4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/ratelimit.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/security.h>
28 #include <linux/seqlock.h>
29 #include <linux/bootmem.h>
30 #include <linux/bit_spinlock.h>
31 #include <linux/rculist_bl.h>
32 #include <linux/list_lru.h>
38 * dcache->d_inode->i_lock protects:
39 * - i_dentry, d_u.d_alias, d_inode of aliases
40 * dcache_hash_bucket lock protects:
41 * - the dcache hash table
42 * s_roots bl list spinlock protects:
43 * - the s_roots list (see __d_drop)
44 * dentry->d_sb->s_dentry_lru_lock protects:
45 * - the dcache lru lists and counters
52 * - d_parent and d_subdirs
53 * - childrens' d_child and d_parent
54 * - d_u.d_alias, d_inode
57 * dentry->d_inode->i_lock
59 * dentry->d_sb->s_dentry_lru_lock
60 * dcache_hash_bucket lock
63 * If there is an ancestor relationship:
64 * dentry->d_parent->...->d_parent->d_lock
66 * dentry->d_parent->d_lock
69 * If no ancestor relationship:
70 * arbitrary, since it's serialized on rename_lock
72 int sysctl_vfs_cache_pressure __read_mostly
= 100;
73 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
75 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
77 EXPORT_SYMBOL(rename_lock
);
79 static struct kmem_cache
*dentry_cache __read_mostly
;
81 const struct qstr empty_name
= QSTR_INIT("", 0);
82 EXPORT_SYMBOL(empty_name
);
83 const struct qstr slash_name
= QSTR_INIT("/", 1);
84 EXPORT_SYMBOL(slash_name
);
87 * This is the single most critical data structure when it comes
88 * to the dcache: the hashtable for lookups. Somebody should try
89 * to make this good - I've just made it work.
91 * This hash-function tries to avoid losing too many bits of hash
92 * information, yet avoid using a prime hash-size or similar.
95 static unsigned int d_hash_shift __read_mostly
;
97 static struct hlist_bl_head
*dentry_hashtable __read_mostly
;
99 static inline struct hlist_bl_head
*d_hash(unsigned int hash
)
101 return dentry_hashtable
+ (hash
>> d_hash_shift
);
104 #define IN_LOOKUP_SHIFT 10
105 static struct hlist_bl_head in_lookup_hashtable
[1 << IN_LOOKUP_SHIFT
];
107 static inline struct hlist_bl_head
*in_lookup_hash(const struct dentry
*parent
,
110 hash
+= (unsigned long) parent
/ L1_CACHE_BYTES
;
111 return in_lookup_hashtable
+ hash_32(hash
, IN_LOOKUP_SHIFT
);
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat
= {
120 static DEFINE_PER_CPU(long, nr_dentry
);
121 static DEFINE_PER_CPU(long, nr_dentry_unused
);
123 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
126 * Here we resort to our own counters instead of using generic per-cpu counters
127 * for consistency with what the vfs inode code does. We are expected to harvest
128 * better code and performance by having our own specialized counters.
130 * Please note that the loop is done over all possible CPUs, not over all online
131 * CPUs. The reason for this is that we don't want to play games with CPUs going
132 * on and off. If one of them goes off, we will just keep their counters.
134 * glommer: See cffbc8a for details, and if you ever intend to change this,
135 * please update all vfs counters to match.
137 static long get_nr_dentry(void)
141 for_each_possible_cpu(i
)
142 sum
+= per_cpu(nr_dentry
, i
);
143 return sum
< 0 ? 0 : sum
;
146 static long get_nr_dentry_unused(void)
150 for_each_possible_cpu(i
)
151 sum
+= per_cpu(nr_dentry_unused
, i
);
152 return sum
< 0 ? 0 : sum
;
155 int proc_nr_dentry(struct ctl_table
*table
, int write
, void __user
*buffer
,
156 size_t *lenp
, loff_t
*ppos
)
158 dentry_stat
.nr_dentry
= get_nr_dentry();
159 dentry_stat
.nr_unused
= get_nr_dentry_unused();
160 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
165 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
166 * The strings are both count bytes long, and count is non-zero.
168 #ifdef CONFIG_DCACHE_WORD_ACCESS
170 #include <asm/word-at-a-time.h>
172 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
173 * aligned allocation for this particular component. We don't
174 * strictly need the load_unaligned_zeropad() safety, but it
175 * doesn't hurt either.
177 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
178 * need the careful unaligned handling.
180 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
182 unsigned long a
,b
,mask
;
185 a
= read_word_at_a_time(cs
);
186 b
= load_unaligned_zeropad(ct
);
187 if (tcount
< sizeof(unsigned long))
189 if (unlikely(a
!= b
))
191 cs
+= sizeof(unsigned long);
192 ct
+= sizeof(unsigned long);
193 tcount
-= sizeof(unsigned long);
197 mask
= bytemask_from_count(tcount
);
198 return unlikely(!!((a
^ b
) & mask
));
203 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
217 static inline int dentry_cmp(const struct dentry
*dentry
, const unsigned char *ct
, unsigned tcount
)
220 * Be careful about RCU walk racing with rename:
221 * use 'READ_ONCE' to fetch the name pointer.
223 * NOTE! Even if a rename will mean that the length
224 * was not loaded atomically, we don't care. The
225 * RCU walk will check the sequence count eventually,
226 * and catch it. And we won't overrun the buffer,
227 * because we're reading the name pointer atomically,
228 * and a dentry name is guaranteed to be properly
229 * terminated with a NUL byte.
231 * End result: even if 'len' is wrong, we'll exit
232 * early because the data cannot match (there can
233 * be no NUL in the ct/tcount data)
235 const unsigned char *cs
= READ_ONCE(dentry
->d_name
.name
);
237 return dentry_string_cmp(cs
, ct
, tcount
);
240 struct external_name
{
243 struct rcu_head head
;
245 unsigned char name
[];
248 static inline struct external_name
*external_name(struct dentry
*dentry
)
250 return container_of(dentry
->d_name
.name
, struct external_name
, name
[0]);
253 static void __d_free(struct rcu_head
*head
)
255 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
257 kmem_cache_free(dentry_cache
, dentry
);
260 static void __d_free_external_name(struct rcu_head
*head
)
262 struct external_name
*name
= container_of(head
, struct external_name
,
265 mod_node_page_state(page_pgdat(virt_to_page(name
)),
266 NR_INDIRECTLY_RECLAIMABLE_BYTES
,
272 static void __d_free_external(struct rcu_head
*head
)
274 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
276 __d_free_external_name(&external_name(dentry
)->u
.head
);
278 kmem_cache_free(dentry_cache
, dentry
);
281 static inline int dname_external(const struct dentry
*dentry
)
283 return dentry
->d_name
.name
!= dentry
->d_iname
;
286 void take_dentry_name_snapshot(struct name_snapshot
*name
, struct dentry
*dentry
)
288 spin_lock(&dentry
->d_lock
);
289 if (unlikely(dname_external(dentry
))) {
290 struct external_name
*p
= external_name(dentry
);
291 atomic_inc(&p
->u
.count
);
292 spin_unlock(&dentry
->d_lock
);
293 name
->name
= p
->name
;
295 memcpy(name
->inline_name
, dentry
->d_iname
, DNAME_INLINE_LEN
);
296 spin_unlock(&dentry
->d_lock
);
297 name
->name
= name
->inline_name
;
300 EXPORT_SYMBOL(take_dentry_name_snapshot
);
302 void release_dentry_name_snapshot(struct name_snapshot
*name
)
304 if (unlikely(name
->name
!= name
->inline_name
)) {
305 struct external_name
*p
;
306 p
= container_of(name
->name
, struct external_name
, name
[0]);
307 if (unlikely(atomic_dec_and_test(&p
->u
.count
)))
308 call_rcu(&p
->u
.head
, __d_free_external_name
);
311 EXPORT_SYMBOL(release_dentry_name_snapshot
);
313 static inline void __d_set_inode_and_type(struct dentry
*dentry
,
319 dentry
->d_inode
= inode
;
320 flags
= READ_ONCE(dentry
->d_flags
);
321 flags
&= ~(DCACHE_ENTRY_TYPE
| DCACHE_FALLTHRU
);
323 WRITE_ONCE(dentry
->d_flags
, flags
);
326 static inline void __d_clear_type_and_inode(struct dentry
*dentry
)
328 unsigned flags
= READ_ONCE(dentry
->d_flags
);
330 flags
&= ~(DCACHE_ENTRY_TYPE
| DCACHE_FALLTHRU
);
331 WRITE_ONCE(dentry
->d_flags
, flags
);
332 dentry
->d_inode
= NULL
;
335 static void dentry_free(struct dentry
*dentry
)
337 WARN_ON(!hlist_unhashed(&dentry
->d_u
.d_alias
));
338 if (unlikely(dname_external(dentry
))) {
339 struct external_name
*p
= external_name(dentry
);
340 if (likely(atomic_dec_and_test(&p
->u
.count
))) {
341 call_rcu(&dentry
->d_u
.d_rcu
, __d_free_external
);
345 /* if dentry was never visible to RCU, immediate free is OK */
346 if (!(dentry
->d_flags
& DCACHE_RCUACCESS
))
347 __d_free(&dentry
->d_u
.d_rcu
);
349 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
353 * Release the dentry's inode, using the filesystem
354 * d_iput() operation if defined.
356 static void dentry_unlink_inode(struct dentry
* dentry
)
357 __releases(dentry
->d_lock
)
358 __releases(dentry
->d_inode
->i_lock
)
360 struct inode
*inode
= dentry
->d_inode
;
361 bool hashed
= !d_unhashed(dentry
);
364 raw_write_seqcount_begin(&dentry
->d_seq
);
365 __d_clear_type_and_inode(dentry
);
366 hlist_del_init(&dentry
->d_u
.d_alias
);
368 raw_write_seqcount_end(&dentry
->d_seq
);
369 spin_unlock(&dentry
->d_lock
);
370 spin_unlock(&inode
->i_lock
);
372 fsnotify_inoderemove(inode
);
373 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
374 dentry
->d_op
->d_iput(dentry
, inode
);
380 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
381 * is in use - which includes both the "real" per-superblock
382 * LRU list _and_ the DCACHE_SHRINK_LIST use.
384 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
385 * on the shrink list (ie not on the superblock LRU list).
387 * The per-cpu "nr_dentry_unused" counters are updated with
388 * the DCACHE_LRU_LIST bit.
390 * These helper functions make sure we always follow the
391 * rules. d_lock must be held by the caller.
