mmc: rtsx_usb_sdmmc: fix incorrect last byte in R2 response
[linux-2.6/btrfs-unstable.git] / drivers / md / dm-bufio.c
blobab472c557d18c060d8230bbfcadbd747b36f0fd0
1 /*
2 * Copyright (C) 2009-2011 Red Hat, Inc.
4 * Author: Mikulas Patocka <mpatocka@redhat.com>
6 * This file is released under the GPL.
7 */
9 #include "dm-bufio.h"
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/shrinker.h>
16 #include <linux/module.h>
18 #define DM_MSG_PREFIX "bufio"
21 * Memory management policy:
22 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
23 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
24 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
25 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
26 * dirty buffers.
28 #define DM_BUFIO_MIN_BUFFERS 8
30 #define DM_BUFIO_MEMORY_PERCENT 2
31 #define DM_BUFIO_VMALLOC_PERCENT 25
32 #define DM_BUFIO_WRITEBACK_PERCENT 75
35 * Check buffer ages in this interval (seconds)
37 #define DM_BUFIO_WORK_TIMER_SECS 10
40 * Free buffers when they are older than this (seconds)
42 #define DM_BUFIO_DEFAULT_AGE_SECS 60
45 * The number of bvec entries that are embedded directly in the buffer.
46 * If the chunk size is larger, dm-io is used to do the io.
48 #define DM_BUFIO_INLINE_VECS 16
51 * Buffer hash
53 #define DM_BUFIO_HASH_BITS 20
54 #define DM_BUFIO_HASH(block) \
55 ((((block) >> DM_BUFIO_HASH_BITS) ^ (block)) & \
56 ((1 << DM_BUFIO_HASH_BITS) - 1))
59 * Don't try to use kmem_cache_alloc for blocks larger than this.
60 * For explanation, see alloc_buffer_data below.
62 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT (PAGE_SIZE >> 1)
63 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT (PAGE_SIZE << (MAX_ORDER - 1))
66 * dm_buffer->list_mode
68 #define LIST_CLEAN 0
69 #define LIST_DIRTY 1
70 #define LIST_SIZE 2
73 * Linking of buffers:
74 * All buffers are linked to cache_hash with their hash_list field.
76 * Clean buffers that are not being written (B_WRITING not set)
77 * are linked to lru[LIST_CLEAN] with their lru_list field.
79 * Dirty and clean buffers that are being written are linked to
80 * lru[LIST_DIRTY] with their lru_list field. When the write
81 * finishes, the buffer cannot be relinked immediately (because we
82 * are in an interrupt context and relinking requires process
83 * context), so some clean-not-writing buffers can be held on
84 * dirty_lru too. They are later added to lru in the process
85 * context.
87 struct dm_bufio_client {
88 struct mutex lock;
90 struct list_head lru[LIST_SIZE];
91 unsigned long n_buffers[LIST_SIZE];
93 struct block_device *bdev;
94 unsigned block_size;
95 unsigned char sectors_per_block_bits;
96 unsigned char pages_per_block_bits;
97 unsigned char blocks_per_page_bits;
98 unsigned aux_size;
99 void (*alloc_callback)(struct dm_buffer *);
100 void (*write_callback)(struct dm_buffer *);
102 struct dm_io_client *dm_io;
104 struct list_head reserved_buffers;
105 unsigned need_reserved_buffers;
107 unsigned minimum_buffers;
109 struct hlist_head *cache_hash;
110 wait_queue_head_t free_buffer_wait;
112 int async_write_error;
114 struct list_head client_list;
115 struct shrinker shrinker;
119 * Buffer state bits.
121 #define B_READING 0
122 #define B_WRITING 1
123 #define B_DIRTY 2
126 * Describes how the block was allocated:
127 * kmem_cache_alloc(), __get_free_pages() or vmalloc().
128 * See the comment at alloc_buffer_data.
130 enum data_mode {
131 DATA_MODE_SLAB = 0,
132 DATA_MODE_GET_FREE_PAGES = 1,
133 DATA_MODE_VMALLOC = 2,
134 DATA_MODE_LIMIT = 3
137 struct dm_buffer {
138 struct hlist_node hash_list;
139 struct list_head lru_list;
140 sector_t block;
141 void *data;
142 enum data_mode data_mode;
143 unsigned char list_mode; /* LIST_* */
144 unsigned hold_count;
145 int read_error;
146 int write_error;
147 unsigned long state;
148 unsigned long last_accessed;
149 struct dm_bufio_client *c;
150 struct list_head write_list;
151 struct bio bio;
152 struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
155 /*----------------------------------------------------------------*/
157 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
158 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
160 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
162 unsigned ret = c->blocks_per_page_bits - 1;
164 BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
166 return ret;
169 #define DM_BUFIO_CACHE(c) (dm_bufio_caches[dm_bufio_cache_index(c)])
170 #define DM_BUFIO_CACHE_NAME(c) (dm_bufio_cache_names[dm_bufio_cache_index(c)])
172 #define dm_bufio_in_request() (!!current->bio_list)
174 static void dm_bufio_lock(struct dm_bufio_client *c)
176 mutex_lock_nested(&c->lock, dm_bufio_in_request());
179 static int dm_bufio_trylock(struct dm_bufio_client *c)
181 return mutex_trylock(&c->lock);
184 static void dm_bufio_unlock(struct dm_bufio_client *c)
186 mutex_unlock(&c->lock);
190 * FIXME Move to sched.h?
192 #ifdef CONFIG_PREEMPT_VOLUNTARY
193 # define dm_bufio_cond_resched() \
194 do { \
195 if (unlikely(need_resched())) \
196 _cond_resched(); \
197 } while (0)
198 #else
199 # define dm_bufio_cond_resched() do { } while (0)
200 #endif
202 /*----------------------------------------------------------------*/
205 * Default cache size: available memory divided by the ratio.
207 static unsigned long dm_bufio_default_cache_size;
210 * Total cache size set by the user.
212 static unsigned long dm_bufio_cache_size;
215 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
216 * at any time. If it disagrees, the user has changed cache size.
