net: cacheline adjust struct inet_frag_queue
[linux-2.6/btrfs-unstable.git] / net / ipv4 / tcp.c
blob3ec1f69c5ceb2ed0670c242c7eab2c0ac579c285
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
213 * Description of States:
215 * TCP_SYN_SENT sent a connection request, waiting for ack
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
220 * TCP_ESTABLISHED connection established
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
245 * TCP_CLOSE socket is finished
248 #define pr_fmt(fmt) "TCP: " fmt
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269 #include <linux/time.h>
270 #include <linux/slab.h>
272 #include <net/icmp.h>
273 #include <net/inet_common.h>
274 #include <net/tcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/netdma.h>
278 #include <net/sock.h>
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
283 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
285 struct percpu_counter tcp_orphan_count;
286 EXPORT_SYMBOL_GPL(tcp_orphan_count);
288 int sysctl_tcp_wmem[3] __read_mostly;
289 int sysctl_tcp_rmem[3] __read_mostly;
291 EXPORT_SYMBOL(sysctl_tcp_rmem);
292 EXPORT_SYMBOL(sysctl_tcp_wmem);
294 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
295 EXPORT_SYMBOL(tcp_memory_allocated);
298 * Current number of TCP sockets.
300 struct percpu_counter tcp_sockets_allocated;
301 EXPORT_SYMBOL(tcp_sockets_allocated);
304 * TCP splice context
306 struct tcp_splice_state {
307 struct pipe_inode_info *pipe;
308 size_t len;
309 unsigned int flags;
313 * Pressure flag: try to collapse.
314 * Technical note: it is used by multiple contexts non atomically.
315 * All the __sk_mem_schedule() is of this nature: accounting
316 * is strict, actions are advisory and have some latency.
318 int tcp_memory_pressure __read_mostly;
319 EXPORT_SYMBOL(tcp_memory_pressure);
321 void tcp_enter_memory_pressure(struct sock *sk)
323 if (!tcp_memory_pressure) {
324 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
325 tcp_memory_pressure = 1;
328 EXPORT_SYMBOL(tcp_enter_memory_pressure);
330 /* Convert seconds to retransmits based on initial and max timeout */
331 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
333 u8 res = 0;
335 if (seconds > 0) {
336 int period = timeout;
338 res = 1;
339 while (seconds > period && res < 255) {
340 res++;
341 timeout <<= 1;
342 if (timeout > rto_max)
343 timeout = rto_max;
344 period += timeout;
347 return res;
350 /* Convert retransmits to seconds based on initial and max timeout */
351 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
353 int period = 0;
355 if (retrans > 0) {
356 period = timeout;
357 while (--retrans) {
358 timeout <<= 1;
359 if (timeout > rto_max)
360 timeout = rto_max;
361 period += timeout;
364 return period;
367 /* Address-family independent initialization for a tcp_sock.
369 * NOTE: A lot of things set to zero explicitly by call to
370 * sk_alloc() so need not be done here.
372 void tcp_init_sock(struct sock *sk)
374 struct inet_connection_sock *icsk = inet_csk(sk);
375 struct tcp_sock *tp = tcp_sk(sk);
377 skb_queue_head_init(&tp->out_of_order_queue);
378 tcp_init_xmit_timers(sk);
379 tcp_prequeue_init(tp);
380 INIT_LIST_HEAD(&tp->tsq_node);
382 icsk->icsk_rto = TCP_TIMEOUT_INIT;
383 tp->mdev = TCP_TIMEOUT_INIT;
385 /* So many TCP implementations out there (incorrectly) count the
386 * initial SYN frame in their delayed-ACK and congestion control
387 * algorithms that we must have the following bandaid to talk
388 * efficiently to them. -DaveM
390 tp->snd_cwnd = TCP_INIT_CWND;
392 /* See draft-stevens-tcpca-spec-01 for discussion of the
393 * initialization of these values.
395 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
396 tp->snd_cwnd_clamp = ~0;
397 tp->mss_cache = TCP_MSS_DEFAULT;
399 tp->reordering = sysctl_tcp_reordering;
400 tcp_enable_early_retrans(tp);
401 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
403 sk->sk_state = TCP_CLOSE;
405 sk->sk_write_space = sk_stream_write_space;
406 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
408 icsk->icsk_sync_mss = tcp_sync_mss;
410 /* TCP Cookie Transactions */
411 if (sysctl_tcp_cookie_size > 0) {
412 /* Default, cookies without s_data_payload. */
413 tp->cookie_values =
414 kzalloc(sizeof(*tp->cookie_values),
415 sk->sk_allocation);
416 if (tp->cookie_values != NULL)
417 kref_init(&tp->cookie_values->kref);
419 /* Presumed zeroed, in order of appearance:
420 * cookie_in_always, cookie_out_never,
421 * s_data_constant, s_data_in, s_data_out
423 sk->sk_sndbuf = sysctl_tcp_wmem[1];
424 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
426 local_bh_disable();
427 sock_update_memcg(sk);
428 sk_sockets_allocated_inc(sk);
429 local_bh_enable();
431 EXPORT_SYMBOL(tcp_init_sock);
434 * Wait for a TCP event.
436 * Note that we don't need to lock the socket, as the upper poll layers
437 * take care of normal races (between the test and the event) and we don't
438 * go look at any of the socket buffers directly.
440 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
442 unsigned int mask;
443 struct sock *sk = sock->sk;
444 const struct tcp_sock *tp = tcp_sk(sk);
446 sock_poll_wait(file, sk_sleep(sk), wait);
447 if (sk->sk_state == TCP_LISTEN)
448 return inet_csk_listen_poll(sk);
450 /* Socket is not locked. We are protected from async events
451 * by poll logic and correct handling of state changes
452 * made by other threads is impossible in any case.
455 mask = 0;
458 * POLLHUP is certainly not done right. But poll() doesn't
459 * have a notion of HUP in just one direction, and for a
460 * socket the read side is more interesting.
462 * Some poll() documentation says that POLLHUP is incompatible
463 * with the POLLOUT/POLLWR flags, so somebody should check this
464 * all. But careful, it tends to be safer to return too many
465 * bits than too few, and you can easily break real applications
466 * if you don't tell them that something has hung up!
468 * Check-me.
470 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
471 * our fs/select.c). It means that after we received EOF,
472 * poll always returns immediately, making impossible poll() on write()
473 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
474 * if and only if shutdown has been made in both directions.
475 * Actually, it is interesting to look how Solaris and DUX
476 * solve this dilemma. I would prefer, if POLLHUP were maskable,
477 * then we could set it on SND_SHUTDOWN. BTW examples given
478 * in Stevens' books assume exactly this behaviour, it explains
479 * why POLLHUP is incompatible with POLLOUT. --ANK
481 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
482 * blocking on fresh not-connected or disconnected socket. --ANK
484 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
485 mask |= POLLHUP;
486 if (sk->sk_shutdown & RCV_SHUTDOWN)
487 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
489 /* Connected or passive Fast Open socket? */
490 if (sk->sk_state != TCP_SYN_SENT &&
491 (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk != NULL)) {
492 int target = sock_rcvlowat(sk, 0, INT_MAX);
494 if (tp->urg_seq == tp->copied_seq &&
495 !sock_flag(sk, SOCK_URGINLINE) &&
496 tp->urg_data)
497 target++;
499 /* Potential race condition. If read of tp below will
500 * escape above sk->sk_state, we can be illegally awaken
501 * in SYN_* states. */
502 if (tp->rcv_nxt - tp->copied_seq >= target)
503 mask |= POLLIN | POLLRDNORM;
505 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
506 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
507 mask |= POLLOUT | POLLWRNORM;
508 } else { /* send SIGIO later */
509 set_bit(SOCK_ASYNC_NOSPACE,
510 &sk->sk_socket->flags);
511 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
513 /* Race breaker. If space is freed after
514 * wspace test but before the flags are set,
515 * IO signal will be lost.