393 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
394 static void d_lru_add(struct dentry
*dentry
)
396 D_FLAG_VERIFY(dentry
, 0);
397 dentry
->d_flags
|= DCACHE_LRU_LIST
;
398 this_cpu_inc(nr_dentry_unused
);
399 WARN_ON_ONCE(!list_lru_add(&dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
402 static void d_lru_del(struct dentry
*dentry
)
404 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
405 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
406 this_cpu_dec(nr_dentry_unused
);
407 WARN_ON_ONCE(!list_lru_del(&dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
410 static void d_shrink_del(struct dentry
*dentry
)
412 D_FLAG_VERIFY(dentry
, DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
413 list_del_init(&dentry
->d_lru
);
414 dentry
->d_flags
&= ~(DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
415 this_cpu_dec(nr_dentry_unused
);
418 static void d_shrink_add(struct dentry
*dentry
, struct list_head
*list
)
420 D_FLAG_VERIFY(dentry
, 0);
421 list_add(&dentry
->d_lru
, list
);
422 dentry
->d_flags
|= DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
;
423 this_cpu_inc(nr_dentry_unused
);
427 * These can only be called under the global LRU lock, ie during the
428 * callback for freeing the LRU list. "isolate" removes it from the
429 * LRU lists entirely, while shrink_move moves it to the indicated
432 static void d_lru_isolate(struct list_lru_one
*lru
, struct dentry
*dentry
)
434 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
435 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
436 this_cpu_dec(nr_dentry_unused
);
437 list_lru_isolate(lru
, &dentry
->d_lru
);
440 static void d_lru_shrink_move(struct list_lru_one
*lru
, struct dentry
*dentry
,
441 struct list_head
*list
)
443 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
444 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
445 list_lru_isolate_move(lru
, &dentry
->d_lru
, list
);
449 * d_drop - drop a dentry
450 * @dentry: dentry to drop
452 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
453 * be found through a VFS lookup any more. Note that this is different from
454 * deleting the dentry - d_delete will try to mark the dentry negative if
455 * possible, giving a successful _negative_ lookup, while d_drop will
456 * just make the cache lookup fail.
458 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
459 * reason (NFS timeouts or autofs deletes).
461 * __d_drop requires dentry->d_lock
462 * ___d_drop doesn't mark dentry as "unhashed"
463 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
465 static void ___d_drop(struct dentry
*dentry
)
467 struct hlist_bl_head
*b
;
469 * Hashed dentries are normally on the dentry hashtable,
470 * with the exception of those newly allocated by
471 * d_obtain_root, which are always IS_ROOT:
473 if (unlikely(IS_ROOT(dentry
)))
474 b
= &dentry
->d_sb
->s_roots
;
476 b
= d_hash(dentry
->d_name
.hash
);
479 __hlist_bl_del(&dentry
->d_hash
);
483 void __d_drop(struct dentry
*dentry
)
485 if (!d_unhashed(dentry
)) {
487 dentry
->d_hash
.pprev
= NULL
;
488 write_seqcount_invalidate(&dentry
->d_seq
);
491 EXPORT_SYMBOL(__d_drop
);
493 void d_drop(struct dentry
*dentry
)
495 spin_lock(&dentry
->d_lock
);
497 spin_unlock(&dentry
->d_lock
);
499 EXPORT_SYMBOL(d_drop
);
501 static inline void dentry_unlist(struct dentry
*dentry
, struct dentry
*parent
)
505 * Inform d_walk() and shrink_dentry_list() that we are no longer
506 * attached to the dentry tree
508 dentry
->d_flags
|= DCACHE_DENTRY_KILLED
;
509 if (unlikely(list_empty(&dentry
->d_child
)))
511 __list_del_entry(&dentry
->d_child
);
513 * Cursors can move around the list of children. While we'd been
514 * a normal list member, it didn't matter - ->d_child.next would've
515 * been updated. However, from now on it won't be and for the
516 * things like d_walk() it might end up with a nasty surprise.
517 * Normally d_walk() doesn't care about cursors moving around -
518 * ->d_lock on parent prevents that and since a cursor has no children
519 * of its own, we get through it without ever unlocking the parent.
520 * There is one exception, though - if we ascend from a child that
521 * gets killed as soon as we unlock it, the next sibling is found
522 * using the value left in its ->d_child.next. And if _that_
523 * pointed to a cursor, and cursor got moved (e.g. by lseek())
524 * before d_walk() regains parent->d_lock, we'll end up skipping
525 * everything the cursor had been moved past.
527 * Solution: make sure that the pointer left behind in ->d_child.next
528 * points to something that won't be moving around. I.e. skip the
531 while (dentry
->d_child
.next
!= &parent
->d_subdirs
) {
532 next
= list_entry(dentry
->d_child
.next
, struct dentry
, d_child
);
533 if (likely(!(next
->d_flags
& DCACHE_DENTRY_CURSOR
)))
535 dentry
->d_child
.next
= next
->d_child
.next
;
539 static void __dentry_kill(struct dentry
*dentry
)
541 struct dentry
*parent
= NULL
;
542 bool can_free
= true;
543 if (!IS_ROOT(dentry
))
544 parent
= dentry
->d_parent
;
547 * The dentry is now unrecoverably dead to the world.
549 lockref_mark_dead(&dentry
->d_lockref
);
552 * inform the fs via d_prune that this dentry is about to be
553 * unhashed and destroyed.
555 if (dentry
->d_flags
& DCACHE_OP_PRUNE
)
556 dentry
->d_op
->d_prune(dentry
);
558 if (dentry
->d_flags
& DCACHE_LRU_LIST
) {
559 if (!(dentry
->d_flags
& DCACHE_SHRINK_LIST
))
562 /* if it was on the hash then remove it */
564 dentry_unlist(dentry
, parent
);
566 spin_unlock(&parent
->d_lock
);
568 dentry_unlink_inode(dentry
);
570 spin_unlock(&dentry
->d_lock
);
571 this_cpu_dec(nr_dentry
);
572 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
573 dentry
->d_op
->d_release(dentry
);
575 spin_lock(&dentry
->d_lock
);
576 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
577 dentry
->d_flags
|= DCACHE_MAY_FREE
;
580 spin_unlock(&dentry
->d_lock
);
581 if (likely(can_free
))
585 static struct dentry
*__lock_parent(struct dentry
*dentry
)
587 struct dentry
*parent
;
589 spin_unlock(&dentry
->d_lock
);
591 parent
= READ_ONCE(dentry
->d_parent
);
592 spin_lock(&parent
->d_lock
);
594 * We can't blindly lock dentry until we are sure
595 * that we won't violate the locking order.
596 * Any changes of dentry->d_parent must have
597 * been done with parent->d_lock held, so
598 * spin_lock() above is enough of a barrier
599 * for checking if it's still our child.
601 if (unlikely(parent
!= dentry
->d_parent
)) {
602 spin_unlock(&parent
->d_lock
);
606 if (parent
!= dentry
)
607 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
613 static inline struct dentry
*lock_parent(struct dentry
*dentry
)
615 struct dentry
*parent
= dentry
->d_parent
;
618 if (likely(spin_trylock(&parent
->d_lock
)))
620 return __lock_parent(dentry
);
623 static inline bool retain_dentry(struct dentry
*dentry
)
625 WARN_ON(d_in_lookup(dentry
));
627 /* Unreachable? Get rid of it */
628 if (unlikely(d_unhashed(dentry
)))
631 if (unlikely(dentry
->d_flags
& DCACHE_DISCONNECTED
))
634 if (unlikely(dentry
->d_flags
& DCACHE_OP_DELETE
)) {
635 if (dentry
->d_op
->d_delete(dentry
))
638 /* retain; LRU fodder */
639 dentry
->d_lockref
.count
--;
640 if (unlikely(!(dentry
->d_flags
& DCACHE_LRU_LIST
)))
642 else if (unlikely(!(dentry
->d_flags
& DCACHE_REFERENCED
)))
643 dentry
->d_flags
|= DCACHE_REFERENCED
;
648 * Finish off a dentry we've decided to kill.
649 * dentry->d_lock must be held, returns with it unlocked.
650 * Returns dentry requiring refcount drop, or NULL if we're done.
652 static struct dentry
*dentry_kill(struct dentry
*dentry
)
653 __releases(dentry
->d_lock
)
655 struct inode
*inode
= dentry
->d_inode
;
656 struct dentry
*parent
= NULL
;
658 if (inode
&& unlikely(!spin_trylock(&inode
->i_lock
)))
661 if (!IS_ROOT(dentry
)) {
662 parent
= dentry
->d_parent
;
663 if (unlikely(!spin_trylock(&parent
->d_lock
))) {
664 parent
= __lock_parent(dentry
);
665 if (likely(inode
|| !dentry
->d_inode
))
667 /* negative that became positive */
669 spin_unlock(&parent
->d_lock
);
670 inode
= dentry
->d_inode
;
674 __dentry_kill(dentry
);
678 spin_unlock(&dentry
->d_lock
);
679 spin_lock(&inode
->i_lock
);
680 spin_lock(&dentry
->d_lock
);
681 parent
= lock_parent(dentry
);
683 if (unlikely(dentry
->d_lockref
.count
!= 1)) {
684 dentry
->d_lockref
.count
--;
685 } else if (likely(!retain_dentry(dentry
))) {
686 __dentry_kill(dentry
);
689 /* we are keeping it, after all */
691 spin_unlock(&inode
->i_lock
);
693 spin_unlock(&parent
->d_lock
);
694 spin_unlock(&dentry
->d_lock
);
699 * Try to do a lockless dput(), and return whether that was successful.
701 * If unsuccessful, we return false, having already taken the dentry lock.
703 * The caller needs to hold the RCU read lock, so that the dentry is
704 * guaranteed to stay around even if the refcount goes down to zero!
706 static inline bool fast_dput(struct dentry
*dentry
)
709 unsigned int d_flags
;
712 * If we have a d_op->d_delete() operation, we sould not
713 * let the dentry count go to zero, so use "put_or_lock".
715 if (unlikely(dentry
->d_flags
& DCACHE_OP_DELETE
))
716 return lockref_put_or_lock(&dentry
->d_lockref
);
719 * .. otherwise, we can try to just decrement the
720 * lockref optimistically.
722 ret
= lockref_put_return(&dentry
->d_lockref
);
725 * If the lockref_put_return() failed due to the lock being held
726 * by somebody else, the fast path has failed. We will need to
727 * get the lock, and then check the count again.
729 if (unlikely(ret
< 0)) {
730 spin_lock(&dentry
->d_lock
);
731 if (dentry
->d_lockref
.count
> 1) {
732 dentry
->d_lockref
.count
--;
733 spin_unlock(&dentry
->d_lock
);
740 * If we weren't the last ref, we're done.
746 * Careful, careful. The reference count went down
747 * to zero, but we don't hold the dentry lock, so
748 * somebody else could get it again, and do another
749 * dput(), and we need to not race with that.
751 * However, there is a very special and common case
752 * where we don't care, because there is nothing to
753 * do: the dentry is still hashed, it does not have
754 * a 'delete' op, and it's referenced and already on
757 * NOTE! Since we aren't locked, these values are
758 * not "stable". However, it is sufficient that at
759 * some point after we dropped the reference the
760 * dentry was hashed and the flags had the proper
761 * value. Other dentry users may have re-gotten
762 * a reference to the dentry and change that, but
763 * our work is done - we can leave the dentry
764 * around with a zero refcount.
767 d_flags
= READ_ONCE(dentry
->d_flags
);
768 d_flags
&= DCACHE_REFERENCED
| DCACHE_LRU_LIST
| DCACHE_DISCONNECTED
;
770 /* Nothing to do? Dropping the reference was all we needed? */
771 if (d_flags
== (DCACHE_REFERENCED
| DCACHE_LRU_LIST
) && !d_unhashed(dentry
))
775 * Not the fast normal case? Get the lock. We've already decremented
776 * the refcount, but we'll need to re-check the situation after
779 spin_lock(&dentry
->d_lock
);
782 * Did somebody else grab a reference to it in the meantime, and
783 * we're no longer the last user after all? Alternatively, somebody
784 * else could have killed it and marked it dead. Either way, we
785 * don't need to do anything else.