218 static unsigned long dm_bufio_cache_size_latch;
220 static DEFINE_SPINLOCK(param_spinlock);
223 * Buffers are freed after this timeout
225 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
227 static unsigned long dm_bufio_peak_allocated;
228 static unsigned long dm_bufio_allocated_kmem_cache;
229 static unsigned long dm_bufio_allocated_get_free_pages;
230 static unsigned long dm_bufio_allocated_vmalloc;
231 static unsigned long dm_bufio_current_allocated;
233 /*----------------------------------------------------------------*/
236 * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
238 static unsigned long dm_bufio_cache_size_per_client;
241 * The current number of clients.
243 static int dm_bufio_client_count;
246 * The list of all clients.
248 static LIST_HEAD(dm_bufio_all_clients);
251 * This mutex protects dm_bufio_cache_size_latch,
252 * dm_bufio_cache_size_per_client and dm_bufio_client_count
254 static DEFINE_MUTEX(dm_bufio_clients_lock);
256 /*----------------------------------------------------------------*/
258 static void adjust_total_allocated(enum data_mode data_mode, long diff)
260 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
261 &dm_bufio_allocated_kmem_cache,
262 &dm_bufio_allocated_get_free_pages,
263 &dm_bufio_allocated_vmalloc,
266 spin_lock(&param_spinlock);
268 *class_ptr[data_mode] += diff;
270 dm_bufio_current_allocated += diff;
272 if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
273 dm_bufio_peak_allocated = dm_bufio_current_allocated;
275 spin_unlock(&param_spinlock);
279 * Change the number of clients and recalculate per-client limit.
281 static void __cache_size_refresh(void)
283 BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
284 BUG_ON(dm_bufio_client_count < 0);
286 dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
289 * Use default if set to 0 and report the actual cache size used.
291 if (!dm_bufio_cache_size_latch) {
292 (void)cmpxchg(&dm_bufio_cache_size, 0,
293 dm_bufio_default_cache_size);
294 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
297 dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
298 (dm_bufio_client_count ? : 1);
302 * Allocating buffer data.
304 * Small buffers are allocated with kmem_cache, to use space optimally.
306 * For large buffers, we choose between get_free_pages and vmalloc.
307 * Each has advantages and disadvantages.
309 * __get_free_pages can randomly fail if the memory is fragmented.
310 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
311 * as low as 128M) so using it for caching is not appropriate.
313 * If the allocation may fail we use __get_free_pages. Memory fragmentation
314 * won't have a fatal effect here, but it just causes flushes of some other
315 * buffers and more I/O will be performed. Don't use __get_free_pages if it
316 * always fails (i.e. order >= MAX_ORDER).
318 * If the allocation shouldn't fail we use __vmalloc. This is only for the
319 * initial reserve allocation, so there's no risk of wasting all vmalloc
320 * space.
322 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
323 enum data_mode *data_mode)
325 unsigned noio_flag;
326 void *ptr;
328 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
329 *data_mode = DATA_MODE_SLAB;
330 return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
333 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
334 gfp_mask & __GFP_NORETRY) {
335 *data_mode = DATA_MODE_GET_FREE_PAGES;
336 return (void *)__get_free_pages(gfp_mask,
337 c->pages_per_block_bits);
340 *data_mode = DATA_MODE_VMALLOC;
343 * __vmalloc allocates the data pages and auxiliary structures with
344 * gfp_flags that were specified, but pagetables are always allocated
345 * with GFP_KERNEL, no matter what was specified as gfp_mask.
347 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
348 * all allocations done by this process (including pagetables) are done
349 * as if GFP_NOIO was specified.
352 if (gfp_mask & __GFP_NORETRY)
353 noio_flag = memalloc_noio_save();
355 ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL);
357 if (gfp_mask & __GFP_NORETRY)
358 memalloc_noio_restore(noio_flag);
360 return ptr;
364 * Free buffer's data.
366 static void free_buffer_data(struct dm_bufio_client *c,
367 void *data, enum data_mode data_mode)
369 switch (data_mode) {
370 case DATA_MODE_SLAB:
371 kmem_cache_free(DM_BUFIO_CACHE(c), data);
372 break;
374 case DATA_MODE_GET_FREE_PAGES:
375 free_pages((unsigned long)data, c->pages_per_block_bits);
376 break;
378 case DATA_MODE_VMALLOC:
379 vfree(data);
380 break;
382 default:
383 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
384 data_mode);
385 BUG();
390 * Allocate buffer and its data.
392 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
394 struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
395 gfp_mask);
397 if (!b)
398 return NULL;
400 b->c = c;
402 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
403 if (!b->data) {
404 kfree(b);
405 return NULL;
408 adjust_total_allocated(b->data_mode, (long)c->block_size);
410 return b;
414 * Free buffer and its data.
416 static void free_buffer(struct dm_buffer *b)
418 struct dm_bufio_client *c = b->c;
420 adjust_total_allocated(b->data_mode, -(long)c->block_size);
422 free_buffer_data(c, b->data, b->data_mode);
423 kfree(b);
427 * Link buffer to the hash list and clean or dirty queue.
429 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
431 struct dm_bufio_client *c = b->c;
433 c->n_buffers[dirty]++;
434 b->block = block;
435 b->list_mode = dirty;
436 list_add(&b->lru_list, &c->lru[dirty]);
437 hlist_add_head(&b->hash_list, &c->cache_hash[DM_BUFIO_HASH(block)]);
438 b->last_accessed = jiffies;
442 * Unlink buffer from the hash list and dirty or clean queue.
444 static void __unlink_buffer(struct dm_buffer *b)
446 struct dm_bufio_client *c = b->c;
448 BUG_ON(!c->n_buffers[b->list_mode]);
450 c->n_buffers[b->list_mode]--;
451 hlist_del(&b->hash_list);
452 list_del(&b->lru_list);
456 * Place the buffer to the head of dirty or clean LRU queue.
458 static void __relink_lru(struct dm_buffer *b, int dirty)
460 struct dm_bufio_client *c = b->c;
462 BUG_ON(!c->n_buffers[b->list_mode]);
464 c->n_buffers[b->list_mode]--;
465 c->n_buffers[dirty]++;
466 b->list_mode = dirty;
467 list_move(&b->lru_list, &c->lru[dirty]);
470 /*----------------------------------------------------------------
471 * Submit I/O on the buffer.
