {
114 TX_IN_GAP_PERIOD = 1,
115 TX_IN_BURST_PERIOD,
116 LOST_IN_GAP_PERIOD,
117 LOST_IN_BURST_PERIOD,
118 } _4_state_model;
120 enum {
121 GOOD_STATE = 1,
122 BAD_STATE,
123 } GE_state_model;
125 /* Correlated Loss Generation models */
126 struct clgstate {
127 /* state of the Markov chain */
128 u8 state;
130 /* 4-states and Gilbert-Elliot models */
131 u32 a1; /* p13 for 4-states or p for GE */
132 u32 a2; /* p31 for 4-states or r for GE */
133 u32 a3; /* p32 for 4-states or h for GE */
134 u32 a4; /* p14 for 4-states or 1-k for GE */
135 u32 a5; /* p23 used only in 4-states */
136 } clg;
140 /* Time stamp put into socket buffer control block
141 * Only valid when skbs are in our internal t(ime)fifo queue.
143 * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp,
144 * and skb->next & skb->prev are scratch space for a qdisc,
145 * we save skb->tstamp value in skb->cb[] before destroying it.
147 struct netem_skb_cb {
148 psched_time_t time_to_send;
149 ktime_t tstamp_save;
153 static struct sk_buff *netem_rb_to_skb(struct rb_node *rb)
155 return container_of(rb, struct sk_buff, rbnode);
158 static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
160 /* we assume we can use skb next/prev/tstamp as storage for rb_node */
161 qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
162 return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
165 /* init_crandom - initialize correlated random number generator
166 * Use entropy source for initial seed.
168 static void init_crandom(struct crndstate *state, unsigned long rho)
170 state->rho = rho;
171 state->last = prandom_u32();
174 /* get_crandom - correlated random number generator
175 * Next number depends on last value.
176 * rho is scaled to avoid floating point.
178 static u32 get_crandom(struct crndstate *state)
180 u64 value, rho;
181 unsigned long answer;
183 if (state->rho == 0) /* no correlation */
184 return prandom_u32();
186 value = prandom_u32();
187 rho = (u64)state->rho + 1;
188 answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
189 state->last = answer;
190 return answer;
193 /* loss_4state - 4-state model loss generator
194 * Generates losses according to the 4-state Markov chain adopted in
195 * the GI (General and Intuitive) loss model.
197 static bool loss_4state(struct netem_sched_data *q)
199 struct clgstate *clg = &q->clg;
200 u32 rnd = prandom_u32();
203 * Makes a comparison between rnd and the transition
204 * probabilities outgoing from the current state, then decides the
205 * next state and if the next packet has to be transmitted or lost.
206 * The four states correspond to:
207 * TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
208 * LOST_IN_BURST_PERIOD => isolated losses within a gap period
209 * LOST_IN_GAP_PERIOD => lost packets within a burst period
210 * TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period
212 switch (clg->state) {
213 case TX_IN_GAP_PERIOD:
214 if (rnd < clg->a4) {
215 clg->state = LOST_IN_BURST_PERIOD;
216 return true;
217 } else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
218 clg->state = LOST_IN_GAP_PERIOD;
219 return true;
220 } else if (clg->a1 + clg->a4 < rnd) {
221 clg->state = TX_IN_GAP_PERIOD;
224 break;
225 case TX_IN_BURST_PERIOD:
226 if (rnd < clg->a5) {
227 clg->state = LOST_IN_GAP_PERIOD;
228 return true;
229 } else {
230 clg->state = TX_IN_BURST_PERIOD;
233 break;
234 case LOST_IN_GAP_PERIOD:
235 if (rnd < clg->a3)
236 clg->state = TX_IN_BURST_PERIOD;
237 else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
238 clg->state = TX_IN_GAP_PERIOD;
239 } else if (clg->a2 + clg->a3 < rnd) {
240 clg->state = LOST_IN_GAP_PERIOD;
241 return true;
243 break;
244 case LOST_IN_BURST_PERIOD:
245 clg->state = TX_IN_GAP_PERIOD;
246 break;
249 return false;
252 /* loss_gilb_ell - Gilbert-Elliot model loss generator
253 * Generates losses according to the Gilbert-Elliot loss model or
254 * its special cases (Gilbert or Simple Gilbert)
256 * Makes a comparison between random number and the transition
257 * probabilities outgoing from the current state, then decides the
258 * next state. A second random number is extracted and the comparison
259 * with the loss probability of the current state decides if the next
260 * packet will be transmitted or lost.