787 if (dentry
->d_lockref
.count
) {
788 spin_unlock(&dentry
->d_lock
);
793 * Re-get the reference we optimistically dropped. We hold the
794 * lock, and we just tested that it was zero, so we can just
797 dentry
->d_lockref
.count
= 1;
805 * This is complicated by the fact that we do not want to put
806 * dentries that are no longer on any hash chain on the unused
807 * list: we'd much rather just get rid of them immediately.
809 * However, that implies that we have to traverse the dentry
810 * tree upwards to the parents which might _also_ now be
811 * scheduled for deletion (it may have been only waiting for
812 * its last child to go away).
814 * This tail recursion is done by hand as we don't want to depend
815 * on the compiler to always get this right (gcc generally doesn't).
816 * Real recursion would eat up our stack space.
820 * dput - release a dentry
821 * @dentry: dentry to release
823 * Release a dentry. This will drop the usage count and if appropriate
824 * call the dentry unlink method as well as removing it from the queues and
825 * releasing its resources. If the parent dentries were scheduled for release
826 * they too may now get deleted.
828 void dput(struct dentry
*dentry
)
830 if (unlikely(!dentry
))
837 if (likely(fast_dput(dentry
))) {
842 /* Slow case: now with the dentry lock held */
845 if (likely(retain_dentry(dentry
))) {
846 spin_unlock(&dentry
->d_lock
);
850 dentry
= dentry_kill(dentry
);
859 /* This must be called with d_lock held */
860 static inline void __dget_dlock(struct dentry
*dentry
)
862 dentry
->d_lockref
.count
++;
865 static inline void __dget(struct dentry
*dentry
)
867 lockref_get(&dentry
->d_lockref
);
870 struct dentry
*dget_parent(struct dentry
*dentry
)
876 * Do optimistic parent lookup without any
880 ret
= READ_ONCE(dentry
->d_parent
);
881 gotref
= lockref_get_not_zero(&ret
->d_lockref
);
883 if (likely(gotref
)) {
884 if (likely(ret
== READ_ONCE(dentry
->d_parent
)))
891 * Don't need rcu_dereference because we re-check it was correct under
895 ret
= dentry
->d_parent
;
896 spin_lock(&ret
->d_lock
);
897 if (unlikely(ret
!= dentry
->d_parent
)) {
898 spin_unlock(&ret
->d_lock
);
903 BUG_ON(!ret
->d_lockref
.count
);
904 ret
->d_lockref
.count
++;
905 spin_unlock(&ret
->d_lock
);
908 EXPORT_SYMBOL(dget_parent
);
911 * d_find_alias - grab a hashed alias of inode
912 * @inode: inode in question
914 * If inode has a hashed alias, or is a directory and has any alias,
915 * acquire the reference to alias and return it. Otherwise return NULL.
916 * Notice that if inode is a directory there can be only one alias and
917 * it can be unhashed only if it has no children, or if it is the root
918 * of a filesystem, or if the directory was renamed and d_revalidate
919 * was the first vfs operation to notice.
921 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
922 * any other hashed alias over that one.
924 static struct dentry
*__d_find_alias(struct inode
*inode
)
926 struct dentry
*alias
, *discon_alias
;
930 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
931 spin_lock(&alias
->d_lock
);
932 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
933 if (IS_ROOT(alias
) &&
934 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
935 discon_alias
= alias
;
938 spin_unlock(&alias
->d_lock
);
942 spin_unlock(&alias
->d_lock
);
945 alias
= discon_alias
;
946 spin_lock(&alias
->d_lock
);
947 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
949 spin_unlock(&alias
->d_lock
);
952 spin_unlock(&alias
->d_lock
);
958 struct dentry
*d_find_alias(struct inode
*inode
)
960 struct dentry
*de
= NULL
;
962 if (!hlist_empty(&inode
->i_dentry
)) {
963 spin_lock(&inode
->i_lock
);
964 de
= __d_find_alias(inode
);
965 spin_unlock(&inode
->i_lock
);
969 EXPORT_SYMBOL(d_find_alias
);
972 * Try to kill dentries associated with this inode.
973 * WARNING: you must own a reference to inode.
975 void d_prune_aliases(struct inode
*inode
)
977 struct dentry
*dentry
;
979 spin_lock(&inode
->i_lock
);
980 hlist_for_each_entry(dentry
, &inode
->i_dentry
, d_u
.d_alias
) {
981 spin_lock(&dentry
->d_lock
);
982 if (!dentry
->d_lockref
.count
) {
983 struct dentry
*parent
= lock_parent(dentry
);
984 if (likely(!dentry
->d_lockref
.count
)) {
985 __dentry_kill(dentry
);
990 spin_unlock(&parent
->d_lock
);
992 spin_unlock(&dentry
->d_lock
);
994 spin_unlock(&inode
->i_lock
);
996 EXPORT_SYMBOL(d_prune_aliases
);
999 * Lock a dentry from shrink list.
1000 * Called under rcu_read_lock() and dentry->d_lock; the former
1001 * guarantees that nothing we access will be freed under us.
1002 * Note that dentry is *not* protected from concurrent dentry_kill(),
1005 * Return false if dentry has been disrupted or grabbed, leaving
1006 * the caller to kick it off-list. Otherwise, return true and have
1007 * that dentry's inode and parent both locked.
1009 static bool shrink_lock_dentry(struct dentry
*dentry
)
1011 struct inode
*inode
;
1012 struct dentry
*parent
;
1014 if (dentry
->d_lockref
.count
)
1017 inode
= dentry
->d_inode
;
1018 if (inode
&& unlikely(!spin_trylock(&inode
->i_lock
))) {
1019 spin_unlock(&dentry
->d_lock
);
1020 spin_lock(&inode
->i_lock
);
1021 spin_lock(&dentry
->d_lock
);
1022 if (unlikely(dentry
->d_lockref
.count
))
1024 /* changed inode means that somebody had grabbed it */
1025 if (unlikely(inode
!= dentry
->d_inode
))
1029 parent
= dentry
->d_parent
;
1030 if (IS_ROOT(dentry
) || likely(spin_trylock(&parent
->d_lock
)))
1033 spin_unlock(&dentry
->d_lock
);
1034 spin_lock(&parent
->d_lock
);
1035 if (unlikely(parent
!= dentry
->d_parent
)) {
1036 spin_unlock(&parent
->d_lock
);
1037 spin_lock(&dentry
->d_lock
);
1040 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1041 if (likely(!dentry
->d_lockref
.count
))
1043 spin_unlock(&parent
->d_lock
);
1046 spin_unlock(&inode
->i_lock
);
1050 static void shrink_dentry_list(struct list_head
*list
)
1052 while (!list_empty(list
)) {
1053 struct dentry
*dentry
, *parent
;
1057 dentry
= list_entry(list
->prev
, struct dentry
, d_lru
);
1058 spin_lock(&dentry
->d_lock
);
1060 if (!shrink_lock_dentry(dentry
)) {
1061 bool can_free
= false;
1063 d_shrink_del(dentry
);
1064 if (dentry
->d_lockref
.count
< 0)
1065 can_free
= dentry
->d_flags
& DCACHE_MAY_FREE
;
1066 spin_unlock(&dentry
->d_lock
);
1068 dentry_free(dentry
);
1072 d_shrink_del(dentry
);
1073 parent
= dentry
->d_parent
;
1074 __dentry_kill(dentry
);
1075 if (parent
== dentry
)
1078 * We need to prune ancestors too. This is necessary to prevent
1079 * quadratic behavior of shrink_dcache_parent(), but is also
1080 * expected to be beneficial in reducing dentry cache
1084 while (dentry
&& !lockref_put_or_lock(&dentry
->d_lockref
))
1085 dentry
= dentry_kill(dentry
);
1089 static enum lru_status
dentry_lru_isolate(struct list_head
*item
,
1090 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
1092 struct list_head
*freeable
= arg
;
1093 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
1097 * we are inverting the lru lock/dentry->d_lock here,
1098 * so use a trylock. If we fail to get the lock, just skip
1101 if (!spin_trylock(&dentry
->d_lock
))
1105 * Referenced dentries are still in use. If they have active
1106 * counts, just remove them from the LRU. Otherwise give them
1107 * another pass through the LRU.
1109 if (dentry
->d_lockref
.count
) {
1110 d_lru_isolate(lru
, dentry
);
1111 spin_unlock(&dentry
->d_lock
);
1115 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
1116 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
1117 spin_unlock(&dentry
->d_lock
);
1120 * The list move itself will be made by the common LRU code. At
1121 * this point, we've dropped the dentry->d_lock but keep the
1122 * lru lock. This is safe to do, since every list movement is
1123 * protected by the lru lock even if both locks are held.
1125 * This is guaranteed by the fact that all LRU management
1126 * functions are intermediated by the LRU API calls like
1127 * list_lru_add and list_lru_del. List movement in this file
1128 * only ever occur through this functions or through callbacks
1129 * like this one, that are called from the LRU API.
1131 * The only exceptions to this are functions like
1132 * shrink_dentry_list, and code that first checks for the
1133 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1134 * operating only with stack provided lists after they are
1135 * properly isolated from the main list. It is thus, always a
1141 d_lru_shrink_move(lru
, dentry
, freeable
);
1142 spin_unlock(&dentry
->d_lock
);
1148 * prune_dcache_sb - shrink the dcache
1150 * @sc: shrink control, passed to list_lru_shrink_walk()
1152 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1153 * is done when we need more memory and called from the superblock shrinker
1156 * This function may fail to free any resources if all the dentries are in
1159 long prune_dcache_sb(struct super_block
*sb
, struct shrink_control
*sc
)
1164 freed
= list_lru_shrink_walk(&sb
->s_dentry_lru
, sc
,
1165 dentry_lru_isolate
, &dispose
);
1166 shrink_dentry_list(&dispose
);
1170 static enum lru_status
dentry_lru_isolate_shrink(struct list_head
*item
,
1171 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
1173 struct list_head
*freeable
= arg
;
1174 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
1177 * we are inverting the lru lock/dentry->d_lock here,
1178 * so use a trylock. If we fail to get the lock, just skip
1181 if (!spin_trylock(&dentry
->d_lock
))
1184 d_lru_shrink_move(lru
, dentry
, freeable
);
1185 spin_unlock(&dentry
->d_lock
);
1192 * shrink_dcache_sb - shrink dcache for a superblock
1195 * Shrink the dcache for the specified super block. This is used to free
1196 * the dcache before unmounting a file system.
1198 void shrink_dcache_sb(struct super_block
*sb
)
1205 freed
= list_lru_walk(&sb
->s_dentry_lru
,
1206 dentry_lru_isolate_shrink
, &dispose
, 1024);
1208 this_cpu_sub(nr_dentry_unused
, freed
);
1209 shrink_dentry_list(&dispose
);
1210 } while (list_lru_count(&sb
->s_dentry_lru
) > 0);
1212 EXPORT_SYMBOL(shrink_dcache_sb
);
1215 * enum d_walk_ret - action to talke during tree walk
1216 * @D_WALK_CONTINUE: contrinue walk
1217 * @D_WALK_QUIT: quit walk
1218 * @D_WALK_NORETRY: quit when retry is needed
1219 * @D_WALK_SKIP: skip this dentry and its children
1229 * d_walk - walk the dentry tree
1230 * @parent: start of walk
1231 * @data: data passed to @enter() and @finish()
1232 * @enter: callback when first entering the dentry
1233 * @finish: callback when successfully finished the walk
1235 * The @enter() and @finish() callbacks are called with d_lock held.