473 * Bio interface is faster but it has some problems:
474 * the vector list is limited (increasing this limit increases
475 * memory-consumption per buffer, so it is not viable);
477 * the memory must be direct-mapped, not vmalloced;
479 * the I/O driver can reject requests spuriously if it thinks that
480 * the requests are too big for the device or if they cross a
481 * controller-defined memory boundary.
483 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
484 * it is not vmalloced, try using the bio interface.
486 * If the buffer is big, if it is vmalloced or if the underlying device
487 * rejects the bio because it is too large, use dm-io layer to do the I/O.
488 * The dm-io layer splits the I/O into multiple requests, avoiding the above
489 * shortcomings.
490 *--------------------------------------------------------------*/
493 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
494 * that the request was handled directly with bio interface.
496 static void dmio_complete(unsigned long error, void *context)
498 struct dm_buffer *b = context;
500 b->bio.bi_end_io(&b->bio, error ? -EIO : 0);
503 static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
504 bio_end_io_t *end_io)
506 int r;
507 struct dm_io_request io_req = {
508 .bi_rw = rw,
509 .notify.fn = dmio_complete,
510 .notify.context = b,
511 .client = b->c->dm_io,
513 struct dm_io_region region = {
514 .bdev = b->c->bdev,
515 .sector = block << b->c->sectors_per_block_bits,
516 .count = b->c->block_size >> SECTOR_SHIFT,
519 if (b->data_mode != DATA_MODE_VMALLOC) {
520 io_req.mem.type = DM_IO_KMEM;
521 io_req.mem.ptr.addr = b->data;
522 } else {
523 io_req.mem.type = DM_IO_VMA;
524 io_req.mem.ptr.vma = b->data;
527 b->bio.bi_end_io = end_io;
529 r = dm_io(&io_req, 1, &region, NULL);
530 if (r)
531 end_io(&b->bio, r);
534 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
535 bio_end_io_t *end_io)
537 char *ptr;
538 int len;
540 bio_init(&b->bio);
541 b->bio.bi_io_vec = b->bio_vec;
542 b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS;
543 b->bio.bi_iter.bi_sector = block << b->c->sectors_per_block_bits;
544 b->bio.bi_bdev = b->c->bdev;
545 b->bio.bi_end_io = end_io;
548 * We assume that if len >= PAGE_SIZE ptr is page-aligned.
549 * If len < PAGE_SIZE the buffer doesn't cross page boundary.
551 ptr = b->data;
552 len = b->c->block_size;
554 if (len >= PAGE_SIZE)
555 BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
556 else
557 BUG_ON((unsigned long)ptr & (len - 1));
559 do {
560 if (!bio_add_page(&b->bio, virt_to_page(ptr),
561 len < PAGE_SIZE ? len : PAGE_SIZE,
562 virt_to_phys(ptr) & (PAGE_SIZE - 1))) {
563 BUG_ON(b->c->block_size <= PAGE_SIZE);
564 use_dmio(b, rw, block, end_io);
565 return;
568 len -= PAGE_SIZE;
569 ptr += PAGE_SIZE;
570 } while (len > 0);
572 submit_bio(rw, &b->bio);
575 static void submit_io(struct dm_buffer *b, int rw, sector_t block,
576 bio_end_io_t *end_io)
578 if (rw == WRITE && b->c->write_callback)
579 b->c->write_callback(b);
581 if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
582 b->data_mode != DATA_MODE_VMALLOC)
583 use_inline_bio(b, rw, block, end_io);
584 else
585 use_dmio(b, rw, block, end_io);
588 /*----------------------------------------------------------------
589 * Writing dirty buffers
590 *--------------------------------------------------------------*/
593 * The endio routine for write.
595 * Set the error, clear B_WRITING bit and wake anyone who was waiting on
596 * it.
598 static void write_endio(struct bio *bio, int error)
600 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
602 b->write_error = error;
603 if (unlikely(error)) {
604 struct dm_bufio_client *c = b->c;
605 (void)cmpxchg(&c->async_write_error, 0, error);
608 BUG_ON(!test_bit(B_WRITING, &b->state));
610 smp_mb__before_atomic();
611 clear_bit(B_WRITING, &b->state);
612 smp_mb__after_atomic();
614 wake_up_bit(&b->state, B_WRITING);
618 * Initiate a write on a dirty buffer, but don't wait for it.
620 * - If the buffer is not dirty, exit.
621 * - If there some previous write going on, wait for it to finish (we can't
622 * have two writes on the same buffer simultaneously).
623 * - Submit our write and don't wait on it. We set B_WRITING indicating
624 * that there is a write in progress.
626 static void __write_dirty_buffer(struct dm_buffer *b,
627 struct list_head *write_list)
629 if (!test_bit(B_DIRTY, &b->state))
630 return;
632 clear_bit(B_DIRTY, &b->state);
633 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
635 if (!write_list)
636 submit_io(b, WRITE, b->block, write_endio);
637 else
638 list_add_tail(&b->write_list, write_list);
641 static void __flush_write_list(struct list_head *write_list)
643 struct blk_plug plug;
644 blk_start_plug(&plug);
645 while (!list_empty(write_list)) {
646 struct dm_buffer *b =
647 list_entry(write_list->next, struct dm_buffer, write_list);
648 list_del(&b->write_list);
649 submit_io(b, WRITE, b->block, write_endio);
650 dm_bufio_cond_resched();
652 blk_finish_plug(&plug);
656 * Wait until any activity on the buffer finishes. Possibly write the
657 * buffer if it is dirty. When this function finishes, there is no I/O
658 * running on the buffer and the buffer is not dirty.
660 static void __make_buffer_clean(struct dm_buffer *b)
662 BUG_ON(b->hold_count);
664 if (!b->state) /* fast case */
665 return;
667 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
668 __write_dirty_buffer(b, NULL);
669 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
673 * Find some buffer that is not held by anybody, clean it, unlink it and
674 * return it.
