y2038: ia64: Remove unneeded ipc uapi header files
[linux-2.6/btrfs-unstable.git] / fs / dcache.c
blob86d2de63461e1550efe205643d66800dd12f15ac
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/ratelimit.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/security.h>
28 #include <linux/seqlock.h>
29 #include <linux/bootmem.h>
30 #include <linux/bit_spinlock.h>
31 #include <linux/rculist_bl.h>
32 #include <linux/list_lru.h>
33 #include "internal.h"
34 #include "mount.h"
37 * Usage:
38 * dcache->d_inode->i_lock protects:
39 * - i_dentry, d_u.d_alias, d_inode of aliases
40 * dcache_hash_bucket lock protects:
41 * - the dcache hash table
42 * s_roots bl list spinlock protects:
43 * - the s_roots list (see __d_drop)
44 * dentry->d_sb->s_dentry_lru_lock protects:
45 * - the dcache lru lists and counters
46 * d_lock protects:
47 * - d_flags
48 * - d_name
49 * - d_lru
50 * - d_count
51 * - d_unhashed()
52 * - d_parent and d_subdirs
53 * - childrens' d_child and d_parent
54 * - d_u.d_alias, d_inode
56 * Ordering:
57 * dentry->d_inode->i_lock
58 * dentry->d_lock
59 * dentry->d_sb->s_dentry_lru_lock
60 * dcache_hash_bucket lock
61 * s_roots lock
63 * If there is an ancestor relationship:
64 * dentry->d_parent->...->d_parent->d_lock
65 * ...
66 * dentry->d_parent->d_lock
67 * dentry->d_lock
69 * If no ancestor relationship:
70 * arbitrary, since it's serialized on rename_lock
72 int sysctl_vfs_cache_pressure __read_mostly = 100;
73 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
75 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
77 EXPORT_SYMBOL(rename_lock);
79 static struct kmem_cache *dentry_cache __read_mostly;
81 const struct qstr empty_name = QSTR_INIT("", 0);
82 EXPORT_SYMBOL(empty_name);
83 const struct qstr slash_name = QSTR_INIT("/", 1);
84 EXPORT_SYMBOL(slash_name);
87 * This is the single most critical data structure when it comes
88 * to the dcache: the hashtable for lookups. Somebody should try
89 * to make this good - I've just made it work.
91 * This hash-function tries to avoid losing too many bits of hash
92 * information, yet avoid using a prime hash-size or similar.
95 static unsigned int d_hash_shift __read_mostly;
97 static struct hlist_bl_head *dentry_hashtable __read_mostly;
99 static inline struct hlist_bl_head *d_hash(unsigned int hash)
101 return dentry_hashtable + (hash >> d_hash_shift);
104 #define IN_LOOKUP_SHIFT 10
105 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
107 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
108 unsigned int hash)
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117 .age_limit = 45,
120 static DEFINE_PER_CPU(long, nr_dentry);
121 static DEFINE_PER_CPU(long, nr_dentry_unused);
123 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
126 * Here we resort to our own counters instead of using generic per-cpu counters
127 * for consistency with what the vfs inode code does. We are expected to harvest
128 * better code and performance by having our own specialized counters.
130 * Please note that the loop is done over all possible CPUs, not over all online
131 * CPUs. The reason for this is that we don't want to play games with CPUs going
132 * on and off. If one of them goes off, we will just keep their counters.
134 * glommer: See cffbc8a for details, and if you ever intend to change this,
135 * please update all vfs counters to match.
137 static long get_nr_dentry(void)
139 int i;
140 long sum = 0;
141 for_each_possible_cpu(i)
142 sum += per_cpu(nr_dentry, i);
143 return sum < 0 ? 0 : sum;
146 static long get_nr_dentry_unused(void)
148 int i;
149 long sum = 0;
150 for_each_possible_cpu(i)
151 sum += per_cpu(nr_dentry_unused, i);
152 return sum < 0 ? 0 : sum;
155 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
156 size_t *lenp, loff_t *ppos)
158 dentry_stat.nr_dentry = get_nr_dentry();
159 dentry_stat.nr_unused = get_nr_dentry_unused();
160 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
162 #endif
165 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
166 * The strings are both count bytes long, and count is non-zero.
168 #ifdef CONFIG_DCACHE_WORD_ACCESS
170 #include <asm/word-at-a-time.h>
172 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
173 * aligned allocation for this particular component. We don't
174 * strictly need the load_unaligned_zeropad() safety, but it
175 * doesn't hurt either.
177 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
178 * need the careful unaligned handling.
180 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
182 unsigned long a,b,mask;
184 for (;;) {
185 a = read_word_at_a_time(cs);
186 b = load_unaligned_zeropad(ct);
187 if (tcount < sizeof(unsigned long))
188 break;
189 if (unlikely(a != b))
190 return 1;
191 cs += sizeof(unsigned long);
192 ct += sizeof(unsigned long);
193 tcount -= sizeof(unsigned long);
194 if (!tcount)
195 return 0;
197 mask = bytemask_from_count(tcount);
198 return unlikely(!!((a ^ b) & mask));
201 #else
203 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
205 do {
206 if (*cs != *ct)
207 return 1;
208 cs++;
209 ct++;
210 tcount--;
211 } while (tcount);
212 return 0;
215 #endif
217 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
220 * Be careful about RCU walk racing with rename:
221 * use 'READ_ONCE' to fetch the name pointer.
223 * NOTE! Even if a rename will mean that the length
224 * was not loaded atomically, we don't care. The
225 * RCU walk will check the sequence count eventually,
226 * and catch it. And we won't overrun the buffer,
227 * because we're reading the name pointer atomically,
228 * and a dentry name is guaranteed to be properly
229 * terminated with a NUL byte.
231 * End result: even if 'len' is wrong, we'll exit
232 * early because the data cannot match (there can
233 * be no NUL in the ct/tcount data)
235 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
237 return dentry_string_cmp(cs, ct, tcount);
240 struct external_name {
241 union {
242 atomic_t count;
243 struct rcu_head head;
244 } u;
245 unsigned char name[];
248 static inline struct external_name *external_name(struct dentry *dentry)
250 return container_of(dentry->d_name.name, struct external_name, name[0]);
253 static void __d_free(struct rcu_head *head)
255 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
257 kmem_cache_free(dentry_cache, dentry);
260 static void __d_free_external_name(struct rcu_head *head)
262 struct external_name *name = container_of(head, struct external_name,
263 u.head);
265 mod_node_page_state(page_pgdat(virt_to_page(name)),
266 NR_INDIRECTLY_RECLAIMABLE_BYTES,
267 -ksize(name));
269 kfree(name);
272 static void __d_free_external(struct rcu_head *head)
274 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
276 __d_free_external_name(&external_name(dentry)->u.head);
278 kmem_cache_free(dentry_cache, dentry);
281 static inline int dname_external(const struct dentry *dentry)
283 return dentry->d_name.name != dentry->d_iname;
286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
288 spin_lock(&dentry->d_lock);
289 if (unlikely(dname_external(dentry))) {
290 struct external_name *p = external_name(dentry);
291 atomic_inc(&p->u.count);
292 spin_unlock(&dentry->d_lock);
293 name->name = p->name;
294 } else {
295 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
296 spin_unlock(&dentry->d_lock);
297 name->name = name->inline_name;
300 EXPORT_SYMBOL(take_dentry_name_snapshot);
302 void release_dentry_name_snapshot(struct name_snapshot *name)
304 if (unlikely(name->name != name->inline_name)) {
305 struct external_name *p;
306 p = container_of(name->name, struct external_name, name[0]);
307 if (unlikely(atomic_dec_and_test(&p->u.count)))
308 call_rcu(&p->u.head, __d_free_external_name);
311 EXPORT_SYMBOL(release_dentry_name_snapshot);
313 static inline void __d_set_inode_and_type(struct dentry *dentry,
314 struct inode *inode,
315 unsigned type_flags)
317 unsigned flags;
319 dentry->d_inode = inode;
320 flags = READ_ONCE(dentry->d_flags);
321 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
322 flags |= type_flags;
323 WRITE_ONCE(dentry->d_flags, flags);
326 static inline void __d_clear_type_and_inode(struct dentry *dentry)
328 unsigned flags = READ_ONCE(dentry->d_flags);
330 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
331 WRITE_ONCE(dentry->d_flags, flags);
332 dentry->d_inode = NULL;
335 static void dentry_free(struct dentry *dentry)
337 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
338 if (unlikely(dname_external(dentry))) {
339 struct external_name *p = external_name(dentry);
340 if (likely(atomic_dec_and_test(&p->u.count))) {
341 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
342 return;
345 /* if dentry was never visible to RCU, immediate free is OK */
346 if (!(dentry->d_flags & DCACHE_RCUACCESS))
347 __d_free(&dentry->d_u.d_rcu);
348 else
349 call_rcu(&dentry->d_u.d_rcu, __d_free);
353 * Release the dentry's inode, using the filesystem
354 * d_iput() operation if defined.
356 static void dentry_unlink_inode(struct dentry * dentry)
357 __releases(dentry->d_lock)
358 __releases(dentry->d_inode->i_lock)
360 struct inode *inode = dentry->d_inode;
361 bool hashed = !d_unhashed(dentry);
363 if (hashed)
364 raw_write_seqcount_begin(&dentry->d_seq);
365 __d_clear_type_and_inode(dentry);
366 hlist_del_init(&dentry->d_u.d_alias);
367 if (hashed)
368 raw_write_seqcount_end(&dentry->d_seq);
369 spin_unlock(&dentry->d_lock);
370 spin_unlock(&inode->i_lock);
371 if (!inode->i_nlink)
372 fsnotify_inoderemove(inode);
373 if (dentry->d_op && dentry->d_op->d_iput)
374 dentry->d_op->d_iput(dentry, inode);
375 else
376 iput(inode);
380 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
381 * is in use - which includes both the "real" per-superblock
382 * LRU list _and_ the DCACHE_SHRINK_LIST use.
384 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
385 * on the shrink list (ie not on the superblock LRU list).
387 * The per-cpu "nr_dentry_unused" counters are updated with
388 * the DCACHE_LRU_LIST bit.
390 * These helper functions make sure we always follow the
391 * rules. d_lock must be held by the caller.
393 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
394 static void d_lru_add(struct dentry *dentry)
396 D_FLAG_VERIFY(dentry, 0);
397 dentry->d_flags |= DCACHE_LRU_LIST;
398 this_cpu_inc(nr_dentry_unused);
399 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
402 static void d_lru_del(struct dentry *dentry)
404 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
405 dentry->d_flags &= ~DCACHE_LRU_LIST;
406 this_cpu_dec(nr_dentry_unused);
407 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
410 static void d_shrink_del(struct dentry *dentry)
412 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
413 list_del_init(&dentry->d_lru);
414 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
415 this_cpu_dec(nr_dentry_unused);
418 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
420 D_FLAG_VERIFY(dentry, 0);
421 list_add(&dentry->d_lru, list);
422 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
423 this_cpu_inc(nr_dentry_unused);
427 * These can only be called under the global LRU lock, ie during the
428 * callback for freeing the LRU list. "isolate" removes it from the
429 * LRU lists entirely, while shrink_move moves it to the indicated
430 * private list.