262 static bool loss_gilb_ell(struct netem_sched_data *q)
264 struct clgstate *clg = &q->clg;
266 switch (clg->state) {
267 case GOOD_STATE:
268 if (prandom_u32() < clg->a1)
269 clg->state = BAD_STATE;
270 if (prandom_u32() < clg->a4)
271 return true;
272 break;
273 case BAD_STATE:
274 if (prandom_u32() < clg->a2)
275 clg->state = GOOD_STATE;
276 if (prandom_u32() > clg->a3)
277 return true;
280 return false;
283 static bool loss_event(struct netem_sched_data *q)
285 switch (q->loss_model) {
286 case CLG_RANDOM:
287 /* Random packet drop 0 => none, ~0 => all */
288 return q->loss && q->loss >= get_crandom(&q->loss_cor);
290 case CLG_4_STATES:
291 /* 4state loss model algorithm (used also for GI model)
292 * Extracts a value from the markov 4 state loss generator,
293 * if it is 1 drops a packet and if needed writes the event in
294 * the kernel logs
296 return loss_4state(q);
298 case CLG_GILB_ELL:
299 /* Gilbert-Elliot loss model algorithm
300 * Extracts a value from the Gilbert-Elliot loss generator,
301 * if it is 1 drops a packet and if needed writes the event in
302 * the kernel logs
304 return loss_gilb_ell(q);
307 return false; /* not reached */
311 /* tabledist - return a pseudo-randomly distributed value with mean mu and
312 * std deviation sigma. Uses table lookup to approximate the desired
313 * distribution, and a uniformly-distributed pseudo-random source.
315 static psched_tdiff_t tabledist(psched_tdiff_t mu, psched_tdiff_t sigma,
316 struct crndstate *state,
317 const struct disttable *dist)
319 psched_tdiff_t x;
320 long t;
321 u32 rnd;
323 if (sigma == 0)
324 return mu;
326 rnd = get_crandom(state);
328 /* default uniform distribution */
329 if (dist == NULL)
330 return (rnd % (2*sigma)) - sigma + mu;
332 t = dist->table[rnd % dist->size];
333 x = (sigma % NETEM_DIST_SCALE) * t;
334 if (x >= 0)
335 x += NETEM_DIST_SCALE/2;
336 else
337 x -= NETEM_DIST_SCALE/2;
339 return x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
342 static psched_time_t packet_len_2_sched_time(unsigned int len, struct netem_sched_data *q)
344 u64 ticks;
346 len += q->packet_overhead;
348 if (q->cell_size) {
349 u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
351 if (len > cells * q->cell_size) /* extra cell needed for remainder */
352 cells++;
353 len = cells * (q->cell_size + q->cell_overhead);
356 ticks = (u64)len * NSEC_PER_SEC;
358 do_div(ticks, q->rate);
359 return PSCHED_NS2TICKS(ticks);
362 static void tfifo_reset(struct Qdisc *sch)
364 struct netem_sched_data *q = qdisc_priv(sch);
365 struct rb_node *p;
367 while ((p = rb_first(&q->t_root))) {
368 struct sk_buff *skb = netem_rb_to_skb(p);
370 rb_erase(p, &q->t_root);
371 skb->next = NULL;
372 skb->prev = NULL;
373 kfree_skb(skb);
377 static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
379 struct netem_sched_data *q = qdisc_priv(sch);
380 psched_time_t tnext = netem_skb_cb(nskb)->time_to_send;
381 struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
383 while (*p) {
384 struct sk_buff *skb;
386 parent = *p;
387 skb = netem_rb_to_skb(parent);
388 if (tnext >= netem_skb_cb(skb)->time_to_send)
389 p = &parent->rb_right;
390 else
391 p = &parent->rb_left;
393 rb_link_node(&nskb->rbnode, parent, p);
394 rb_insert_color(&nskb->rbnode, &q->t_root);
395 sch->q.qlen++;
399 * Insert one skb into qdisc.