1237 static void d_walk(struct dentry
*parent
, void *data
,
1238 enum d_walk_ret (*enter
)(void *, struct dentry
*),
1239 void (*finish
)(void *))
1241 struct dentry
*this_parent
;
1242 struct list_head
*next
;
1244 enum d_walk_ret ret
;
1248 read_seqbegin_or_lock(&rename_lock
, &seq
);
1249 this_parent
= parent
;
1250 spin_lock(&this_parent
->d_lock
);
1252 ret
= enter(data
, this_parent
);
1254 case D_WALK_CONTINUE
:
1259 case D_WALK_NORETRY
:
1264 next
= this_parent
->d_subdirs
.next
;
1266 while (next
!= &this_parent
->d_subdirs
) {
1267 struct list_head
*tmp
= next
;
1268 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_child
);
1271 if (unlikely(dentry
->d_flags
& DCACHE_DENTRY_CURSOR
))
1274 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1276 ret
= enter(data
, dentry
);
1278 case D_WALK_CONTINUE
:
1281 spin_unlock(&dentry
->d_lock
);
1283 case D_WALK_NORETRY
:
1287 spin_unlock(&dentry
->d_lock
);
1291 if (!list_empty(&dentry
->d_subdirs
)) {
1292 spin_unlock(&this_parent
->d_lock
);
1293 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1294 this_parent
= dentry
;
1295 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1298 spin_unlock(&dentry
->d_lock
);
1301 * All done at this level ... ascend and resume the search.
1305 if (this_parent
!= parent
) {
1306 struct dentry
*child
= this_parent
;
1307 this_parent
= child
->d_parent
;
1309 spin_unlock(&child
->d_lock
);
1310 spin_lock(&this_parent
->d_lock
);
1312 /* might go back up the wrong parent if we have had a rename. */
1313 if (need_seqretry(&rename_lock
, seq
))
1315 /* go into the first sibling still alive */
1317 next
= child
->d_child
.next
;
1318 if (next
== &this_parent
->d_subdirs
)
1320 child
= list_entry(next
, struct dentry
, d_child
);
1321 } while (unlikely(child
->d_flags
& DCACHE_DENTRY_KILLED
));
1325 if (need_seqretry(&rename_lock
, seq
))
1332 spin_unlock(&this_parent
->d_lock
);
1333 done_seqretry(&rename_lock
, seq
);
1337 spin_unlock(&this_parent
->d_lock
);
1346 struct check_mount
{
1347 struct vfsmount
*mnt
;
1348 unsigned int mounted
;
1351 static enum d_walk_ret
path_check_mount(void *data
, struct dentry
*dentry
)
1353 struct check_mount
*info
= data
;
1354 struct path path
= { .mnt
= info
->mnt
, .dentry
= dentry
};
1356 if (likely(!d_mountpoint(dentry
)))
1357 return D_WALK_CONTINUE
;
1358 if (__path_is_mountpoint(&path
)) {
1362 return D_WALK_CONTINUE
;
1366 * path_has_submounts - check for mounts over a dentry in the
1367 * current namespace.
1368 * @parent: path to check.
1370 * Return true if the parent or its subdirectories contain
1371 * a mount point in the current namespace.
1373 int path_has_submounts(const struct path
*parent
)
1375 struct check_mount data
= { .mnt
= parent
->mnt
, .mounted
= 0 };
1377 read_seqlock_excl(&mount_lock
);
1378 d_walk(parent
->dentry
, &data
, path_check_mount
, NULL
);
1379 read_sequnlock_excl(&mount_lock
);
1381 return data
.mounted
;
1383 EXPORT_SYMBOL(path_has_submounts
);
1386 * Called by mount code to set a mountpoint and check if the mountpoint is
1387 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1388 * subtree can become unreachable).
1390 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1391 * this reason take rename_lock and d_lock on dentry and ancestors.
1393 int d_set_mounted(struct dentry
*dentry
)
1397 write_seqlock(&rename_lock
);
1398 for (p
= dentry
->d_parent
; !IS_ROOT(p
); p
= p
->d_parent
) {
1399 /* Need exclusion wrt. d_invalidate() */
1400 spin_lock(&p
->d_lock
);
1401 if (unlikely(d_unhashed(p
))) {
1402 spin_unlock(&p
->d_lock
);
1405 spin_unlock(&p
->d_lock
);
1407 spin_lock(&dentry
->d_lock
);
1408 if (!d_unlinked(dentry
)) {
1410 if (!d_mountpoint(dentry
)) {
1411 dentry
->d_flags
|= DCACHE_MOUNTED
;
1415 spin_unlock(&dentry
->d_lock
);
1417 write_sequnlock(&rename_lock
);
1422 * Search the dentry child list of the specified parent,
1423 * and move any unused dentries to the end of the unused
1424 * list for prune_dcache(). We descend to the next level
1425 * whenever the d_subdirs list is non-empty and continue
1428 * It returns zero iff there are no unused children,
1429 * otherwise it returns the number of children moved to
1430 * the end of the unused list. This may not be the total
1431 * number of unused children, because select_parent can
1432 * drop the lock and return early due to latency
1436 struct select_data
{
1437 struct dentry
*start
;
1438 struct list_head dispose
;
1442 static enum d_walk_ret
select_collect(void *_data
, struct dentry
*dentry
)
1444 struct select_data
*data
= _data
;
1445 enum d_walk_ret ret
= D_WALK_CONTINUE
;
1447 if (data
->start
== dentry
)
1450 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
1453 if (dentry
->d_flags
& DCACHE_LRU_LIST
)
1455 if (!dentry
->d_lockref
.count
) {
1456 d_shrink_add(dentry
, &data
->dispose
);
1461 * We can return to the caller if we have found some (this
1462 * ensures forward progress). We'll be coming back to find
1465 if (!list_empty(&data
->dispose
))
1466 ret
= need_resched() ? D_WALK_QUIT
: D_WALK_NORETRY
;
1472 * shrink_dcache_parent - prune dcache
1473 * @parent: parent of entries to prune
1475 * Prune the dcache to remove unused children of the parent dentry.
1477 void shrink_dcache_parent(struct dentry
*parent
)
1480 struct select_data data
;
1482 INIT_LIST_HEAD(&data
.dispose
);
1483 data
.start
= parent
;
1486 d_walk(parent
, &data
, select_collect
, NULL
);
1490 shrink_dentry_list(&data
.dispose
);
1493 EXPORT_SYMBOL(shrink_dcache_parent
);
1495 static enum d_walk_ret
umount_check(void *_data
, struct dentry
*dentry
)
1497 /* it has busy descendents; complain about those instead */
1498 if (!list_empty(&dentry
->d_subdirs
))
1499 return D_WALK_CONTINUE
;
1501 /* root with refcount 1 is fine */
1502 if (dentry
== _data
&& dentry
->d_lockref
.count
== 1)
1503 return D_WALK_CONTINUE
;
1505 printk(KERN_ERR
"BUG: Dentry %p{i=%lx,n=%pd} "
1506 " still in use (%d) [unmount of %s %s]\n",
1509 dentry
->d_inode
->i_ino
: 0UL,
1511 dentry
->d_lockref
.count
,
1512 dentry
->d_sb
->s_type
->name
,
1513 dentry
->d_sb
->s_id
);
1515 return D_WALK_CONTINUE
;
1518 static void do_one_tree(struct dentry
*dentry
)
1520 shrink_dcache_parent(dentry
);
1521 d_walk(dentry
, dentry
, umount_check
, NULL
);
1527 * destroy the dentries attached to a superblock on unmounting
1529 void shrink_dcache_for_umount(struct super_block
*sb
)
1531 struct dentry
*dentry
;
1533 WARN(down_read_trylock(&sb
->s_umount
), "s_umount should've been locked");
1535 dentry
= sb
->s_root
;
1537 do_one_tree(dentry
);
1539 while (!hlist_bl_empty(&sb
->s_roots
)) {
1540 dentry
= dget(hlist_bl_entry(hlist_bl_first(&sb
->s_roots
), struct dentry
, d_hash
));
1541 do_one_tree(dentry
);
1545 struct detach_data
{
1546 struct select_data select
;
1547 struct dentry
*mountpoint
;
1549 static enum d_walk_ret
detach_and_collect(void *_data
, struct dentry
*dentry
)
1551 struct detach_data
*data
= _data
;
1553 if (d_mountpoint(dentry
)) {
1554 __dget_dlock(dentry
);
1555 data
->mountpoint
= dentry
;
1559 return select_collect(&data
->select
, dentry
);
1562 static void check_and_drop(void *_data
)
1564 struct detach_data
*data
= _data
;
1566 if (!data
->mountpoint
&& list_empty(&data
->select
.dispose
))
1567 __d_drop(data
->select
.start
);
1571 * d_invalidate - detach submounts, prune dcache, and drop
1572 * @dentry: dentry to invalidate (aka detach, prune and drop)
1576 * The final d_drop is done as an atomic operation relative to
1577 * rename_lock ensuring there are no races with d_set_mounted. This
1578 * ensures there are no unhashed dentries on the path to a mountpoint.
1580 void d_invalidate(struct dentry
*dentry
)
1583 * If it's already been dropped, return OK.
1585 spin_lock(&dentry
->d_lock
);
1586 if (d_unhashed(dentry
)) {
1587 spin_unlock(&dentry
->d_lock
);
1590 spin_unlock(&dentry
->d_lock
);
1592 /* Negative dentries can be dropped without further checks */
1593 if (!dentry
->d_inode
) {
1599 struct detach_data data
;
1601 data
.mountpoint
= NULL
;
1602 INIT_LIST_HEAD(&data
.select
.dispose
);
1603 data
.select
.start
= dentry
;
1604 data
.select
.found
= 0;
1606 d_walk(dentry
, &data
, detach_and_collect
, check_and_drop
);
1608 if (!list_empty(&data
.select
.dispose
))
1609 shrink_dentry_list(&data
.select
.dispose
);
1610 else if (!data
.mountpoint
)
1613 if (data
.mountpoint
) {
1614 detach_mounts(data
.mountpoint
);
1615 dput(data
.mountpoint
);
1619 EXPORT_SYMBOL(d_invalidate
);
1622 * __d_alloc - allocate a dcache entry
1623 * @sb: filesystem it will belong to
1624 * @name: qstr of the name
1626 * Allocates a dentry. It returns %NULL if there is insufficient memory
1627 * available. On a success the dentry is returned. The name passed in is
1628 * copied and the copy passed in may be reused after this call.
1631 struct dentry
*__d_alloc(struct super_block
*sb
, const struct qstr
*name
)
1633 struct external_name
*ext
= NULL
;
1634 struct dentry
*dentry
;
1638 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
1643 * We guarantee that the inline name is always NUL-terminated.