432 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
434 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
435 dentry->d_flags &= ~DCACHE_LRU_LIST;
436 this_cpu_dec(nr_dentry_unused);
437 list_lru_isolate(lru, &dentry->d_lru);
440 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
441 struct list_head *list)
443 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
444 dentry->d_flags |= DCACHE_SHRINK_LIST;
445 list_lru_isolate_move(lru, &dentry->d_lru, list);
449 * d_drop - drop a dentry
450 * @dentry: dentry to drop
452 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
453 * be found through a VFS lookup any more. Note that this is different from
454 * deleting the dentry - d_delete will try to mark the dentry negative if
455 * possible, giving a successful _negative_ lookup, while d_drop will
456 * just make the cache lookup fail.
458 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
459 * reason (NFS timeouts or autofs deletes).
461 * __d_drop requires dentry->d_lock
462 * ___d_drop doesn't mark dentry as "unhashed"
463 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
465 static void ___d_drop(struct dentry *dentry)
467 struct hlist_bl_head *b;
469 * Hashed dentries are normally on the dentry hashtable,
470 * with the exception of those newly allocated by
471 * d_obtain_root, which are always IS_ROOT:
473 if (unlikely(IS_ROOT(dentry)))
474 b = &dentry->d_sb->s_roots;
475 else
476 b = d_hash(dentry->d_name.hash);
478 hlist_bl_lock(b);
479 __hlist_bl_del(&dentry->d_hash);
480 hlist_bl_unlock(b);
483 void __d_drop(struct dentry *dentry)
485 if (!d_unhashed(dentry)) {
486 ___d_drop(dentry);
487 dentry->d_hash.pprev = NULL;
488 write_seqcount_invalidate(&dentry->d_seq);
491 EXPORT_SYMBOL(__d_drop);
493 void d_drop(struct dentry *dentry)
495 spin_lock(&dentry->d_lock);
496 __d_drop(dentry);
497 spin_unlock(&dentry->d_lock);
499 EXPORT_SYMBOL(d_drop);
501 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
503 struct dentry *next;
505 * Inform d_walk() and shrink_dentry_list() that we are no longer
506 * attached to the dentry tree
508 dentry->d_flags |= DCACHE_DENTRY_KILLED;
509 if (unlikely(list_empty(&dentry->d_child)))
510 return;
511 __list_del_entry(&dentry->d_child);
513 * Cursors can move around the list of children. While we'd been
514 * a normal list member, it didn't matter - ->d_child.next would've
515 * been updated. However, from now on it won't be and for the
516 * things like d_walk() it might end up with a nasty surprise.
517 * Normally d_walk() doesn't care about cursors moving around -
518 * ->d_lock on parent prevents that and since a cursor has no children
519 * of its own, we get through it without ever unlocking the parent.
520 * There is one exception, though - if we ascend from a child that
521 * gets killed as soon as we unlock it, the next sibling is found
522 * using the value left in its ->d_child.next. And if _that_
523 * pointed to a cursor, and cursor got moved (e.g. by lseek())
524 * before d_walk() regains parent->d_lock, we'll end up skipping
525 * everything the cursor had been moved past.
527 * Solution: make sure that the pointer left behind in ->d_child.next
528 * points to something that won't be moving around. I.e. skip the
529 * cursors.
531 while (dentry->d_child.next != &parent->d_subdirs) {
532 next = list_entry(dentry->d_child.next, struct dentry, d_child);
533 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
534 break;
535 dentry->d_child.next = next->d_child.next;
539 static void __dentry_kill(struct dentry *dentry)
541 struct dentry *parent = NULL;
542 bool can_free = true;
543 if (!IS_ROOT(dentry))
544 parent = dentry->d_parent;
547 * The dentry is now unrecoverably dead to the world.
549 lockref_mark_dead(&dentry->d_lockref);
552 * inform the fs via d_prune that this dentry is about to be
553 * unhashed and destroyed.
555 if (dentry->d_flags & DCACHE_OP_PRUNE)
556 dentry->d_op->d_prune(dentry);
558 if (dentry->d_flags & DCACHE_LRU_LIST) {
559 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
560 d_lru_del(dentry);
562 /* if it was on the hash then remove it */
563 __d_drop(dentry);
564 dentry_unlist(dentry, parent);
565 if (parent)
566 spin_unlock(&parent->d_lock);
567 if (dentry->d_inode)
568 dentry_unlink_inode(dentry);
569 else
570 spin_unlock(&dentry->d_lock);
571 this_cpu_dec(nr_dentry);
572 if (dentry->d_op && dentry->d_op->d_release)
573 dentry->d_op->d_release(dentry);
575 spin_lock(&dentry->d_lock);
576 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
577 dentry->d_flags |= DCACHE_MAY_FREE;
578 can_free = false;
580 spin_unlock(&dentry->d_lock);
581 if (likely(can_free))
582 dentry_free(dentry);
585 static struct dentry *__lock_parent(struct dentry *dentry)
587 struct dentry *parent;
588 rcu_read_lock();
589 spin_unlock(&dentry->d_lock);
590 again:
591 parent = READ_ONCE(dentry->d_parent);
592 spin_lock(&parent->d_lock);
594 * We can't blindly lock dentry until we are sure
595 * that we won't violate the locking order.
596 * Any changes of dentry->d_parent must have
597 * been done with parent->d_lock held, so
598 * spin_lock() above is enough of a barrier
599 * for checking if it's still our child.
601 if (unlikely(parent != dentry->d_parent)) {
602 spin_unlock(&parent->d_lock);
603 goto again;
605 rcu_read_unlock();
606 if (parent != dentry)
607 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
608 else
609 parent = NULL;
610 return parent;
613 static inline struct dentry *lock_parent(struct dentry *dentry)
615 struct dentry *parent = dentry->d_parent;
616 if (IS_ROOT(dentry))
617 return NULL;
618 if (likely(spin_trylock(&parent->d_lock)))
619 return parent;
620 return __lock_parent(dentry);
623 static inline bool retain_dentry(struct dentry *dentry)
625 WARN_ON(d_in_lookup(dentry));
627 /* Unreachable? Get rid of it */
628 if (unlikely(d_unhashed(dentry)))
629 return false;
631 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
632 return false;
634 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
635 if (dentry->d_op->d_delete(dentry))
636 return false;
638 /* retain; LRU fodder */
639 dentry->d_lockref.count--;
640 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
641 d_lru_add(dentry);
642 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
643 dentry->d_flags |= DCACHE_REFERENCED;
644 return true;
648 * Finish off a dentry we've decided to kill.
649 * dentry->d_lock must be held, returns with it unlocked.
650 * Returns dentry requiring refcount drop, or NULL if we're done.
652 static struct dentry *dentry_kill(struct dentry *dentry)
653 __releases(dentry->d_lock)
655 struct inode *inode = dentry->d_inode;
656 struct dentry *parent = NULL;
658 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
659 goto slow_positive;
661 if (!IS_ROOT(dentry)) {
662 parent = dentry->d_parent;
663 if (unlikely(!spin_trylock(&parent->d_lock))) {
664 parent = __lock_parent(dentry);
665 if (likely(inode || !dentry->d_inode))
666 goto got_locks;
667 /* negative that became positive */
668 if (parent)
669 spin_unlock(&parent->d_lock);
670 inode = dentry->d_inode;
671 goto slow_positive;
674 __dentry_kill(dentry);
675 return parent;
677 slow_positive:
678 spin_unlock(&dentry->d_lock);
679 spin_lock(&inode->i_lock);
680 spin_lock(&dentry->d_lock);
681 parent = lock_parent(dentry);
682 got_locks:
683 if (unlikely(dentry->d_lockref.count != 1)) {
684 dentry->d_lockref.count--;
685 } else if (likely(!retain_dentry(dentry))) {
686 __dentry_kill(dentry);
687 return parent;
689 /* we are keeping it, after all */
690 if (inode)
691 spin_unlock(&inode->i_lock);
692 if (parent)
693 spin_unlock(&parent->d_lock);
694 spin_unlock(&dentry->d_lock);
695 return NULL;
699 * Try to do a lockless dput(), and return whether that was successful.
701 * If unsuccessful, we return false, having already taken the dentry lock.
703 * The caller needs to hold the RCU read lock, so that the dentry is
704 * guaranteed to stay around even if the refcount goes down to zero!
706 static inline bool fast_dput(struct dentry *dentry)
708 int ret;
709 unsigned int d_flags;
712 * If we have a d_op->d_delete() operation, we sould not
713 * let the dentry count go to zero, so use "put_or_lock".
715 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
716 return lockref_put_or_lock(&dentry->d_lockref);
719 * .. otherwise, we can try to just decrement the
720 * lockref optimistically.
722 ret = lockref_put_return(&dentry->d_lockref);
725 * If the lockref_put_return() failed due to the lock being held
726 * by somebody else, the fast path has failed. We will need to
727 * get the lock, and then check the count again.
729 if (unlikely(ret < 0)) {
730 spin_lock(&dentry->d_lock);
731 if (dentry->d_lockref.count > 1) {
732 dentry->d_lockref.count--;
733 spin_unlock(&dentry->d_lock);
734 return 1;
736 return 0;
740 * If we weren't the last ref, we're done.
742 if (ret)
743 return 1;
746 * Careful, careful. The reference count went down
747 * to zero, but we don't hold the dentry lock, so
748 * somebody else could get it again, and do another
749 * dput(), and we need to not race with that.
751 * However, there is a very special and common case
752 * where we don't care, because there is nothing to
753 * do: the dentry is still hashed, it does not have
754 * a 'delete' op, and it's referenced and already on
755 * the LRU list.
757 * NOTE! Since we aren't locked, these values are
758 * not "stable". However, it is sufficient that at
759 * some point after we dropped the reference the
760 * dentry was hashed and the flags had the proper
761 * value. Other dentry users may have re-gotten
762 * a reference to the dentry and change that, but
763 * our work is done - we can leave the dentry
764 * around with a zero refcount.
766 smp_rmb();
767 d_flags = READ_ONCE(dentry->d_flags);
768 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
770 /* Nothing to do? Dropping the reference was all we needed? */
771 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
772 return 1;
775 * Not the fast normal case? Get the lock. We've already decremented
776 * the refcount, but we'll need to re-check the situation after
777 * getting the lock.
779 spin_lock(&dentry->d_lock);
782 * Did somebody else grab a reference to it in the meantime, and
783 * we're no longer the last user after all? Alternatively, somebody
784 * else could have killed it and marked it dead. Either way, we
785 * don't need to do anything else.
787 if (dentry->d_lockref.count) {
788 spin_unlock(&dentry->d_lock);
789 return 1;
793 * Re-get the reference we optimistically dropped. We hold the
794 * lock, and we just tested that it was zero, so we can just
795 * set it to 1.
797 dentry->d_lockref.count = 1;
798 return 0;
803 * This is dput
805 * This is complicated by the fact that we do not want to put
806 * dentries that are no longer on any hash chain on the unused
807 * list: we'd much rather just get rid of them immediately.
809 * However, that implies that we have to traverse the dentry
810 * tree upwards to the parents which might _also_ now be
811 * scheduled for deletion (it may have been only waiting for
812 * its last child to go away).
814 * This tail recursion is done by hand as we don't want to depend
815 * on the compiler to always get this right (gcc generally doesn't).
816 * Real recursion would eat up our stack space.
820 * dput - release a dentry
821 * @dentry: dentry to release
823 * Release a dentry. This will drop the usage count and if appropriate
824 * call the dentry unlink method as well as removing it from the queues and
825 * releasing its resources. If the parent dentries were scheduled for release
826 * they too may now get deleted.