400 * Note: parent depends on return value to account for queue length.
401 * NET_XMIT_DROP: queue length didn't change.
402 * NET_XMIT_SUCCESS: one skb was queued.
404 static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch)
406 struct netem_sched_data *q = qdisc_priv(sch);
407 /* We don't fill cb now as skb_unshare() may invalidate it */
408 struct netem_skb_cb *cb;
409 struct sk_buff *skb2;
410 int count = 1;
412 /* Random duplication */
413 if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
414 ++count;
416 /* Drop packet? */
417 if (loss_event(q)) {
418 if (q->ecn && INET_ECN_set_ce(skb))
419 qdisc_qstats_drop(sch); /* mark packet */
420 else
421 --count;
423 if (count == 0) {
424 qdisc_qstats_drop(sch);
425 kfree_skb(skb);
426 return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
429 /* If a delay is expected, orphan the skb. (orphaning usually takes
430 * place at TX completion time, so _before_ the link transit delay)
432 if (q->latency || q->jitter)
433 skb_orphan_partial(skb);
436 * If we need to duplicate packet, then re-insert at top of the
437 * qdisc tree, since parent queuer expects that only one
438 * skb will be queued.
440 if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
441 struct Qdisc *rootq = qdisc_root(sch);
442 u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
444 q->duplicate = 0;
445 rootq->enqueue(skb2, rootq);
446 q->duplicate = dupsave;
450 * Randomized packet corruption.
451 * Make copy if needed since we are modifying
452 * If packet is going to be hardware checksummed, then
453 * do it now in software before we mangle it.
455 if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
456 if (!(skb = skb_unshare(skb, GFP_ATOMIC)) ||
457 (skb->ip_summed == CHECKSUM_PARTIAL &&
458 skb_checksum_help(skb)))
459 return qdisc_drop(skb, sch);
461 skb->data[prandom_u32() % skb_headlen(skb)] ^=
462 1<<(prandom_u32() % 8);
465 if (unlikely(skb_queue_len(&sch->q) >= sch->limit))
466 return qdisc_reshape_fail(skb, sch);
468 qdisc_qstats_backlog_inc(sch, skb);
470 cb = netem_skb_cb(skb);
471 if (q->gap == 0 || /* not doing reordering */
472 q->counter < q->gap - 1 || /* inside last reordering gap */
473 q->reorder < get_crandom(&q->reorder_cor)) {
474 psched_time_t now;
475 psched_tdiff_t delay;
477 delay = tabledist(q->latency, q->jitter,
478 &q->delay_cor, q->delay_dist);
480 now = psched_get_time();
482 if (q->rate) {
483 struct sk_buff *last;
485 if (!skb_queue_empty(&sch->q))
486 last = skb_peek_tail(&sch->q);
487 else
488 last = netem_rb_to_skb(rb_last(&q->t_root));
489 if (last) {
491 * Last packet in queue is reference point (now),
492 * calculate this time bonus and subtract
493 * from delay.
495 delay -= netem_skb_cb(last)->time_to_send - now;
496 delay = max_t(psched_tdiff_t, 0, delay);
497 now = netem_skb_cb(last)->time_to_send;
500 delay += packet_len_2_sched_time(qdisc_pkt_len(skb), q);
503 cb->time_to_send = now + delay;
504 cb->tstamp_save = skb->tstamp;
505 ++q->counter;
506 tfifo_enqueue(skb, sch);
507 } else {
509 * Do re-ordering by putting one out of N packets at the front
510 * of the queue.