676 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
678 struct dm_buffer *b;
680 list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
681 BUG_ON(test_bit(B_WRITING, &b->state));
682 BUG_ON(test_bit(B_DIRTY, &b->state));
684 if (!b->hold_count) {
685 __make_buffer_clean(b);
686 __unlink_buffer(b);
687 return b;
689 dm_bufio_cond_resched();
692 list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
693 BUG_ON(test_bit(B_READING, &b->state));
695 if (!b->hold_count) {
696 __make_buffer_clean(b);
697 __unlink_buffer(b);
698 return b;
700 dm_bufio_cond_resched();
703 return NULL;
707 * Wait until some other threads free some buffer or release hold count on
708 * some buffer.
710 * This function is entered with c->lock held, drops it and regains it
711 * before exiting.
713 static void __wait_for_free_buffer(struct dm_bufio_client *c)
715 DECLARE_WAITQUEUE(wait, current);
717 add_wait_queue(&c->free_buffer_wait, &wait);
718 set_task_state(current, TASK_UNINTERRUPTIBLE);
719 dm_bufio_unlock(c);
721 io_schedule();
723 set_task_state(current, TASK_RUNNING);
724 remove_wait_queue(&c->free_buffer_wait, &wait);
726 dm_bufio_lock(c);
729 enum new_flag {
730 NF_FRESH = 0,
731 NF_READ = 1,
732 NF_GET = 2,
733 NF_PREFETCH = 3
737 * Allocate a new buffer. If the allocation is not possible, wait until
738 * some other thread frees a buffer.
740 * May drop the lock and regain it.
742 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
744 struct dm_buffer *b;
747 * dm-bufio is resistant to allocation failures (it just keeps
748 * one buffer reserved in cases all the allocations fail).
749 * So set flags to not try too hard:
750 * GFP_NOIO: don't recurse into the I/O layer
751 * __GFP_NORETRY: don't retry and rather return failure
752 * __GFP_NOMEMALLOC: don't use emergency reserves
753 * __GFP_NOWARN: don't print a warning in case of failure
755 * For debugging, if we set the cache size to 1, no new buffers will
756 * be allocated.
758 while (1) {
759 if (dm_bufio_cache_size_latch != 1) {
760 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
761 if (b)
762 return b;
765 if (nf == NF_PREFETCH)
766 return NULL;
768 if (!list_empty(&c->reserved_buffers)) {
769 b = list_entry(c->reserved_buffers.next,
770 struct dm_buffer, lru_list);
771 list_del(&b->lru_list);
772 c->need_reserved_buffers++;
774 return b;
777 b = __get_unclaimed_buffer(c);
778 if (b)
779 return b;
781 __wait_for_free_buffer(c);
785 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
787 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
789 if (!b)
790 return NULL;
792 if (c->alloc_callback)
793 c->alloc_callback(b);
795 return b;
799 * Free a buffer and wake other threads waiting for free buffers.
801 static void __free_buffer_wake(struct dm_buffer *b)
803 struct dm_bufio_client *c = b->c;
805 if (!c->need_reserved_buffers)
806 free_buffer(b);
807 else {
808 list_add(&b->lru_list, &c->reserved_buffers);
809 c->need_reserved_buffers--;
812 wake_up(&c->free_buffer_wait);
815 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
816 struct list_head *write_list)
818 struct dm_buffer *b, *tmp;
820 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
821 BUG_ON(test_bit(B_READING, &b->state));
823 if (!test_bit(B_DIRTY, &b->state) &&
824 !test_bit(B_WRITING, &b->state)) {
825 __relink_lru(b, LIST_CLEAN);
826 continue;
829 if (no_wait && test_bit(B_WRITING, &b->state))
830 return;
832 __write_dirty_buffer(b, write_list);
833 dm_bufio_cond_resched();
838 * Get writeback threshold and buffer limit for a given client.
840 static void __get_memory_limit(struct dm_bufio_client *c,
841 unsigned long *threshold_buffers,
842 unsigned long *limit_buffers)
844 unsigned long buffers;
846 if (ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch) {
847 mutex_lock(&dm_bufio_clients_lock);
848 __cache_size_refresh();
849 mutex_unlock(&dm_bufio_clients_lock);
852 buffers = dm_bufio_cache_size_per_client >>
853 (c->sectors_per_block_bits + SECTOR_SHIFT);
855 if (buffers < c->minimum_buffers)
856 buffers = c->minimum_buffers;
858 *limit_buffers = buffers;
859 *threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
863 * Check if we're over watermark.
864 * If we are over threshold_buffers, start freeing buffers.
865 * If we're over "limit_buffers", block until we get under the limit.
867 static void __check_watermark(struct dm_bufio_client *c,
868 struct list_head *write_list)
870 unsigned long threshold_buffers, limit_buffers;
872 __get_memory_limit(c, &threshold_buffers, &limit_buffers);
874 while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
875 limit_buffers) {
877 struct dm_buffer *b = __get_unclaimed_buffer(c);
879 if (!b)
880 return;
882 __free_buffer_wake(b);
883 dm_bufio_cond_resched();
886 if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
887 __write_dirty_buffers_async(c, 1, write_list);
891 * Find a buffer in the hash.
893 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
895 struct dm_buffer *b;
897 hlist_for_each_entry(b, &c->cache_hash[DM_BUFIO_HASH(block)],
898 hash_list) {
899 dm_bufio_cond_resched();
900 if (b->block == block)
901 return b;
904 return NULL;
907 /*----------------------------------------------------------------
908 * Getting a buffer
909 *--------------------------------------------------------------*/
911 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
912 enum new_flag nf, int *need_submit,
913 struct list_head *write_list)
915 struct dm_buffer *b, *new_b = NULL;
917 *need_submit = 0;
919 b = __find(c, block);
920 if (b)
921 goto found_buffer;
923 if (nf == NF_GET)
924 return NULL;
926 new_b = __alloc_buffer_wait(c, nf);
927 if (!new_b)
928 return NULL;
931 * We've had a period where the mutex was unlocked, so need to
932 * recheck the hash table.