517 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
518 mask |= POLLOUT | POLLWRNORM;
520 } else
521 mask |= POLLOUT | POLLWRNORM;
523 if (tp->urg_data & TCP_URG_VALID)
524 mask |= POLLPRI;
526 /* This barrier is coupled with smp_wmb() in tcp_reset() */
527 smp_rmb();
528 if (sk->sk_err)
529 mask |= POLLERR;
531 return mask;
533 EXPORT_SYMBOL(tcp_poll);
535 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
537 struct tcp_sock *tp = tcp_sk(sk);
538 int answ;
539 bool slow;
541 switch (cmd) {
542 case SIOCINQ:
543 if (sk->sk_state == TCP_LISTEN)
544 return -EINVAL;
546 slow = lock_sock_fast(sk);
547 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
548 answ = 0;
549 else if (sock_flag(sk, SOCK_URGINLINE) ||
550 !tp->urg_data ||
551 before(tp->urg_seq, tp->copied_seq) ||
552 !before(tp->urg_seq, tp->rcv_nxt)) {
554 answ = tp->rcv_nxt - tp->copied_seq;
556 /* Subtract 1, if FIN was received */
557 if (answ && sock_flag(sk, SOCK_DONE))
558 answ--;
559 } else
560 answ = tp->urg_seq - tp->copied_seq;
561 unlock_sock_fast(sk, slow);
562 break;
563 case SIOCATMARK:
564 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
565 break;
566 case SIOCOUTQ:
567 if (sk->sk_state == TCP_LISTEN)
568 return -EINVAL;
570 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
571 answ = 0;
572 else
573 answ = tp->write_seq - tp->snd_una;
574 break;
575 case SIOCOUTQNSD:
576 if (sk->sk_state == TCP_LISTEN)
577 return -EINVAL;
579 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
580 answ = 0;
581 else
582 answ = tp->write_seq - tp->snd_nxt;
583 break;
584 default:
585 return -ENOIOCTLCMD;
588 return put_user(answ, (int __user *)arg);
590 EXPORT_SYMBOL(tcp_ioctl);
592 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
594 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
595 tp->pushed_seq = tp->write_seq;
598 static inline bool forced_push(const struct tcp_sock *tp)
600 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
603 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
605 struct tcp_sock *tp = tcp_sk(sk);
606 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
608 skb->csum = 0;
609 tcb->seq = tcb->end_seq = tp->write_seq;
610 tcb->tcp_flags = TCPHDR_ACK;
611 tcb->sacked = 0;
612 skb_header_release(skb);
613 tcp_add_write_queue_tail(sk, skb);
614 sk->sk_wmem_queued += skb->truesize;
615 sk_mem_charge(sk, skb->truesize);
616 if (tp->nonagle & TCP_NAGLE_PUSH)
617 tp->nonagle &= ~TCP_NAGLE_PUSH;
620 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
622 if (flags & MSG_OOB)
623 tp->snd_up = tp->write_seq;
626 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
627 int nonagle)
629 if (tcp_send_head(sk)) {
630 struct tcp_sock *tp = tcp_sk(sk);
632 if (!(flags & MSG_MORE) || forced_push(tp))
633 tcp_mark_push(tp, tcp_write_queue_tail(sk));
635 tcp_mark_urg(tp, flags);
636 __tcp_push_pending_frames(sk, mss_now,
637 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
641 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
642 unsigned int offset, size_t len)
644 struct tcp_splice_state *tss = rd_desc->arg.data;
645 int ret;
647 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
648 tss->flags);
649 if (ret > 0)
650 rd_desc->count -= ret;
651 return ret;
654 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
656 /* Store TCP splice context information in read_descriptor_t. */
657 read_descriptor_t rd_desc = {
658 .arg.data = tss,
659 .count = tss->len,
662 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
666 * tcp_splice_read - splice data from TCP socket to a pipe
667 * @sock: socket to splice from
668 * @ppos: position (not valid)
669 * @pipe: pipe to splice to
670 * @len: number of bytes to splice
671 * @flags: splice modifier flags
673 * Description:
674 * Will read pages from given socket and fill them into a pipe.
677 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
678 struct pipe_inode_info *pipe, size_t len,
679 unsigned int flags)
681 struct sock *sk = sock->sk;
682 struct tcp_splice_state tss = {
683 .pipe = pipe,
684 .len = len,
685 .flags = flags,
687 long timeo;
688 ssize_t spliced;
689 int ret;
691 sock_rps_record_flow(sk);
693 * We can't seek on a socket input
695 if (unlikely(*ppos))
696 return -ESPIPE;
698 ret = spliced = 0;
700 lock_sock(sk);
702 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
703 while (tss.len) {
704 ret = __tcp_splice_read(sk, &tss);
705 if (ret < 0)
706 break;
707 else if (!ret) {
708 if (spliced)
709 break;
710 if (sock_flag(sk, SOCK_DONE))
711 break;
712 if (sk->sk_err) {
713 ret = sock_error(sk);
714 break;
716 if (sk->sk_shutdown & RCV_SHUTDOWN)
717 break;
718 if (sk->sk_state == TCP_CLOSE) {
720 * This occurs when user tries to read
721 * from never connected socket.
723 if (!sock_flag(sk, SOCK_DONE))
724 ret = -ENOTCONN;
725 break;
727 if (!timeo) {
728 ret = -EAGAIN;
729 break;
731 sk_wait_data(sk, &timeo);
732 if (signal_pending(current)) {
733 ret = sock_intr_errno(timeo);
734 break;
736 continue;
738 tss.len -= ret;
739 spliced += ret;
741 if (!timeo)
742 break;
743 release_sock(sk);
744 lock_sock(sk);
746 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
747 (sk->sk_shutdown & RCV_SHUTDOWN) ||
748 signal_pending(current))
749 break;
752 release_sock(sk);
754 if (spliced)
755 return spliced;
757 return ret;
759 EXPORT_SYMBOL(tcp_splice_read);
761 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
763 struct sk_buff *skb;
765 /* The TCP header must be at least 32-bit aligned. */
766 size = ALIGN(size, 4);
768 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
769 if (skb) {
770 if (sk_wmem_schedule(sk, skb->truesize)) {
771 skb_reserve(skb, sk->sk_prot->max_header);
773 * Make sure that we have exactly size bytes
774 * available to the caller, no more, no less.
776 skb->avail_size = size;
777 return skb;
779 __kfree_skb(skb);
780 } else {
781 sk->sk_prot->enter_memory_pressure(sk);
782 sk_stream_moderate_sndbuf(sk);
784 return NULL;
787 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
788 int large_allowed)
790 struct tcp_sock *tp = tcp_sk(sk);
791 u32 xmit_size_goal, old_size_goal;
793 xmit_size_goal = mss_now;
795 if (large_allowed && sk_can_gso(sk)) {
796 xmit_size_goal = ((sk->sk_gso_max_size - 1) -
797 inet_csk(sk)->icsk_af_ops->net_header_len -
798 inet_csk(sk)->icsk_ext_hdr_len -
799 tp->tcp_header_len);
801 /* TSQ : try to have two TSO segments in flight */
802 xmit_size_goal = min_t(u32, xmit_size_goal,
803 sysctl_tcp_limit_output_bytes >> 1);
805 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
807 /* We try hard to avoid divides here */
808 old_size_goal = tp->xmit_size_goal_segs * mss_now;
810 if (likely(old_size_goal <= xmit_size_goal &&
811 old_size_goal + mss_now > xmit_size_goal)) {
812 xmit_size_goal = old_size_goal;
813 } else {
814 tp->xmit_size_goal_segs =
815 min_t(u16, xmit_size_goal / mss_now,
816 sk->sk_gso_max_segs);
817 xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
821 return max(xmit_size_goal, mss_now);
824 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
826 int mss_now;
828 mss_now = tcp_current_mss(sk);
829 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
831 return mss_now;
834 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
835 size_t size, int flags)
837 struct tcp_sock *tp = tcp_sk(sk);
838 int mss_now, size_goal;
839 int err;
840 ssize_t copied;
841 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
843 /* Wait for a connection to finish. One exception is TCP Fast Open
844 * (passive side) where data is allowed to be sent before a connection
845 * is fully established.
847 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
848 !tcp_passive_fastopen(sk)) {
849 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
850 goto out_err;
853 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
855 mss_now = tcp_send_mss(sk, &size_goal, flags);
856 copied = 0;
858 err = -EPIPE;
859 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
860 goto out_err;
862 while (size > 0) {
863 struct sk_buff *skb = tcp_write_queue_tail(sk);
864 int copy, i;
865 bool can_coalesce;
867 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
868 new_segment:
869 if (!sk_stream_memory_free(sk))
870 goto wait_for_sndbuf;
872 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
873 if (!skb)
874 goto wait_for_memory;
876 skb_entail(sk, skb);
877 copy = size_goal;
880 if (copy > size)
881 copy = size;
883 i = skb_shinfo(skb)->nr_frags;
884 can_coalesce = skb_can_coalesce(skb, i, page, offset);
885 if (!can_coalesce && i >= MAX_SKB_FRAGS) {
886 tcp_mark_push(tp, skb);
887 goto new_segment;
889 if (!sk_wmem_schedule(sk, copy))
890 goto wait_for_memory;
892 if (can_coalesce) {
893 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
894 } else {
895 get_page(page);
896 skb_fill_page_desc(skb, i, page, offset, copy);
899 skb_shinfo(skb)->gso_type |= SKB_GSO_SHARED_FRAG;
901 skb->len += copy;
902 skb->data_len += copy;
903 skb->truesize += copy;
904 sk->sk_wmem_queued += copy;
905 sk_mem_charge(sk, copy);
906 skb->ip_summed = CHECKSUM_PARTIAL;
907 tp->write_seq += copy;
908 TCP_SKB_CB(skb)->end_seq += copy;
909 skb_shinfo(skb)->gso_segs = 0;
911 if (!copied)
912 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
914 copied += copy;
915 offset += copy;
916 if (!(size -= copy))
917 goto out;
919 if (skb->len < size_goal || (flags & MSG_OOB))
920 continue;
922 if (forced_push(tp)) {
923 tcp_mark_push(tp, skb);
924 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
925 } else if (skb == tcp_send_head(sk))
926 tcp_push_one(sk, mss_now);
927 continue;
929 wait_for_sndbuf:
930 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
931 wait_for_memory:
932 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
934 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
935 goto do_error;
937 mss_now = tcp_send_mss(sk, &size_goal, flags);
940 out:
941 if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
942 tcp_push(sk, flags, mss_now, tp->nonagle);
943 return copied;
945 do_error:
946 if (copied)
947 goto out;
948 out_err:
949 return sk_stream_error(sk, flags, err);
952 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
953 size_t size, int flags)
955 ssize_t res;
957 if (!(sk->sk_route_caps & NETIF_F_SG) ||
958 !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
959 return sock_no_sendpage(sk->sk_socket, page, offset, size,
960 flags);
962 lock_sock(sk);
963 res = do_tcp_sendpages(sk, page, offset, size, flags);
964 release_sock(sk);
965 return res;
967 EXPORT_SYMBOL(tcp_sendpage);
969 static inline int select_size(const struct sock *sk, bool sg)
971 const struct tcp_sock *tp = tcp_sk(sk);
972 int tmp = tp->mss_cache;
974 if (sg) {
975 if (sk_can_gso(sk)) {
976 /* Small frames wont use a full page:
977 * Payload will immediately follow tcp header.