512 cb->time_to_send = psched_get_time();
513 q->counter = 0;
515 __skb_queue_head(&sch->q, skb);
516 sch->qstats.requeues++;
519 return NET_XMIT_SUCCESS;
522 static unsigned int netem_drop(struct Qdisc *sch)
524 struct netem_sched_data *q = qdisc_priv(sch);
525 unsigned int len;
527 len = qdisc_queue_drop(sch);
529 if (!len) {
530 struct rb_node *p = rb_first(&q->t_root);
532 if (p) {
533 struct sk_buff *skb = netem_rb_to_skb(p);
535 rb_erase(p, &q->t_root);
536 sch->q.qlen--;
537 skb->next = NULL;
538 skb->prev = NULL;
539 qdisc_qstats_backlog_dec(sch, skb);
540 kfree_skb(skb);
543 if (!len && q->qdisc && q->qdisc->ops->drop)
544 len = q->qdisc->ops->drop(q->qdisc);
545 if (len)
546 qdisc_qstats_drop(sch);
548 return len;
551 static struct sk_buff *netem_dequeue(struct Qdisc *sch)
553 struct netem_sched_data *q = qdisc_priv(sch);
554 struct sk_buff *skb;
555 struct rb_node *p;
557 if (qdisc_is_throttled(sch))
558 return NULL;
560 tfifo_dequeue:
561 skb = __skb_dequeue(&sch->q);
562 if (skb) {
563 qdisc_qstats_backlog_dec(sch, skb);
564 deliver:
565 qdisc_unthrottled(sch);
566 qdisc_bstats_update(sch, skb);
567 return skb;
569 p = rb_first(&q->t_root);
570 if (p) {
571 psched_time_t time_to_send;
573 skb = netem_rb_to_skb(p);
575 /* if more time remaining? */
576 time_to_send = netem_skb_cb(skb)->time_to_send;
577 if (time_to_send <= psched_get_time()) {
578 rb_erase(p, &q->t_root);
580 sch->q.qlen--;
581 qdisc_qstats_backlog_dec(sch, skb);
582 skb->next = NULL;
583 skb->prev = NULL;
584 skb->tstamp = netem_skb_cb(skb)->tstamp_save;
586 #ifdef CONFIG_NET_CLS_ACT
588 * If it's at ingress let's pretend the delay is
589 * from the network (tstamp will be updated).
591 if (G_TC_FROM(skb->tc_verd) & AT_INGRESS)
592 skb->tstamp.tv64 = 0;
593 #endif
595 if (q->qdisc) {
596 int err = qdisc_enqueue(skb, q->qdisc);
598 if (unlikely(err != NET_XMIT_SUCCESS)) {
599 if (net_xmit_drop_count(err)) {
600 qdisc_qstats_drop(sch);
601 qdisc_tree_reduce_backlog(sch, 1,
602 qdisc_pkt_len(skb));
605 goto tfifo_dequeue;
607 goto deliver;
610 if (q->qdisc) {
611 skb = q->qdisc->ops->dequeue(q->qdisc);
612 if (skb)
613 goto deliver;
615 qdisc_watchdog_schedule(&q->watchdog, time_to_send);
618 if (q->qdisc) {
619 skb = q->qdisc->ops->dequeue(q->qdisc);
620 if (skb)
621 goto deliver;
623 return NULL;
626 static void netem_reset(struct Qdisc *sch)
628 struct netem_sched_data *q = qdisc_priv(sch);
630 qdisc_reset_queue(sch);
631 tfifo_reset(sch);
632 if (q->qdisc)
633 qdisc_reset(q->qdisc);
634 qdisc_watchdog_cancel(&q->watchdog);
637 static void dist_free(struct disttable *d)
639 kvfree(d);
643 * Distribution data is a variable size payload containing
644 * signed 16 bit values.
