powerpc: Rename files to have consistent _32/_64 suffixes
[linux-2.6/btrfs-unstable.git] / arch / ppc64 / mm / fault.c
blobbe3f25cf3e9fbb96cc987c2dd5b9494213a64678
1 /*
2 * arch/ppc/mm/fault.c
4 * PowerPC version
5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
7 * Derived from "arch/i386/mm/fault.c"
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
10 * Modified by Cort Dougan and Paul Mackerras.
12 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version
17 * 2 of the License, or (at your option) any later version.
20 #include <linux/config.h>
21 #include <linux/signal.h>
22 #include <linux/sched.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
26 #include <linux/types.h>
27 #include <linux/mman.h>
28 #include <linux/mm.h>
29 #include <linux/interrupt.h>
30 #include <linux/smp_lock.h>
31 #include <linux/module.h>
32 #include <linux/kprobes.h>
34 #include <asm/page.h>
35 #include <asm/pgtable.h>
36 #include <asm/mmu.h>
37 #include <asm/mmu_context.h>
38 #include <asm/system.h>
39 #include <asm/uaccess.h>
40 #include <asm/kdebug.h>
41 #include <asm/siginfo.h>
44 * Check whether the instruction at regs->nip is a store using
45 * an update addressing form which will update r1.
47 static int store_updates_sp(struct pt_regs *regs)
49 unsigned int inst;
51 if (get_user(inst, (unsigned int __user *)regs->nip))
52 return 0;
53 /* check for 1 in the rA field */
54 if (((inst >> 16) & 0x1f) != 1)
55 return 0;
56 /* check major opcode */
57 switch (inst >> 26) {
58 case 37: /* stwu */
59 case 39: /* stbu */
60 case 45: /* sthu */
61 case 53: /* stfsu */
62 case 55: /* stfdu */
63 return 1;
64 case 62: /* std or stdu */
65 return (inst & 3) == 1;
66 case 31:
67 /* check minor opcode */
68 switch ((inst >> 1) & 0x3ff) {
69 case 181: /* stdux */
70 case 183: /* stwux */
71 case 247: /* stbux */
72 case 439: /* sthux */
73 case 695: /* stfsux */
74 case 759: /* stfdux */
75 return 1;
78 return 0;
81 static void do_dabr(struct pt_regs *regs, unsigned long error_code)
83 siginfo_t info;
85 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
86 11, SIGSEGV) == NOTIFY_STOP)
87 return;
89 if (debugger_dabr_match(regs))
90 return;
92 /* Clear the DABR */
93 set_dabr(0);
95 /* Deliver the signal to userspace */
96 info.si_signo = SIGTRAP;
97 info.si_errno = 0;
98 info.si_code = TRAP_HWBKPT;
99 info.si_addr = (void __user *)regs->nip;
100 force_sig_info(SIGTRAP, &info, current);
104 * The error_code parameter is
105 * - DSISR for a non-SLB data access fault,
106 * - SRR1 & 0x08000000 for a non-SLB instruction access fault
107 * - 0 any SLB fault.
108 * The return value is 0 if the fault was handled, or the signal
109 * number if this is a kernel fault that can't be handled here.
111 int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
112 unsigned long error_code)
114 struct vm_area_struct * vma;
115 struct mm_struct *mm = current->mm;
116 siginfo_t info;
117 unsigned long code = SEGV_MAPERR;
118 unsigned long is_write = error_code & DSISR_ISSTORE;
119 unsigned long trap = TRAP(regs);
120 unsigned long is_exec = trap == 0x400;
122 BUG_ON((trap == 0x380) || (trap == 0x480));
124 if (notify_die(DIE_PAGE_FAULT, "page_fault", regs, error_code,
125 11, SIGSEGV) == NOTIFY_STOP)
126 return 0;
128 if (trap == 0x300) {
129 if (debugger_fault_handler(regs))
130 return 0;
133 /* On a kernel SLB miss we can only check for a valid exception entry */
134 if (!user_mode(regs) && (address >= TASK_SIZE))
135 return SIGSEGV;
137 if (error_code & DSISR_DABRMATCH) {
138 do_dabr(regs, error_code);
139 return 0;
142 if (in_atomic() || mm == NULL) {
143 if (!user_mode(regs))
144 return SIGSEGV;
145 /* in_atomic() in user mode is really bad,
146 as is current->mm == NULL. */
147 printk(KERN_EMERG "Page fault in user mode with"
148 "in_atomic() = %d mm = %p\n", in_atomic(), mm);
149 printk(KERN_EMERG "NIP = %lx MSR = %lx\n",
150 regs->nip, regs->msr);
151 die("Weird page fault", regs, SIGSEGV);
154 /* When running in the kernel we expect faults to occur only to
155 * addresses in user space. All other faults represent errors in the
156 * kernel and should generate an OOPS. Unfortunatly, in the case of an
157 * erroneous fault occuring in a code path which already holds mmap_sem
158 * we will deadlock attempting to validate the fault against the
159 * address space. Luckily the kernel only validly references user
160 * space from well defined areas of code, which are listed in the
161 * exceptions table.
