net: timestamp cloned packet in dev_queue_xmit_nit
[linux-2.6/btrfs-unstable.git] / drivers / mtd / nand / fsl_elbc_nand.c
blobc141b07b25d119101987e96b0cefe379cae6e81f
1 /* Freescale Enhanced Local Bus Controller NAND driver
3 * Copyright © 2006-2007, 2010 Freescale Semiconductor
5 * Authors: Nick Spence <nick.spence@freescale.com>,
6 * Scott Wood <scottwood@freescale.com>
7 * Jack Lan <jack.lan@freescale.com>
8 * Roy Zang <tie-fei.zang@freescale.com>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/string.h>
30 #include <linux/ioport.h>
31 #include <linux/of_platform.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <linux/interrupt.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand_ecc.h>
39 #include <linux/mtd/partitions.h>
41 #include <asm/io.h>
42 #include <asm/fsl_lbc.h>
44 #define MAX_BANKS 8
45 #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
46 #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
48 /* mtd information per set */
50 struct fsl_elbc_mtd {
51 struct mtd_info mtd;
52 struct nand_chip chip;
53 struct fsl_lbc_ctrl *ctrl;
55 struct device *dev;
56 int bank; /* Chip select bank number */
57 u8 __iomem *vbase; /* Chip select base virtual address */
58 int page_size; /* NAND page size (0=512, 1=2048) */
59 unsigned int fmr; /* FCM Flash Mode Register value */
62 /* Freescale eLBC FCM controller infomation */
64 struct fsl_elbc_fcm_ctrl {
65 struct nand_hw_control controller;
66 struct fsl_elbc_mtd *chips[MAX_BANKS];
68 u8 __iomem *addr; /* Address of assigned FCM buffer */
69 unsigned int page; /* Last page written to / read from */
70 unsigned int read_bytes; /* Number of bytes read during command */
71 unsigned int column; /* Saved column from SEQIN */
72 unsigned int index; /* Pointer to next byte to 'read' */
73 unsigned int status; /* status read from LTESR after last op */
74 unsigned int mdr; /* UPM/FCM Data Register value */
75 unsigned int use_mdr; /* Non zero if the MDR is to be set */
76 unsigned int oob; /* Non zero if operating on OOB data */
77 unsigned int counter; /* counter for the initializations */
78 char *oob_poi; /* Place to write ECC after read back */
81 /* These map to the positions used by the FCM hardware ECC generator */
83 /* Small Page FLASH with FMR[ECCM] = 0 */
84 static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
85 .eccbytes = 3,
86 .eccpos = {6, 7, 8},
87 .oobfree = { {0, 5}, {9, 7} },
90 /* Small Page FLASH with FMR[ECCM] = 1 */
91 static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
92 .eccbytes = 3,
93 .eccpos = {8, 9, 10},
94 .oobfree = { {0, 5}, {6, 2}, {11, 5} },
97 /* Large Page FLASH with FMR[ECCM] = 0 */
98 static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
99 .eccbytes = 12,
100 .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
101 .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
104 /* Large Page FLASH with FMR[ECCM] = 1 */
105 static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
106 .eccbytes = 12,
107 .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
108 .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
112 * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset
113 * 1, so we have to adjust bad block pattern. This pattern should be used for
114 * x8 chips only. So far hardware does not support x16 chips anyway.
116 static u8 scan_ff_pattern[] = { 0xff, };
118 static struct nand_bbt_descr largepage_memorybased = {
119 .options = 0,
120 .offs = 0,
121 .len = 1,
122 .pattern = scan_ff_pattern,
126 * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
127 * interfere with ECC positions, that's why we implement our own descriptors.