934 b = __find(c, block);
935 if (b) {
936 __free_buffer_wake(new_b);
937 goto found_buffer;
940 __check_watermark(c, write_list);
942 b = new_b;
943 b->hold_count = 1;
944 b->read_error = 0;
945 b->write_error = 0;
946 __link_buffer(b, block, LIST_CLEAN);
948 if (nf == NF_FRESH) {
949 b->state = 0;
950 return b;
953 b->state = 1 << B_READING;
954 *need_submit = 1;
956 return b;
958 found_buffer:
959 if (nf == NF_PREFETCH)
960 return NULL;
962 * Note: it is essential that we don't wait for the buffer to be
963 * read if dm_bufio_get function is used. Both dm_bufio_get and
964 * dm_bufio_prefetch can be used in the driver request routine.
965 * If the user called both dm_bufio_prefetch and dm_bufio_get on
966 * the same buffer, it would deadlock if we waited.
968 if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
969 return NULL;
971 b->hold_count++;
972 __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
973 test_bit(B_WRITING, &b->state));
974 return b;
978 * The endio routine for reading: set the error, clear the bit and wake up
979 * anyone waiting on the buffer.
981 static void read_endio(struct bio *bio, int error)
983 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
985 b->read_error = error;
987 BUG_ON(!test_bit(B_READING, &b->state));
989 smp_mb__before_atomic();
990 clear_bit(B_READING, &b->state);
991 smp_mb__after_atomic();
993 wake_up_bit(&b->state, B_READING);
997 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these
998 * functions is similar except that dm_bufio_new doesn't read the
999 * buffer from the disk (assuming that the caller overwrites all the data
1000 * and uses dm_bufio_mark_buffer_dirty to write new data back).
1002 static void *new_read(struct dm_bufio_client *c, sector_t block,
1003 enum new_flag nf, struct dm_buffer **bp)
1005 int need_submit;
1006 struct dm_buffer *b;
1008 LIST_HEAD(write_list);
1010 dm_bufio_lock(c);
1011 b = __bufio_new(c, block, nf, &need_submit, &write_list);
1012 dm_bufio_unlock(c);
1014 __flush_write_list(&write_list);
1016 if (!b)
1017 return b;
1019 if (need_submit)
1020 submit_io(b, READ, b->block, read_endio);
1022 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1024 if (b->read_error) {
1025 int error = b->read_error;
1027 dm_bufio_release(b);
1029 return ERR_PTR(error);
1032 *bp = b;
1034 return b->data;
1037 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1038 struct dm_buffer **bp)
1040 return new_read(c, block, NF_GET, bp);
1042 EXPORT_SYMBOL_GPL(dm_bufio_get);
1044 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1045 struct dm_buffer **bp)
1047 BUG_ON(dm_bufio_in_request());
1049 return new_read(c, block, NF_READ, bp);
1051 EXPORT_SYMBOL_GPL(dm_bufio_read);
1053 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1054 struct dm_buffer **bp)
1056 BUG_ON(dm_bufio_in_request());
1058 return new_read(c, block, NF_FRESH, bp);
1060 EXPORT_SYMBOL_GPL(dm_bufio_new);
1062 void dm_bufio_prefetch(struct dm_bufio_client *c,
1063 sector_t block, unsigned n_blocks)
1065 struct blk_plug plug;
1067 LIST_HEAD(write_list);
1069 BUG_ON(dm_bufio_in_request());
1071 blk_start_plug(&plug);
1072 dm_bufio_lock(c);
1074 for (; n_blocks--; block++) {
1075 int need_submit;
1076 struct dm_buffer *b;
1077 b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1078 &write_list);
1079 if (unlikely(!list_empty(&write_list))) {
1080 dm_bufio_unlock(c);
1081 blk_finish_plug(&plug);
1082 __flush_write_list(&write_list);
1083 blk_start_plug(&plug);
1084 dm_bufio_lock(c);
1086 if (unlikely(b != NULL)) {
1087 dm_bufio_unlock(c);
1089 if (need_submit)
1090 submit_io(b, READ, b->block, read_endio);
1091 dm_bufio_release(b);
1093 dm_bufio_cond_resched();
1095 if (!n_blocks)
1096 goto flush_plug;
1097 dm_bufio_lock(c);
1101 dm_bufio_unlock(c);
1103 flush_plug:
1104 blk_finish_plug(&plug);
1106 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1108 void dm_bufio_release(struct dm_buffer *b)
1110 struct dm_bufio_client *c = b->c;
1112 dm_bufio_lock(c);
1114 BUG_ON(!b->hold_count);
1116 b->hold_count--;
1117 if (!b->hold_count) {
1118 wake_up(&c->free_buffer_wait);
1121 * If there were errors on the buffer, and the buffer is not
1122 * to be written, free the buffer. There is no point in caching
1123 * invalid buffer.
1125 if ((b->read_error || b->write_error) &&
1126 !test_bit(B_READING, &b->state) &&
1127 !test_bit(B_WRITING, &b->state) &&
1128 !test_bit(B_DIRTY, &b->state)) {
1129 __unlink_buffer(b);
1130 __free_buffer_wake(b);
1134 dm_bufio_unlock(c);
1136 EXPORT_SYMBOL_GPL(dm_bufio_release);
1138 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1140 struct dm_bufio_client *c = b->c;
1142 dm_bufio_lock(c);
1144 BUG_ON(test_bit(B_READING, &b->state));
1146 if (!test_and_set_bit(B_DIRTY, &b->state))
1147 __relink_lru(b, LIST_DIRTY);
1149 dm_bufio_unlock(c);
1151 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1153 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1155 LIST_HEAD(write_list);
1157 BUG_ON(dm_bufio_in_request());
1159 dm_bufio_lock(c);
1160 __write_dirty_buffers_async(c, 0, &write_list);
1161 dm_bufio_unlock(c);
1162 __flush_write_list(&write_list);
1164 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1167 * For performance, it is essential that the buffers are written asynchronously
1168 * and simultaneously (so that the block layer can merge the writes) and then
1169 * waited upon.
1171 * Finally, we flush hardware disk cache.