979 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
980 } else {
981 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
983 if (tmp >= pgbreak &&
984 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
985 tmp = pgbreak;
989 return tmp;
992 void tcp_free_fastopen_req(struct tcp_sock *tp)
994 if (tp->fastopen_req != NULL) {
995 kfree(tp->fastopen_req);
996 tp->fastopen_req = NULL;
1000 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *size)
1002 struct tcp_sock *tp = tcp_sk(sk);
1003 int err, flags;
1005 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1006 return -EOPNOTSUPP;
1007 if (tp->fastopen_req != NULL)
1008 return -EALREADY; /* Another Fast Open is in progress */
1010 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1011 sk->sk_allocation);
1012 if (unlikely(tp->fastopen_req == NULL))
1013 return -ENOBUFS;
1014 tp->fastopen_req->data = msg;
1016 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1017 err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1018 msg->msg_namelen, flags);
1019 *size = tp->fastopen_req->copied;
1020 tcp_free_fastopen_req(tp);
1021 return err;
1024 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1025 size_t size)
1027 struct iovec *iov;
1028 struct tcp_sock *tp = tcp_sk(sk);
1029 struct sk_buff *skb;
1030 int iovlen, flags, err, copied = 0;
1031 int mss_now = 0, size_goal, copied_syn = 0, offset = 0;
1032 bool sg;
1033 long timeo;
1035 lock_sock(sk);
1037 flags = msg->msg_flags;
1038 if (flags & MSG_FASTOPEN) {
1039 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn);
1040 if (err == -EINPROGRESS && copied_syn > 0)
1041 goto out;
1042 else if (err)
1043 goto out_err;
1044 offset = copied_syn;
1047 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1049 /* Wait for a connection to finish. One exception is TCP Fast Open
1050 * (passive side) where data is allowed to be sent before a connection
1051 * is fully established.
1053 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1054 !tcp_passive_fastopen(sk)) {
1055 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1056 goto do_error;
1059 if (unlikely(tp->repair)) {
1060 if (tp->repair_queue == TCP_RECV_QUEUE) {
1061 copied = tcp_send_rcvq(sk, msg, size);
1062 goto out;
1065 err = -EINVAL;
1066 if (tp->repair_queue == TCP_NO_QUEUE)
1067 goto out_err;
1069 /* 'common' sending to sendq */
1072 /* This should be in poll */
1073 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1075 mss_now = tcp_send_mss(sk, &size_goal, flags);
1077 /* Ok commence sending. */
1078 iovlen = msg->msg_iovlen;
1079 iov = msg->msg_iov;
1080 copied = 0;
1082 err = -EPIPE;
1083 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1084 goto out_err;
1086 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1088 while (--iovlen >= 0) {
1089 size_t seglen = iov->iov_len;
1090 unsigned char __user *from = iov->iov_base;
1092 iov++;
1093 if (unlikely(offset > 0)) { /* Skip bytes copied in SYN */
1094 if (offset >= seglen) {
1095 offset -= seglen;
1096 continue;
1098 seglen -= offset;
1099 from += offset;
1100 offset = 0;
1103 while (seglen > 0) {
1104 int copy = 0;
1105 int max = size_goal;
1107 skb = tcp_write_queue_tail(sk);
1108 if (tcp_send_head(sk)) {
1109 if (skb->ip_summed == CHECKSUM_NONE)
1110 max = mss_now;
1111 copy = max - skb->len;
1114 if (copy <= 0) {
1115 new_segment:
1116 /* Allocate new segment. If the interface is SG,
1117 * allocate skb fitting to single page.
1119 if (!sk_stream_memory_free(sk))
1120 goto wait_for_sndbuf;
1122 skb = sk_stream_alloc_skb(sk,
1123 select_size(sk, sg),
1124 sk->sk_allocation);
1125 if (!skb)
1126 goto wait_for_memory;
1129 * Check whether we can use HW checksum.
1131 if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1132 skb->ip_summed = CHECKSUM_PARTIAL;
1134 skb_entail(sk, skb);
1135 copy = size_goal;
1136 max = size_goal;
1139 /* Try to append data to the end of skb. */
1140 if (copy > seglen)
1141 copy = seglen;
1143 /* Where to copy to? */
1144 if (skb_availroom(skb) > 0) {
1145 /* We have some space in skb head. Superb! */
1146 copy = min_t(int, copy, skb_availroom(skb));
1147 err = skb_add_data_nocache(sk, skb, from, copy);
1148 if (err)
1149 goto do_fault;
1150 } else {
1151 bool merge = true;
1152 int i = skb_shinfo(skb)->nr_frags;
1153 struct page_frag *pfrag = sk_page_frag(sk);
1155 if (!sk_page_frag_refill(sk, pfrag))
1156 goto wait_for_memory;
1158 if (!skb_can_coalesce(skb, i, pfrag->page,
1159 pfrag->offset)) {
1160 if (i == MAX_SKB_FRAGS || !sg) {
1161 tcp_mark_push(tp, skb);
1162 goto new_segment;
1164 merge = false;
1167 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1169 if (!sk_wmem_schedule(sk, copy))
1170 goto wait_for_memory;
1172 err = skb_copy_to_page_nocache(sk, from, skb,
1173 pfrag->page,
1174 pfrag->offset,
1175 copy);
1176 if (err)
1177 goto do_error;
1179 /* Update the skb. */
1180 if (merge) {
1181 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1182 } else {
1183 skb_fill_page_desc(skb, i, pfrag->page,
1184 pfrag->offset, copy);
1185 get_page(pfrag->page);
1187 pfrag->offset += copy;
1190 if (!copied)
1191 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1193 tp->write_seq += copy;
1194 TCP_SKB_CB(skb)->end_seq += copy;
1195 skb_shinfo(skb)->gso_segs = 0;
1197 from += copy;
1198 copied += copy;
1199 if ((seglen -= copy) == 0 && iovlen == 0)
1200 goto out;
1202 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1203 continue;
1205 if (forced_push(tp)) {
1206 tcp_mark_push(tp, skb);
1207 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1208 } else if (skb == tcp_send_head(sk))
1209 tcp_push_one(sk, mss_now);
1210 continue;
1212 wait_for_sndbuf:
1213 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1214 wait_for_memory:
1215 if (copied)
1216 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1218 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1219 goto do_error;
1221 mss_now = tcp_send_mss(sk, &size_goal, flags);
1225 out:
1226 if (copied)
1227 tcp_push(sk, flags, mss_now, tp->nonagle);
1228 release_sock(sk);
1229 return copied + copied_syn;
1231 do_fault:
1232 if (!skb->len) {
1233 tcp_unlink_write_queue(skb, sk);
1234 /* It is the one place in all of TCP, except connection
1235 * reset, where we can be unlinking the send_head.
1237 tcp_check_send_head(sk, skb);
1238 sk_wmem_free_skb(sk, skb);
1241 do_error:
1242 if (copied + copied_syn)
1243 goto out;
1244 out_err:
1245 err = sk_stream_error(sk, flags, err);
1246 release_sock(sk);
1247 return err;
1249 EXPORT_SYMBOL(tcp_sendmsg);
1252 * Handle reading urgent data. BSD has very simple semantics for
1253 * this, no blocking and very strange errors 8)
1256 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1258 struct tcp_sock *tp = tcp_sk(sk);
1260 /* No URG data to read. */
1261 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1262 tp->urg_data == TCP_URG_READ)
1263 return -EINVAL; /* Yes this is right ! */
1265 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1266 return -ENOTCONN;
1268 if (tp->urg_data & TCP_URG_VALID) {
1269 int err = 0;
1270 char c = tp->urg_data;
1272 if (!(flags & MSG_PEEK))
1273 tp->urg_data = TCP_URG_READ;
1275 /* Read urgent data. */
1276 msg->msg_flags |= MSG_OOB;
1278 if (len > 0) {
1279 if (!(flags & MSG_TRUNC))
1280 err = memcpy_toiovec(msg->msg_iov, &c, 1);
1281 len = 1;
1282 } else
1283 msg->msg_flags |= MSG_TRUNC;
1285 return err ? -EFAULT : len;
1288 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1289 return 0;
1291 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1292 * the available implementations agree in this case:
1293 * this call should never block, independent of the
1294 * blocking state of the socket.
1295 * Mike <pall@rz.uni-karlsruhe.de>
1297 return -EAGAIN;
1300 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1302 struct sk_buff *skb;
1303 int copied = 0, err = 0;
1305 /* XXX -- need to support SO_PEEK_OFF */
1307 skb_queue_walk(&sk->sk_write_queue, skb) {
1308 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1309 if (err)
1310 break;
1312 copied += skb->len;
1315 return err ?: copied;
1318 /* Clean up the receive buffer for full frames taken by the user,
1319 * then send an ACK if necessary. COPIED is the number of bytes
1320 * tcp_recvmsg has given to the user so far, it speeds up the
1321 * calculation of whether or not we must ACK for the sake of
1322 * a window update.
1324 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1326 struct tcp_sock *tp = tcp_sk(sk);
1327 bool time_to_ack = false;
1329 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1331 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1332 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1333 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1335 if (inet_csk_ack_scheduled(sk)) {
1336 const struct inet_connection_sock *icsk = inet_csk(sk);
1337 /* Delayed ACKs frequently hit locked sockets during bulk
1338 * receive. */
1339 if (icsk->icsk_ack.blocked ||
1340 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1341 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1343 * If this read emptied read buffer, we send ACK, if
1344 * connection is not bidirectional, user drained
1345 * receive buffer and there was a small segment
1346 * in queue.