128 * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
130 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
131 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
133 static struct nand_bbt_descr bbt_main_descr = {
134 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
135 NAND_BBT_2BIT | NAND_BBT_VERSION,
136 .offs = 11,
137 .len = 4,
138 .veroffs = 15,
139 .maxblocks = 4,
140 .pattern = bbt_pattern,
143 static struct nand_bbt_descr bbt_mirror_descr = {
144 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
145 NAND_BBT_2BIT | NAND_BBT_VERSION,
146 .offs = 11,
147 .len = 4,
148 .veroffs = 15,
149 .maxblocks = 4,
150 .pattern = mirror_pattern,
153 /*=================================*/
156 * Set up the FCM hardware block and page address fields, and the fcm
157 * structure addr field to point to the correct FCM buffer in memory
159 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
161 struct nand_chip *chip = mtd->priv;
162 struct fsl_elbc_mtd *priv = chip->priv;
163 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
164 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
165 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
166 int buf_num;
168 elbc_fcm_ctrl->page = page_addr;
170 out_be32(&lbc->fbar,
171 page_addr >> (chip->phys_erase_shift - chip->page_shift));
173 if (priv->page_size) {
174 out_be32(&lbc->fpar,
175 ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
176 (oob ? FPAR_LP_MS : 0) | column);
177 buf_num = (page_addr & 1) << 2;
178 } else {
179 out_be32(&lbc->fpar,
180 ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
181 (oob ? FPAR_SP_MS : 0) | column);
182 buf_num = page_addr & 7;
185 elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024;
186 elbc_fcm_ctrl->index = column;
188 /* for OOB data point to the second half of the buffer */
189 if (oob)
190 elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512;
192 dev_vdbg(priv->dev, "set_addr: bank=%d, "
193 "elbc_fcm_ctrl->addr=0x%p (0x%p), "
194 "index %x, pes %d ps %d\n",
195 buf_num, elbc_fcm_ctrl->addr, priv->vbase,
196 elbc_fcm_ctrl->index,
197 chip->phys_erase_shift, chip->page_shift);
201 * execute FCM command and wait for it to complete
203 static int fsl_elbc_run_command(struct mtd_info *mtd)
205 struct nand_chip *chip = mtd->priv;
206 struct fsl_elbc_mtd *priv = chip->priv;
207 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
208 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
209 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
211 /* Setup the FMR[OP] to execute without write protection */
212 out_be32(&lbc->fmr, priv->fmr | 3);
213 if (elbc_fcm_ctrl->use_mdr)
214 out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr);
216 dev_vdbg(priv->dev,
217 "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
218 in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
219 dev_vdbg(priv->dev,
220 "fsl_elbc_run_command: fbar=%08x fpar=%08x "
221 "fbcr=%08x bank=%d\n",
222 in_be32(&lbc->fbar), in_be32(&lbc->fpar),
223 in_be32(&lbc->fbcr), priv->bank);
225 ctrl->irq_status = 0;
226 /* execute special operation */
227 out_be32(&lbc->lsor, priv->bank);
229 /* wait for FCM complete flag or timeout */
230 wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
231 FCM_TIMEOUT_MSECS * HZ/1000);
232 elbc_fcm_ctrl->status = ctrl->irq_status;
233 /* store mdr value in case it was needed */
234 if (elbc_fcm_ctrl->use_mdr)
235 elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr);
237 elbc_fcm_ctrl->use_mdr = 0;
239 if (elbc_fcm_ctrl->status != LTESR_CC) {
240 dev_info(priv->dev,
241 "command failed: fir %x fcr %x status %x mdr %x\n",
242 in_be32(&lbc->fir), in_be32(&lbc->fcr),
243 elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr);
244 return -EIO;
247 return 0;
250 static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
252 struct fsl_elbc_mtd *priv = chip->priv;
253 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
254 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
256 if (priv->page_size) {
257 out_be32(&lbc->fir,
258 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
259 (FIR_OP_CA << FIR_OP1_SHIFT) |
260 (FIR_OP_PA << FIR_OP2_SHIFT) |
261 (FIR_OP_CM1 << FIR_OP3_SHIFT) |
262 (FIR_OP_RBW << FIR_OP4_SHIFT));
264 out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
265 (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
266 } else {
267 out_be32(&lbc->fir,
268 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
269 (FIR_OP_CA << FIR_OP1_SHIFT) |
270 (FIR_OP_PA << FIR_OP2_SHIFT) |
271 (FIR_OP_RBW << FIR_OP3_SHIFT));
273 if (oob)
274 out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
275 else
276 out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
280 /* cmdfunc send commands to the FCM */
281 static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
282 int column, int page_addr)
284 struct nand_chip *chip = mtd->priv;