1173 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1175 int a, f;
1176 unsigned long buffers_processed = 0;
1177 struct dm_buffer *b, *tmp;
1179 LIST_HEAD(write_list);
1181 dm_bufio_lock(c);
1182 __write_dirty_buffers_async(c, 0, &write_list);
1183 dm_bufio_unlock(c);
1184 __flush_write_list(&write_list);
1185 dm_bufio_lock(c);
1187 again:
1188 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1189 int dropped_lock = 0;
1191 if (buffers_processed < c->n_buffers[LIST_DIRTY])
1192 buffers_processed++;
1194 BUG_ON(test_bit(B_READING, &b->state));
1196 if (test_bit(B_WRITING, &b->state)) {
1197 if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1198 dropped_lock = 1;
1199 b->hold_count++;
1200 dm_bufio_unlock(c);
1201 wait_on_bit_io(&b->state, B_WRITING,
1202 TASK_UNINTERRUPTIBLE);
1203 dm_bufio_lock(c);
1204 b->hold_count--;
1205 } else
1206 wait_on_bit_io(&b->state, B_WRITING,
1207 TASK_UNINTERRUPTIBLE);
1210 if (!test_bit(B_DIRTY, &b->state) &&
1211 !test_bit(B_WRITING, &b->state))
1212 __relink_lru(b, LIST_CLEAN);
1214 dm_bufio_cond_resched();
1217 * If we dropped the lock, the list is no longer consistent,
1218 * so we must restart the search.
1220 * In the most common case, the buffer just processed is
1221 * relinked to the clean list, so we won't loop scanning the
1222 * same buffer again and again.
1224 * This may livelock if there is another thread simultaneously
1225 * dirtying buffers, so we count the number of buffers walked
1226 * and if it exceeds the total number of buffers, it means that
1227 * someone is doing some writes simultaneously with us. In
1228 * this case, stop, dropping the lock.
1230 if (dropped_lock)
1231 goto again;
1233 wake_up(&c->free_buffer_wait);
1234 dm_bufio_unlock(c);
1236 a = xchg(&c->async_write_error, 0);
1237 f = dm_bufio_issue_flush(c);
1238 if (a)
1239 return a;
1241 return f;
1243 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1246 * Use dm-io to send and empty barrier flush the device.
1248 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1250 struct dm_io_request io_req = {
1251 .bi_rw = WRITE_FLUSH,
1252 .mem.type = DM_IO_KMEM,
1253 .mem.ptr.addr = NULL,
1254 .client = c->dm_io,
1256 struct dm_io_region io_reg = {
1257 .bdev = c->bdev,
1258 .sector = 0,
1259 .count = 0,
1262 BUG_ON(dm_bufio_in_request());
1264 return dm_io(&io_req, 1, &io_reg, NULL);
1266 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1269 * We first delete any other buffer that may be at that new location.
1271 * Then, we write the buffer to the original location if it was dirty.
1273 * Then, if we are the only one who is holding the buffer, relink the buffer
1274 * in the hash queue for the new location.
1276 * If there was someone else holding the buffer, we write it to the new
1277 * location but not relink it, because that other user needs to have the buffer
1278 * at the same place.
1280 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1282 struct dm_bufio_client *c = b->c;
1283 struct dm_buffer *new;
1285 BUG_ON(dm_bufio_in_request());
1287 dm_bufio_lock(c);
1289 retry:
1290 new = __find(c, new_block);
1291 if (new) {
1292 if (new->hold_count) {
1293 __wait_for_free_buffer(c);
1294 goto retry;
1298 * FIXME: Is there any point waiting for a write that's going
1299 * to be overwritten in a bit?
1301 __make_buffer_clean(new);
1302 __unlink_buffer(new);
1303 __free_buffer_wake(new);
1306 BUG_ON(!b->hold_count);
1307 BUG_ON(test_bit(B_READING, &b->state));
1309 __write_dirty_buffer(b, NULL);
1310 if (b->hold_count == 1) {
1311 wait_on_bit_io(&b->state, B_WRITING,
1312 TASK_UNINTERRUPTIBLE);
1313 set_bit(B_DIRTY, &b->state);
1314 __unlink_buffer(b);
1315 __link_buffer(b, new_block, LIST_DIRTY);
1316 } else {
1317 sector_t old_block;
1318 wait_on_bit_lock_io(&b->state, B_WRITING,
1319 TASK_UNINTERRUPTIBLE);
1321 * Relink buffer to "new_block" so that write_callback
1322 * sees "new_block" as a block number.
1323 * After the write, link the buffer back to old_block.
1324 * All this must be done in bufio lock, so that block number
1325 * change isn't visible to other threads.
1327 old_block = b->block;
1328 __unlink_buffer(b);
1329 __link_buffer(b, new_block, b->list_mode);
1330 submit_io(b, WRITE, new_block, write_endio);
1331 wait_on_bit_io(&b->state, B_WRITING,
1332 TASK_UNINTERRUPTIBLE);
1333 __unlink_buffer(b);
1334 __link_buffer(b, old_block, b->list_mode);
1337 dm_bufio_unlock(c);
1338 dm_bufio_release(b);
1340 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1343 * Free the given buffer.
1345 * This is just a hint, if the buffer is in use or dirty, this function
1346 * does nothing.
1348 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1350 struct dm_buffer *b;
1352 dm_bufio_lock(c);
1354 b = __find(c, block);
1355 if (b && likely(!b->hold_count) && likely(!b->state)) {
1356 __unlink_buffer(b);
1357 __free_buffer_wake(b);
1360 dm_bufio_unlock(c);
1362 EXPORT_SYMBOL(dm_bufio_forget);
1364 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1366 c->minimum_buffers = n;
1368 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers);
1370 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1372 return c->block_size;
1374 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1376 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1378 return i_size_read(c->bdev->bd_inode) >>
1379 (SECTOR_SHIFT + c->sectors_per_block_bits);
1381 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1383 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1385 return b->block;
1387 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1389 void *dm_bufio_get_block_data(struct dm_buffer *b)
1391 return b->data;
1393 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1395 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1397 return b + 1;
1399 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1401 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1403 return b->c;
1405 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1407 static void drop_buffers(struct dm_bufio_client *c)
1409 struct dm_buffer *b;
1410 int i;
1412 BUG_ON(dm_bufio_in_request());
1415 * An optimization so that the buffers are not written one-by-one.