828 void dput(struct dentry *dentry)
830 if (unlikely(!dentry))
831 return;
833 repeat:
834 might_sleep();
836 rcu_read_lock();
837 if (likely(fast_dput(dentry))) {
838 rcu_read_unlock();
839 return;
842 /* Slow case: now with the dentry lock held */
843 rcu_read_unlock();
845 if (likely(retain_dentry(dentry))) {
846 spin_unlock(&dentry->d_lock);
847 return;
850 dentry = dentry_kill(dentry);
851 if (dentry) {
852 cond_resched();
853 goto repeat;
856 EXPORT_SYMBOL(dput);
859 /* This must be called with d_lock held */
860 static inline void __dget_dlock(struct dentry *dentry)
862 dentry->d_lockref.count++;
865 static inline void __dget(struct dentry *dentry)
867 lockref_get(&dentry->d_lockref);
870 struct dentry *dget_parent(struct dentry *dentry)
872 int gotref;
873 struct dentry *ret;
876 * Do optimistic parent lookup without any
877 * locking.
879 rcu_read_lock();
880 ret = READ_ONCE(dentry->d_parent);
881 gotref = lockref_get_not_zero(&ret->d_lockref);
882 rcu_read_unlock();
883 if (likely(gotref)) {
884 if (likely(ret == READ_ONCE(dentry->d_parent)))
885 return ret;
886 dput(ret);
889 repeat:
891 * Don't need rcu_dereference because we re-check it was correct under
892 * the lock.
894 rcu_read_lock();
895 ret = dentry->d_parent;
896 spin_lock(&ret->d_lock);
897 if (unlikely(ret != dentry->d_parent)) {
898 spin_unlock(&ret->d_lock);
899 rcu_read_unlock();
900 goto repeat;
902 rcu_read_unlock();
903 BUG_ON(!ret->d_lockref.count);
904 ret->d_lockref.count++;
905 spin_unlock(&ret->d_lock);
906 return ret;
908 EXPORT_SYMBOL(dget_parent);
911 * d_find_alias - grab a hashed alias of inode
912 * @inode: inode in question
914 * If inode has a hashed alias, or is a directory and has any alias,
915 * acquire the reference to alias and return it. Otherwise return NULL.
916 * Notice that if inode is a directory there can be only one alias and
917 * it can be unhashed only if it has no children, or if it is the root
918 * of a filesystem, or if the directory was renamed and d_revalidate
919 * was the first vfs operation to notice.
921 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
922 * any other hashed alias over that one.
924 static struct dentry *__d_find_alias(struct inode *inode)
926 struct dentry *alias, *discon_alias;
928 again:
929 discon_alias = NULL;
930 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
931 spin_lock(&alias->d_lock);
932 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
933 if (IS_ROOT(alias) &&
934 (alias->d_flags & DCACHE_DISCONNECTED)) {
935 discon_alias = alias;
936 } else {
937 __dget_dlock(alias);
938 spin_unlock(&alias->d_lock);
939 return alias;
942 spin_unlock(&alias->d_lock);
944 if (discon_alias) {
945 alias = discon_alias;
946 spin_lock(&alias->d_lock);
947 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
948 __dget_dlock(alias);
949 spin_unlock(&alias->d_lock);
950 return alias;
952 spin_unlock(&alias->d_lock);
953 goto again;
955 return NULL;
958 struct dentry *d_find_alias(struct inode *inode)
960 struct dentry *de = NULL;
962 if (!hlist_empty(&inode->i_dentry)) {
963 spin_lock(&inode->i_lock);
964 de = __d_find_alias(inode);
965 spin_unlock(&inode->i_lock);
967 return de;
969 EXPORT_SYMBOL(d_find_alias);
972 * Try to kill dentries associated with this inode.
973 * WARNING: you must own a reference to inode.
975 void d_prune_aliases(struct inode *inode)
977 struct dentry *dentry;
978 restart:
979 spin_lock(&inode->i_lock);
980 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
981 spin_lock(&dentry->d_lock);
982 if (!dentry->d_lockref.count) {
983 struct dentry *parent = lock_parent(dentry);
984 if (likely(!dentry->d_lockref.count)) {
985 __dentry_kill(dentry);
986 dput(parent);
987 goto restart;
989 if (parent)
990 spin_unlock(&parent->d_lock);
992 spin_unlock(&dentry->d_lock);
994 spin_unlock(&inode->i_lock);
996 EXPORT_SYMBOL(d_prune_aliases);
999 * Lock a dentry from shrink list.
1000 * Called under rcu_read_lock() and dentry->d_lock; the former
1001 * guarantees that nothing we access will be freed under us.
1002 * Note that dentry is *not* protected from concurrent dentry_kill(),
1003 * d_delete(), etc.
1005 * Return false if dentry has been disrupted or grabbed, leaving
1006 * the caller to kick it off-list. Otherwise, return true and have
1007 * that dentry's inode and parent both locked.
1009 static bool shrink_lock_dentry(struct dentry *dentry)
1011 struct inode *inode;
1012 struct dentry *parent;
1014 if (dentry->d_lockref.count)
1015 return false;
1017 inode = dentry->d_inode;
1018 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1019 spin_unlock(&dentry->d_lock);
1020 spin_lock(&inode->i_lock);
1021 spin_lock(&dentry->d_lock);
1022 if (unlikely(dentry->d_lockref.count))
1023 goto out;
1024 /* changed inode means that somebody had grabbed it */
1025 if (unlikely(inode != dentry->d_inode))
1026 goto out;
1029 parent = dentry->d_parent;
1030 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1031 return true;
1033 spin_unlock(&dentry->d_lock);
1034 spin_lock(&parent->d_lock);
1035 if (unlikely(parent != dentry->d_parent)) {
1036 spin_unlock(&parent->d_lock);
1037 spin_lock(&dentry->d_lock);
1038 goto out;
1040 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1041 if (likely(!dentry->d_lockref.count))
1042 return true;
1043 spin_unlock(&parent->d_lock);
1044 out:
1045 if (inode)
1046 spin_unlock(&inode->i_lock);
1047 return false;
1050 static void shrink_dentry_list(struct list_head *list)
1052 while (!list_empty(list)) {
1053 struct dentry *dentry, *parent;
1055 cond_resched();
1057 dentry = list_entry(list->prev, struct dentry, d_lru);
1058 spin_lock(&dentry->d_lock);
1059 rcu_read_lock();
1060 if (!shrink_lock_dentry(dentry)) {
1061 bool can_free = false;
1062 rcu_read_unlock();
1063 d_shrink_del(dentry);
1064 if (dentry->d_lockref.count < 0)
1065 can_free = dentry->d_flags & DCACHE_MAY_FREE;
1066 spin_unlock(&dentry->d_lock);
1067 if (can_free)
1068 dentry_free(dentry);
1069 continue;
1071 rcu_read_unlock();
1072 d_shrink_del(dentry);
1073 parent = dentry->d_parent;
1074 __dentry_kill(dentry);
1075 if (parent == dentry)
1076 continue;
1078 * We need to prune ancestors too. This is necessary to prevent
1079 * quadratic behavior of shrink_dcache_parent(), but is also
1080 * expected to be beneficial in reducing dentry cache
1081 * fragmentation.
1083 dentry = parent;
1084 while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
1085 dentry = dentry_kill(dentry);
1089 static enum lru_status dentry_lru_isolate(struct list_head *item,
1090 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1092 struct list_head *freeable = arg;
1093 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1097 * we are inverting the lru lock/dentry->d_lock here,
1098 * so use a trylock. If we fail to get the lock, just skip
1099 * it
1101 if (!spin_trylock(&dentry->d_lock))
1102 return LRU_SKIP;
1105 * Referenced dentries are still in use. If they have active
1106 * counts, just remove them from the LRU. Otherwise give them
1107 * another pass through the LRU.
1109 if (dentry->d_lockref.count) {
1110 d_lru_isolate(lru, dentry);
1111 spin_unlock(&dentry->d_lock);
1112 return LRU_REMOVED;
1115 if (dentry->d_flags & DCACHE_REFERENCED) {
1116 dentry->d_flags &= ~DCACHE_REFERENCED;
1117 spin_unlock(&dentry->d_lock);
1120 * The list move itself will be made by the common LRU code. At
1121 * this point, we've dropped the dentry->d_lock but keep the
1122 * lru lock. This is safe to do, since every list movement is
1123 * protected by the lru lock even if both locks are held.
1125 * This is guaranteed by the fact that all LRU management
1126 * functions are intermediated by the LRU API calls like
1127 * list_lru_add and list_lru_del. List movement in this file
1128 * only ever occur through this functions or through callbacks
1129 * like this one, that are called from the LRU API.
1131 * The only exceptions to this are functions like
1132 * shrink_dentry_list, and code that first checks for the
1133 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1134 * operating only with stack provided lists after they are
1135 * properly isolated from the main list. It is thus, always a
1136 * local access.
1138 return LRU_ROTATE;
1141 d_lru_shrink_move(lru, dentry, freeable);
1142 spin_unlock(&dentry->d_lock);
1144 return LRU_REMOVED;
1148 * prune_dcache_sb - shrink the dcache
1149 * @sb: superblock
1150 * @sc: shrink control, passed to list_lru_shrink_walk()
1152 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1153 * is done when we need more memory and called from the superblock shrinker
1154 * function.
1156 * This function may fail to free any resources if all the dentries are in
1157 * use.
1159 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1161 LIST_HEAD(dispose);
1162 long freed;
1164 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1165 dentry_lru_isolate, &dispose);
1166 shrink_dentry_list(&dispose);
1167 return freed;
1170 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1171 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1173 struct list_head *freeable = arg;
1174 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1177 * we are inverting the lru lock/dentry->d_lock here,
1178 * so use a trylock. If we fail to get the lock, just skip
1179 * it
1181 if (!spin_trylock(&dentry->d_lock))
1182 return LRU_SKIP;
1184 d_lru_shrink_move(lru, dentry, freeable);
1185 spin_unlock(&dentry->d_lock);
1187 return LRU_REMOVED;
1192 * shrink_dcache_sb - shrink dcache for a superblock
1193 * @sb: superblock
1195 * Shrink the dcache for the specified super block. This is used to free
1196 * the dcache before unmounting a file system.
1198 void shrink_dcache_sb(struct super_block *sb)
1200 long freed;
1202 do {
1203 LIST_HEAD(dispose);
1205 freed = list_lru_walk(&sb->s_dentry_lru,
1206 dentry_lru_isolate_shrink, &dispose, 1024);
1208 this_cpu_sub(nr_dentry_unused, freed);
1209 shrink_dentry_list(&dispose);
1210 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1212 EXPORT_SYMBOL(shrink_dcache_sb);
1215 * enum d_walk_ret - action to talke during tree walk
1216 * @D_WALK_CONTINUE: contrinue walk
1217 * @D_WALK_QUIT: quit walk
1218 * @D_WALK_NORETRY: quit when retry is needed
1219 * @D_WALK_SKIP: skip this dentry and its children
1221 enum d_walk_ret {
1222 D_WALK_CONTINUE,
1223 D_WALK_QUIT,
1224 D_WALK_NORETRY,
1225 D_WALK_SKIP,
1229 * d_walk - walk the dentry tree
1230 * @parent: start of walk
1231 * @data: data passed to @enter() and @finish()
1232 * @enter: callback when first entering the dentry
1233 * @finish: callback when successfully finished the walk
1235 * The @enter() and @finish() callbacks are called with d_lock held.