1348 (copied > 0 &&
1349 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1350 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1351 !icsk->icsk_ack.pingpong)) &&
1352 !atomic_read(&sk->sk_rmem_alloc)))
1353 time_to_ack = true;
1356 /* We send an ACK if we can now advertise a non-zero window
1357 * which has been raised "significantly".
1359 * Even if window raised up to infinity, do not send window open ACK
1360 * in states, where we will not receive more. It is useless.
1362 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1363 __u32 rcv_window_now = tcp_receive_window(tp);
1365 /* Optimize, __tcp_select_window() is not cheap. */
1366 if (2*rcv_window_now <= tp->window_clamp) {
1367 __u32 new_window = __tcp_select_window(sk);
1369 /* Send ACK now, if this read freed lots of space
1370 * in our buffer. Certainly, new_window is new window.
1371 * We can advertise it now, if it is not less than current one.
1372 * "Lots" means "at least twice" here.
1374 if (new_window && new_window >= 2 * rcv_window_now)
1375 time_to_ack = true;
1378 if (time_to_ack)
1379 tcp_send_ack(sk);
1382 static void tcp_prequeue_process(struct sock *sk)
1384 struct sk_buff *skb;
1385 struct tcp_sock *tp = tcp_sk(sk);
1387 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1389 /* RX process wants to run with disabled BHs, though it is not
1390 * necessary */
1391 local_bh_disable();
1392 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1393 sk_backlog_rcv(sk, skb);
1394 local_bh_enable();
1396 /* Clear memory counter. */
1397 tp->ucopy.memory = 0;
1400 #ifdef CONFIG_NET_DMA
1401 static void tcp_service_net_dma(struct sock *sk, bool wait)
1403 dma_cookie_t done, used;
1404 dma_cookie_t last_issued;
1405 struct tcp_sock *tp = tcp_sk(sk);
1407 if (!tp->ucopy.dma_chan)
1408 return;
1410 last_issued = tp->ucopy.dma_cookie;
1411 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1413 do {
1414 if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1415 last_issued, &done,
1416 &used) == DMA_SUCCESS) {
1417 /* Safe to free early-copied skbs now */
1418 __skb_queue_purge(&sk->sk_async_wait_queue);
1419 break;
1420 } else {
1421 struct sk_buff *skb;
1422 while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1423 (dma_async_is_complete(skb->dma_cookie, done,
1424 used) == DMA_SUCCESS)) {
1425 __skb_dequeue(&sk->sk_async_wait_queue);
1426 kfree_skb(skb);
1429 } while (wait);
1431 #endif
1433 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1435 struct sk_buff *skb;
1436 u32 offset;
1438 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1439 offset = seq - TCP_SKB_CB(skb)->seq;
1440 if (tcp_hdr(skb)->syn)
1441 offset--;
1442 if (offset < skb->len || tcp_hdr(skb)->fin) {
1443 *off = offset;
1444 return skb;
1446 /* This looks weird, but this can happen if TCP collapsing
1447 * splitted a fat GRO packet, while we released socket lock
1448 * in skb_splice_bits()
1450 sk_eat_skb(sk, skb, false);
1452 return NULL;
1456 * This routine provides an alternative to tcp_recvmsg() for routines
1457 * that would like to handle copying from skbuffs directly in 'sendfile'
1458 * fashion.
1459 * Note:
1460 * - It is assumed that the socket was locked by the caller.
1461 * - The routine does not block.
1462 * - At present, there is no support for reading OOB data
1463 * or for 'peeking' the socket using this routine
1464 * (although both would be easy to implement).
1466 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1467 sk_read_actor_t recv_actor)
1469 struct sk_buff *skb;
1470 struct tcp_sock *tp = tcp_sk(sk);
1471 u32 seq = tp->copied_seq;
1472 u32 offset;
1473 int copied = 0;
1475 if (sk->sk_state == TCP_LISTEN)
1476 return -ENOTCONN;
1477 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1478 if (offset < skb->len) {
1479 int used;
1480 size_t len;
1482 len = skb->len - offset;
1483 /* Stop reading if we hit a patch of urgent data */
1484 if (tp->urg_data) {
1485 u32 urg_offset = tp->urg_seq - seq;
1486 if (urg_offset < len)
1487 len = urg_offset;
1488 if (!len)
1489 break;
1491 used = recv_actor(desc, skb, offset, len);
1492 if (used <= 0) {
1493 if (!copied)
1494 copied = used;
1495 break;
1496 } else if (used <= len) {
1497 seq += used;
1498 copied += used;
1499 offset += used;
1501 /* If recv_actor drops the lock (e.g. TCP splice
1502 * receive) the skb pointer might be invalid when
1503 * getting here: tcp_collapse might have deleted it
1504 * while aggregating skbs from the socket queue.
1506 skb = tcp_recv_skb(sk, seq - 1, &offset);
1507 if (!skb)
1508 break;
1509 /* TCP coalescing might have appended data to the skb.
1510 * Try to splice more frags
1512 if (offset + 1 != skb->len)
1513 continue;
1515 if (tcp_hdr(skb)->fin) {
1516 sk_eat_skb(sk, skb, false);
1517 ++seq;
1518 break;
1520 sk_eat_skb(sk, skb, false);
1521 if (!desc->count)
1522 break;
1523 tp->copied_seq = seq;
1525 tp->copied_seq = seq;
1527 tcp_rcv_space_adjust(sk);
1529 /* Clean up data we have read: This will do ACK frames. */
1530 if (copied > 0) {
1531 tcp_recv_skb(sk, seq, &offset);
1532 tcp_cleanup_rbuf(sk, copied);
1534 return copied;
1536 EXPORT_SYMBOL(tcp_read_sock);
1539 * This routine copies from a sock struct into the user buffer.
1541 * Technical note: in 2.3 we work on _locked_ socket, so that
1542 * tricks with *seq access order and skb->users are not required.
1543 * Probably, code can be easily improved even more.
1546 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1547 size_t len, int nonblock, int flags, int *addr_len)
1549 struct tcp_sock *tp = tcp_sk(sk);
1550 int copied = 0;
1551 u32 peek_seq;
1552 u32 *seq;
1553 unsigned long used;
1554 int err;
1555 int target; /* Read at least this many bytes */
1556 long timeo;
1557 struct task_struct *user_recv = NULL;
1558 bool copied_early = false;
1559 struct sk_buff *skb;
1560 u32 urg_hole = 0;
1562 lock_sock(sk);
1564 err = -ENOTCONN;
1565 if (sk->sk_state == TCP_LISTEN)
1566 goto out;
1568 timeo = sock_rcvtimeo(sk, nonblock);
1570 /* Urgent data needs to be handled specially. */
1571 if (flags & MSG_OOB)
1572 goto recv_urg;
1574 if (unlikely(tp->repair)) {
1575 err = -EPERM;
1576 if (!(flags & MSG_PEEK))
1577 goto out;
1579 if (tp->repair_queue == TCP_SEND_QUEUE)
1580 goto recv_sndq;
1582 err = -EINVAL;
1583 if (tp->repair_queue == TCP_NO_QUEUE)
1584 goto out;
1586 /* 'common' recv queue MSG_PEEK-ing */
1589 seq = &tp->copied_seq;
1590 if (flags & MSG_PEEK) {
1591 peek_seq = tp->copied_seq;
1592 seq = &peek_seq;
1595 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1597 #ifdef CONFIG_NET_DMA
1598 tp->ucopy.dma_chan = NULL;
1599 preempt_disable();
1600 skb = skb_peek_tail(&sk->sk_receive_queue);
1602 int available = 0;
1604 if (skb)
1605 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1606 if ((available < target) &&
1607 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1608 !sysctl_tcp_low_latency &&
1609 net_dma_find_channel()) {
1610 preempt_enable_no_resched();
1611 tp->ucopy.pinned_list =
1612 dma_pin_iovec_pages(msg->msg_iov, len);
1613 } else {
1614 preempt_enable_no_resched();
1617 #endif
1619 do {
1620 u32 offset;
1622 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1623 if (tp->urg_data && tp->urg_seq == *seq) {
1624 if (copied)
1625 break;
1626 if (signal_pending(current)) {
1627 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1628 break;
1632 /* Next get a buffer. */
1634 skb_queue_walk(&sk->sk_receive_queue, skb) {
1635 /* Now that we have two receive queues this
1636 * shouldn't happen.
1638 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1639 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1640 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1641 flags))
1642 break;
1644 offset = *seq - TCP_SKB_CB(skb)->seq;
1645 if (tcp_hdr(skb)->syn)
1646 offset--;
1647 if (offset < skb->len)
1648 goto found_ok_skb;
1649 if (tcp_hdr(skb)->fin)
1650 goto found_fin_ok;
1651 WARN(!(flags & MSG_PEEK),
1652 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1653 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1656 /* Well, if we have backlog, try to process it now yet. */
1658 if (copied >= target && !sk->sk_backlog.tail)
1659 break;
1661 if (copied) {
1662 if (sk->sk_err ||
1663 sk->sk_state == TCP_CLOSE ||
1664 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1665 !timeo ||
1666 signal_pending(current))
1667 break;
1668 } else {
1669 if (sock_flag(sk, SOCK_DONE))
1670 break;
1672 if (sk->sk_err) {
1673 copied = sock_error(sk);
1674 break;
1677 if (sk->sk_shutdown & RCV_SHUTDOWN)
1678 break;
1680 if (sk->sk_state == TCP_CLOSE) {
1681 if (!sock_flag(sk, SOCK_DONE)) {
1682 /* This occurs when user tries to read
1683 * from never connected socket.