1417 dm_bufio_write_dirty_buffers_async(c);
1419 dm_bufio_lock(c);
1421 while ((b = __get_unclaimed_buffer(c)))
1422 __free_buffer_wake(b);
1424 for (i = 0; i < LIST_SIZE; i++)
1425 list_for_each_entry(b, &c->lru[i], lru_list)
1426 DMERR("leaked buffer %llx, hold count %u, list %d",
1427 (unsigned long long)b->block, b->hold_count, i);
1429 for (i = 0; i < LIST_SIZE; i++)
1430 BUG_ON(!list_empty(&c->lru[i]));
1432 dm_bufio_unlock(c);
1436 * Test if the buffer is unused and too old, and commit it.
1437 * At if noio is set, we must not do any I/O because we hold
1438 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets rerouted to
1439 * different bufio client.
1441 static int __cleanup_old_buffer(struct dm_buffer *b, gfp_t gfp,
1442 unsigned long max_jiffies)
1444 if (jiffies - b->last_accessed < max_jiffies)
1445 return 0;
1447 if (!(gfp & __GFP_IO)) {
1448 if (test_bit(B_READING, &b->state) ||
1449 test_bit(B_WRITING, &b->state) ||
1450 test_bit(B_DIRTY, &b->state))
1451 return 0;
1454 if (b->hold_count)
1455 return 0;
1457 __make_buffer_clean(b);
1458 __unlink_buffer(b);
1459 __free_buffer_wake(b);
1461 return 1;
1464 static long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1465 gfp_t gfp_mask)
1467 int l;
1468 struct dm_buffer *b, *tmp;
1469 long freed = 0;
1471 for (l = 0; l < LIST_SIZE; l++) {
1472 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1473 freed += __cleanup_old_buffer(b, gfp_mask, 0);
1474 if (!--nr_to_scan)
1475 break;
1477 dm_bufio_cond_resched();
1479 return freed;
1482 static unsigned long
1483 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1485 struct dm_bufio_client *c;
1486 unsigned long freed;
1488 c = container_of(shrink, struct dm_bufio_client, shrinker);
1489 if (sc->gfp_mask & __GFP_IO)
1490 dm_bufio_lock(c);
1491 else if (!dm_bufio_trylock(c))
1492 return SHRINK_STOP;
1494 freed = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1495 dm_bufio_unlock(c);
1496 return freed;
1499 static unsigned long
1500 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1502 struct dm_bufio_client *c;
1503 unsigned long count;
1505 c = container_of(shrink, struct dm_bufio_client, shrinker);
1506 if (sc->gfp_mask & __GFP_IO)
1507 dm_bufio_lock(c);
1508 else if (!dm_bufio_trylock(c))
1509 return 0;
1511 count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1512 dm_bufio_unlock(c);
1513 return count;
1517 * Create the buffering interface
1519 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1520 unsigned reserved_buffers, unsigned aux_size,
1521 void (*alloc_callback)(struct dm_buffer *),
1522 void (*write_callback)(struct dm_buffer *))
1524 int r;
1525 struct dm_bufio_client *c;
1526 unsigned i;
1528 BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1529 (block_size & (block_size - 1)));
1531 c = kzalloc(sizeof(*c), GFP_KERNEL);
1532 if (!c) {
1533 r = -ENOMEM;
1534 goto bad_client;
1536 c->cache_hash = vmalloc(sizeof(struct hlist_head) << DM_BUFIO_HASH_BITS);
1537 if (!c->cache_hash) {
1538 r = -ENOMEM;
1539 goto bad_hash;
1542 c->bdev = bdev;
1543 c->block_size = block_size;
1544 c->sectors_per_block_bits = ffs(block_size) - 1 - SECTOR_SHIFT;
1545 c->pages_per_block_bits = (ffs(block_size) - 1 >= PAGE_SHIFT) ?
1546 ffs(block_size) - 1 - PAGE_SHIFT : 0;
1547 c->blocks_per_page_bits = (ffs(block_size) - 1 < PAGE_SHIFT ?
1548 PAGE_SHIFT - (ffs(block_size) - 1) : 0);
1550 c->aux_size = aux_size;
1551 c->alloc_callback = alloc_callback;
1552 c->write_callback = write_callback;
1554 for (i = 0; i < LIST_SIZE; i++) {
1555 INIT_LIST_HEAD(&c->lru[i]);
1556 c->n_buffers[i] = 0;
1559 for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
1560 INIT_HLIST_HEAD(&c->cache_hash[i]);
1562 mutex_init(&c->lock);
1563 INIT_LIST_HEAD(&c->reserved_buffers);
1564 c->need_reserved_buffers = reserved_buffers;
1566 c->minimum_buffers = DM_BUFIO_MIN_BUFFERS;
1568 init_waitqueue_head(&c->free_buffer_wait);
1569 c->async_write_error = 0;
1571 c->dm_io = dm_io_client_create();
1572 if (IS_ERR(c->dm_io)) {
1573 r = PTR_ERR(c->dm_io);
1574 goto bad_dm_io;
1577 mutex_lock(&dm_bufio_clients_lock);
1578 if (c->blocks_per_page_bits) {
1579 if (!DM_BUFIO_CACHE_NAME(c)) {
1580 DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1581 if (!DM_BUFIO_CACHE_NAME(c)) {
1582 r = -ENOMEM;
1583 mutex_unlock(&dm_bufio_clients_lock);
1584 goto bad_cache;
1588 if (!DM_BUFIO_CACHE(c)) {
1589 DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1590 c->block_size,
1591 c->block_size, 0, NULL);
1592 if (!DM_BUFIO_CACHE(c)) {
1593 r = -ENOMEM;
1594 mutex_unlock(&dm_bufio_clients_lock);
1595 goto bad_cache;
1599 mutex_unlock(&dm_bufio_clients_lock);
1601 while (c->need_reserved_buffers) {
1602 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1604 if (!b) {
1605 r = -ENOMEM;
1606 goto bad_buffer;
1608 __free_buffer_wake(b);
1611 mutex_lock(&dm_bufio_clients_lock);
1612 dm_bufio_client_count++;
1613 list_add(&c->client_list, &dm_bufio_all_clients);
1614 __cache_size_refresh();
1615 mutex_unlock(&dm_bufio_clients_lock);
1617 c->shrinker.count_objects = dm_bufio_shrink_count;
1618 c->shrinker.scan_objects = dm_bufio_shrink_scan;
1619 c->shrinker.seeks = 1;
1620 c->shrinker.batch = 0;
1621 register_shrinker(&c->shrinker);
1623 return c;
1625 bad_buffer:
1626 bad_cache:
1627 while (!list_empty(&c->reserved_buffers)) {
1628 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1629 struct dm_buffer, lru_list);
1630 list_del(&b->lru_list);
1631 free_buffer(b);
1633 dm_io_client_destroy(c->dm_io);
1634 bad_dm_io:
1635 vfree(c->cache_hash);
1636 bad_hash:
1637 kfree(c);
1638 bad_client:
1639 return ERR_PTR(r);
1641 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1644 * Free the buffering interface.