1237 static void d_walk(struct dentry *parent, void *data,
1238 enum d_walk_ret (*enter)(void *, struct dentry *),
1239 void (*finish)(void *))
1241 struct dentry *this_parent;
1242 struct list_head *next;
1243 unsigned seq = 0;
1244 enum d_walk_ret ret;
1245 bool retry = true;
1247 again:
1248 read_seqbegin_or_lock(&rename_lock, &seq);
1249 this_parent = parent;
1250 spin_lock(&this_parent->d_lock);
1252 ret = enter(data, this_parent);
1253 switch (ret) {
1254 case D_WALK_CONTINUE:
1255 break;
1256 case D_WALK_QUIT:
1257 case D_WALK_SKIP:
1258 goto out_unlock;
1259 case D_WALK_NORETRY:
1260 retry = false;
1261 break;
1263 repeat:
1264 next = this_parent->d_subdirs.next;
1265 resume:
1266 while (next != &this_parent->d_subdirs) {
1267 struct list_head *tmp = next;
1268 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1269 next = tmp->next;
1271 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1272 continue;
1274 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1276 ret = enter(data, dentry);
1277 switch (ret) {
1278 case D_WALK_CONTINUE:
1279 break;
1280 case D_WALK_QUIT:
1281 spin_unlock(&dentry->d_lock);
1282 goto out_unlock;
1283 case D_WALK_NORETRY:
1284 retry = false;
1285 break;
1286 case D_WALK_SKIP:
1287 spin_unlock(&dentry->d_lock);
1288 continue;
1291 if (!list_empty(&dentry->d_subdirs)) {
1292 spin_unlock(&this_parent->d_lock);
1293 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1294 this_parent = dentry;
1295 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1296 goto repeat;
1298 spin_unlock(&dentry->d_lock);
1301 * All done at this level ... ascend and resume the search.
1303 rcu_read_lock();
1304 ascend:
1305 if (this_parent != parent) {
1306 struct dentry *child = this_parent;
1307 this_parent = child->d_parent;
1309 spin_unlock(&child->d_lock);
1310 spin_lock(&this_parent->d_lock);
1312 /* might go back up the wrong parent if we have had a rename. */
1313 if (need_seqretry(&rename_lock, seq))
1314 goto rename_retry;
1315 /* go into the first sibling still alive */
1316 do {
1317 next = child->d_child.next;
1318 if (next == &this_parent->d_subdirs)
1319 goto ascend;
1320 child = list_entry(next, struct dentry, d_child);
1321 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1322 rcu_read_unlock();
1323 goto resume;
1325 if (need_seqretry(&rename_lock, seq))
1326 goto rename_retry;
1327 rcu_read_unlock();
1328 if (finish)
1329 finish(data);
1331 out_unlock:
1332 spin_unlock(&this_parent->d_lock);
1333 done_seqretry(&rename_lock, seq);
1334 return;
1336 rename_retry:
1337 spin_unlock(&this_parent->d_lock);
1338 rcu_read_unlock();
1339 BUG_ON(seq & 1);
1340 if (!retry)
1341 return;
1342 seq = 1;
1343 goto again;
1346 struct check_mount {
1347 struct vfsmount *mnt;
1348 unsigned int mounted;
1351 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1353 struct check_mount *info = data;
1354 struct path path = { .mnt = info->mnt, .dentry = dentry };
1356 if (likely(!d_mountpoint(dentry)))
1357 return D_WALK_CONTINUE;
1358 if (__path_is_mountpoint(&path)) {
1359 info->mounted = 1;
1360 return D_WALK_QUIT;
1362 return D_WALK_CONTINUE;
1366 * path_has_submounts - check for mounts over a dentry in the
1367 * current namespace.
1368 * @parent: path to check.
1370 * Return true if the parent or its subdirectories contain
1371 * a mount point in the current namespace.
1373 int path_has_submounts(const struct path *parent)
1375 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1377 read_seqlock_excl(&mount_lock);
1378 d_walk(parent->dentry, &data, path_check_mount, NULL);
1379 read_sequnlock_excl(&mount_lock);
1381 return data.mounted;
1383 EXPORT_SYMBOL(path_has_submounts);
1386 * Called by mount code to set a mountpoint and check if the mountpoint is
1387 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1388 * subtree can become unreachable).
1390 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1391 * this reason take rename_lock and d_lock on dentry and ancestors.
1393 int d_set_mounted(struct dentry *dentry)
1395 struct dentry *p;
1396 int ret = -ENOENT;
1397 write_seqlock(&rename_lock);
1398 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1399 /* Need exclusion wrt. d_invalidate() */
1400 spin_lock(&p->d_lock);
1401 if (unlikely(d_unhashed(p))) {
1402 spin_unlock(&p->d_lock);
1403 goto out;
1405 spin_unlock(&p->d_lock);
1407 spin_lock(&dentry->d_lock);
1408 if (!d_unlinked(dentry)) {
1409 ret = -EBUSY;
1410 if (!d_mountpoint(dentry)) {
1411 dentry->d_flags |= DCACHE_MOUNTED;
1412 ret = 0;
1415 spin_unlock(&dentry->d_lock);
1416 out:
1417 write_sequnlock(&rename_lock);
1418 return ret;
1422 * Search the dentry child list of the specified parent,
1423 * and move any unused dentries to the end of the unused
1424 * list for prune_dcache(). We descend to the next level
1425 * whenever the d_subdirs list is non-empty and continue
1426 * searching.
1428 * It returns zero iff there are no unused children,
1429 * otherwise it returns the number of children moved to
1430 * the end of the unused list. This may not be the total
1431 * number of unused children, because select_parent can
1432 * drop the lock and return early due to latency
1433 * constraints.
1436 struct select_data {
1437 struct dentry *start;
1438 struct list_head dispose;
1439 int found;
1442 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1444 struct select_data *data = _data;
1445 enum d_walk_ret ret = D_WALK_CONTINUE;
1447 if (data->start == dentry)
1448 goto out;
1450 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1451 data->found++;
1452 } else {
1453 if (dentry->d_flags & DCACHE_LRU_LIST)
1454 d_lru_del(dentry);
1455 if (!dentry->d_lockref.count) {
1456 d_shrink_add(dentry, &data->dispose);
1457 data->found++;
1461 * We can return to the caller if we have found some (this
1462 * ensures forward progress). We'll be coming back to find
1463 * the rest.
1465 if (!list_empty(&data->dispose))
1466 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1467 out:
1468 return ret;
1472 * shrink_dcache_parent - prune dcache
1473 * @parent: parent of entries to prune
1475 * Prune the dcache to remove unused children of the parent dentry.
1477 void shrink_dcache_parent(struct dentry *parent)
1479 for (;;) {
1480 struct select_data data;
1482 INIT_LIST_HEAD(&data.dispose);
1483 data.start = parent;
1484 data.found = 0;
1486 d_walk(parent, &data, select_collect, NULL);
1487 if (!data.found)
1488 break;
1490 shrink_dentry_list(&data.dispose);
1493 EXPORT_SYMBOL(shrink_dcache_parent);
1495 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1497 /* it has busy descendents; complain about those instead */
1498 if (!list_empty(&dentry->d_subdirs))
1499 return D_WALK_CONTINUE;
1501 /* root with refcount 1 is fine */
1502 if (dentry == _data && dentry->d_lockref.count == 1)
1503 return D_WALK_CONTINUE;
1505 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1506 " still in use (%d) [unmount of %s %s]\n",
1507 dentry,
1508 dentry->d_inode ?
1509 dentry->d_inode->i_ino : 0UL,
1510 dentry,
1511 dentry->d_lockref.count,
1512 dentry->d_sb->s_type->name,
1513 dentry->d_sb->s_id);
1514 WARN_ON(1);
1515 return D_WALK_CONTINUE;
1518 static void do_one_tree(struct dentry *dentry)
1520 shrink_dcache_parent(dentry);
1521 d_walk(dentry, dentry, umount_check, NULL);
1522 d_drop(dentry);
1523 dput(dentry);
1527 * destroy the dentries attached to a superblock on unmounting
1529 void shrink_dcache_for_umount(struct super_block *sb)
1531 struct dentry *dentry;
1533 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1535 dentry = sb->s_root;
1536 sb->s_root = NULL;
1537 do_one_tree(dentry);
1539 while (!hlist_bl_empty(&sb->s_roots)) {
1540 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1541 do_one_tree(dentry);
1545 struct detach_data {
1546 struct select_data select;
1547 struct dentry *mountpoint;
1549 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1551 struct detach_data *data = _data;
1553 if (d_mountpoint(dentry)) {
1554 __dget_dlock(dentry);
1555 data->mountpoint = dentry;
1556 return D_WALK_QUIT;
1559 return select_collect(&data->select, dentry);
1562 static void check_and_drop(void *_data)
1564 struct detach_data *data = _data;
1566 if (!data->mountpoint && list_empty(&data->select.dispose))
1567 __d_drop(data->select.start);
1571 * d_invalidate - detach submounts, prune dcache, and drop
1572 * @dentry: dentry to invalidate (aka detach, prune and drop)
1574 * no dcache lock.
1576 * The final d_drop is done as an atomic operation relative to
1577 * rename_lock ensuring there are no races with d_set_mounted. This
1578 * ensures there are no unhashed dentries on the path to a mountpoint.
1580 void d_invalidate(struct dentry *dentry)
1583 * If it's already been dropped, return OK.
1585 spin_lock(&dentry->d_lock);
1586 if (d_unhashed(dentry)) {
1587 spin_unlock(&dentry->d_lock);
1588 return;
1590 spin_unlock(&dentry->d_lock);
1592 /* Negative dentries can be dropped without further checks */
1593 if (!dentry->d_inode) {
1594 d_drop(dentry);
1595 return;
1598 for (;;) {
1599 struct detach_data data;
1601 data.mountpoint = NULL;
1602 INIT_LIST_HEAD(&data.select.dispose);
1603 data.select.start = dentry;
1604 data.select.found = 0;
1606 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1608 if (!list_empty(&data.select.dispose))
1609 shrink_dentry_list(&data.select.dispose);
1610 else if (!data.mountpoint)
1611 return;
1613 if (data.mountpoint) {
1614 detach_mounts(data.mountpoint);
1615 dput(data.mountpoint);
1619 EXPORT_SYMBOL(d_invalidate);
1622 * __d_alloc - allocate a dcache entry
1623 * @sb: filesystem it will belong to
1624 * @name: qstr of the name
1626 * Allocates a dentry. It returns %NULL if there is insufficient memory
1627 * available. On a success the dentry is returned. The name passed in is
1628 * copied and the copy passed in may be reused after this call.
1631 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1633 struct external_name *ext = NULL;
1634 struct dentry *dentry;
1635 char *dname;
1636 int err;
1638 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1639 if (!dentry)
1640 return NULL;
1643 * We guarantee that the inline name is always NUL-terminated.