1685 copied = -ENOTCONN;
1686 break;
1688 break;
1691 if (!timeo) {
1692 copied = -EAGAIN;
1693 break;
1696 if (signal_pending(current)) {
1697 copied = sock_intr_errno(timeo);
1698 break;
1702 tcp_cleanup_rbuf(sk, copied);
1704 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1705 /* Install new reader */
1706 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1707 user_recv = current;
1708 tp->ucopy.task = user_recv;
1709 tp->ucopy.iov = msg->msg_iov;
1712 tp->ucopy.len = len;
1714 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1715 !(flags & (MSG_PEEK | MSG_TRUNC)));
1717 /* Ugly... If prequeue is not empty, we have to
1718 * process it before releasing socket, otherwise
1719 * order will be broken at second iteration.
1720 * More elegant solution is required!!!
1722 * Look: we have the following (pseudo)queues:
1724 * 1. packets in flight
1725 * 2. backlog
1726 * 3. prequeue
1727 * 4. receive_queue
1729 * Each queue can be processed only if the next ones
1730 * are empty. At this point we have empty receive_queue.
1731 * But prequeue _can_ be not empty after 2nd iteration,
1732 * when we jumped to start of loop because backlog
1733 * processing added something to receive_queue.
1734 * We cannot release_sock(), because backlog contains
1735 * packets arrived _after_ prequeued ones.
1737 * Shortly, algorithm is clear --- to process all
1738 * the queues in order. We could make it more directly,
1739 * requeueing packets from backlog to prequeue, if
1740 * is not empty. It is more elegant, but eats cycles,
1741 * unfortunately.
1743 if (!skb_queue_empty(&tp->ucopy.prequeue))
1744 goto do_prequeue;
1746 /* __ Set realtime policy in scheduler __ */
1749 #ifdef CONFIG_NET_DMA
1750 if (tp->ucopy.dma_chan) {
1751 if (tp->rcv_wnd == 0 &&
1752 !skb_queue_empty(&sk->sk_async_wait_queue)) {
1753 tcp_service_net_dma(sk, true);
1754 tcp_cleanup_rbuf(sk, copied);
1755 } else
1756 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1758 #endif
1759 if (copied >= target) {
1760 /* Do not sleep, just process backlog. */
1761 release_sock(sk);
1762 lock_sock(sk);
1763 } else
1764 sk_wait_data(sk, &timeo);
1766 #ifdef CONFIG_NET_DMA
1767 tcp_service_net_dma(sk, false); /* Don't block */
1768 tp->ucopy.wakeup = 0;
1769 #endif
1771 if (user_recv) {
1772 int chunk;
1774 /* __ Restore normal policy in scheduler __ */
1776 if ((chunk = len - tp->ucopy.len) != 0) {
1777 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1778 len -= chunk;
1779 copied += chunk;
1782 if (tp->rcv_nxt == tp->copied_seq &&
1783 !skb_queue_empty(&tp->ucopy.prequeue)) {
1784 do_prequeue:
1785 tcp_prequeue_process(sk);
1787 if ((chunk = len - tp->ucopy.len) != 0) {
1788 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1789 len -= chunk;
1790 copied += chunk;
1794 if ((flags & MSG_PEEK) &&
1795 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1796 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1797 current->comm,
1798 task_pid_nr(current));
1799 peek_seq = tp->copied_seq;
1801 continue;
1803 found_ok_skb:
1804 /* Ok so how much can we use? */
1805 used = skb->len - offset;
1806 if (len < used)
1807 used = len;
1809 /* Do we have urgent data here? */
1810 if (tp->urg_data) {
1811 u32 urg_offset = tp->urg_seq - *seq;
1812 if (urg_offset < used) {
1813 if (!urg_offset) {
1814 if (!sock_flag(sk, SOCK_URGINLINE)) {
1815 ++*seq;
1816 urg_hole++;
1817 offset++;
1818 used--;
1819 if (!used)
1820 goto skip_copy;
1822 } else
1823 used = urg_offset;
1827 if (!(flags & MSG_TRUNC)) {
1828 #ifdef CONFIG_NET_DMA
1829 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1830 tp->ucopy.dma_chan = net_dma_find_channel();
1832 if (tp->ucopy.dma_chan) {
1833 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1834 tp->ucopy.dma_chan, skb, offset,
1835 msg->msg_iov, used,
1836 tp->ucopy.pinned_list);
1838 if (tp->ucopy.dma_cookie < 0) {
1840 pr_alert("%s: dma_cookie < 0\n",
1841 __func__);
1843 /* Exception. Bailout! */
1844 if (!copied)
1845 copied = -EFAULT;
1846 break;
1849 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1851 if ((offset + used) == skb->len)
1852 copied_early = true;
1854 } else
1855 #endif
1857 err = skb_copy_datagram_iovec(skb, offset,
1858 msg->msg_iov, used);
1859 if (err) {
1860 /* Exception. Bailout! */
1861 if (!copied)
1862 copied = -EFAULT;
1863 break;
1868 *seq += used;
1869 copied += used;
1870 len -= used;
1872 tcp_rcv_space_adjust(sk);
1874 skip_copy:
1875 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1876 tp->urg_data = 0;
1877 tcp_fast_path_check(sk);
1879 if (used + offset < skb->len)
1880 continue;
1882 if (tcp_hdr(skb)->fin)
1883 goto found_fin_ok;
1884 if (!(flags & MSG_PEEK)) {
1885 sk_eat_skb(sk, skb, copied_early);
1886 copied_early = false;
1888 continue;
1890 found_fin_ok:
1891 /* Process the FIN. */
1892 ++*seq;
1893 if (!(flags & MSG_PEEK)) {
1894 sk_eat_skb(sk, skb, copied_early);
1895 copied_early = false;
1897 break;
1898 } while (len > 0);
1900 if (user_recv) {
1901 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1902 int chunk;
1904 tp->ucopy.len = copied > 0 ? len : 0;
1906 tcp_prequeue_process(sk);
1908 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1909 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1910 len -= chunk;
1911 copied += chunk;
1915 tp->ucopy.task = NULL;
1916 tp->ucopy.len = 0;
1919 #ifdef CONFIG_NET_DMA
1920 tcp_service_net_dma(sk, true); /* Wait for queue to drain */
1921 tp->ucopy.dma_chan = NULL;
1923 if (tp->ucopy.pinned_list) {
1924 dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1925 tp->ucopy.pinned_list = NULL;
1927 #endif
1929 /* According to UNIX98, msg_name/msg_namelen are ignored
1930 * on connected socket. I was just happy when found this 8) --ANK
1933 /* Clean up data we have read: This will do ACK frames. */
1934 tcp_cleanup_rbuf(sk, copied);
1936 release_sock(sk);
1937 return copied;
1939 out:
1940 release_sock(sk);
1941 return err;
1943 recv_urg:
1944 err = tcp_recv_urg(sk, msg, len, flags);
1945 goto out;
1947 recv_sndq:
1948 err = tcp_peek_sndq(sk, msg, len);
1949 goto out;
1951 EXPORT_SYMBOL(tcp_recvmsg);
1953 void tcp_set_state(struct sock *sk, int state)
1955 int oldstate = sk->sk_state;
1957 switch (state) {
1958 case TCP_ESTABLISHED:
1959 if (oldstate != TCP_ESTABLISHED)
1960 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1961 break;
1963 case TCP_CLOSE:
1964 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1965 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1967 sk->sk_prot->unhash(sk);
1968 if (inet_csk(sk)->icsk_bind_hash &&
1969 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1970 inet_put_port(sk);
1971 /* fall through */
1972 default:
1973 if (oldstate == TCP_ESTABLISHED)
1974 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1977 /* Change state AFTER socket is unhashed to avoid closed
1978 * socket sitting in hash tables.
1980 sk->sk_state = state;
1982 #ifdef STATE_TRACE
1983 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1984 #endif
1986 EXPORT_SYMBOL_GPL(tcp_set_state);
1989 * State processing on a close. This implements the state shift for
1990 * sending our FIN frame. Note that we only send a FIN for some
1991 * states. A shutdown() may have already sent the FIN, or we may be
1992 * closed.
1995 static const unsigned char new_state[16] = {
1996 /* current state: new state: action: */
1997 /* (Invalid) */ TCP_CLOSE,
1998 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1999 /* TCP_SYN_SENT */ TCP_CLOSE,
2000 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2001 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1,
2002 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2,
2003 /* TCP_TIME_WAIT */ TCP_CLOSE,
2004 /* TCP_CLOSE */ TCP_CLOSE,
2005 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN,
2006 /* TCP_LAST_ACK */ TCP_LAST_ACK,
2007 /* TCP_LISTEN */ TCP_CLOSE,
2008 /* TCP_CLOSING */ TCP_CLOSING,
2011 static int tcp_close_state(struct sock *sk)
2013 int next = (int)new_state[sk->sk_state];
2014 int ns = next & TCP_STATE_MASK;
2016 tcp_set_state(sk, ns);
2018 return next & TCP_ACTION_FIN;
2022 * Shutdown the sending side of a connection. Much like close except
2023 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2026 void tcp_shutdown(struct sock *sk, int how)
2028 /* We need to grab some memory, and put together a FIN,
2029 * and then put it into the queue to be sent.