1644 * This way the memcpy() done by the name switching in rename
1645 * will still always have a NUL at the end, even if we might
1646 * be overwriting an internal NUL character
1648 dentry
->d_iname
[DNAME_INLINE_LEN
-1] = 0;
1649 if (unlikely(!name
)) {
1651 dname
= dentry
->d_iname
;
1652 } else if (name
->len
> DNAME_INLINE_LEN
-1) {
1653 size_t size
= offsetof(struct external_name
, name
[1]);
1655 ext
= kmalloc(size
+ name
->len
, GFP_KERNEL_ACCOUNT
);
1657 kmem_cache_free(dentry_cache
, dentry
);
1660 atomic_set(&ext
->u
.count
, 1);
1663 dname
= dentry
->d_iname
;
1666 dentry
->d_name
.len
= name
->len
;
1667 dentry
->d_name
.hash
= name
->hash
;
1668 memcpy(dname
, name
->name
, name
->len
);
1669 dname
[name
->len
] = 0;
1671 /* Make sure we always see the terminating NUL character */
1672 smp_store_release(&dentry
->d_name
.name
, dname
); /* ^^^ */
1674 dentry
->d_lockref
.count
= 1;
1675 dentry
->d_flags
= 0;
1676 spin_lock_init(&dentry
->d_lock
);
1677 seqcount_init(&dentry
->d_seq
);
1678 dentry
->d_inode
= NULL
;
1679 dentry
->d_parent
= dentry
;
1681 dentry
->d_op
= NULL
;
1682 dentry
->d_fsdata
= NULL
;
1683 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1684 INIT_LIST_HEAD(&dentry
->d_lru
);
1685 INIT_LIST_HEAD(&dentry
->d_subdirs
);
1686 INIT_HLIST_NODE(&dentry
->d_u
.d_alias
);
1687 INIT_LIST_HEAD(&dentry
->d_child
);
1688 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1690 if (dentry
->d_op
&& dentry
->d_op
->d_init
) {
1691 err
= dentry
->d_op
->d_init(dentry
);
1693 if (dname_external(dentry
))
1694 kfree(external_name(dentry
));
1695 kmem_cache_free(dentry_cache
, dentry
);
1700 if (unlikely(ext
)) {
1701 pg_data_t
*pgdat
= page_pgdat(virt_to_page(ext
));
1702 mod_node_page_state(pgdat
, NR_INDIRECTLY_RECLAIMABLE_BYTES
,
1706 this_cpu_inc(nr_dentry
);
1712 * d_alloc - allocate a dcache entry
1713 * @parent: parent of entry to allocate
1714 * @name: qstr of the name
1716 * Allocates a dentry. It returns %NULL if there is insufficient memory
1717 * available. On a success the dentry is returned. The name passed in is
1718 * copied and the copy passed in may be reused after this call.
1720 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1722 struct dentry
*dentry
= __d_alloc(parent
->d_sb
, name
);
1725 dentry
->d_flags
|= DCACHE_RCUACCESS
;
1726 spin_lock(&parent
->d_lock
);
1728 * don't need child lock because it is not subject
1729 * to concurrency here
1731 __dget_dlock(parent
);
1732 dentry
->d_parent
= parent
;
1733 list_add(&dentry
->d_child
, &parent
->d_subdirs
);
1734 spin_unlock(&parent
->d_lock
);
1738 EXPORT_SYMBOL(d_alloc
);
1740 struct dentry
*d_alloc_anon(struct super_block
*sb
)
1742 return __d_alloc(sb
, NULL
);
1744 EXPORT_SYMBOL(d_alloc_anon
);
1746 struct dentry
*d_alloc_cursor(struct dentry
* parent
)
1748 struct dentry
*dentry
= d_alloc_anon(parent
->d_sb
);
1750 dentry
->d_flags
|= DCACHE_RCUACCESS
| DCACHE_DENTRY_CURSOR
;
1751 dentry
->d_parent
= dget(parent
);
1757 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1758 * @sb: the superblock
1759 * @name: qstr of the name
1761 * For a filesystem that just pins its dentries in memory and never
1762 * performs lookups at all, return an unhashed IS_ROOT dentry.
1764 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1766 return __d_alloc(sb
, name
);
1768 EXPORT_SYMBOL(d_alloc_pseudo
);
1770 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1775 q
.hash_len
= hashlen_string(parent
, name
);
1776 return d_alloc(parent
, &q
);
1778 EXPORT_SYMBOL(d_alloc_name
);
1780 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1782 WARN_ON_ONCE(dentry
->d_op
);
1783 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1785 DCACHE_OP_REVALIDATE
|
1786 DCACHE_OP_WEAK_REVALIDATE
|
1793 dentry
->d_flags
|= DCACHE_OP_HASH
;
1795 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1796 if (op
->d_revalidate
)
1797 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1798 if (op
->d_weak_revalidate
)
1799 dentry
->d_flags
|= DCACHE_OP_WEAK_REVALIDATE
;
1801 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1803 dentry
->d_flags
|= DCACHE_OP_PRUNE
;
1805 dentry
->d_flags
|= DCACHE_OP_REAL
;
1808 EXPORT_SYMBOL(d_set_d_op
);
1812 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1813 * @dentry - The dentry to mark
1815 * Mark a dentry as falling through to the lower layer (as set with
1816 * d_pin_lower()). This flag may be recorded on the medium.
1818 void d_set_fallthru(struct dentry
*dentry
)
1820 spin_lock(&dentry
->d_lock
);
1821 dentry
->d_flags
|= DCACHE_FALLTHRU
;
1822 spin_unlock(&dentry
->d_lock
);
1824 EXPORT_SYMBOL(d_set_fallthru
);
1826 static unsigned d_flags_for_inode(struct inode
*inode
)
1828 unsigned add_flags
= DCACHE_REGULAR_TYPE
;
1831 return DCACHE_MISS_TYPE
;
1833 if (S_ISDIR(inode
->i_mode
)) {
1834 add_flags
= DCACHE_DIRECTORY_TYPE
;
1835 if (unlikely(!(inode
->i_opflags
& IOP_LOOKUP
))) {
1836 if (unlikely(!inode
->i_op
->lookup
))
1837 add_flags
= DCACHE_AUTODIR_TYPE
;
1839 inode
->i_opflags
|= IOP_LOOKUP
;
1841 goto type_determined
;
1844 if (unlikely(!(inode
->i_opflags
& IOP_NOFOLLOW
))) {
1845 if (unlikely(inode
->i_op
->get_link
)) {
1846 add_flags
= DCACHE_SYMLINK_TYPE
;
1847 goto type_determined
;
1849 inode
->i_opflags
|= IOP_NOFOLLOW
;
1852 if (unlikely(!S_ISREG(inode
->i_mode
)))
1853 add_flags
= DCACHE_SPECIAL_TYPE
;
1856 if (unlikely(IS_AUTOMOUNT(inode
)))
1857 add_flags
|= DCACHE_NEED_AUTOMOUNT
;
1861 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1863 unsigned add_flags
= d_flags_for_inode(inode
);
1864 WARN_ON(d_in_lookup(dentry
));
1866 spin_lock(&dentry
->d_lock
);
1867 hlist_add_head(&dentry
->d_u
.d_alias
, &inode
->i_dentry
);
1868 raw_write_seqcount_begin(&dentry
->d_seq
);
1869 __d_set_inode_and_type(dentry
, inode
, add_flags
);
1870 raw_write_seqcount_end(&dentry
->d_seq
);
1871 fsnotify_update_flags(dentry
);
1872 spin_unlock(&dentry
->d_lock
);
1876 * d_instantiate - fill in inode information for a dentry
1877 * @entry: dentry to complete
1878 * @inode: inode to attach to this dentry
1880 * Fill in inode information in the entry.
1882 * This turns negative dentries into productive full members
1885 * NOTE! This assumes that the inode count has been incremented
1886 * (or otherwise set) by the caller to indicate that it is now
1887 * in use by the dcache.
1890 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1892 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1894 security_d_instantiate(entry
, inode
);
1895 spin_lock(&inode
->i_lock
);
1896 __d_instantiate(entry
, inode
);
1897 spin_unlock(&inode
->i_lock
);
1900 EXPORT_SYMBOL(d_instantiate
);
1903 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1904 * @entry: dentry to complete
1905 * @inode: inode to attach to this dentry
1907 * Fill in inode information in the entry. If a directory alias is found, then
1908 * return an error (and drop inode). Together with d_materialise_unique() this
1909 * guarantees that a directory inode may never have more than one alias.
1911 int d_instantiate_no_diralias(struct dentry
*entry
, struct inode
*inode
)
1913 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1915 security_d_instantiate(entry
, inode
);
1916 spin_lock(&inode
->i_lock
);
1917 if (S_ISDIR(inode
->i_mode
) && !hlist_empty(&inode
->i_dentry
)) {
1918 spin_unlock(&inode
->i_lock
);
1922 __d_instantiate(entry
, inode
);
1923 spin_unlock(&inode
->i_lock
);
1927 EXPORT_SYMBOL(d_instantiate_no_diralias
);
1929 struct dentry
*d_make_root(struct inode
*root_inode
)
1931 struct dentry
*res
= NULL
;
1934 res
= d_alloc_anon(root_inode
->i_sb
);
1936 d_instantiate(res
, root_inode
);
1942 EXPORT_SYMBOL(d_make_root
);
1944 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
1946 struct dentry
*alias
;
1948 if (hlist_empty(&inode
->i_dentry
))
1950 alias
= hlist_entry(inode
->i_dentry
.first
, struct dentry
, d_u
.d_alias
);
1956 * d_find_any_alias - find any alias for a given inode
1957 * @inode: inode to find an alias for
1959 * If any aliases exist for the given inode, take and return a
1960 * reference for one of them. If no aliases exist, return %NULL.
1962 struct dentry
*d_find_any_alias(struct inode
*inode
)
1966 spin_lock(&inode
->i_lock
);
1967 de
= __d_find_any_alias(inode
);
1968 spin_unlock(&inode
->i_lock
);
1971 EXPORT_SYMBOL(d_find_any_alias
);
1973 static struct dentry
*__d_instantiate_anon(struct dentry
*dentry
,
1974 struct inode
*inode
,
1980 security_d_instantiate(dentry
, inode
);
1981 spin_lock(&inode
->i_lock
);
1982 res
= __d_find_any_alias(inode
);
1984 spin_unlock(&inode
->i_lock
);
1989 /* attach a disconnected dentry */
1990 add_flags
= d_flags_for_inode(inode
);
1993 add_flags
|= DCACHE_DISCONNECTED
;
1995 spin_lock(&dentry
->d_lock
);
1996 __d_set_inode_and_type(dentry
, inode
, add_flags
);
1997 hlist_add_head(&dentry
->d_u
.d_alias
, &inode
->i_dentry
);
1998 if (!disconnected
) {
1999 hlist_bl_lock(&dentry
->d_sb
->s_roots
);
2000 hlist_bl_add_head(&dentry
->d_hash
, &dentry
->d_sb
->s_roots
);
2001 hlist_bl_unlock(&dentry
->d_sb
->s_roots
);
2003 spin_unlock(&dentry
->d_lock
);
2004 spin_unlock(&inode
->i_lock
);
2013 struct dentry
*d_instantiate_anon(struct dentry
*dentry
, struct inode
*inode
)
2015 return __d_instantiate_anon(dentry
, inode
, true);
2017 EXPORT_SYMBOL(d_instantiate_anon
);
2019 static struct dentry
*__d_obtain_alias(struct inode
*inode
, bool disconnected
)
2025 return ERR_PTR(-ESTALE
);
2027 return ERR_CAST(inode
);
2029 res
= d_find_any_alias(inode
);
2033 tmp
= d_alloc_anon(inode
->i_sb
);
2035 res
= ERR_PTR(-ENOMEM
);
2039 return __d_instantiate_anon(tmp
, inode
, disconnected
);
2047 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2048 * @inode: inode to allocate the dentry for
2050 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2051 * similar open by handle operations. The returned dentry may be anonymous,
2052 * or may have a full name (if the inode was already in the cache).