1644 * This way the memcpy() done by the name switching in rename
1645 * will still always have a NUL at the end, even if we might
1646 * be overwriting an internal NUL character
1648 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1649 if (unlikely(!name)) {
1650 name = &slash_name;
1651 dname = dentry->d_iname;
1652 } else if (name->len > DNAME_INLINE_LEN-1) {
1653 size_t size = offsetof(struct external_name, name[1]);
1655 ext = kmalloc(size + name->len, GFP_KERNEL_ACCOUNT);
1656 if (!ext) {
1657 kmem_cache_free(dentry_cache, dentry);
1658 return NULL;
1660 atomic_set(&ext->u.count, 1);
1661 dname = ext->name;
1662 } else {
1663 dname = dentry->d_iname;
1666 dentry->d_name.len = name->len;
1667 dentry->d_name.hash = name->hash;
1668 memcpy(dname, name->name, name->len);
1669 dname[name->len] = 0;
1671 /* Make sure we always see the terminating NUL character */
1672 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1674 dentry->d_lockref.count = 1;
1675 dentry->d_flags = 0;
1676 spin_lock_init(&dentry->d_lock);
1677 seqcount_init(&dentry->d_seq);
1678 dentry->d_inode = NULL;
1679 dentry->d_parent = dentry;
1680 dentry->d_sb = sb;
1681 dentry->d_op = NULL;
1682 dentry->d_fsdata = NULL;
1683 INIT_HLIST_BL_NODE(&dentry->d_hash);
1684 INIT_LIST_HEAD(&dentry->d_lru);
1685 INIT_LIST_HEAD(&dentry->d_subdirs);
1686 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1687 INIT_LIST_HEAD(&dentry->d_child);
1688 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1690 if (dentry->d_op && dentry->d_op->d_init) {
1691 err = dentry->d_op->d_init(dentry);
1692 if (err) {
1693 if (dname_external(dentry))
1694 kfree(external_name(dentry));
1695 kmem_cache_free(dentry_cache, dentry);
1696 return NULL;
1700 if (unlikely(ext)) {
1701 pg_data_t *pgdat = page_pgdat(virt_to_page(ext));
1702 mod_node_page_state(pgdat, NR_INDIRECTLY_RECLAIMABLE_BYTES,
1703 ksize(ext));
1706 this_cpu_inc(nr_dentry);
1708 return dentry;
1712 * d_alloc - allocate a dcache entry
1713 * @parent: parent of entry to allocate
1714 * @name: qstr of the name
1716 * Allocates a dentry. It returns %NULL if there is insufficient memory
1717 * available. On a success the dentry is returned. The name passed in is
1718 * copied and the copy passed in may be reused after this call.
1720 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1722 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1723 if (!dentry)
1724 return NULL;
1725 dentry->d_flags |= DCACHE_RCUACCESS;
1726 spin_lock(&parent->d_lock);
1728 * don't need child lock because it is not subject
1729 * to concurrency here
1731 __dget_dlock(parent);
1732 dentry->d_parent = parent;
1733 list_add(&dentry->d_child, &parent->d_subdirs);
1734 spin_unlock(&parent->d_lock);
1736 return dentry;
1738 EXPORT_SYMBOL(d_alloc);
1740 struct dentry *d_alloc_anon(struct super_block *sb)
1742 return __d_alloc(sb, NULL);
1744 EXPORT_SYMBOL(d_alloc_anon);
1746 struct dentry *d_alloc_cursor(struct dentry * parent)
1748 struct dentry *dentry = d_alloc_anon(parent->d_sb);
1749 if (dentry) {
1750 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1751 dentry->d_parent = dget(parent);
1753 return dentry;
1757 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1758 * @sb: the superblock
1759 * @name: qstr of the name
1761 * For a filesystem that just pins its dentries in memory and never
1762 * performs lookups at all, return an unhashed IS_ROOT dentry.
1764 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1766 return __d_alloc(sb, name);
1768 EXPORT_SYMBOL(d_alloc_pseudo);
1770 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1772 struct qstr q;
1774 q.name = name;
1775 q.hash_len = hashlen_string(parent, name);
1776 return d_alloc(parent, &q);
1778 EXPORT_SYMBOL(d_alloc_name);
1780 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1782 WARN_ON_ONCE(dentry->d_op);
1783 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1784 DCACHE_OP_COMPARE |
1785 DCACHE_OP_REVALIDATE |
1786 DCACHE_OP_WEAK_REVALIDATE |
1787 DCACHE_OP_DELETE |
1788 DCACHE_OP_REAL));
1789 dentry->d_op = op;
1790 if (!op)
1791 return;
1792 if (op->d_hash)
1793 dentry->d_flags |= DCACHE_OP_HASH;
1794 if (op->d_compare)
1795 dentry->d_flags |= DCACHE_OP_COMPARE;
1796 if (op->d_revalidate)
1797 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1798 if (op->d_weak_revalidate)
1799 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1800 if (op->d_delete)
1801 dentry->d_flags |= DCACHE_OP_DELETE;
1802 if (op->d_prune)
1803 dentry->d_flags |= DCACHE_OP_PRUNE;
1804 if (op->d_real)
1805 dentry->d_flags |= DCACHE_OP_REAL;
1808 EXPORT_SYMBOL(d_set_d_op);
1812 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1813 * @dentry - The dentry to mark
1815 * Mark a dentry as falling through to the lower layer (as set with
1816 * d_pin_lower()). This flag may be recorded on the medium.
1818 void d_set_fallthru(struct dentry *dentry)
1820 spin_lock(&dentry->d_lock);
1821 dentry->d_flags |= DCACHE_FALLTHRU;
1822 spin_unlock(&dentry->d_lock);
1824 EXPORT_SYMBOL(d_set_fallthru);
1826 static unsigned d_flags_for_inode(struct inode *inode)
1828 unsigned add_flags = DCACHE_REGULAR_TYPE;
1830 if (!inode)
1831 return DCACHE_MISS_TYPE;
1833 if (S_ISDIR(inode->i_mode)) {
1834 add_flags = DCACHE_DIRECTORY_TYPE;
1835 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1836 if (unlikely(!inode->i_op->lookup))
1837 add_flags = DCACHE_AUTODIR_TYPE;
1838 else
1839 inode->i_opflags |= IOP_LOOKUP;
1841 goto type_determined;
1844 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1845 if (unlikely(inode->i_op->get_link)) {
1846 add_flags = DCACHE_SYMLINK_TYPE;
1847 goto type_determined;
1849 inode->i_opflags |= IOP_NOFOLLOW;
1852 if (unlikely(!S_ISREG(inode->i_mode)))
1853 add_flags = DCACHE_SPECIAL_TYPE;
1855 type_determined:
1856 if (unlikely(IS_AUTOMOUNT(inode)))
1857 add_flags |= DCACHE_NEED_AUTOMOUNT;
1858 return add_flags;
1861 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1863 unsigned add_flags = d_flags_for_inode(inode);
1864 WARN_ON(d_in_lookup(dentry));
1866 spin_lock(&dentry->d_lock);
1867 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1868 raw_write_seqcount_begin(&dentry->d_seq);
1869 __d_set_inode_and_type(dentry, inode, add_flags);
1870 raw_write_seqcount_end(&dentry->d_seq);
1871 fsnotify_update_flags(dentry);
1872 spin_unlock(&dentry->d_lock);
1876 * d_instantiate - fill in inode information for a dentry
1877 * @entry: dentry to complete
1878 * @inode: inode to attach to this dentry
1880 * Fill in inode information in the entry.
1882 * This turns negative dentries into productive full members
1883 * of society.
1885 * NOTE! This assumes that the inode count has been incremented
1886 * (or otherwise set) by the caller to indicate that it is now
1887 * in use by the dcache.
1890 void d_instantiate(struct dentry *entry, struct inode * inode)
1892 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1893 if (inode) {
1894 security_d_instantiate(entry, inode);
1895 spin_lock(&inode->i_lock);
1896 __d_instantiate(entry, inode);
1897 spin_unlock(&inode->i_lock);
1900 EXPORT_SYMBOL(d_instantiate);
1903 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1904 * @entry: dentry to complete
1905 * @inode: inode to attach to this dentry
1907 * Fill in inode information in the entry. If a directory alias is found, then
1908 * return an error (and drop inode). Together with d_materialise_unique() this
1909 * guarantees that a directory inode may never have more than one alias.
1911 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1913 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1915 security_d_instantiate(entry, inode);
1916 spin_lock(&inode->i_lock);
1917 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1918 spin_unlock(&inode->i_lock);
1919 iput(inode);
1920 return -EBUSY;
1922 __d_instantiate(entry, inode);
1923 spin_unlock(&inode->i_lock);
1925 return 0;
1927 EXPORT_SYMBOL(d_instantiate_no_diralias);
1929 struct dentry *d_make_root(struct inode *root_inode)
1931 struct dentry *res = NULL;
1933 if (root_inode) {
1934 res = d_alloc_anon(root_inode->i_sb);
1935 if (res)
1936 d_instantiate(res, root_inode);
1937 else
1938 iput(root_inode);
1940 return res;
1942 EXPORT_SYMBOL(d_make_root);
1944 static struct dentry * __d_find_any_alias(struct inode *inode)
1946 struct dentry *alias;
1948 if (hlist_empty(&inode->i_dentry))
1949 return NULL;
1950 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1951 __dget(alias);
1952 return alias;
1956 * d_find_any_alias - find any alias for a given inode
1957 * @inode: inode to find an alias for
1959 * If any aliases exist for the given inode, take and return a
1960 * reference for one of them. If no aliases exist, return %NULL.
1962 struct dentry *d_find_any_alias(struct inode *inode)
1964 struct dentry *de;
1966 spin_lock(&inode->i_lock);
1967 de = __d_find_any_alias(inode);
1968 spin_unlock(&inode->i_lock);
1969 return de;
1971 EXPORT_SYMBOL(d_find_any_alias);
1973 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1974 struct inode *inode,
1975 bool disconnected)
1977 struct dentry *res;
1978 unsigned add_flags;
1980 security_d_instantiate(dentry, inode);
1981 spin_lock(&inode->i_lock);
1982 res = __d_find_any_alias(inode);
1983 if (res) {
1984 spin_unlock(&inode->i_lock);
1985 dput(dentry);
1986 goto out_iput;
1989 /* attach a disconnected dentry */
1990 add_flags = d_flags_for_inode(inode);
1992 if (disconnected)
1993 add_flags |= DCACHE_DISCONNECTED;
1995 spin_lock(&dentry->d_lock);
1996 __d_set_inode_and_type(dentry, inode, add_flags);
1997 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1998 if (!disconnected) {
1999 hlist_bl_lock(&dentry->d_sb->s_roots);
2000 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2001 hlist_bl_unlock(&dentry->d_sb->s_roots);
2003 spin_unlock(&dentry->d_lock);
2004 spin_unlock(&inode->i_lock);
2006 return dentry;
2008 out_iput:
2009 iput(inode);
2010 return res;
2013 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2015 return __d_instantiate_anon(dentry, inode, true);
2017 EXPORT_SYMBOL(d_instantiate_anon);
2019 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2021 struct dentry *tmp;
2022 struct dentry *res;
2024 if (!inode)
2025 return ERR_PTR(-ESTALE);
2026 if (IS_ERR(inode))
2027 return ERR_CAST(inode);
2029 res = d_find_any_alias(inode);
2030 if (res)
2031 goto out_iput;
2033 tmp = d_alloc_anon(inode->i_sb);
2034 if (!tmp) {
2035 res = ERR_PTR(-ENOMEM);
2036 goto out_iput;
2039 return __d_instantiate_anon(tmp, inode, disconnected);
2041 out_iput:
2042 iput(inode);
2043 return res;
2047 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2048 * @inode: inode to allocate the dentry for
2050 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2051 * similar open by handle operations. The returned dentry may be anonymous,
2052 * or may have a full name (if the inode was already in the cache).