646 static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr)
648 struct netem_sched_data *q = qdisc_priv(sch);
649 size_t n = nla_len(attr)/sizeof(__s16);
650 const __s16 *data = nla_data(attr);
651 spinlock_t *root_lock;
652 struct disttable *d;
653 int i;
654 size_t s;
656 if (n > NETEM_DIST_MAX)
657 return -EINVAL;
659 s = sizeof(struct disttable) + n * sizeof(s16);
660 d = kmalloc(s, GFP_KERNEL | __GFP_NOWARN);
661 if (!d)
662 d = vmalloc(s);
663 if (!d)
664 return -ENOMEM;
666 d->size = n;
667 for (i = 0; i < n; i++)
668 d->table[i] = data[i];
670 root_lock = qdisc_root_sleeping_lock(sch);
672 spin_lock_bh(root_lock);
673 swap(q->delay_dist, d);
674 spin_unlock_bh(root_lock);
676 dist_free(d);
677 return 0;
680 static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
682 const struct tc_netem_corr *c = nla_data(attr);
684 init_crandom(&q->delay_cor, c->delay_corr);
685 init_crandom(&q->loss_cor, c->loss_corr);
686 init_crandom(&q->dup_cor, c->dup_corr);
689 static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
691 const struct tc_netem_reorder *r = nla_data(attr);
693 q->reorder = r->probability;
694 init_crandom(&q->reorder_cor, r->correlation);
697 static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
699 const struct tc_netem_corrupt *r = nla_data(attr);
701 q->corrupt = r->probability;
702 init_crandom(&q->corrupt_cor, r->correlation);
705 static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
707 const struct tc_netem_rate *r = nla_data(attr);
709 q->rate = r->rate;
710 q->packet_overhead = r->packet_overhead;
711 q->cell_size = r->cell_size;
712 q->cell_overhead = r->cell_overhead;
713 if (q->cell_size)
714 q->cell_size_reciprocal = reciprocal_value(q->cell_size);
715 else
716 q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
719 static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
721 const struct nlattr *la;
722 int rem;
724 nla_for_each_nested(la, attr, rem) {
725 u16 type = nla_type(la);
727 switch (type) {
728 case NETEM_LOSS_GI: {
729 const struct tc_netem_gimodel *gi = nla_data(la);
731 if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
732 pr_info("netem: incorrect gi model size\n");
733 return -EINVAL;
736 q->loss_model = CLG_4_STATES;
738 q->clg.state = TX_IN_GAP_PERIOD;
739 q->clg.a1 = gi->p13;
740 q->clg.a2 = gi->p31;
741 q->clg.a3 = gi->p32;
742 q->clg.a4 = gi->p14;
743 q->clg.a5 = gi->p23;
744 break;
747 case NETEM_LOSS_GE: {
748 const struct tc_netem_gemodel *ge = nla_data(la);
750 if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
751 pr_info("netem: incorrect ge model size\n");
752 return -EINVAL;
755 q->loss_model = CLG_GILB_ELL;
756 q->clg.state = GOOD_STATE;
757 q->clg.a1 = ge->p;
758 q->clg.a2 = ge->r;
759 q->clg.a3 = ge->h;
760 q->clg.a4 = ge->k1;
761 break;
764 default:
765 pr_info("netem: unknown loss type %u\n", type);
766 return -EINVAL;
770 return 0;
773 static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
774 [TCA_NETEM_CORR] = { .len = sizeof(struct tc_netem_corr) },
775 [TCA_NETEM_REORDER] = { .len = sizeof(struct tc_netem_reorder) },
776 [TCA_NETEM_CORRUPT] = { .len = sizeof(struct tc_netem_corrupt) },
777 [TCA_NETEM_RATE] = { .len = sizeof(struct tc_netem_rate) },
778 [TCA_NETEM_LOSS] = { .type = NLA_NESTED },
779 [TCA_NETEM_ECN] = { .type = NLA_U32 },
780 [TCA_NETEM_RATE64] = { .type = NLA_U64 },
783 static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
784 const struct nla_policy *policy, int len)
786 int nested_len = nla_len(nla) - NLA_ALIGN(len);
788 if (nested_len < 0) {
789 pr_info("netem: invalid attributes len %d\n", nested_len);
790 return -EINVAL;
793 if (nested_len >= nla_attr_size(0))
794 return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
795 nested_len, policy);
797 memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
798 return 0;
801 /* Parse netlink message to set options */
802 static int netem_change(struct Qdisc *sch, struct nlattr *opt)
804 struct netem_sched_data *q = qdisc_priv(sch);
805 struct nlattr *tb[TCA_NETEM_MAX + 1];
806 struct tc_netem_qopt *qopt;
807 struct clgstate old_clg;
808 int old_loss_model = CLG_RANDOM;
809 int ret;
811 if (opt == NULL)
812 return -EINVAL;
814 qopt = nla_data(opt);
815 ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
816 if (ret < 0)
817 return ret;
819 /* backup q->clg and q->loss_model */
820 old_clg = q->clg;
821 old_loss_model = q->loss_model;
823 if (tb[TCA_NETEM_LOSS]) {
824 ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
825 if (ret) {
826 q->loss_model = old_loss_model;
827 return ret;
829 } else {
830 q->loss_model = CLG_RANDOM;
833 if (tb[TCA_NETEM_DELAY_DIST]) {
834 ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]);
835 if (ret) {
836 /* recover clg and loss_model, in case of
837 * q->clg and q->loss_model were modified
838 * in get_loss_clg()
840 q->clg = old_clg;
841 q->loss_model = old_loss_model;
842 return ret;
846 sch->limit = qopt->limit;
848 q->latency = qopt->latency;
849 q->jitter = qopt->jitter;
850 q->limit = qopt->limit;
851 q->gap = qopt->gap;
852 q->counter = 0;
853 q->loss = qopt->loss;
854 q->duplicate = qopt->duplicate;
856 /* for compatibility with earlier versions.