2030 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2032 if (!(how & SEND_SHUTDOWN))
2033 return;
2035 /* If we've already sent a FIN, or it's a closed state, skip this. */
2036 if ((1 << sk->sk_state) &
2037 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2038 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2039 /* Clear out any half completed packets. FIN if needed. */
2040 if (tcp_close_state(sk))
2041 tcp_send_fin(sk);
2044 EXPORT_SYMBOL(tcp_shutdown);
2046 bool tcp_check_oom(struct sock *sk, int shift)
2048 bool too_many_orphans, out_of_socket_memory;
2050 too_many_orphans = tcp_too_many_orphans(sk, shift);
2051 out_of_socket_memory = tcp_out_of_memory(sk);
2053 if (too_many_orphans)
2054 net_info_ratelimited("too many orphaned sockets\n");
2055 if (out_of_socket_memory)
2056 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2057 return too_many_orphans || out_of_socket_memory;
2060 void tcp_close(struct sock *sk, long timeout)
2062 struct sk_buff *skb;
2063 int data_was_unread = 0;
2064 int state;
2066 lock_sock(sk);
2067 sk->sk_shutdown = SHUTDOWN_MASK;
2069 if (sk->sk_state == TCP_LISTEN) {
2070 tcp_set_state(sk, TCP_CLOSE);
2072 /* Special case. */
2073 inet_csk_listen_stop(sk);
2075 goto adjudge_to_death;
2078 /* We need to flush the recv. buffs. We do this only on the
2079 * descriptor close, not protocol-sourced closes, because the
2080 * reader process may not have drained the data yet!
2082 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2083 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2084 tcp_hdr(skb)->fin;
2085 data_was_unread += len;
2086 __kfree_skb(skb);
2089 sk_mem_reclaim(sk);
2091 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2092 if (sk->sk_state == TCP_CLOSE)
2093 goto adjudge_to_death;
2095 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2096 * data was lost. To witness the awful effects of the old behavior of
2097 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2098 * GET in an FTP client, suspend the process, wait for the client to
2099 * advertise a zero window, then kill -9 the FTP client, wheee...
2100 * Note: timeout is always zero in such a case.
2102 if (unlikely(tcp_sk(sk)->repair)) {
2103 sk->sk_prot->disconnect(sk, 0);
2104 } else if (data_was_unread) {
2105 /* Unread data was tossed, zap the connection. */
2106 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2107 tcp_set_state(sk, TCP_CLOSE);
2108 tcp_send_active_reset(sk, sk->sk_allocation);
2109 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2110 /* Check zero linger _after_ checking for unread data. */
2111 sk->sk_prot->disconnect(sk, 0);
2112 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2113 } else if (tcp_close_state(sk)) {
2114 /* We FIN if the application ate all the data before
2115 * zapping the connection.
2118 /* RED-PEN. Formally speaking, we have broken TCP state
2119 * machine. State transitions:
2121 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2122 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2123 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2125 * are legal only when FIN has been sent (i.e. in window),
2126 * rather than queued out of window. Purists blame.
2128 * F.e. "RFC state" is ESTABLISHED,
2129 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2131 * The visible declinations are that sometimes
2132 * we enter time-wait state, when it is not required really
2133 * (harmless), do not send active resets, when they are
2134 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2135 * they look as CLOSING or LAST_ACK for Linux)
2136 * Probably, I missed some more holelets.
2137 * --ANK
2138 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2139 * in a single packet! (May consider it later but will
2140 * probably need API support or TCP_CORK SYN-ACK until
2141 * data is written and socket is closed.)
2143 tcp_send_fin(sk);
2146 sk_stream_wait_close(sk, timeout);
2148 adjudge_to_death:
2149 state = sk->sk_state;
2150 sock_hold(sk);
2151 sock_orphan(sk);
2153 /* It is the last release_sock in its life. It will remove backlog. */
2154 release_sock(sk);
2157 /* Now socket is owned by kernel and we acquire BH lock
2158 to finish close. No need to check for user refs.
2160 local_bh_disable();
2161 bh_lock_sock(sk);
2162 WARN_ON(sock_owned_by_user(sk));
2164 percpu_counter_inc(sk->sk_prot->orphan_count);
2166 /* Have we already been destroyed by a softirq or backlog? */
2167 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2168 goto out;
2170 /* This is a (useful) BSD violating of the RFC. There is a
2171 * problem with TCP as specified in that the other end could
2172 * keep a socket open forever with no application left this end.
2173 * We use a 3 minute timeout (about the same as BSD) then kill
2174 * our end. If they send after that then tough - BUT: long enough
2175 * that we won't make the old 4*rto = almost no time - whoops
2176 * reset mistake.
2178 * Nope, it was not mistake. It is really desired behaviour
2179 * f.e. on http servers, when such sockets are useless, but
2180 * consume significant resources. Let's do it with special
2181 * linger2 option. --ANK
2184 if (sk->sk_state == TCP_FIN_WAIT2) {
2185 struct tcp_sock *tp = tcp_sk(sk);
2186 if (tp->linger2 < 0) {
2187 tcp_set_state(sk, TCP_CLOSE);
2188 tcp_send_active_reset(sk, GFP_ATOMIC);
2189 NET_INC_STATS_BH(sock_net(sk),
2190 LINUX_MIB_TCPABORTONLINGER);
2191 } else {
2192 const int tmo = tcp_fin_time(sk);
2194 if (tmo > TCP_TIMEWAIT_LEN) {
2195 inet_csk_reset_keepalive_timer(sk,
2196 tmo - TCP_TIMEWAIT_LEN);
2197 } else {
2198 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2199 goto out;
2203 if (sk->sk_state != TCP_CLOSE) {
2204 sk_mem_reclaim(sk);
2205 if (tcp_check_oom(sk, 0)) {
2206 tcp_set_state(sk, TCP_CLOSE);
2207 tcp_send_active_reset(sk, GFP_ATOMIC);
2208 NET_INC_STATS_BH(sock_net(sk),
2209 LINUX_MIB_TCPABORTONMEMORY);
2213 if (sk->sk_state == TCP_CLOSE) {
2214 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2215 /* We could get here with a non-NULL req if the socket is
2216 * aborted (e.g., closed with unread data) before 3WHS
2217 * finishes.
2219 if (req != NULL)
2220 reqsk_fastopen_remove(sk, req, false);
2221 inet_csk_destroy_sock(sk);
2223 /* Otherwise, socket is reprieved until protocol close. */
2225 out:
2226 bh_unlock_sock(sk);
2227 local_bh_enable();
2228 sock_put(sk);
2230 EXPORT_SYMBOL(tcp_close);
2232 /* These states need RST on ABORT according to RFC793 */
2234 static inline bool tcp_need_reset(int state)
2236 return (1 << state) &
2237 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2238 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2241 int tcp_disconnect(struct sock *sk, int flags)
2243 struct inet_sock *inet = inet_sk(sk);
2244 struct inet_connection_sock *icsk = inet_csk(sk);
2245 struct tcp_sock *tp = tcp_sk(sk);
2246 int err = 0;
2247 int old_state = sk->sk_state;
2249 if (old_state != TCP_CLOSE)
2250 tcp_set_state(sk, TCP_CLOSE);
2252 /* ABORT function of RFC793 */
2253 if (old_state == TCP_LISTEN) {
2254 inet_csk_listen_stop(sk);
2255 } else if (unlikely(tp->repair)) {
2256 sk->sk_err = ECONNABORTED;
2257 } else if (tcp_need_reset(old_state) ||
2258 (tp->snd_nxt != tp->write_seq &&
2259 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2260 /* The last check adjusts for discrepancy of Linux wrt. RFC
2261 * states
2263 tcp_send_active_reset(sk, gfp_any());
2264 sk->sk_err = ECONNRESET;
2265 } else if (old_state == TCP_SYN_SENT)
2266 sk->sk_err = ECONNRESET;
2268 tcp_clear_xmit_timers(sk);
2269 __skb_queue_purge(&sk->sk_receive_queue);
2270 tcp_write_queue_purge(sk);
2271 __skb_queue_purge(&tp->out_of_order_queue);
2272 #ifdef CONFIG_NET_DMA
2273 __skb_queue_purge(&sk->sk_async_wait_queue);
2274 #endif
2276 inet->inet_dport = 0;
2278 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2279 inet_reset_saddr(sk);
2281 sk->sk_shutdown = 0;
2282 sock_reset_flag(sk, SOCK_DONE);
2283 tp->srtt = 0;
2284 if ((tp->write_seq += tp->max_window + 2) == 0)
2285 tp->write_seq = 1;
2286 icsk->icsk_backoff = 0;
2287 tp->snd_cwnd = 2;
2288 icsk->icsk_probes_out = 0;
2289 tp->packets_out = 0;
2290 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2291 tp->snd_cwnd_cnt = 0;
2292 tp->bytes_acked = 0;
2293 tp->window_clamp = 0;
2294 tcp_set_ca_state(sk, TCP_CA_Open);
2295 tcp_clear_retrans(tp);
2296 inet_csk_delack_init(sk);
2297 tcp_init_send_head(sk);
2298 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2299 __sk_dst_reset(sk);
2301 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2303 sk->sk_error_report(sk);
2304 return err;
2306 EXPORT_SYMBOL(tcp_disconnect);
2308 void tcp_sock_destruct(struct sock *sk)
2310 inet_sock_destruct(sk);
2312 kfree(inet_csk(sk)->icsk_accept_queue.fastopenq);
2315 static inline bool tcp_can_repair_sock(const struct sock *sk)
2317 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2318 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2321 static int tcp_repair_options_est(struct tcp_sock *tp,
2322 struct tcp_repair_opt __user *optbuf, unsigned int len)
2324 struct tcp_repair_opt opt;
2326 while (len >= sizeof(opt)) {
2327 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2328 return -EFAULT;
2330 optbuf++;
2331 len -= sizeof(opt);
2333 switch (opt.opt_code) {
2334 case TCPOPT_MSS:
2335 tp->rx_opt.mss_clamp = opt.opt_val;
2336 break;
2337 case TCPOPT_WINDOW:
2339 u16 snd_wscale = opt.opt_val & 0xFFFF;
2340 u16 rcv_wscale = opt.opt_val >> 16;
2342 if (snd_wscale > 14 || rcv_wscale > 14)
2343 return -EFBIG;
2345 tp->rx_opt.snd_wscale = snd_wscale;
2346 tp->rx_opt.rcv_wscale = rcv_wscale;
2347 tp->rx_opt.wscale_ok = 1;
2349 break;
2350 case TCPOPT_SACK_PERM:
2351 if (opt.opt_val != 0)
2352 return -EINVAL;
2354 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2355 if (sysctl_tcp_fack)
2356 tcp_enable_fack(tp);
2357 break;
2358 case TCPOPT_TIMESTAMP:
2359 if (opt.opt_val != 0)
2360 return -EINVAL;
2362 tp->rx_opt.tstamp_ok = 1;
2363 break;
2367 return 0;
2371 * Socket option code for TCP.