2054 * When called on a directory inode, we must ensure that the inode only ever
2055 * has one dentry. If a dentry is found, that is returned instead of
2056 * allocating a new one.
2058 * On successful return, the reference to the inode has been transferred
2059 * to the dentry. In case of an error the reference on the inode is released.
2060 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2061 * be passed in and the error will be propagated to the return value,
2062 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2064 struct dentry
*d_obtain_alias(struct inode
*inode
)
2066 return __d_obtain_alias(inode
, true);
2068 EXPORT_SYMBOL(d_obtain_alias
);
2071 * d_obtain_root - find or allocate a dentry for a given inode
2072 * @inode: inode to allocate the dentry for
2074 * Obtain an IS_ROOT dentry for the root of a filesystem.
2076 * We must ensure that directory inodes only ever have one dentry. If a
2077 * dentry is found, that is returned instead of allocating a new one.
2079 * On successful return, the reference to the inode has been transferred
2080 * to the dentry. In case of an error the reference on the inode is
2081 * released. A %NULL or IS_ERR inode may be passed in and will be the
2082 * error will be propagate to the return value, with a %NULL @inode
2083 * replaced by ERR_PTR(-ESTALE).
2085 struct dentry
*d_obtain_root(struct inode
*inode
)
2087 return __d_obtain_alias(inode
, false);
2089 EXPORT_SYMBOL(d_obtain_root
);
2092 * d_add_ci - lookup or allocate new dentry with case-exact name
2093 * @inode: the inode case-insensitive lookup has found
2094 * @dentry: the negative dentry that was passed to the parent's lookup func
2095 * @name: the case-exact name to be associated with the returned dentry
2097 * This is to avoid filling the dcache with case-insensitive names to the
2098 * same inode, only the actual correct case is stored in the dcache for
2099 * case-insensitive filesystems.
2101 * For a case-insensitive lookup match and if the the case-exact dentry
2102 * already exists in in the dcache, use it and return it.
2104 * If no entry exists with the exact case name, allocate new dentry with
2105 * the exact case, and return the spliced entry.
2107 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
2110 struct dentry
*found
, *res
;
2113 * First check if a dentry matching the name already exists,
2114 * if not go ahead and create it now.
2116 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
2121 if (d_in_lookup(dentry
)) {
2122 found
= d_alloc_parallel(dentry
->d_parent
, name
,
2124 if (IS_ERR(found
) || !d_in_lookup(found
)) {
2129 found
= d_alloc(dentry
->d_parent
, name
);
2132 return ERR_PTR(-ENOMEM
);
2135 res
= d_splice_alias(inode
, found
);
2142 EXPORT_SYMBOL(d_add_ci
);
2145 static inline bool d_same_name(const struct dentry
*dentry
,
2146 const struct dentry
*parent
,
2147 const struct qstr
*name
)
2149 if (likely(!(parent
->d_flags
& DCACHE_OP_COMPARE
))) {
2150 if (dentry
->d_name
.len
!= name
->len
)
2152 return dentry_cmp(dentry
, name
->name
, name
->len
) == 0;
2154 return parent
->d_op
->d_compare(dentry
,
2155 dentry
->d_name
.len
, dentry
->d_name
.name
,
2160 * __d_lookup_rcu - search for a dentry (racy, store-free)
2161 * @parent: parent dentry
2162 * @name: qstr of name we wish to find
2163 * @seqp: returns d_seq value at the point where the dentry was found
2164 * Returns: dentry, or NULL
2166 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2167 * resolution (store-free path walking) design described in
2168 * Documentation/filesystems/path-lookup.txt.
2170 * This is not to be used outside core vfs.
2172 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2173 * held, and rcu_read_lock held. The returned dentry must not be stored into
2174 * without taking d_lock and checking d_seq sequence count against @seq
2177 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2180 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2181 * the returned dentry, so long as its parent's seqlock is checked after the
2182 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2183 * is formed, giving integrity down the path walk.
2185 * NOTE! The caller *has* to check the resulting dentry against the sequence
2186 * number we've returned before using any of the resulting dentry state!
2188 struct dentry
*__d_lookup_rcu(const struct dentry
*parent
,
2189 const struct qstr
*name
,
2192 u64 hashlen
= name
->hash_len
;
2193 const unsigned char *str
= name
->name
;
2194 struct hlist_bl_head
*b
= d_hash(hashlen_hash(hashlen
));
2195 struct hlist_bl_node
*node
;
2196 struct dentry
*dentry
;
2199 * Note: There is significant duplication with __d_lookup_rcu which is
2200 * required to prevent single threaded performance regressions
2201 * especially on architectures where smp_rmb (in seqcounts) are costly.
2202 * Keep the two functions in sync.
2206 * The hash list is protected using RCU.
2208 * Carefully use d_seq when comparing a candidate dentry, to avoid
2209 * races with d_move().
2211 * It is possible that concurrent renames can mess up our list
2212 * walk here and result in missing our dentry, resulting in the
2213 * false-negative result. d_lookup() protects against concurrent
2214 * renames using rename_lock seqlock.
2216 * See Documentation/filesystems/path-lookup.txt for more details.
2218 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2223 * The dentry sequence count protects us from concurrent
2224 * renames, and thus protects parent and name fields.
2226 * The caller must perform a seqcount check in order
2227 * to do anything useful with the returned dentry.
2229 * NOTE! We do a "raw" seqcount_begin here. That means that
2230 * we don't wait for the sequence count to stabilize if it
2231 * is in the middle of a sequence change. If we do the slow
2232 * dentry compare, we will do seqretries until it is stable,
2233 * and if we end up with a successful lookup, we actually
2234 * want to exit RCU lookup anyway.
2236 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2237 * we are still guaranteed NUL-termination of ->d_name.name.
2239 seq
= raw_seqcount_begin(&dentry
->d_seq
);
2240 if (dentry
->d_parent
!= parent
)
2242 if (d_unhashed(dentry
))
2245 if (unlikely(parent
->d_flags
& DCACHE_OP_COMPARE
)) {
2248 if (dentry
->d_name
.hash
!= hashlen_hash(hashlen
))
2250 tlen
= dentry
->d_name
.len
;
2251 tname
= dentry
->d_name
.name
;
2252 /* we want a consistent (name,len) pair */
2253 if (read_seqcount_retry(&dentry
->d_seq
, seq
)) {
2257 if (parent
->d_op
->d_compare(dentry
,
2258 tlen
, tname
, name
) != 0)
2261 if (dentry
->d_name
.hash_len
!= hashlen
)
2263 if (dentry_cmp(dentry
, str
, hashlen_len(hashlen
)) != 0)
2273 * d_lookup - search for a dentry
2274 * @parent: parent dentry
2275 * @name: qstr of name we wish to find
2276 * Returns: dentry, or NULL
2278 * d_lookup searches the children of the parent dentry for the name in
2279 * question. If the dentry is found its reference count is incremented and the
2280 * dentry is returned. The caller must use dput to free the entry when it has
2281 * finished using it. %NULL is returned if the dentry does not exist.
2283 struct dentry
*d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2285 struct dentry
*dentry
;
2289 seq
= read_seqbegin(&rename_lock
);
2290 dentry
= __d_lookup(parent
, name
);
2293 } while (read_seqretry(&rename_lock
, seq
));
2296 EXPORT_SYMBOL(d_lookup
);
2299 * __d_lookup - search for a dentry (racy)
2300 * @parent: parent dentry
2301 * @name: qstr of name we wish to find
2302 * Returns: dentry, or NULL
2304 * __d_lookup is like d_lookup, however it may (rarely) return a
2305 * false-negative result due to unrelated rename activity.
2307 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2308 * however it must be used carefully, eg. with a following d_lookup in
2309 * the case of failure.
2311 * __d_lookup callers must be commented.
2313 struct dentry
*__d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2315 unsigned int hash
= name
->hash
;
2316 struct hlist_bl_head
*b
= d_hash(hash
);
2317 struct hlist_bl_node
*node
;
2318 struct dentry
*found
= NULL
;
2319 struct dentry
*dentry
;
2322 * Note: There is significant duplication with __d_lookup_rcu which is
2323 * required to prevent single threaded performance regressions
2324 * especially on architectures where smp_rmb (in seqcounts) are costly.
2325 * Keep the two functions in sync.
2329 * The hash list is protected using RCU.
2331 * Take d_lock when comparing a candidate dentry, to avoid races
2334 * It is possible that concurrent renames can mess up our list
2335 * walk here and result in missing our dentry, resulting in the
2336 * false-negative result. d_lookup() protects against concurrent
2337 * renames using rename_lock seqlock.
2339 * See Documentation/filesystems/path-lookup.txt for more details.
2343 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2345 if (dentry
->d_name
.hash
!= hash
)
2348 spin_lock(&dentry
->d_lock
);
2349 if (dentry
->d_parent
!= parent
)
2351 if (d_unhashed(dentry
))
2354 if (!d_same_name(dentry
, parent
, name
))
2357 dentry
->d_lockref
.count
++;
2359 spin_unlock(&dentry
->d_lock
);
2362 spin_unlock(&dentry
->d_lock
);
2370 * d_hash_and_lookup - hash the qstr then search for a dentry
2371 * @dir: Directory to search in
2372 * @name: qstr of name we wish to find
2374 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2376 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
2379 * Check for a fs-specific hash function. Note that we must
2380 * calculate the standard hash first, as the d_op->d_hash()
2381 * routine may choose to leave the hash value unchanged.
2383 name
->hash
= full_name_hash(dir
, name
->name
, name
->len
);
2384 if (dir
->d_flags
& DCACHE_OP_HASH
) {
2385 int err
= dir
->d_op
->d_hash(dir
, name
);
2386 if (unlikely(err
< 0))
2387 return ERR_PTR(err
);
2389 return d_lookup(dir
, name
);
2391 EXPORT_SYMBOL(d_hash_and_lookup
);
2394 * When a file is deleted, we have two options:
2395 * - turn this dentry into a negative dentry
2396 * - unhash this dentry and free it.
2398 * Usually, we want to just turn this into
2399 * a negative dentry, but if anybody else is
2400 * currently using the dentry or the inode
2401 * we can't do that and we fall back on removing
2402 * it from the hash queues and waiting for
2403 * it to be deleted later when it has no users
2407 * d_delete - delete a dentry
2408 * @dentry: The dentry to delete
2410 * Turn the dentry into a negative dentry if possible, otherwise
2411 * remove it from the hash queues so it can be deleted later
2414 void d_delete(struct dentry
* dentry
)
2416 struct inode
*inode
= dentry
->d_inode
;
2417 int isdir
= d_is_dir(dentry
);
2419 spin_lock(&inode
->i_lock
);
2420 spin_lock(&dentry
->d_lock
);
2422 * Are we the only user?
2424 if (dentry
->d_lockref
.count
== 1) {
2425 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
2426 dentry_unlink_inode(dentry
);
2429 spin_unlock(&dentry
->d_lock
);
2430 spin_unlock(&inode
->i_lock
);
2432 fsnotify_nameremove(dentry
, isdir
);
2434 EXPORT_SYMBOL(d_delete
);
2436 static void __d_rehash(struct dentry
*entry
)
2438 struct hlist_bl_head
*b
= d_hash(entry
->d_name
.hash
);
2441 hlist_bl_add_head_rcu(&entry
->d_hash
, b
);
2446 * d_rehash - add an entry back to the hash
2447 * @entry: dentry to add to the hash
2449 * Adds a dentry to the hash according to its name.