857 * if gap is set, need to assume 100% probability
859 if (q->gap)
860 q->reorder = ~0;
862 if (tb[TCA_NETEM_CORR])
863 get_correlation(q, tb[TCA_NETEM_CORR]);
865 if (tb[TCA_NETEM_REORDER])
866 get_reorder(q, tb[TCA_NETEM_REORDER]);
868 if (tb[TCA_NETEM_CORRUPT])
869 get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
871 if (tb[TCA_NETEM_RATE])
872 get_rate(q, tb[TCA_NETEM_RATE]);
874 if (tb[TCA_NETEM_RATE64])
875 q->rate = max_t(u64, q->rate,
876 nla_get_u64(tb[TCA_NETEM_RATE64]));
878 if (tb[TCA_NETEM_ECN])
879 q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
881 return ret;
884 static int netem_init(struct Qdisc *sch, struct nlattr *opt)
886 struct netem_sched_data *q = qdisc_priv(sch);
887 int ret;
889 if (!opt)
890 return -EINVAL;
892 qdisc_watchdog_init(&q->watchdog, sch);
894 q->loss_model = CLG_RANDOM;
895 ret = netem_change(sch, opt);
896 if (ret)
897 pr_info("netem: change failed\n");
898 return ret;
901 static void netem_destroy(struct Qdisc *sch)
903 struct netem_sched_data *q = qdisc_priv(sch);
905 qdisc_watchdog_cancel(&q->watchdog);
906 if (q->qdisc)
907 qdisc_destroy(q->qdisc);
908 dist_free(q->delay_dist);
911 static int dump_loss_model(const struct netem_sched_data *q,
912 struct sk_buff *skb)
914 struct nlattr *nest;
916 nest = nla_nest_start(skb, TCA_NETEM_LOSS);
917 if (nest == NULL)
918 goto nla_put_failure;
920 switch (q->loss_model) {
921 case CLG_RANDOM:
922 /* legacy loss model */
923 nla_nest_cancel(skb, nest);
924 return 0; /* no data */
926 case CLG_4_STATES: {
927 struct tc_netem_gimodel gi = {
928 .p13 = q->clg.a1,
929 .p31 = q->clg.a2,
930 .p32 = q->clg.a3,
931 .p14 = q->clg.a4,
932 .p23 = q->clg.a5,
935 if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
936 goto nla_put_failure;
937 break;
939 case CLG_GILB_ELL: {
940 struct tc_netem_gemodel ge = {
941 .p = q->clg.a1,
942 .r = q->clg.a2,
943 .h = q->clg.a3,
944 .k1 = q->clg.a4,
947 if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
948 goto nla_put_failure;
949 break;
953 nla_nest_end(skb, nest);
954 return 0;
956 nla_put_failure:
957 nla_nest_cancel(skb, nest);
958 return -1;
961 static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
963 const struct netem_sched_data *q = qdisc_priv(sch);
964 struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
965 struct tc_netem_qopt qopt;
966 struct tc_netem_corr cor;
967 struct tc_netem_reorder reorder;
968 struct tc_netem_corrupt corrupt;
969 struct tc_netem_rate rate;
971 qopt.latency = q->latency;
972 qopt.jitter = q->jitter;
973 qopt.limit = q->limit;
974 qopt.loss = q->loss;
975 qopt.gap = q->gap;
976 qopt.duplicate = q->duplicate;
977 if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
978 goto nla_put_failure;
980 cor.delay_corr = q->delay_cor.rho;
981 cor.loss_corr = q->loss_cor.rho;
982 cor.dup_corr = q->dup_cor.rho;
983 if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
984 goto nla_put_failure;
986 reorder.probability = q->reorder;