2373 static int do_tcp_setsockopt(struct sock *sk, int level,
2374 int optname, char __user *optval, unsigned int optlen)
2376 struct tcp_sock *tp = tcp_sk(sk);
2377 struct inet_connection_sock *icsk = inet_csk(sk);
2378 int val;
2379 int err = 0;
2381 /* These are data/string values, all the others are ints */
2382 switch (optname) {
2383 case TCP_CONGESTION: {
2384 char name[TCP_CA_NAME_MAX];
2386 if (optlen < 1)
2387 return -EINVAL;
2389 val = strncpy_from_user(name, optval,
2390 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2391 if (val < 0)
2392 return -EFAULT;
2393 name[val] = 0;
2395 lock_sock(sk);
2396 err = tcp_set_congestion_control(sk, name);
2397 release_sock(sk);
2398 return err;
2400 case TCP_COOKIE_TRANSACTIONS: {
2401 struct tcp_cookie_transactions ctd;
2402 struct tcp_cookie_values *cvp = NULL;
2404 if (sizeof(ctd) > optlen)
2405 return -EINVAL;
2406 if (copy_from_user(&ctd, optval, sizeof(ctd)))
2407 return -EFAULT;
2409 if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2410 ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2411 return -EINVAL;
2413 if (ctd.tcpct_cookie_desired == 0) {
2414 /* default to global value */
2415 } else if ((0x1 & ctd.tcpct_cookie_desired) ||
2416 ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2417 ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2418 return -EINVAL;
2421 if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2422 /* Supercedes all other values */
2423 lock_sock(sk);
2424 if (tp->cookie_values != NULL) {
2425 kref_put(&tp->cookie_values->kref,
2426 tcp_cookie_values_release);
2427 tp->cookie_values = NULL;
2429 tp->rx_opt.cookie_in_always = 0; /* false */
2430 tp->rx_opt.cookie_out_never = 1; /* true */
2431 release_sock(sk);
2432 return err;
2435 /* Allocate ancillary memory before locking.
2437 if (ctd.tcpct_used > 0 ||
2438 (tp->cookie_values == NULL &&
2439 (sysctl_tcp_cookie_size > 0 ||
2440 ctd.tcpct_cookie_desired > 0 ||
2441 ctd.tcpct_s_data_desired > 0))) {
2442 cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2443 GFP_KERNEL);
2444 if (cvp == NULL)
2445 return -ENOMEM;
2447 kref_init(&cvp->kref);
2449 lock_sock(sk);
2450 tp->rx_opt.cookie_in_always =
2451 (TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2452 tp->rx_opt.cookie_out_never = 0; /* false */
2454 if (tp->cookie_values != NULL) {
2455 if (cvp != NULL) {
2456 /* Changed values are recorded by a changed
2457 * pointer, ensuring the cookie will differ,
2458 * without separately hashing each value later.
2460 kref_put(&tp->cookie_values->kref,
2461 tcp_cookie_values_release);
2462 } else {
2463 cvp = tp->cookie_values;
2467 if (cvp != NULL) {
2468 cvp->cookie_desired = ctd.tcpct_cookie_desired;
2470 if (ctd.tcpct_used > 0) {
2471 memcpy(cvp->s_data_payload, ctd.tcpct_value,
2472 ctd.tcpct_used);
2473 cvp->s_data_desired = ctd.tcpct_used;
2474 cvp->s_data_constant = 1; /* true */
2475 } else {
2476 /* No constant payload data. */
2477 cvp->s_data_desired = ctd.tcpct_s_data_desired;
2478 cvp->s_data_constant = 0; /* false */
2481 tp->cookie_values = cvp;
2483 release_sock(sk);
2484 return err;
2486 default:
2487 /* fallthru */
2488 break;
2491 if (optlen < sizeof(int))
2492 return -EINVAL;
2494 if (get_user(val, (int __user *)optval))
2495 return -EFAULT;
2497 lock_sock(sk);
2499 switch (optname) {
2500 case TCP_MAXSEG:
2501 /* Values greater than interface MTU won't take effect. However
2502 * at the point when this call is done we typically don't yet
2503 * know which interface is going to be used */
2504 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2505 err = -EINVAL;
2506 break;
2508 tp->rx_opt.user_mss = val;
2509 break;
2511 case TCP_NODELAY:
2512 if (val) {
2513 /* TCP_NODELAY is weaker than TCP_CORK, so that
2514 * this option on corked socket is remembered, but
2515 * it is not activated until cork is cleared.
2517 * However, when TCP_NODELAY is set we make
2518 * an explicit push, which overrides even TCP_CORK
2519 * for currently queued segments.
2521 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2522 tcp_push_pending_frames(sk);
2523 } else {
2524 tp->nonagle &= ~TCP_NAGLE_OFF;
2526 break;
2528 case TCP_THIN_LINEAR_TIMEOUTS:
2529 if (val < 0 || val > 1)
2530 err = -EINVAL;
2531 else
2532 tp->thin_lto = val;
2533 break;
2535 case TCP_THIN_DUPACK:
2536 if (val < 0 || val > 1)
2537 err = -EINVAL;
2538 else
2539 tp->thin_dupack = val;
2540 if (tp->thin_dupack)
2541 tcp_disable_early_retrans(tp);
2542 break;
2544 case TCP_REPAIR:
2545 if (!tcp_can_repair_sock(sk))
2546 err = -EPERM;
2547 else if (val == 1) {
2548 tp->repair = 1;
2549 sk->sk_reuse = SK_FORCE_REUSE;
2550 tp->repair_queue = TCP_NO_QUEUE;
2551 } else if (val == 0) {
2552 tp->repair = 0;
2553 sk->sk_reuse = SK_NO_REUSE;
2554 tcp_send_window_probe(sk);
2555 } else
2556 err = -EINVAL;
2558 break;
2560 case TCP_REPAIR_QUEUE:
2561 if (!tp->repair)
2562 err = -EPERM;
2563 else if (val < TCP_QUEUES_NR)
2564 tp->repair_queue = val;
2565 else
2566 err = -EINVAL;
2567 break;
2569 case TCP_QUEUE_SEQ:
2570 if (sk->sk_state != TCP_CLOSE)
2571 err = -EPERM;
2572 else if (tp->repair_queue == TCP_SEND_QUEUE)
2573 tp->write_seq = val;
2574 else if (tp->repair_queue == TCP_RECV_QUEUE)
2575 tp->rcv_nxt = val;
2576 else
2577 err = -EINVAL;
2578 break;
2580 case TCP_REPAIR_OPTIONS:
2581 if (!tp->repair)
2582 err = -EINVAL;
2583 else if (sk->sk_state == TCP_ESTABLISHED)
2584 err = tcp_repair_options_est(tp,
2585 (struct tcp_repair_opt __user *)optval,
2586 optlen);
2587 else
2588 err = -EPERM;
2589 break;
2591 case TCP_CORK:
2592 /* When set indicates to always queue non-full frames.
2593 * Later the user clears this option and we transmit
2594 * any pending partial frames in the queue. This is
2595 * meant to be used alongside sendfile() to get properly
2596 * filled frames when the user (for example) must write
2597 * out headers with a write() call first and then use
2598 * sendfile to send out the data parts.
2600 * TCP_CORK can be set together with TCP_NODELAY and it is
2601 * stronger than TCP_NODELAY.
2603 if (val) {
2604 tp->nonagle |= TCP_NAGLE_CORK;
2605 } else {
2606 tp->nonagle &= ~TCP_NAGLE_CORK;
2607 if (tp->nonagle&TCP_NAGLE_OFF)
2608 tp->nonagle |= TCP_NAGLE_PUSH;
2609 tcp_push_pending_frames(sk);
2611 break;
2613 case TCP_KEEPIDLE:
2614 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2615 err = -EINVAL;
2616 else {
2617 tp->keepalive_time = val * HZ;
2618 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2619 !((1 << sk->sk_state) &
2620 (TCPF_CLOSE | TCPF_LISTEN))) {
2621 u32 elapsed = keepalive_time_elapsed(tp);
2622 if (tp->keepalive_time > elapsed)
2623 elapsed = tp->keepalive_time - elapsed;
2624 else
2625 elapsed = 0;
2626 inet_csk_reset_keepalive_timer(sk, elapsed);
2629 break;
2630 case TCP_KEEPINTVL:
2631 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2632 err = -EINVAL;
2633 else
2634 tp->keepalive_intvl = val * HZ;
2635 break;
2636 case TCP_KEEPCNT:
2637 if (val < 1 || val > MAX_TCP_KEEPCNT)
2638 err = -EINVAL;
2639 else
2640 tp->keepalive_probes = val;
2641 break;
2642 case TCP_SYNCNT:
2643 if (val < 1 || val > MAX_TCP_SYNCNT)
2644 err = -EINVAL;
2645 else
2646 icsk->icsk_syn_retries = val;
2647 break;
2649 case TCP_LINGER2:
2650 if (val < 0)
2651 tp->linger2 = -1;
2652 else if (val > sysctl_tcp_fin_timeout / HZ)
2653 tp->linger2 = 0;
2654 else
2655 tp->linger2 = val * HZ;
2656 break;
2658 case TCP_DEFER_ACCEPT:
2659 /* Translate value in seconds to number of retransmits */
2660 icsk->icsk_accept_queue.rskq_defer_accept =
2661 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2662 TCP_RTO_MAX / HZ);
2663 break;
2665 case TCP_WINDOW_CLAMP:
2666 if (!val) {
2667 if (sk->sk_state != TCP_CLOSE) {
2668 err = -EINVAL;
2669 break;
2671 tp->window_clamp = 0;
2672 } else
2673 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2674 SOCK_MIN_RCVBUF / 2 : val;
2675 break;
2677 case TCP_QUICKACK:
2678 if (!val) {
2679 icsk->icsk_ack.pingpong = 1;
2680 } else {
2681 icsk->icsk_ack.pingpong = 0;
2682 if ((1 << sk->sk_state) &
2683 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2684 inet_csk_ack_scheduled(sk)) {
2685 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2686 tcp_cleanup_rbuf(sk, 1);
2687 if (!(val & 1))
2688 icsk->icsk_ack.pingpong = 1;
2691 break;
2693 #ifdef CONFIG_TCP_MD5SIG
2694 case TCP_MD5SIG:
2695 /* Read the IP->Key mappings from userspace */
2696 err = tp->af_specific->md5_parse(sk, optval, optlen);
2697 break;
2698 #endif
2699 case TCP_USER_TIMEOUT:
2700 /* Cap the max timeout in ms TCP will retry/retrans
2701 * before giving up and aborting (ETIMEDOUT) a connection.