2054 * When called on a directory inode, we must ensure that the inode only ever
2055 * has one dentry. If a dentry is found, that is returned instead of
2056 * allocating a new one.
2058 * On successful return, the reference to the inode has been transferred
2059 * to the dentry. In case of an error the reference on the inode is released.
2060 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2061 * be passed in and the error will be propagated to the return value,
2062 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2064 struct dentry *d_obtain_alias(struct inode *inode)
2066 return __d_obtain_alias(inode, true);
2068 EXPORT_SYMBOL(d_obtain_alias);
2071 * d_obtain_root - find or allocate a dentry for a given inode
2072 * @inode: inode to allocate the dentry for
2074 * Obtain an IS_ROOT dentry for the root of a filesystem.
2076 * We must ensure that directory inodes only ever have one dentry. If a
2077 * dentry is found, that is returned instead of allocating a new one.
2079 * On successful return, the reference to the inode has been transferred
2080 * to the dentry. In case of an error the reference on the inode is
2081 * released. A %NULL or IS_ERR inode may be passed in and will be the
2082 * error will be propagate to the return value, with a %NULL @inode
2083 * replaced by ERR_PTR(-ESTALE).
2085 struct dentry *d_obtain_root(struct inode *inode)
2087 return __d_obtain_alias(inode, false);
2089 EXPORT_SYMBOL(d_obtain_root);
2092 * d_add_ci - lookup or allocate new dentry with case-exact name
2093 * @inode: the inode case-insensitive lookup has found
2094 * @dentry: the negative dentry that was passed to the parent's lookup func
2095 * @name: the case-exact name to be associated with the returned dentry
2097 * This is to avoid filling the dcache with case-insensitive names to the
2098 * same inode, only the actual correct case is stored in the dcache for
2099 * case-insensitive filesystems.
2101 * For a case-insensitive lookup match and if the the case-exact dentry
2102 * already exists in in the dcache, use it and return it.
2104 * If no entry exists with the exact case name, allocate new dentry with
2105 * the exact case, and return the spliced entry.
2107 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2108 struct qstr *name)
2110 struct dentry *found, *res;
2113 * First check if a dentry matching the name already exists,
2114 * if not go ahead and create it now.
2116 found = d_hash_and_lookup(dentry->d_parent, name);
2117 if (found) {
2118 iput(inode);
2119 return found;
2121 if (d_in_lookup(dentry)) {
2122 found = d_alloc_parallel(dentry->d_parent, name,
2123 dentry->d_wait);
2124 if (IS_ERR(found) || !d_in_lookup(found)) {
2125 iput(inode);
2126 return found;
2128 } else {
2129 found = d_alloc(dentry->d_parent, name);
2130 if (!found) {
2131 iput(inode);
2132 return ERR_PTR(-ENOMEM);
2135 res = d_splice_alias(inode, found);
2136 if (res) {
2137 dput(found);
2138 return res;
2140 return found;
2142 EXPORT_SYMBOL(d_add_ci);
2145 static inline bool d_same_name(const struct dentry *dentry,
2146 const struct dentry *parent,
2147 const struct qstr *name)
2149 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2150 if (dentry->d_name.len != name->len)
2151 return false;
2152 return dentry_cmp(dentry, name->name, name->len) == 0;
2154 return parent->d_op->d_compare(dentry,
2155 dentry->d_name.len, dentry->d_name.name,
2156 name) == 0;
2160 * __d_lookup_rcu - search for a dentry (racy, store-free)
2161 * @parent: parent dentry
2162 * @name: qstr of name we wish to find
2163 * @seqp: returns d_seq value at the point where the dentry was found
2164 * Returns: dentry, or NULL
2166 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2167 * resolution (store-free path walking) design described in
2168 * Documentation/filesystems/path-lookup.txt.
2170 * This is not to be used outside core vfs.
2172 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2173 * held, and rcu_read_lock held. The returned dentry must not be stored into
2174 * without taking d_lock and checking d_seq sequence count against @seq
2175 * returned here.
2177 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2178 * function.
2180 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2181 * the returned dentry, so long as its parent's seqlock is checked after the
2182 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2183 * is formed, giving integrity down the path walk.
2185 * NOTE! The caller *has* to check the resulting dentry against the sequence
2186 * number we've returned before using any of the resulting dentry state!
2188 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2189 const struct qstr *name,
2190 unsigned *seqp)
2192 u64 hashlen = name->hash_len;
2193 const unsigned char *str = name->name;
2194 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2195 struct hlist_bl_node *node;
2196 struct dentry *dentry;
2199 * Note: There is significant duplication with __d_lookup_rcu which is
2200 * required to prevent single threaded performance regressions
2201 * especially on architectures where smp_rmb (in seqcounts) are costly.
2202 * Keep the two functions in sync.
2206 * The hash list is protected using RCU.
2208 * Carefully use d_seq when comparing a candidate dentry, to avoid
2209 * races with d_move().
2211 * It is possible that concurrent renames can mess up our list
2212 * walk here and result in missing our dentry, resulting in the
2213 * false-negative result. d_lookup() protects against concurrent
2214 * renames using rename_lock seqlock.
2216 * See Documentation/filesystems/path-lookup.txt for more details.
2218 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2219 unsigned seq;
2221 seqretry:
2223 * The dentry sequence count protects us from concurrent
2224 * renames, and thus protects parent and name fields.
2226 * The caller must perform a seqcount check in order
2227 * to do anything useful with the returned dentry.
2229 * NOTE! We do a "raw" seqcount_begin here. That means that
2230 * we don't wait for the sequence count to stabilize if it
2231 * is in the middle of a sequence change. If we do the slow
2232 * dentry compare, we will do seqretries until it is stable,
2233 * and if we end up with a successful lookup, we actually
2234 * want to exit RCU lookup anyway.
2236 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2237 * we are still guaranteed NUL-termination of ->d_name.name.
2239 seq = raw_seqcount_begin(&dentry->d_seq);
2240 if (dentry->d_parent != parent)
2241 continue;
2242 if (d_unhashed(dentry))
2243 continue;
2245 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2246 int tlen;
2247 const char *tname;
2248 if (dentry->d_name.hash != hashlen_hash(hashlen))
2249 continue;
2250 tlen = dentry->d_name.len;
2251 tname = dentry->d_name.name;
2252 /* we want a consistent (name,len) pair */
2253 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2254 cpu_relax();
2255 goto seqretry;
2257 if (parent->d_op->d_compare(dentry,
2258 tlen, tname, name) != 0)
2259 continue;
2260 } else {
2261 if (dentry->d_name.hash_len != hashlen)
2262 continue;
2263 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2264 continue;
2266 *seqp = seq;
2267 return dentry;
2269 return NULL;
2273 * d_lookup - search for a dentry
2274 * @parent: parent dentry
2275 * @name: qstr of name we wish to find
2276 * Returns: dentry, or NULL
2278 * d_lookup searches the children of the parent dentry for the name in
2279 * question. If the dentry is found its reference count is incremented and the
2280 * dentry is returned. The caller must use dput to free the entry when it has
2281 * finished using it. %NULL is returned if the dentry does not exist.
2283 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2285 struct dentry *dentry;
2286 unsigned seq;
2288 do {
2289 seq = read_seqbegin(&rename_lock);
2290 dentry = __d_lookup(parent, name);
2291 if (dentry)
2292 break;
2293 } while (read_seqretry(&rename_lock, seq));
2294 return dentry;
2296 EXPORT_SYMBOL(d_lookup);
2299 * __d_lookup - search for a dentry (racy)
2300 * @parent: parent dentry
2301 * @name: qstr of name we wish to find
2302 * Returns: dentry, or NULL
2304 * __d_lookup is like d_lookup, however it may (rarely) return a
2305 * false-negative result due to unrelated rename activity.
2307 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2308 * however it must be used carefully, eg. with a following d_lookup in
2309 * the case of failure.
2311 * __d_lookup callers must be commented.
2313 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2315 unsigned int hash = name->hash;
2316 struct hlist_bl_head *b = d_hash(hash);
2317 struct hlist_bl_node *node;
2318 struct dentry *found = NULL;
2319 struct dentry *dentry;
2322 * Note: There is significant duplication with __d_lookup_rcu which is
2323 * required to prevent single threaded performance regressions
2324 * especially on architectures where smp_rmb (in seqcounts) are costly.
2325 * Keep the two functions in sync.
2329 * The hash list is protected using RCU.
2331 * Take d_lock when comparing a candidate dentry, to avoid races
2332 * with d_move().
2334 * It is possible that concurrent renames can mess up our list
2335 * walk here and result in missing our dentry, resulting in the
2336 * false-negative result. d_lookup() protects against concurrent
2337 * renames using rename_lock seqlock.
2339 * See Documentation/filesystems/path-lookup.txt for more details.
2341 rcu_read_lock();
2343 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2345 if (dentry->d_name.hash != hash)
2346 continue;
2348 spin_lock(&dentry->d_lock);
2349 if (dentry->d_parent != parent)
2350 goto next;
2351 if (d_unhashed(dentry))
2352 goto next;
2354 if (!d_same_name(dentry, parent, name))
2355 goto next;
2357 dentry->d_lockref.count++;
2358 found = dentry;
2359 spin_unlock(&dentry->d_lock);
2360 break;
2361 next:
2362 spin_unlock(&dentry->d_lock);
2364 rcu_read_unlock();
2366 return found;
2370 * d_hash_and_lookup - hash the qstr then search for a dentry
2371 * @dir: Directory to search in
2372 * @name: qstr of name we wish to find
2374 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2376 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2379 * Check for a fs-specific hash function. Note that we must
2380 * calculate the standard hash first, as the d_op->d_hash()
2381 * routine may choose to leave the hash value unchanged.
2383 name->hash = full_name_hash(dir, name->name, name->len);
2384 if (dir->d_flags & DCACHE_OP_HASH) {
2385 int err = dir->d_op->d_hash(dir, name);
2386 if (unlikely(err < 0))
2387 return ERR_PTR(err);
2389 return d_lookup(dir, name);
2391 EXPORT_SYMBOL(d_hash_and_lookup);
2394 * When a file is deleted, we have two options:
2395 * - turn this dentry into a negative dentry
2396 * - unhash this dentry and free it.
2398 * Usually, we want to just turn this into
2399 * a negative dentry, but if anybody else is
2400 * currently using the dentry or the inode
2401 * we can't do that and we fall back on removing
2402 * it from the hash queues and waiting for
2403 * it to be deleted later when it has no users
2407 * d_delete - delete a dentry
2408 * @dentry: The dentry to delete
2410 * Turn the dentry into a negative dentry if possible, otherwise
2411 * remove it from the hash queues so it can be deleted later
2414 void d_delete(struct dentry * dentry)
2416 struct inode *inode = dentry->d_inode;
2417 int isdir = d_is_dir(dentry);
2419 spin_lock(&inode->i_lock);
2420 spin_lock(&dentry->d_lock);
2422 * Are we the only user?