285 struct fsl_elbc_mtd *priv = chip->priv;
286 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
287 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
288 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
290 elbc_fcm_ctrl->use_mdr = 0;
292 /* clear the read buffer */
293 elbc_fcm_ctrl->read_bytes = 0;
294 if (command != NAND_CMD_PAGEPROG)
295 elbc_fcm_ctrl->index = 0;
297 switch (command) {
298 /* READ0 and READ1 read the entire buffer to use hardware ECC. */
299 case NAND_CMD_READ1:
300 column += 256;
302 /* fall-through */
303 case NAND_CMD_READ0:
304 dev_dbg(priv->dev,
305 "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
306 " 0x%x, column: 0x%x.\n", page_addr, column);
309 out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
310 set_addr(mtd, 0, page_addr, 0);
312 elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
313 elbc_fcm_ctrl->index += column;
315 fsl_elbc_do_read(chip, 0);
316 fsl_elbc_run_command(mtd);
317 return;
319 /* READOOB reads only the OOB because no ECC is performed. */
320 case NAND_CMD_READOOB:
321 dev_vdbg(priv->dev,
322 "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
323 " 0x%x, column: 0x%x.\n", page_addr, column);
325 out_be32(&lbc->fbcr, mtd->oobsize - column);
326 set_addr(mtd, column, page_addr, 1);
328 elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
330 fsl_elbc_do_read(chip, 1);
331 fsl_elbc_run_command(mtd);
332 return;
334 /* READID must read all 5 possible bytes while CEB is active */
335 case NAND_CMD_READID:
336 dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n");
338 out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) |
339 (FIR_OP_UA << FIR_OP1_SHIFT) |
340 (FIR_OP_RBW << FIR_OP2_SHIFT));
341 out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT);
342 /* 5 bytes for manuf, device and exts */
343 out_be32(&lbc->fbcr, 5);
344 elbc_fcm_ctrl->read_bytes = 5;
345 elbc_fcm_ctrl->use_mdr = 1;
346 elbc_fcm_ctrl->mdr = 0;
348 set_addr(mtd, 0, 0, 0);
349 fsl_elbc_run_command(mtd);
350 return;
352 /* ERASE1 stores the block and page address */
353 case NAND_CMD_ERASE1:
354 dev_vdbg(priv->dev,
355 "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
356 "page_addr: 0x%x.\n", page_addr);
357 set_addr(mtd, 0, page_addr, 0);
358 return;
360 /* ERASE2 uses the block and page address from ERASE1 */
361 case NAND_CMD_ERASE2:
362 dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
364 out_be32(&lbc->fir,
365 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
366 (FIR_OP_PA << FIR_OP1_SHIFT) |
367 (FIR_OP_CM2 << FIR_OP2_SHIFT) |
368 (FIR_OP_CW1 << FIR_OP3_SHIFT) |
369 (FIR_OP_RS << FIR_OP4_SHIFT));
371 out_be32(&lbc->fcr,
372 (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
373 (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
374 (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT));
376 out_be32(&lbc->fbcr, 0);
377 elbc_fcm_ctrl->read_bytes = 0;
378 elbc_fcm_ctrl->use_mdr = 1;
380 fsl_elbc_run_command(mtd);
381 return;
383 /* SEQIN sets up the addr buffer and all registers except the length */
384 case NAND_CMD_SEQIN: {
385 __be32 fcr;
386 dev_vdbg(priv->dev,
387 "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
388 "page_addr: 0x%x, column: 0x%x.\n",
389 page_addr, column);
391 elbc_fcm_ctrl->use_mdr = 1;
393 fcr = (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
394 (NAND_CMD_SEQIN << FCR_CMD2_SHIFT) |
395 (NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT);
397 if (priv->page_size) {
398 out_be32(&lbc->fir,
399 (FIR_OP_CM2 << FIR_OP0_SHIFT) |
400 (FIR_OP_CA << FIR_OP1_SHIFT) |
401 (FIR_OP_PA << FIR_OP2_SHIFT) |
402 (FIR_OP_WB << FIR_OP3_SHIFT) |
403 (FIR_OP_CM3 << FIR_OP4_SHIFT) |
404 (FIR_OP_CW1 << FIR_OP5_SHIFT) |
405 (FIR_OP_RS << FIR_OP6_SHIFT));
406 } else {
407 out_be32(&lbc->fir,
408 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
409 (FIR_OP_CM2 << FIR_OP1_SHIFT) |
410 (FIR_OP_CA << FIR_OP2_SHIFT) |
411 (FIR_OP_PA << FIR_OP3_SHIFT) |
412 (FIR_OP_WB << FIR_OP4_SHIFT) |
413 (FIR_OP_CM3 << FIR_OP5_SHIFT) |
414 (FIR_OP_CW1 << FIR_OP6_SHIFT) |
415 (FIR_OP_RS << FIR_OP7_SHIFT));
417 if (column >= mtd->writesize) {
418 /* OOB area --> READOOB */
419 column -= mtd->writesize;
420 fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
421 elbc_fcm_ctrl->oob = 1;
422 } else {
423 WARN_ON(column != 0);
424 /* First 256 bytes --> READ0 */
425 fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
429 out_be32(&lbc->fcr, fcr);
430 set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob);
431 return;
434 /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
435 case NAND_CMD_PAGEPROG: {
436 int full_page;
437 dev_vdbg(priv->dev,
438 "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
439 "writing %d bytes.\n", elbc_fcm_ctrl->index);
441 /* if the write did not start at 0 or is not a full page
442 * then set the exact length, otherwise use a full page
443 * write so the HW generates the ECC.