2452 void d_rehash(struct dentry
* entry
)
2454 spin_lock(&entry
->d_lock
);
2456 spin_unlock(&entry
->d_lock
);
2458 EXPORT_SYMBOL(d_rehash
);
2460 static inline unsigned start_dir_add(struct inode
*dir
)
2464 unsigned n
= dir
->i_dir_seq
;
2465 if (!(n
& 1) && cmpxchg(&dir
->i_dir_seq
, n
, n
+ 1) == n
)
2471 static inline void end_dir_add(struct inode
*dir
, unsigned n
)
2473 smp_store_release(&dir
->i_dir_seq
, n
+ 2);
2476 static void d_wait_lookup(struct dentry
*dentry
)
2478 if (d_in_lookup(dentry
)) {
2479 DECLARE_WAITQUEUE(wait
, current
);
2480 add_wait_queue(dentry
->d_wait
, &wait
);
2482 set_current_state(TASK_UNINTERRUPTIBLE
);
2483 spin_unlock(&dentry
->d_lock
);
2485 spin_lock(&dentry
->d_lock
);
2486 } while (d_in_lookup(dentry
));
2490 struct dentry
*d_alloc_parallel(struct dentry
*parent
,
2491 const struct qstr
*name
,
2492 wait_queue_head_t
*wq
)
2494 unsigned int hash
= name
->hash
;
2495 struct hlist_bl_head
*b
= in_lookup_hash(parent
, hash
);
2496 struct hlist_bl_node
*node
;
2497 struct dentry
*new = d_alloc(parent
, name
);
2498 struct dentry
*dentry
;
2499 unsigned seq
, r_seq
, d_seq
;
2502 return ERR_PTR(-ENOMEM
);
2506 seq
= smp_load_acquire(&parent
->d_inode
->i_dir_seq
);
2507 r_seq
= read_seqbegin(&rename_lock
);
2508 dentry
= __d_lookup_rcu(parent
, name
, &d_seq
);
2509 if (unlikely(dentry
)) {
2510 if (!lockref_get_not_dead(&dentry
->d_lockref
)) {
2514 if (read_seqcount_retry(&dentry
->d_seq
, d_seq
)) {
2523 if (unlikely(read_seqretry(&rename_lock
, r_seq
))) {
2528 if (unlikely(seq
& 1)) {
2534 if (unlikely(READ_ONCE(parent
->d_inode
->i_dir_seq
) != seq
)) {
2540 * No changes for the parent since the beginning of d_lookup().
2541 * Since all removals from the chain happen with hlist_bl_lock(),
2542 * any potential in-lookup matches are going to stay here until
2543 * we unlock the chain. All fields are stable in everything
2546 hlist_bl_for_each_entry(dentry
, node
, b
, d_u
.d_in_lookup_hash
) {
2547 if (dentry
->d_name
.hash
!= hash
)
2549 if (dentry
->d_parent
!= parent
)
2551 if (!d_same_name(dentry
, parent
, name
))
2554 /* now we can try to grab a reference */
2555 if (!lockref_get_not_dead(&dentry
->d_lockref
)) {
2562 * somebody is likely to be still doing lookup for it;
2563 * wait for them to finish
2565 spin_lock(&dentry
->d_lock
);
2566 d_wait_lookup(dentry
);
2568 * it's not in-lookup anymore; in principle we should repeat
2569 * everything from dcache lookup, but it's likely to be what
2570 * d_lookup() would've found anyway. If it is, just return it;
2571 * otherwise we really have to repeat the whole thing.
2573 if (unlikely(dentry
->d_name
.hash
!= hash
))
2575 if (unlikely(dentry
->d_parent
!= parent
))
2577 if (unlikely(d_unhashed(dentry
)))
2579 if (unlikely(!d_same_name(dentry
, parent
, name
)))
2581 /* OK, it *is* a hashed match; return it */
2582 spin_unlock(&dentry
->d_lock
);
2587 /* we can't take ->d_lock here; it's OK, though. */
2588 new->d_flags
|= DCACHE_PAR_LOOKUP
;
2590 hlist_bl_add_head_rcu(&new->d_u
.d_in_lookup_hash
, b
);
2594 spin_unlock(&dentry
->d_lock
);
2598 EXPORT_SYMBOL(d_alloc_parallel
);
2600 void __d_lookup_done(struct dentry
*dentry
)
2602 struct hlist_bl_head
*b
= in_lookup_hash(dentry
->d_parent
,
2603 dentry
->d_name
.hash
);
2605 dentry
->d_flags
&= ~DCACHE_PAR_LOOKUP
;
2606 __hlist_bl_del(&dentry
->d_u
.d_in_lookup_hash
);
2607 wake_up_all(dentry
->d_wait
);
2608 dentry
->d_wait
= NULL
;
2610 INIT_HLIST_NODE(&dentry
->d_u
.d_alias
);
2611 INIT_LIST_HEAD(&dentry
->d_lru
);
2613 EXPORT_SYMBOL(__d_lookup_done
);
2615 /* inode->i_lock held if inode is non-NULL */
2617 static inline void __d_add(struct dentry
*dentry
, struct inode
*inode
)
2619 struct inode
*dir
= NULL
;
2621 spin_lock(&dentry
->d_lock
);
2622 if (unlikely(d_in_lookup(dentry
))) {
2623 dir
= dentry
->d_parent
->d_inode
;
2624 n
= start_dir_add(dir
);
2625 __d_lookup_done(dentry
);
2628 unsigned add_flags
= d_flags_for_inode(inode
);
2629 hlist_add_head(&dentry
->d_u
.d_alias
, &inode
->i_dentry
);
2630 raw_write_seqcount_begin(&dentry
->d_seq
);
2631 __d_set_inode_and_type(dentry
, inode
, add_flags
);
2632 raw_write_seqcount_end(&dentry
->d_seq
);
2633 fsnotify_update_flags(dentry
);
2637 end_dir_add(dir
, n
);
2638 spin_unlock(&dentry
->d_lock
);
2640 spin_unlock(&inode
->i_lock
);
2644 * d_add - add dentry to hash queues
2645 * @entry: dentry to add
2646 * @inode: The inode to attach to this dentry
2648 * This adds the entry to the hash queues and initializes @inode.
2649 * The entry was actually filled in earlier during d_alloc().
2652 void d_add(struct dentry
*entry
, struct inode
*inode
)
2655 security_d_instantiate(entry
, inode
);
2656 spin_lock(&inode
->i_lock
);
2658 __d_add(entry
, inode
);
2660 EXPORT_SYMBOL(d_add
);
2663 * d_exact_alias - find and hash an exact unhashed alias
2664 * @entry: dentry to add
2665 * @inode: The inode to go with this dentry
2667 * If an unhashed dentry with the same name/parent and desired
2668 * inode already exists, hash and return it. Otherwise, return
2671 * Parent directory should be locked.
2673 struct dentry
*d_exact_alias(struct dentry
*entry
, struct inode
*inode
)
2675 struct dentry
*alias
;
2676 unsigned int hash
= entry
->d_name
.hash
;
2678 spin_lock(&inode
->i_lock
);
2679 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
2681 * Don't need alias->d_lock here, because aliases with
2682 * d_parent == entry->d_parent are not subject to name or
2683 * parent changes, because the parent inode i_mutex is held.
2685 if (alias
->d_name
.hash
!= hash
)
2687 if (alias
->d_parent
!= entry
->d_parent
)
2689 if (!d_same_name(alias
, entry
->d_parent
, &entry
->d_name
))
2691 spin_lock(&alias
->d_lock
);
2692 if (!d_unhashed(alias
)) {
2693 spin_unlock(&alias
->d_lock
);
2696 __dget_dlock(alias
);
2698 spin_unlock(&alias
->d_lock
);
2700 spin_unlock(&inode
->i_lock
);
2703 spin_unlock(&inode
->i_lock
);
2706 EXPORT_SYMBOL(d_exact_alias
);
2709 * dentry_update_name_case - update case insensitive dentry with a new name
2710 * @dentry: dentry to be updated
2713 * Update a case insensitive dentry with new case of name.
2715 * dentry must have been returned by d_lookup with name @name. Old and new
2716 * name lengths must match (ie. no d_compare which allows mismatched name
2719 * Parent inode i_mutex must be held over d_lookup and into this call (to
2720 * keep renames and concurrent inserts, and readdir(2) away).
2722 void dentry_update_name_case(struct dentry
*dentry
, const struct qstr
*name
)
2724 BUG_ON(!inode_is_locked(dentry
->d_parent
->d_inode
));
2725 BUG_ON(dentry
->d_name
.len
!= name
->len
); /* d_lookup gives this */
2727 spin_lock(&dentry
->d_lock
);
2728 write_seqcount_begin(&dentry
->d_seq
);
2729 memcpy((unsigned char *)dentry
->d_name
.name
, name
->name
, name
->len
);
2730 write_seqcount_end(&dentry
->d_seq
);
2731 spin_unlock(&dentry
->d_lock
);
2733 EXPORT_SYMBOL(dentry_update_name_case
);
2735 static void swap_names(struct dentry
*dentry
, struct dentry
*target
)
2737 if (unlikely(dname_external(target
))) {
2738 if (unlikely(dname_external(dentry
))) {
2740 * Both external: swap the pointers
2742 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2745 * dentry:internal, target:external. Steal target's
2746 * storage and make target internal.
2748 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2749 dentry
->d_name
.len
+ 1);
2750 dentry
->d_name
.name
= target
->d_name
.name
;
2751 target
->d_name
.name
= target
->d_iname
;
2754 if (unlikely(dname_external(dentry
))) {
2756 * dentry:external, target:internal. Give dentry's
2757 * storage to target and make dentry internal
2759 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2760 target
->d_name
.len
+ 1);
2761 target
->d_name
.name
= dentry
->d_name
.name
;
2762 dentry
->d_name
.name
= dentry
->d_iname
;
2765 * Both are internal.