987 reorder.correlation = q->reorder_cor.rho;
988 if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
989 goto nla_put_failure;
991 corrupt.probability = q->corrupt;
992 corrupt.correlation = q->corrupt_cor.rho;
993 if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
994 goto nla_put_failure;
996 if (q->rate >= (1ULL << 32)) {
997 if (nla_put_u64(skb, TCA_NETEM_RATE64, q->rate))
998 goto nla_put_failure;
999 rate.rate = ~0U;
1000 } else {
1001 rate.rate = q->rate;
1003 rate.packet_overhead = q->packet_overhead;
1004 rate.cell_size = q->cell_size;
1005 rate.cell_overhead = q->cell_overhead;
1006 if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
1007 goto nla_put_failure;
1009 if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
1010 goto nla_put_failure;
1012 if (dump_loss_model(q, skb) != 0)
1013 goto nla_put_failure;
1015 return nla_nest_end(skb, nla);
1017 nla_put_failure:
1018 nlmsg_trim(skb, nla);
1019 return -1;
1022 static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
1023 struct sk_buff *skb, struct tcmsg *tcm)
1025 struct netem_sched_data *q = qdisc_priv(sch);
1027 if (cl != 1 || !q->qdisc) /* only one class */
1028 return -ENOENT;
1030 tcm->tcm_handle |= TC_H_MIN(1);
1031 tcm->tcm_info = q->qdisc->handle;
1033 return 0;
1036 static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1037 struct Qdisc **old)
1039 struct netem_sched_data *q = qdisc_priv(sch);
1041 *old = qdisc_replace(sch, new, &q->qdisc);
1042 return 0;
1045 static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1047 struct netem_sched_data *q = qdisc_priv(sch);
1048 return q->qdisc;
1051 static unsigned long netem_get(struct Qdisc *sch, u32 classid)
1053 return 1;
1056 static void netem_put(struct Qdisc *sch, unsigned long arg)
1060 static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1062 if (!walker->stop) {
1063 if (walker->count >= walker->skip)
1064 if (walker->fn(sch, 1, walker) < 0) {
1065 walker->stop = 1;
1066 return;
1068 walker->count++;
1072 static const struct Qdisc_class_ops netem_class_ops = {
1073 .graft = netem_graft,
1074 .leaf = netem_leaf,
1075 .get = netem_get,
1076 .put = netem_put,
1077 .walk = netem_walk,
1078 .dump = netem_dump_class,
1081 static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1082 .id = "netem",
1083 .cl_ops = &netem_class_ops,
1084 .priv_size = sizeof(struct netem_sched_data),
1085 .enqueue = netem_enqueue,
1086 .dequeue = netem_dequeue,
1087 .peek = qdisc_peek_dequeued,
1088 .drop = netem_drop,
1089 .init = netem_init,
1090 .reset = netem_reset,
1091 .destroy = netem_destroy,
1092 .change = netem_change,
1093 .dump = netem_dump,
1094 .owner = THIS_MODULE,
1098 static int __init netem_module_init(void)
1100 pr_info("netem: version " VERSION "\n");
1101 return register_qdisc(&netem_qdisc_ops);
1103 static void __exit netem_module_exit(void)
1105 unregister_qdisc(&netem_qdisc_ops);
1107 module_init(netem_module_init)
1108 module_exit(netem_module_exit)
1109 MODULE_LICENSE("GPL");