445 if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 ||
446 elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize) {
447 out_be32(&lbc->fbcr, elbc_fcm_ctrl->index);
448 full_page = 0;
449 } else {
450 out_be32(&lbc->fbcr, 0);
451 full_page = 1;
454 fsl_elbc_run_command(mtd);
456 /* Read back the page in order to fill in the ECC for the
457 * caller. Is this really needed?
459 if (full_page && elbc_fcm_ctrl->oob_poi) {
460 out_be32(&lbc->fbcr, 3);
461 set_addr(mtd, 6, page_addr, 1);
463 elbc_fcm_ctrl->read_bytes = mtd->writesize + 9;
465 fsl_elbc_do_read(chip, 1);
466 fsl_elbc_run_command(mtd);
468 memcpy_fromio(elbc_fcm_ctrl->oob_poi + 6,
469 &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], 3);
470 elbc_fcm_ctrl->index += 3;
473 elbc_fcm_ctrl->oob_poi = NULL;
474 return;
477 /* CMD_STATUS must read the status byte while CEB is active */
478 /* Note - it does not wait for the ready line */
479 case NAND_CMD_STATUS:
480 out_be32(&lbc->fir,
481 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
482 (FIR_OP_RBW << FIR_OP1_SHIFT));
483 out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
484 out_be32(&lbc->fbcr, 1);
485 set_addr(mtd, 0, 0, 0);
486 elbc_fcm_ctrl->read_bytes = 1;
488 fsl_elbc_run_command(mtd);
490 /* The chip always seems to report that it is
491 * write-protected, even when it is not.
493 setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP);
494 return;
496 /* RESET without waiting for the ready line */
497 case NAND_CMD_RESET:
498 dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
499 out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
500 out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
501 fsl_elbc_run_command(mtd);
502 return;
504 default:
505 dev_err(priv->dev,
506 "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
507 command);
511 static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
513 /* The hardware does not seem to support multiple
514 * chips per bank.
519 * Write buf to the FCM Controller Data Buffer
521 static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
523 struct nand_chip *chip = mtd->priv;
524 struct fsl_elbc_mtd *priv = chip->priv;
525 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
526 unsigned int bufsize = mtd->writesize + mtd->oobsize;
528 if (len <= 0) {
529 dev_err(priv->dev, "write_buf of %d bytes", len);
530 elbc_fcm_ctrl->status = 0;
531 return;
534 if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) {
535 dev_err(priv->dev,
536 "write_buf beyond end of buffer "
537 "(%d requested, %u available)\n",
538 len, bufsize - elbc_fcm_ctrl->index);
539 len = bufsize - elbc_fcm_ctrl->index;
542 memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len);
544 * This is workaround for the weird elbc hangs during nand write,
545 * Scott Wood says: "...perhaps difference in how long it takes a
546 * write to make it through the localbus compared to a write to IMMR
547 * is causing problems, and sync isn't helping for some reason."
548 * Reading back the last byte helps though.
550 in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1);
552 elbc_fcm_ctrl->index += len;
556 * read a byte from either the FCM hardware buffer if it has any data left
557 * otherwise issue a command to read a single byte.