2768 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN
, sizeof(long)));
2769 for (i
= 0; i
< DNAME_INLINE_LEN
/ sizeof(long); i
++) {
2770 swap(((long *) &dentry
->d_iname
)[i
],
2771 ((long *) &target
->d_iname
)[i
]);
2775 swap(dentry
->d_name
.hash_len
, target
->d_name
.hash_len
);
2778 static void copy_name(struct dentry
*dentry
, struct dentry
*target
)
2780 struct external_name
*old_name
= NULL
;
2781 if (unlikely(dname_external(dentry
)))
2782 old_name
= external_name(dentry
);
2783 if (unlikely(dname_external(target
))) {
2784 atomic_inc(&external_name(target
)->u
.count
);
2785 dentry
->d_name
= target
->d_name
;
2787 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2788 target
->d_name
.len
+ 1);
2789 dentry
->d_name
.name
= dentry
->d_iname
;
2790 dentry
->d_name
.hash_len
= target
->d_name
.hash_len
;
2792 if (old_name
&& likely(atomic_dec_and_test(&old_name
->u
.count
)))
2793 call_rcu(&old_name
->u
.head
, __d_free_external_name
);
2797 * __d_move - move a dentry
2798 * @dentry: entry to move
2799 * @target: new dentry
2800 * @exchange: exchange the two dentries
2802 * Update the dcache to reflect the move of a file name. Negative
2803 * dcache entries should not be moved in this way. Caller must hold
2804 * rename_lock, the i_mutex of the source and target directories,
2805 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2807 static void __d_move(struct dentry
*dentry
, struct dentry
*target
,
2810 struct dentry
*old_parent
, *p
;
2811 struct inode
*dir
= NULL
;
2814 WARN_ON(!dentry
->d_inode
);
2815 if (WARN_ON(dentry
== target
))
2818 BUG_ON(d_ancestor(target
, dentry
));
2819 old_parent
= dentry
->d_parent
;
2820 p
= d_ancestor(old_parent
, target
);
2821 if (IS_ROOT(dentry
)) {
2823 spin_lock(&target
->d_parent
->d_lock
);
2825 /* target is not a descendent of dentry->d_parent */
2826 spin_lock(&target
->d_parent
->d_lock
);
2827 spin_lock_nested(&old_parent
->d_lock
, DENTRY_D_LOCK_NESTED
);
2829 BUG_ON(p
== dentry
);
2830 spin_lock(&old_parent
->d_lock
);
2832 spin_lock_nested(&target
->d_parent
->d_lock
,
2833 DENTRY_D_LOCK_NESTED
);
2835 spin_lock_nested(&dentry
->d_lock
, 2);
2836 spin_lock_nested(&target
->d_lock
, 3);
2838 if (unlikely(d_in_lookup(target
))) {
2839 dir
= target
->d_parent
->d_inode
;
2840 n
= start_dir_add(dir
);
2841 __d_lookup_done(target
);
2844 write_seqcount_begin(&dentry
->d_seq
);
2845 write_seqcount_begin_nested(&target
->d_seq
, DENTRY_D_LOCK_NESTED
);
2848 if (!d_unhashed(dentry
))
2850 if (!d_unhashed(target
))
2853 /* ... and switch them in the tree */
2854 dentry
->d_parent
= target
->d_parent
;
2856 copy_name(dentry
, target
);
2857 target
->d_hash
.pprev
= NULL
;
2858 dentry
->d_parent
->d_lockref
.count
++;
2859 if (dentry
== old_parent
)
2860 dentry
->d_flags
|= DCACHE_RCUACCESS
;
2862 WARN_ON(!--old_parent
->d_lockref
.count
);
2864 target
->d_parent
= old_parent
;
2865 swap_names(dentry
, target
);
2866 list_move(&target
->d_child
, &target
->d_parent
->d_subdirs
);
2868 fsnotify_update_flags(target
);
2870 list_move(&dentry
->d_child
, &dentry
->d_parent
->d_subdirs
);
2872 fsnotify_update_flags(dentry
);
2874 write_seqcount_end(&target
->d_seq
);
2875 write_seqcount_end(&dentry
->d_seq
);
2878 end_dir_add(dir
, n
);
2880 if (dentry
->d_parent
!= old_parent
)
2881 spin_unlock(&dentry
->d_parent
->d_lock
);
2882 if (dentry
!= old_parent
)
2883 spin_unlock(&old_parent
->d_lock
);
2884 spin_unlock(&target
->d_lock
);
2885 spin_unlock(&dentry
->d_lock
);
2889 * d_move - move a dentry
2890 * @dentry: entry to move
2891 * @target: new dentry
2893 * Update the dcache to reflect the move of a file name. Negative
2894 * dcache entries should not be moved in this way. See the locking
2895 * requirements for __d_move.
2897 void d_move(struct dentry
*dentry
, struct dentry
*target
)
2899 write_seqlock(&rename_lock
);
2900 __d_move(dentry
, target
, false);
2901 write_sequnlock(&rename_lock
);
2903 EXPORT_SYMBOL(d_move
);
2906 * d_exchange - exchange two dentries
2907 * @dentry1: first dentry
2908 * @dentry2: second dentry
2910 void d_exchange(struct dentry
*dentry1
, struct dentry
*dentry2
)
2912 write_seqlock(&rename_lock
);
2914 WARN_ON(!dentry1
->d_inode
);
2915 WARN_ON(!dentry2
->d_inode
);
2916 WARN_ON(IS_ROOT(dentry1
));
2917 WARN_ON(IS_ROOT(dentry2
));
2919 __d_move(dentry1
, dentry2
, true);
2921 write_sequnlock(&rename_lock
);
2925 * d_ancestor - search for an ancestor
2926 * @p1: ancestor dentry
2929 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2930 * an ancestor of p2, else NULL.
2932 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2936 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2937 if (p
->d_parent
== p1
)
2944 * This helper attempts to cope with remotely renamed directories
2946 * It assumes that the caller is already holding
2947 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2949 * Note: If ever the locking in lock_rename() changes, then please
2950 * remember to update this too...
2952 static int __d_unalias(struct inode
*inode
,
2953 struct dentry
*dentry
, struct dentry
*alias
)
2955 struct mutex
*m1
= NULL
;
2956 struct rw_semaphore
*m2
= NULL
;
2959 /* If alias and dentry share a parent, then no extra locks required */
2960 if (alias
->d_parent
== dentry
->d_parent
)
2963 /* See lock_rename() */
2964 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2966 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2967 if (!inode_trylock_shared(alias
->d_parent
->d_inode
))
2969 m2
= &alias
->d_parent
->d_inode
->i_rwsem
;
2971 __d_move(alias
, dentry
, false);
2982 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2983 * @inode: the inode which may have a disconnected dentry
2984 * @dentry: a negative dentry which we want to point to the inode.
2986 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2987 * place of the given dentry and return it, else simply d_add the inode
2988 * to the dentry and return NULL.
2990 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2991 * we should error out: directories can't have multiple aliases.
2993 * This is needed in the lookup routine of any filesystem that is exportable
2994 * (via knfsd) so that we can build dcache paths to directories effectively.
2996 * If a dentry was found and moved, then it is returned. Otherwise NULL
2997 * is returned. This matches the expected return value of ->lookup.
2999 * Cluster filesystems may call this function with a negative, hashed dentry.
3000 * In that case, we know that the inode will be a regular file, and also this
3001 * will only occur during atomic_open. So we need to check for the dentry
3002 * being already hashed only in the final case.
3004 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
3007 return ERR_CAST(inode
);
3009 BUG_ON(!d_unhashed(dentry
));
3014 security_d_instantiate(dentry
, inode
);
3015 spin_lock(&inode
->i_lock
);
3016 if (S_ISDIR(inode
->i_mode
)) {
3017 struct dentry
*new = __d_find_any_alias(inode
);
3018 if (unlikely(new)) {
3019 /* The reference to new ensures it remains an alias */
3020 spin_unlock(&inode
->i_lock
);
3021 write_seqlock(&rename_lock
);
3022 if (unlikely(d_ancestor(new, dentry
))) {
3023 write_sequnlock(&rename_lock
);
3025 new = ERR_PTR(-ELOOP
);
3026 pr_warn_ratelimited(
3027 "VFS: Lookup of '%s' in %s %s"
3028 " would have caused loop\n",
3029 dentry
->d_name
.name
,
3030 inode
->i_sb
->s_type
->name
,
3032 } else if (!IS_ROOT(new)) {
3033 struct dentry
*old_parent
= dget(new->d_parent
);
3034 int err
= __d_unalias(inode
, dentry
, new);
3035 write_sequnlock(&rename_lock
);
3042 __d_move(new, dentry
, false);
3043 write_sequnlock(&rename_lock
);
3050 __d_add(dentry
, inode
);
3053 EXPORT_SYMBOL(d_splice_alias
);
3056 * Test whether new_dentry is a subdirectory of old_dentry.
3058 * Trivially implemented using the dcache structure
3062 * is_subdir - is new dentry a subdirectory of old_dentry
3063 * @new_dentry: new dentry
3064 * @old_dentry: old dentry
3066 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3067 * Returns false otherwise.
3068 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3071 bool is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
3076 if (new_dentry
== old_dentry
)
3080 /* for restarting inner loop in case of seq retry */
3081 seq
= read_seqbegin(&rename_lock
);
3083 * Need rcu_readlock to protect against the d_parent trashing
3087 if (d_ancestor(old_dentry
, new_dentry
))
3092 } while (read_seqretry(&rename_lock
, seq
));
3096 EXPORT_SYMBOL(is_subdir
);
3098 static enum d_walk_ret
d_genocide_kill(void *data
, struct dentry
*dentry
)
3100 struct dentry
*root
= data
;
3101 if (dentry
!= root
) {
3102 if (d_unhashed(dentry
) || !dentry
->d_inode
)
3105 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
3106 dentry
->d_flags
|= DCACHE_GENOCIDE
;
3107 dentry
->d_lockref
.count
--;
3110 return D_WALK_CONTINUE
;
3113 void d_genocide(struct dentry
*parent
)
3115 d_walk(parent
, parent
, d_genocide_kill
, NULL
);
3118 EXPORT_SYMBOL(d_genocide
);
3120 void d_tmpfile(struct dentry
*dentry
, struct inode
*inode
)
3122 inode_dec_link_count(inode
);
3123 BUG_ON(dentry
->d_name
.name
!= dentry
->d_iname
||
3124 !hlist_unhashed(&dentry
->d_u
.d_alias
) ||
3125 !d_unlinked(dentry
));
3126 spin_lock(&dentry
->d_parent
->d_lock
);
3127 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
3128 dentry
->d_name
.len
= sprintf(dentry
->d_iname
, "#%llu",
3129 (unsigned long long)inode
->i_ino
);
3130 spin_unlock(&dentry
->d_lock
);
3131 spin_unlock(&dentry
->d_parent
->d_lock
);
3132 d_instantiate(dentry
, inode
);
3134 EXPORT_SYMBOL(d_tmpfile
);
3136 static __initdata
unsigned long dhash_entries
;
3137 static int __init
set_dhash_entries(char *str
)
3141 dhash_entries
= simple_strtoul(str
, &str
, 0);
3144 __setup("dhash_entries=", set_dhash_entries
);
3146 static void __init
dcache_init_early(void)
3148 /* If hashes are distributed across NUMA nodes, defer
3149 * hash allocation until vmalloc space is available.
3155 alloc_large_system_hash("Dentry cache",
3156 sizeof(struct hlist_bl_head
),
3159 HASH_EARLY
| HASH_ZERO
,
3164 d_hash_shift
= 32 - d_hash_shift
;
3167 static void __init
dcache_init(void)
3170 * A constructor could be added for stable state like the lists,
3171 * but it is probably not worth it because of the cache nature
3174 dentry_cache
= KMEM_CACHE_USERCOPY(dentry
,
3175 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
|SLAB_ACCOUNT
,
3178 /* Hash may have been set up in dcache_init_early */
3183 alloc_large_system_hash("Dentry cache",
3184 sizeof(struct hlist_bl_head
),
3192 d_hash_shift
= 32 - d_hash_shift
;
3195 /* SLAB cache for __getname() consumers */
3196 struct kmem_cache
*names_cachep __read_mostly
;
3197 EXPORT_SYMBOL(names_cachep
);
3199 void __init
vfs_caches_init_early(void)
3203 for (i
= 0; i
< ARRAY_SIZE(in_lookup_hashtable
); i
++)
3204 INIT_HLIST_BL_HEAD(&in_lookup_hashtable
[i
]);
3206 dcache_init_early();
3210 void __init
vfs_caches_init(void)
3212 names_cachep
= kmem_cache_create_usercopy("names_cache", PATH_MAX
, 0,
3213 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, 0, PATH_MAX
, NULL
);
3218 files_maxfiles_init();