163 * As the vast majority of faults will be valid we will only perform
164 * the source reference check when there is a possibilty of a deadlock.
165 * Attempt to lock the address space, if we cannot we then validate the
166 * source. If this is invalid we can skip the address space check,
167 * thus avoiding the deadlock.
169 if (!down_read_trylock(&mm->mmap_sem)) {
170 if (!user_mode(regs) && !search_exception_tables(regs->nip))
171 goto bad_area_nosemaphore;
173 down_read(&mm->mmap_sem);
176 vma = find_vma(mm, address);
177 if (!vma)
178 goto bad_area;
180 if (vma->vm_start <= address) {
181 goto good_area;
183 if (!(vma->vm_flags & VM_GROWSDOWN))
184 goto bad_area;
187 * N.B. The POWER/Open ABI allows programs to access up to
188 * 288 bytes below the stack pointer.
189 * The kernel signal delivery code writes up to about 1.5kB
190 * below the stack pointer (r1) before decrementing it.
191 * The exec code can write slightly over 640kB to the stack
192 * before setting the user r1. Thus we allow the stack to
193 * expand to 1MB without further checks.
195 if (address + 0x100000 < vma->vm_end) {
196 /* get user regs even if this fault is in kernel mode */
197 struct pt_regs *uregs = current->thread.regs;
198 if (uregs == NULL)
199 goto bad_area;
202 * A user-mode access to an address a long way below
203 * the stack pointer is only valid if the instruction
204 * is one which would update the stack pointer to the
205 * address accessed if the instruction completed,
206 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
207 * (or the byte, halfword, float or double forms).
209 * If we don't check this then any write to the area
210 * between the last mapped region and the stack will
211 * expand the stack rather than segfaulting.
213 if (address + 2048 < uregs->gpr[1]
214 && (!user_mode(regs) || !store_updates_sp(regs)))
215 goto bad_area;
218 if (expand_stack(vma, address))
219 goto bad_area;
221 good_area:
222 code = SEGV_ACCERR;
224 if (is_exec) {
225 /* protection fault */
226 if (error_code & DSISR_PROTFAULT)
227 goto bad_area;
228 if (!(vma->vm_flags & VM_EXEC))
229 goto bad_area;
230 /* a write */
231 } else if (is_write) {
232 if (!(vma->vm_flags & VM_WRITE))
233 goto bad_area;
234 /* a read */
235 } else {
236 if (!(vma->vm_flags & VM_READ))
237 goto bad_area;
240 survive:
242 * If for any reason at all we couldn't handle the fault,
243 * make sure we exit gracefully rather than endlessly redo
244 * the fault.
246 switch (handle_mm_fault(mm, vma, address, is_write)) {
248 case VM_FAULT_MINOR:
249 current->min_flt++;
250 break;
251 case VM_FAULT_MAJOR:
252 current->maj_flt++;
253 break;
254 case VM_FAULT_SIGBUS:
255 goto do_sigbus;
256 case VM_FAULT_OOM:
257 goto out_of_memory;
258 default:
259 BUG();
262 up_read(&mm->mmap_sem);
263 return 0;
265 bad_area:
266 up_read(&mm->mmap_sem);
268 bad_area_nosemaphore:
269 /* User mode accesses cause a SIGSEGV */
270 if (user_mode(regs)) {
271 info.si_signo = SIGSEGV;
272 info.si_errno = 0;
273 info.si_code = code;
274 info.si_addr = (void __user *) address;
275 force_sig_info(SIGSEGV, &info, current);
276 return 0;
279 if (trap == 0x400 && (error_code & DSISR_PROTFAULT)
280 && printk_ratelimit())
281 printk(KERN_CRIT "kernel tried to execute NX-protected"
282 " page (%lx) - exploit attempt? (uid: %d)\n",
283 address, current->uid);
285 return SIGSEGV;
288 * We ran out of memory, or some other thing happened to us that made
289 * us unable to handle the page fault gracefully.
291 out_of_memory:
292 up_read(&mm->mmap_sem);
293 if (current->pid == 1) {
294 yield();
295 down_read(&mm->mmap_sem);
296 goto survive;
298 printk("VM: killing process %s\n", current->comm);
299 if (user_mode(regs))
300 do_exit(SIGKILL);
301 return SIGKILL;
303 do_sigbus:
304 up_read(&mm->mmap_sem);
305 if (user_mode(regs)) {
306 info.si_signo = SIGBUS;
307 info.si_errno = 0;
308 info.si_code = BUS_ADRERR;
309 info.si_addr = (void __user *)address;
310 force_sig_info(SIGBUS, &info, current);
311 return 0;
313 return SIGBUS;
317 * bad_page_fault is called when we have a bad access from the kernel.
318 * It is called from do_page_fault above and from some of the procedures
319 * in traps.c.
321 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
323 const struct exception_table_entry *entry;
325 /* Are we prepared to handle this fault? */
326 if ((entry = search_exception_tables(regs->nip)) != NULL) {
327 regs->nip = entry->fixup;
328 return;
331 /* kernel has accessed a bad area */
332 die("Kernel access of bad area", regs, sig);