559 static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
561 struct nand_chip *chip = mtd->priv;
562 struct fsl_elbc_mtd *priv = chip->priv;
563 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
565 /* If there are still bytes in the FCM, then use the next byte. */
566 if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes)
567 return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]);
569 dev_err(priv->dev, "read_byte beyond end of buffer\n");
570 return ERR_BYTE;
574 * Read from the FCM Controller Data Buffer
576 static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
578 struct nand_chip *chip = mtd->priv;
579 struct fsl_elbc_mtd *priv = chip->priv;
580 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
581 int avail;
583 if (len < 0)
584 return;
586 avail = min((unsigned int)len,
587 elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
588 memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail);
589 elbc_fcm_ctrl->index += avail;
591 if (len > avail)
592 dev_err(priv->dev,
593 "read_buf beyond end of buffer "
594 "(%d requested, %d available)\n",
595 len, avail);
599 * Verify buffer against the FCM Controller Data Buffer
601 static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
603 struct nand_chip *chip = mtd->priv;
604 struct fsl_elbc_mtd *priv = chip->priv;
605 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
606 int i;
608 if (len < 0) {
609 dev_err(priv->dev, "write_buf of %d bytes", len);
610 return -EINVAL;
613 if ((unsigned int)len >
614 elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index) {
615 dev_err(priv->dev,
616 "verify_buf beyond end of buffer "
617 "(%d requested, %u available)\n",
618 len, elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
620 elbc_fcm_ctrl->index = elbc_fcm_ctrl->read_bytes;
621 return -EINVAL;
624 for (i = 0; i < len; i++)
625 if (in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index + i])
626 != buf[i])
627 break;
629 elbc_fcm_ctrl->index += len;
630 return i == len && elbc_fcm_ctrl->status == LTESR_CC ? 0 : -EIO;
633 /* This function is called after Program and Erase Operations to
634 * check for success or failure.
636 static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
638 struct fsl_elbc_mtd *priv = chip->priv;
639 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
641 if (elbc_fcm_ctrl->status != LTESR_CC)
642 return NAND_STATUS_FAIL;
644 /* The chip always seems to report that it is
645 * write-protected, even when it is not.
647 return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP;
650 static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
652 struct nand_chip *chip = mtd->priv;
653 struct fsl_elbc_mtd *priv = chip->priv;
654 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
655 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
656 unsigned int al;
658 /* calculate FMR Address Length field */
659 al = 0;
660 if (chip->pagemask & 0xffff0000)
661 al++;
662 if (chip->pagemask & 0xff000000)
663 al++;
665 /* add to ECCM mode set in fsl_elbc_init */
666 priv->fmr |= (12 << FMR_CWTO_SHIFT) | /* Timeout > 12 ms */
667 (al << FMR_AL_SHIFT);
669 dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n",
670 chip->numchips);
671 dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
672 chip->chipsize);
673 dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
674 chip->pagemask);
675 dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
676 chip->chip_delay);
677 dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
678 chip->badblockpos);
679 dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
680 chip->chip_shift);
681 dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n",
682 chip->page_shift);
683 dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
684 chip->phys_erase_shift);
685 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
686 chip->ecclayout);
687 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
688 chip->ecc.mode);
689 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
690 chip->ecc.steps);
691 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
692 chip->ecc.bytes);
693 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
694 chip->ecc.total);
695 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
696 chip->ecc.layout);
697 dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
698 dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
699 dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
700 mtd->erasesize);
701 dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n",
702 mtd->writesize);
703 dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
704 mtd->oobsize);
706 /* adjust Option Register and ECC to match Flash page size */
707 if (mtd->writesize == 512) {
708 priv->page_size = 0;
709 clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
710 } else if (mtd->writesize == 2048) {
711 priv->page_size = 1;
712 setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
713 /* adjust ecc setup if needed */
714 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
715 BR_DECC_CHK_GEN) {
716 chip->ecc.size = 512;
717 chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
718 &fsl_elbc_oob_lp_eccm1 :
719 &fsl_elbc_oob_lp_eccm0;
720 chip->badblock_pattern = &largepage_memorybased;
722 } else {
723 dev_err(priv->dev,
724 "fsl_elbc_init: page size %d is not supported\n",
725 mtd->writesize);
726 return -1;
729 return 0;
732 static int fsl_elbc_read_page(struct mtd_info *mtd,
733 struct nand_chip *chip,
734 uint8_t *buf,
735 int page)
737 fsl_elbc_read_buf(mtd, buf, mtd->writesize);
738 fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
740 if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
741 mtd->ecc_stats.failed++;
743 return 0;
746 /* ECC will be calculated automatically, and errors will be detected in
747 * waitfunc.