2424 if (dentry->d_lockref.count == 1) {
2425 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2426 dentry_unlink_inode(dentry);
2427 } else {
2428 __d_drop(dentry);
2429 spin_unlock(&dentry->d_lock);
2430 spin_unlock(&inode->i_lock);
2432 fsnotify_nameremove(dentry, isdir);
2434 EXPORT_SYMBOL(d_delete);
2436 static void __d_rehash(struct dentry *entry)
2438 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2440 hlist_bl_lock(b);
2441 hlist_bl_add_head_rcu(&entry->d_hash, b);
2442 hlist_bl_unlock(b);
2446 * d_rehash - add an entry back to the hash
2447 * @entry: dentry to add to the hash
2449 * Adds a dentry to the hash according to its name.
2452 void d_rehash(struct dentry * entry)
2454 spin_lock(&entry->d_lock);
2455 __d_rehash(entry);
2456 spin_unlock(&entry->d_lock);
2458 EXPORT_SYMBOL(d_rehash);
2460 static inline unsigned start_dir_add(struct inode *dir)
2463 for (;;) {
2464 unsigned n = dir->i_dir_seq;
2465 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2466 return n;
2467 cpu_relax();
2471 static inline void end_dir_add(struct inode *dir, unsigned n)
2473 smp_store_release(&dir->i_dir_seq, n + 2);
2476 static void d_wait_lookup(struct dentry *dentry)
2478 if (d_in_lookup(dentry)) {
2479 DECLARE_WAITQUEUE(wait, current);
2480 add_wait_queue(dentry->d_wait, &wait);
2481 do {
2482 set_current_state(TASK_UNINTERRUPTIBLE);
2483 spin_unlock(&dentry->d_lock);
2484 schedule();
2485 spin_lock(&dentry->d_lock);
2486 } while (d_in_lookup(dentry));
2490 struct dentry *d_alloc_parallel(struct dentry *parent,
2491 const struct qstr *name,
2492 wait_queue_head_t *wq)
2494 unsigned int hash = name->hash;
2495 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2496 struct hlist_bl_node *node;
2497 struct dentry *new = d_alloc(parent, name);
2498 struct dentry *dentry;
2499 unsigned seq, r_seq, d_seq;
2501 if (unlikely(!new))
2502 return ERR_PTR(-ENOMEM);
2504 retry:
2505 rcu_read_lock();
2506 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2507 r_seq = read_seqbegin(&rename_lock);
2508 dentry = __d_lookup_rcu(parent, name, &d_seq);
2509 if (unlikely(dentry)) {
2510 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2511 rcu_read_unlock();
2512 goto retry;
2514 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2515 rcu_read_unlock();
2516 dput(dentry);
2517 goto retry;
2519 rcu_read_unlock();
2520 dput(new);
2521 return dentry;
2523 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2524 rcu_read_unlock();
2525 goto retry;
2528 if (unlikely(seq & 1)) {
2529 rcu_read_unlock();
2530 goto retry;
2533 hlist_bl_lock(b);
2534 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2535 hlist_bl_unlock(b);
2536 rcu_read_unlock();
2537 goto retry;
2540 * No changes for the parent since the beginning of d_lookup().
2541 * Since all removals from the chain happen with hlist_bl_lock(),
2542 * any potential in-lookup matches are going to stay here until
2543 * we unlock the chain. All fields are stable in everything
2544 * we encounter.
2546 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2547 if (dentry->d_name.hash != hash)
2548 continue;
2549 if (dentry->d_parent != parent)
2550 continue;
2551 if (!d_same_name(dentry, parent, name))
2552 continue;
2553 hlist_bl_unlock(b);
2554 /* now we can try to grab a reference */
2555 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2556 rcu_read_unlock();
2557 goto retry;
2560 rcu_read_unlock();
2562 * somebody is likely to be still doing lookup for it;
2563 * wait for them to finish
2565 spin_lock(&dentry->d_lock);
2566 d_wait_lookup(dentry);
2568 * it's not in-lookup anymore; in principle we should repeat
2569 * everything from dcache lookup, but it's likely to be what
2570 * d_lookup() would've found anyway. If it is, just return it;
2571 * otherwise we really have to repeat the whole thing.
2573 if (unlikely(dentry->d_name.hash != hash))
2574 goto mismatch;
2575 if (unlikely(dentry->d_parent != parent))
2576 goto mismatch;
2577 if (unlikely(d_unhashed(dentry)))
2578 goto mismatch;
2579 if (unlikely(!d_same_name(dentry, parent, name)))
2580 goto mismatch;
2581 /* OK, it *is* a hashed match; return it */
2582 spin_unlock(&dentry->d_lock);
2583 dput(new);
2584 return dentry;
2586 rcu_read_unlock();
2587 /* we can't take ->d_lock here; it's OK, though. */
2588 new->d_flags |= DCACHE_PAR_LOOKUP;
2589 new->d_wait = wq;
2590 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2591 hlist_bl_unlock(b);
2592 return new;
2593 mismatch:
2594 spin_unlock(&dentry->d_lock);
2595 dput(dentry);
2596 goto retry;
2598 EXPORT_SYMBOL(d_alloc_parallel);
2600 void __d_lookup_done(struct dentry *dentry)
2602 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2603 dentry->d_name.hash);
2604 hlist_bl_lock(b);
2605 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2606 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2607 wake_up_all(dentry->d_wait);
2608 dentry->d_wait = NULL;
2609 hlist_bl_unlock(b);
2610 INIT_HLIST_NODE(&dentry->d_u.d_alias);
2611 INIT_LIST_HEAD(&dentry->d_lru);
2613 EXPORT_SYMBOL(__d_lookup_done);
2615 /* inode->i_lock held if inode is non-NULL */
2617 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2619 struct inode *dir = NULL;
2620 unsigned n;
2621 spin_lock(&dentry->d_lock);
2622 if (unlikely(d_in_lookup(dentry))) {
2623 dir = dentry->d_parent->d_inode;
2624 n = start_dir_add(dir);
2625 __d_lookup_done(dentry);
2627 if (inode) {
2628 unsigned add_flags = d_flags_for_inode(inode);
2629 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2630 raw_write_seqcount_begin(&dentry->d_seq);
2631 __d_set_inode_and_type(dentry, inode, add_flags);
2632 raw_write_seqcount_end(&dentry->d_seq);
2633 fsnotify_update_flags(dentry);
2635 __d_rehash(dentry);
2636 if (dir)
2637 end_dir_add(dir, n);
2638 spin_unlock(&dentry->d_lock);
2639 if (inode)
2640 spin_unlock(&inode->i_lock);
2644 * d_add - add dentry to hash queues
2645 * @entry: dentry to add
2646 * @inode: The inode to attach to this dentry
2648 * This adds the entry to the hash queues and initializes @inode.
2649 * The entry was actually filled in earlier during d_alloc().
2652 void d_add(struct dentry *entry, struct inode *inode)
2654 if (inode) {
2655 security_d_instantiate(entry, inode);
2656 spin_lock(&inode->i_lock);
2658 __d_add(entry, inode);
2660 EXPORT_SYMBOL(d_add);
2663 * d_exact_alias - find and hash an exact unhashed alias
2664 * @entry: dentry to add
2665 * @inode: The inode to go with this dentry
2667 * If an unhashed dentry with the same name/parent and desired
2668 * inode already exists, hash and return it. Otherwise, return
2669 * NULL.
2671 * Parent directory should be locked.
2673 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2675 struct dentry *alias;
2676 unsigned int hash = entry->d_name.hash;
2678 spin_lock(&inode->i_lock);
2679 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2681 * Don't need alias->d_lock here, because aliases with
2682 * d_parent == entry->d_parent are not subject to name or
2683 * parent changes, because the parent inode i_mutex is held.
2685 if (alias->d_name.hash != hash)
2686 continue;
2687 if (alias->d_parent != entry->d_parent)
2688 continue;
2689 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2690 continue;
2691 spin_lock(&alias->d_lock);
2692 if (!d_unhashed(alias)) {
2693 spin_unlock(&alias->d_lock);
2694 alias = NULL;
2695 } else {
2696 __dget_dlock(alias);
2697 __d_rehash(alias);
2698 spin_unlock(&alias->d_lock);
2700 spin_unlock(&inode->i_lock);
2701 return alias;
2703 spin_unlock(&inode->i_lock);
2704 return NULL;
2706 EXPORT_SYMBOL(d_exact_alias);
2709 * dentry_update_name_case - update case insensitive dentry with a new name
2710 * @dentry: dentry to be updated
2711 * @name: new name
2713 * Update a case insensitive dentry with new case of name.
2715 * dentry must have been returned by d_lookup with name @name. Old and new
2716 * name lengths must match (ie. no d_compare which allows mismatched name
2717 * lengths).
2719 * Parent inode i_mutex must be held over d_lookup and into this call (to
2720 * keep renames and concurrent inserts, and readdir(2) away).
2722 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
2724 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2725 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2727 spin_lock(&dentry->d_lock);
2728 write_seqcount_begin(&dentry->d_seq);
2729 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2730 write_seqcount_end(&dentry->d_seq);
2731 spin_unlock(&dentry->d_lock);
2733 EXPORT_SYMBOL(dentry_update_name_case);
2735 static void swap_names(struct dentry *dentry, struct dentry *target)
2737 if (unlikely(dname_external(target))) {
2738 if (unlikely(dname_external(dentry))) {
2740 * Both external: swap the pointers
2742 swap(target->d_name.name, dentry->d_name.name);
2743 } else {
2745 * dentry:internal, target:external. Steal target's
2746 * storage and make target internal.
2748 memcpy(target->d_iname, dentry->d_name.name,
2749 dentry->d_name.len + 1);
2750 dentry->d_name.name = target->d_name.name;
2751 target->d_name.name = target->d_iname;
2753 } else {
2754 if (unlikely(dname_external(dentry))) {
2756 * dentry:external, target:internal. Give dentry's
2757 * storage to target and make dentry internal
2759 memcpy(dentry->d_iname, target->d_name.name,
2760 target->d_name.len + 1);
2761 target->d_name.name = dentry->d_name.name;
2762 dentry->d_name.name = dentry->d_iname;
2763 } else {
2765 * Both are internal.