1645 * It is required that there are no references on any buffers.
1647 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1649 unsigned i;
1651 drop_buffers(c);
1653 unregister_shrinker(&c->shrinker);
1655 mutex_lock(&dm_bufio_clients_lock);
1657 list_del(&c->client_list);
1658 dm_bufio_client_count--;
1659 __cache_size_refresh();
1661 mutex_unlock(&dm_bufio_clients_lock);
1663 for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
1664 BUG_ON(!hlist_empty(&c->cache_hash[i]));
1666 BUG_ON(c->need_reserved_buffers);
1668 while (!list_empty(&c->reserved_buffers)) {
1669 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1670 struct dm_buffer, lru_list);
1671 list_del(&b->lru_list);
1672 free_buffer(b);
1675 for (i = 0; i < LIST_SIZE; i++)
1676 if (c->n_buffers[i])
1677 DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1679 for (i = 0; i < LIST_SIZE; i++)
1680 BUG_ON(c->n_buffers[i]);
1682 dm_io_client_destroy(c->dm_io);
1683 vfree(c->cache_hash);
1684 kfree(c);
1686 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1688 static void cleanup_old_buffers(void)
1690 unsigned long max_age = ACCESS_ONCE(dm_bufio_max_age);
1691 struct dm_bufio_client *c;
1693 if (max_age > ULONG_MAX / HZ)
1694 max_age = ULONG_MAX / HZ;
1696 mutex_lock(&dm_bufio_clients_lock);
1697 list_for_each_entry(c, &dm_bufio_all_clients, client_list) {
1698 if (!dm_bufio_trylock(c))
1699 continue;
1701 while (!list_empty(&c->lru[LIST_CLEAN])) {
1702 struct dm_buffer *b;
1703 b = list_entry(c->lru[LIST_CLEAN].prev,
1704 struct dm_buffer, lru_list);
1705 if (!__cleanup_old_buffer(b, 0, max_age * HZ))
1706 break;
1707 dm_bufio_cond_resched();
1710 dm_bufio_unlock(c);
1711 dm_bufio_cond_resched();
1713 mutex_unlock(&dm_bufio_clients_lock);
1716 static struct workqueue_struct *dm_bufio_wq;
1717 static struct delayed_work dm_bufio_work;
1719 static void work_fn(struct work_struct *w)
1721 cleanup_old_buffers();
1723 queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1724 DM_BUFIO_WORK_TIMER_SECS * HZ);
1727 /*----------------------------------------------------------------
1728 * Module setup
1729 *--------------------------------------------------------------*/
1732 * This is called only once for the whole dm_bufio module.
1733 * It initializes memory limit.
1735 static int __init dm_bufio_init(void)
1737 __u64 mem;
1739 dm_bufio_allocated_kmem_cache = 0;
1740 dm_bufio_allocated_get_free_pages = 0;
1741 dm_bufio_allocated_vmalloc = 0;
1742 dm_bufio_current_allocated = 0;
1744 memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1745 memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1747 mem = (__u64)((totalram_pages - totalhigh_pages) *
1748 DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
1750 if (mem > ULONG_MAX)
1751 mem = ULONG_MAX;
1753 #ifdef CONFIG_MMU
1755 * Get the size of vmalloc space the same way as VMALLOC_TOTAL
1756 * in fs/proc/internal.h
1758 if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
1759 mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
1760 #endif
1762 dm_bufio_default_cache_size = mem;
1764 mutex_lock(&dm_bufio_clients_lock);
1765 __cache_size_refresh();
1766 mutex_unlock(&dm_bufio_clients_lock);
1768 dm_bufio_wq = create_singlethread_workqueue("dm_bufio_cache");
1769 if (!dm_bufio_wq)
1770 return -ENOMEM;
1772 INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1773 queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1774 DM_BUFIO_WORK_TIMER_SECS * HZ);
1776 return 0;
1780 * This is called once when unloading the dm_bufio module.
1782 static void __exit dm_bufio_exit(void)
1784 int bug = 0;
1785 int i;
1787 cancel_delayed_work_sync(&dm_bufio_work);
1788 destroy_workqueue(dm_bufio_wq);
1790 for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++) {
1791 struct kmem_cache *kc = dm_bufio_caches[i];
1793 if (kc)
1794 kmem_cache_destroy(kc);
1797 for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1798 kfree(dm_bufio_cache_names[i]);
1800 if (dm_bufio_client_count) {
1801 DMCRIT("%s: dm_bufio_client_count leaked: %d",
1802 __func__, dm_bufio_client_count);
1803 bug = 1;
1806 if (dm_bufio_current_allocated) {
1807 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1808 __func__, dm_bufio_current_allocated);
1809 bug = 1;
1812 if (dm_bufio_allocated_get_free_pages) {
1813 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1814 __func__, dm_bufio_allocated_get_free_pages);
1815 bug = 1;
1818 if (dm_bufio_allocated_vmalloc) {
1819 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1820 __func__, dm_bufio_allocated_vmalloc);
1821 bug = 1;
1824 if (bug)
1825 BUG();
1828 module_init(dm_bufio_init)
1829 module_exit(dm_bufio_exit)
1831 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1832 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1834 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1835 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1837 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1838 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1840 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1841 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1843 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1844 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1846 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1847 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1849 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1850 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1852 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1853 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1854 MODULE_LICENSE("GPL");