749 static void fsl_elbc_write_page(struct mtd_info *mtd,
750 struct nand_chip *chip,
751 const uint8_t *buf)
753 struct fsl_elbc_mtd *priv = chip->priv;
754 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
756 fsl_elbc_write_buf(mtd, buf, mtd->writesize);
757 fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
759 elbc_fcm_ctrl->oob_poi = chip->oob_poi;
762 static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
764 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
765 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
766 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
767 struct nand_chip *chip = &priv->chip;
769 dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
771 /* Fill in fsl_elbc_mtd structure */
772 priv->mtd.priv = chip;
773 priv->mtd.owner = THIS_MODULE;
775 /* Set the ECCM according to the settings in bootloader.*/
776 priv->fmr = in_be32(&lbc->fmr) & FMR_ECCM;
778 /* fill in nand_chip structure */
779 /* set up function call table */
780 chip->read_byte = fsl_elbc_read_byte;
781 chip->write_buf = fsl_elbc_write_buf;
782 chip->read_buf = fsl_elbc_read_buf;
783 chip->verify_buf = fsl_elbc_verify_buf;
784 chip->select_chip = fsl_elbc_select_chip;
785 chip->cmdfunc = fsl_elbc_cmdfunc;
786 chip->waitfunc = fsl_elbc_wait;
788 chip->bbt_td = &bbt_main_descr;
789 chip->bbt_md = &bbt_mirror_descr;
791 /* set up nand options */
792 chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR |
793 NAND_USE_FLASH_BBT;
795 chip->controller = &elbc_fcm_ctrl->controller;
796 chip->priv = priv;
798 chip->ecc.read_page = fsl_elbc_read_page;
799 chip->ecc.write_page = fsl_elbc_write_page;
801 /* If CS Base Register selects full hardware ECC then use it */
802 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
803 BR_DECC_CHK_GEN) {
804 chip->ecc.mode = NAND_ECC_HW;
805 /* put in small page settings and adjust later if needed */
806 chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
807 &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
808 chip->ecc.size = 512;
809 chip->ecc.bytes = 3;
810 } else {
811 /* otherwise fall back to default software ECC */
812 chip->ecc.mode = NAND_ECC_SOFT;
815 return 0;
818 static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
820 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
821 nand_release(&priv->mtd);
823 kfree(priv->mtd.name);
825 if (priv->vbase)
826 iounmap(priv->vbase);
828 elbc_fcm_ctrl->chips[priv->bank] = NULL;
829 kfree(priv);
830 kfree(elbc_fcm_ctrl);
831 return 0;
834 static DEFINE_MUTEX(fsl_elbc_nand_mutex);
836 static int __devinit fsl_elbc_nand_probe(struct platform_device *pdev)
838 struct fsl_lbc_regs __iomem *lbc;
839 struct fsl_elbc_mtd *priv;
840 struct resource res;
841 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl;
843 #ifdef CONFIG_MTD_PARTITIONS
844 static const char *part_probe_types[]
845 = { "cmdlinepart", "RedBoot", NULL };
846 struct mtd_partition *parts;
847 #endif
848 int ret;
849 int bank;
850 struct device *dev;
851 struct device_node *node = pdev->dev.of_node;
853 if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
854 return -ENODEV;
855 lbc = fsl_lbc_ctrl_dev->regs;
856 dev = fsl_lbc_ctrl_dev->dev;
858 /* get, allocate and map the memory resource */
859 ret = of_address_to_resource(node, 0, &res);
860 if (ret) {
861 dev_err(dev, "failed to get resource\n");
862 return ret;
865 /* find which chip select it is connected to */
866 for (bank = 0; bank < MAX_BANKS; bank++)
867 if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
868 (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