2767 unsigned int i;
2768 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2769 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2770 swap(((long *) &dentry->d_iname)[i],
2771 ((long *) &target->d_iname)[i]);
2775 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2778 static void copy_name(struct dentry *dentry, struct dentry *target)
2780 struct external_name *old_name = NULL;
2781 if (unlikely(dname_external(dentry)))
2782 old_name = external_name(dentry);
2783 if (unlikely(dname_external(target))) {
2784 atomic_inc(&external_name(target)->u.count);
2785 dentry->d_name = target->d_name;
2786 } else {
2787 memcpy(dentry->d_iname, target->d_name.name,
2788 target->d_name.len + 1);
2789 dentry->d_name.name = dentry->d_iname;
2790 dentry->d_name.hash_len = target->d_name.hash_len;
2792 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2793 call_rcu(&old_name->u.head, __d_free_external_name);
2797 * __d_move - move a dentry
2798 * @dentry: entry to move
2799 * @target: new dentry
2800 * @exchange: exchange the two dentries
2802 * Update the dcache to reflect the move of a file name. Negative
2803 * dcache entries should not be moved in this way. Caller must hold
2804 * rename_lock, the i_mutex of the source and target directories,
2805 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2807 static void __d_move(struct dentry *dentry, struct dentry *target,
2808 bool exchange)
2810 struct dentry *old_parent, *p;
2811 struct inode *dir = NULL;
2812 unsigned n;
2814 WARN_ON(!dentry->d_inode);
2815 if (WARN_ON(dentry == target))
2816 return;
2818 BUG_ON(d_ancestor(target, dentry));
2819 old_parent = dentry->d_parent;
2820 p = d_ancestor(old_parent, target);
2821 if (IS_ROOT(dentry)) {
2822 BUG_ON(p);
2823 spin_lock(&target->d_parent->d_lock);
2824 } else if (!p) {
2825 /* target is not a descendent of dentry->d_parent */
2826 spin_lock(&target->d_parent->d_lock);
2827 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2828 } else {
2829 BUG_ON(p == dentry);
2830 spin_lock(&old_parent->d_lock);
2831 if (p != target)
2832 spin_lock_nested(&target->d_parent->d_lock,
2833 DENTRY_D_LOCK_NESTED);
2835 spin_lock_nested(&dentry->d_lock, 2);
2836 spin_lock_nested(&target->d_lock, 3);
2838 if (unlikely(d_in_lookup(target))) {
2839 dir = target->d_parent->d_inode;
2840 n = start_dir_add(dir);
2841 __d_lookup_done(target);
2844 write_seqcount_begin(&dentry->d_seq);
2845 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2847 /* unhash both */
2848 if (!d_unhashed(dentry))
2849 ___d_drop(dentry);
2850 if (!d_unhashed(target))
2851 ___d_drop(target);
2853 /* ... and switch them in the tree */
2854 dentry->d_parent = target->d_parent;
2855 if (!exchange) {
2856 copy_name(dentry, target);
2857 target->d_hash.pprev = NULL;
2858 dentry->d_parent->d_lockref.count++;
2859 if (dentry == old_parent)
2860 dentry->d_flags |= DCACHE_RCUACCESS;
2861 else
2862 WARN_ON(!--old_parent->d_lockref.count);
2863 } else {
2864 target->d_parent = old_parent;
2865 swap_names(dentry, target);
2866 list_move(&target->d_child, &target->d_parent->d_subdirs);
2867 __d_rehash(target);
2868 fsnotify_update_flags(target);
2870 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2871 __d_rehash(dentry);
2872 fsnotify_update_flags(dentry);
2874 write_seqcount_end(&target->d_seq);
2875 write_seqcount_end(&dentry->d_seq);
2877 if (dir)
2878 end_dir_add(dir, n);
2880 if (dentry->d_parent != old_parent)
2881 spin_unlock(&dentry->d_parent->d_lock);
2882 if (dentry != old_parent)
2883 spin_unlock(&old_parent->d_lock);
2884 spin_unlock(&target->d_lock);
2885 spin_unlock(&dentry->d_lock);
2889 * d_move - move a dentry
2890 * @dentry: entry to move
2891 * @target: new dentry
2893 * Update the dcache to reflect the move of a file name. Negative
2894 * dcache entries should not be moved in this way. See the locking
2895 * requirements for __d_move.
2897 void d_move(struct dentry *dentry, struct dentry *target)
2899 write_seqlock(&rename_lock);
2900 __d_move(dentry, target, false);
2901 write_sequnlock(&rename_lock);
2903 EXPORT_SYMBOL(d_move);
2906 * d_exchange - exchange two dentries
2907 * @dentry1: first dentry
2908 * @dentry2: second dentry
2910 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2912 write_seqlock(&rename_lock);
2914 WARN_ON(!dentry1->d_inode);
2915 WARN_ON(!dentry2->d_inode);
2916 WARN_ON(IS_ROOT(dentry1));
2917 WARN_ON(IS_ROOT(dentry2));
2919 __d_move(dentry1, dentry2, true);
2921 write_sequnlock(&rename_lock);
2925 * d_ancestor - search for an ancestor
2926 * @p1: ancestor dentry
2927 * @p2: child dentry
2929 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2930 * an ancestor of p2, else NULL.
2932 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2934 struct dentry *p;
2936 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2937 if (p->d_parent == p1)
2938 return p;
2940 return NULL;
2944 * This helper attempts to cope with remotely renamed directories
2946 * It assumes that the caller is already holding
2947 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2949 * Note: If ever the locking in lock_rename() changes, then please
2950 * remember to update this too...
2952 static int __d_unalias(struct inode *inode,
2953 struct dentry *dentry, struct dentry *alias)
2955 struct mutex *m1 = NULL;
2956 struct rw_semaphore *m2 = NULL;
2957 int ret = -ESTALE;
2959 /* If alias and dentry share a parent, then no extra locks required */
2960 if (alias->d_parent == dentry->d_parent)
2961 goto out_unalias;
2963 /* See lock_rename() */
2964 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2965 goto out_err;
2966 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2967 if (!inode_trylock_shared(alias->d_parent->d_inode))
2968 goto out_err;
2969 m2 = &alias->d_parent->d_inode->i_rwsem;
2970 out_unalias:
2971 __d_move(alias, dentry, false);
2972 ret = 0;
2973 out_err:
2974 if (m2)
2975 up_read(m2);
2976 if (m1)
2977 mutex_unlock(m1);
2978 return ret;
2982 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2983 * @inode: the inode which may have a disconnected dentry
2984 * @dentry: a negative dentry which we want to point to the inode.
2986 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2987 * place of the given dentry and return it, else simply d_add the inode
2988 * to the dentry and return NULL.
2990 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2991 * we should error out: directories can't have multiple aliases.
2993 * This is needed in the lookup routine of any filesystem that is exportable
2994 * (via knfsd) so that we can build dcache paths to directories effectively.
2996 * If a dentry was found and moved, then it is returned. Otherwise NULL
2997 * is returned. This matches the expected return value of ->lookup.
2999 * Cluster filesystems may call this function with a negative, hashed dentry.
3000 * In that case, we know that the inode will be a regular file, and also this
3001 * will only occur during atomic_open. So we need to check for the dentry
3002 * being already hashed only in the final case.
3004 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3006 if (IS_ERR(inode))
3007 return ERR_CAST(inode);
3009 BUG_ON(!d_unhashed(dentry));
3011 if (!inode)
3012 goto out;
3014 security_d_instantiate(dentry, inode);
3015 spin_lock(&inode->i_lock);
3016 if (S_ISDIR(inode->i_mode)) {
3017 struct dentry *new = __d_find_any_alias(inode);
3018 if (unlikely(new)) {
3019 /* The reference to new ensures it remains an alias */
3020 spin_unlock(&inode->i_lock);
3021 write_seqlock(&rename_lock);
3022 if (unlikely(d_ancestor(new, dentry))) {
3023 write_sequnlock(&rename_lock);
3024 dput(new);
3025 new = ERR_PTR(-ELOOP);
3026 pr_warn_ratelimited(
3027 "VFS: Lookup of '%s' in %s %s"
3028 " would have caused loop\n",
3029 dentry->d_name.name,
3030 inode->i_sb->s_type->name,
3031 inode->i_sb->s_id);
3032 } else if (!IS_ROOT(new)) {
3033 struct dentry *old_parent = dget(new->d_parent);
3034 int err = __d_unalias(inode, dentry, new);
3035 write_sequnlock(&rename_lock);
3036 if (err) {
3037 dput(new);
3038 new = ERR_PTR(err);
3040 dput(old_parent);
3041 } else {
3042 __d_move(new, dentry, false);
3043 write_sequnlock(&rename_lock);
3045 iput(inode);
3046 return new;
3049 out:
3050 __d_add(dentry, inode);
3051 return NULL;
3053 EXPORT_SYMBOL(d_splice_alias);
3056 * Test whether new_dentry is a subdirectory of old_dentry.
3058 * Trivially implemented using the dcache structure
3062 * is_subdir - is new dentry a subdirectory of old_dentry
3063 * @new_dentry: new dentry
3064 * @old_dentry: old dentry
3066 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3067 * Returns false otherwise.
3068 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3071 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3073 bool result;
3074 unsigned seq;
3076 if (new_dentry == old_dentry)
3077 return true;
3079 do {
3080 /* for restarting inner loop in case of seq retry */
3081 seq = read_seqbegin(&rename_lock);
3083 * Need rcu_readlock to protect against the d_parent trashing
3084 * due to d_move
3086 rcu_read_lock();
3087 if (d_ancestor(old_dentry, new_dentry))
3088 result = true;
3089 else
3090 result = false;
3091 rcu_read_unlock();
3092 } while (read_seqretry(&rename_lock, seq));
3094 return result;
3096 EXPORT_SYMBOL(is_subdir);
3098 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3100 struct dentry *root = data;
3101 if (dentry != root) {
3102 if (d_unhashed(dentry) || !dentry->d_inode)
3103 return D_WALK_SKIP;
3105 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3106 dentry->d_flags |= DCACHE_GENOCIDE;
3107 dentry->d_lockref.count--;
3110 return D_WALK_CONTINUE;
3113 void d_genocide(struct dentry *parent)
3115 d_walk(parent, parent, d_genocide_kill, NULL);
3118 EXPORT_SYMBOL(d_genocide);
3120 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3122 inode_dec_link_count(inode);
3123 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3124 !hlist_unhashed(&dentry->d_u.d_alias) ||
3125 !d_unlinked(dentry));
3126 spin_lock(&dentry->d_parent->d_lock);
3127 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3128 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3129 (unsigned long long)inode->i_ino);
3130 spin_unlock(&dentry->d_lock);
3131 spin_unlock(&dentry->d_parent->d_lock);
3132 d_instantiate(dentry, inode);
3134 EXPORT_SYMBOL(d_tmpfile);
3136 static __initdata unsigned long dhash_entries;
3137 static int __init set_dhash_entries(char *str)
3139 if (!str)
3140 return 0;
3141 dhash_entries = simple_strtoul(str, &str, 0);
3142 return 1;
3144 __setup("dhash_entries=", set_dhash_entries);
3146 static void __init dcache_init_early(void)
3148 /* If hashes are distributed across NUMA nodes, defer
3149 * hash allocation until vmalloc space is available.
3151 if (hashdist)
3152 return;
3154 dentry_hashtable =
3155 alloc_large_system_hash("Dentry cache",
3156 sizeof(struct hlist_bl_head),
3157 dhash_entries,
3159 HASH_EARLY | HASH_ZERO,
3160 &d_hash_shift,
3161 NULL,
3164 d_hash_shift = 32 - d_hash_shift;
3167 static void __init dcache_init(void)
3170 * A constructor could be added for stable state like the lists,
3171 * but it is probably not worth it because of the cache nature
3172 * of the dcache.
3174 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3175 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3176 d_iname);
3178 /* Hash may have been set up in dcache_init_early */
3179 if (!hashdist)
3180 return;
3182 dentry_hashtable =
3183 alloc_large_system_hash("Dentry cache",
3184 sizeof(struct hlist_bl_head),
3185 dhash_entries,
3187 HASH_ZERO,
3188 &d_hash_shift,
3189 NULL,
3192 d_hash_shift = 32 - d_hash_shift;
3195 /* SLAB cache for __getname() consumers */
3196 struct kmem_cache *names_cachep __read_mostly;
3197 EXPORT_SYMBOL(names_cachep);
3199 void __init vfs_caches_init_early(void)
3201 int i;
3203 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3204 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3206 dcache_init_early();
3207 inode_init_early();
3210 void __init vfs_caches_init(void)
3212 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3213 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3215 dcache_init();
3216 inode_init();
3217 files_init();
3218 files_maxfiles_init();
3219 mnt_init();
3220 bdev_cache_init();
3221 chrdev_init();