869 (in_be32(&lbc->bank[bank].br) &
870 in_be32(&lbc->bank[bank].or) & BR_BA)
871 == fsl_lbc_addr(res.start))
872 break;
874 if (bank >= MAX_BANKS) {
875 dev_err(dev, "address did not match any chip selects\n");
876 return -ENODEV;
879 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
880 if (!priv)
881 return -ENOMEM;
883 mutex_lock(&fsl_elbc_nand_mutex);
884 if (!fsl_lbc_ctrl_dev->nand) {
885 elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL);
886 if (!elbc_fcm_ctrl) {
887 dev_err(dev, "failed to allocate memory\n");
888 mutex_unlock(&fsl_elbc_nand_mutex);
889 ret = -ENOMEM;
890 goto err;
892 elbc_fcm_ctrl->counter++;
894 spin_lock_init(&elbc_fcm_ctrl->controller.lock);
895 init_waitqueue_head(&elbc_fcm_ctrl->controller.wq);
896 fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl;
897 } else {
898 elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
900 mutex_unlock(&fsl_elbc_nand_mutex);
902 elbc_fcm_ctrl->chips[bank] = priv;
903 priv->bank = bank;
904 priv->ctrl = fsl_lbc_ctrl_dev;
905 priv->dev = dev;
907 priv->vbase = ioremap(res.start, resource_size(&res));
908 if (!priv->vbase) {
909 dev_err(dev, "failed to map chip region\n");
910 ret = -ENOMEM;
911 goto err;
914 priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start);
915 if (!priv->mtd.name) {
916 ret = -ENOMEM;
917 goto err;
920 ret = fsl_elbc_chip_init(priv);
921 if (ret)
922 goto err;
924 ret = nand_scan_ident(&priv->mtd, 1, NULL);
925 if (ret)
926 goto err;
928 ret = fsl_elbc_chip_init_tail(&priv->mtd);
929 if (ret)
930 goto err;
932 ret = nand_scan_tail(&priv->mtd);
933 if (ret)
934 goto err;
936 #ifdef CONFIG_MTD_PARTITIONS
937 /* First look for RedBoot table or partitions on the command
938 * line, these take precedence over device tree information */
939 ret = parse_mtd_partitions(&priv->mtd, part_probe_types, &parts, 0);
940 if (ret < 0)
941 goto err;
943 #ifdef CONFIG_MTD_OF_PARTS
944 if (ret == 0) {
945 ret = of_mtd_parse_partitions(priv->dev, node, &parts);
946 if (ret < 0)
947 goto err;
949 #endif
951 if (ret > 0)
952 add_mtd_partitions(&priv->mtd, parts, ret);
953 else
954 #endif
955 add_mtd_device(&priv->mtd);
957 printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n",
958 (unsigned long long)res.start, priv->bank);
959 return 0;
961 err:
962 fsl_elbc_chip_remove(priv);
963 return ret;
966 static int fsl_elbc_nand_remove(struct platform_device *pdev)
968 int i;
969 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
970 for (i = 0; i < MAX_BANKS; i++)
971 if (elbc_fcm_ctrl->chips[i])
972 fsl_elbc_chip_remove(elbc_fcm_ctrl->chips[i]);
974 mutex_lock(&fsl_elbc_nand_mutex);
975 elbc_fcm_ctrl->counter--;
976 if (!elbc_fcm_ctrl->counter) {
977 fsl_lbc_ctrl_dev->nand = NULL;
978 kfree(elbc_fcm_ctrl);
980 mutex_unlock(&fsl_elbc_nand_mutex);
982 return 0;
986 static const struct of_device_id fsl_elbc_nand_match[] = {
987 { .compatible = "fsl,elbc-fcm-nand", },
991 static struct platform_driver fsl_elbc_nand_driver = {
992 .driver = {
993 .name = "fsl,elbc-fcm-nand",
994 .owner = THIS_MODULE,
995 .of_match_table = fsl_elbc_nand_match,
997 .probe = fsl_elbc_nand_probe,
998 .remove = fsl_elbc_nand_remove,
1001 static int __init fsl_elbc_nand_init(void)
1003 return platform_driver_register(&fsl_elbc_nand_driver);
1006 static void __exit fsl_elbc_nand_exit(void)
1008 platform_driver_unregister(&fsl_elbc_nand_driver);
1011 module_init(fsl_elbc_nand_init);
1012 module_exit(fsl_elbc_nand_exit);
1014 MODULE_LICENSE("GPL");
1015 MODULE_AUTHOR("Freescale");
1016 MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");