2703 if (val < 0)
2704 err = -EINVAL;
2705 else
2706 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2707 break;
2709 case TCP_FASTOPEN:
2710 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2711 TCPF_LISTEN)))
2712 err = fastopen_init_queue(sk, val);
2713 else
2714 err = -EINVAL;
2715 break;
2716 default:
2717 err = -ENOPROTOOPT;
2718 break;
2721 release_sock(sk);
2722 return err;
2725 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2726 unsigned int optlen)
2728 const struct inet_connection_sock *icsk = inet_csk(sk);
2730 if (level != SOL_TCP)
2731 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2732 optval, optlen);
2733 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2735 EXPORT_SYMBOL(tcp_setsockopt);
2737 #ifdef CONFIG_COMPAT
2738 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2739 char __user *optval, unsigned int optlen)
2741 if (level != SOL_TCP)
2742 return inet_csk_compat_setsockopt(sk, level, optname,
2743 optval, optlen);
2744 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2746 EXPORT_SYMBOL(compat_tcp_setsockopt);
2747 #endif
2749 /* Return information about state of tcp endpoint in API format. */
2750 void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2752 const struct tcp_sock *tp = tcp_sk(sk);
2753 const struct inet_connection_sock *icsk = inet_csk(sk);
2754 u32 now = tcp_time_stamp;
2756 memset(info, 0, sizeof(*info));
2758 info->tcpi_state = sk->sk_state;
2759 info->tcpi_ca_state = icsk->icsk_ca_state;
2760 info->tcpi_retransmits = icsk->icsk_retransmits;
2761 info->tcpi_probes = icsk->icsk_probes_out;
2762 info->tcpi_backoff = icsk->icsk_backoff;
2764 if (tp->rx_opt.tstamp_ok)
2765 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2766 if (tcp_is_sack(tp))
2767 info->tcpi_options |= TCPI_OPT_SACK;
2768 if (tp->rx_opt.wscale_ok) {
2769 info->tcpi_options |= TCPI_OPT_WSCALE;
2770 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2771 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2774 if (tp->ecn_flags & TCP_ECN_OK)
2775 info->tcpi_options |= TCPI_OPT_ECN;
2776 if (tp->ecn_flags & TCP_ECN_SEEN)
2777 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2778 if (tp->syn_data_acked)
2779 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2781 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2782 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2783 info->tcpi_snd_mss = tp->mss_cache;
2784 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2786 if (sk->sk_state == TCP_LISTEN) {
2787 info->tcpi_unacked = sk->sk_ack_backlog;
2788 info->tcpi_sacked = sk->sk_max_ack_backlog;
2789 } else {
2790 info->tcpi_unacked = tp->packets_out;
2791 info->tcpi_sacked = tp->sacked_out;
2793 info->tcpi_lost = tp->lost_out;
2794 info->tcpi_retrans = tp->retrans_out;
2795 info->tcpi_fackets = tp->fackets_out;
2797 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2798 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2799 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2801 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2802 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2803 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2804 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2805 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2806 info->tcpi_snd_cwnd = tp->snd_cwnd;
2807 info->tcpi_advmss = tp->advmss;
2808 info->tcpi_reordering = tp->reordering;
2810 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2811 info->tcpi_rcv_space = tp->rcvq_space.space;
2813 info->tcpi_total_retrans = tp->total_retrans;
2815 EXPORT_SYMBOL_GPL(tcp_get_info);
2817 static int do_tcp_getsockopt(struct sock *sk, int level,
2818 int optname, char __user *optval, int __user *optlen)
2820 struct inet_connection_sock *icsk = inet_csk(sk);
2821 struct tcp_sock *tp = tcp_sk(sk);
2822 int val, len;
2824 if (get_user(len, optlen))
2825 return -EFAULT;
2827 len = min_t(unsigned int, len, sizeof(int));
2829 if (len < 0)
2830 return -EINVAL;
2832 switch (optname) {
2833 case TCP_MAXSEG:
2834 val = tp->mss_cache;
2835 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2836 val = tp->rx_opt.user_mss;
2837 if (tp->repair)
2838 val = tp->rx_opt.mss_clamp;
2839 break;
2840 case TCP_NODELAY:
2841 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2842 break;
2843 case TCP_CORK:
2844 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2845 break;
2846 case TCP_KEEPIDLE:
2847 val = keepalive_time_when(tp) / HZ;
2848 break;
2849 case TCP_KEEPINTVL:
2850 val = keepalive_intvl_when(tp) / HZ;
2851 break;
2852 case TCP_KEEPCNT:
2853 val = keepalive_probes(tp);
2854 break;
2855 case TCP_SYNCNT:
2856 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2857 break;
2858 case TCP_LINGER2:
2859 val = tp->linger2;
2860 if (val >= 0)
2861 val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2862 break;
2863 case TCP_DEFER_ACCEPT:
2864 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2865 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2866 break;
2867 case TCP_WINDOW_CLAMP:
2868 val = tp->window_clamp;
2869 break;
2870 case TCP_INFO: {
2871 struct tcp_info info;
2873 if (get_user(len, optlen))
2874 return -EFAULT;
2876 tcp_get_info(sk, &info);
2878 len = min_t(unsigned int, len, sizeof(info));
2879 if (put_user(len, optlen))
2880 return -EFAULT;
2881 if (copy_to_user(optval, &info, len))
2882 return -EFAULT;
2883 return 0;
2885 case TCP_QUICKACK:
2886 val = !icsk->icsk_ack.pingpong;
2887 break;
2889 case TCP_CONGESTION:
2890 if (get_user(len, optlen))
2891 return -EFAULT;
2892 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2893 if (put_user(len, optlen))
2894 return -EFAULT;
2895 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2896 return -EFAULT;
2897 return 0;
2899 case TCP_COOKIE_TRANSACTIONS: {
2900 struct tcp_cookie_transactions ctd;
2901 struct tcp_cookie_values *cvp = tp->cookie_values;
2903 if (get_user(len, optlen))
2904 return -EFAULT;
2905 if (len < sizeof(ctd))
2906 return -EINVAL;
2908 memset(&ctd, 0, sizeof(ctd));
2909 ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2910 TCP_COOKIE_IN_ALWAYS : 0)
2911 | (tp->rx_opt.cookie_out_never ?
2912 TCP_COOKIE_OUT_NEVER : 0);
2914 if (cvp != NULL) {
2915 ctd.tcpct_flags |= (cvp->s_data_in ?
2916 TCP_S_DATA_IN : 0)
2917 | (cvp->s_data_out ?
2918 TCP_S_DATA_OUT : 0);
2920 ctd.tcpct_cookie_desired = cvp->cookie_desired;
2921 ctd.tcpct_s_data_desired = cvp->s_data_desired;
2923 memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2924 cvp->cookie_pair_size);
2925 ctd.tcpct_used = cvp->cookie_pair_size;
2928 if (put_user(sizeof(ctd), optlen))
2929 return -EFAULT;
2930 if (copy_to_user(optval, &ctd, sizeof(ctd)))
2931 return -EFAULT;
2932 return 0;
2934 case TCP_THIN_LINEAR_TIMEOUTS:
2935 val = tp->thin_lto;
2936 break;
2937 case TCP_THIN_DUPACK:
2938 val = tp->thin_dupack;
2939 break;
2941 case TCP_REPAIR:
2942 val = tp->repair;
2943 break;
2945 case TCP_REPAIR_QUEUE:
2946 if (tp->repair)
2947 val = tp->repair_queue;
2948 else
2949 return -EINVAL;
2950 break;
2952 case TCP_QUEUE_SEQ:
2953 if (tp->repair_queue == TCP_SEND_QUEUE)
2954 val = tp->write_seq;
2955 else if (tp->repair_queue == TCP_RECV_QUEUE)
2956 val = tp->rcv_nxt;
2957 else
2958 return -EINVAL;
2959 break;
2961 case TCP_USER_TIMEOUT:
2962 val = jiffies_to_msecs(icsk->icsk_user_timeout);
2963 break;
2964 default:
2965 return -ENOPROTOOPT;
2968 if (put_user(len, optlen))
2969 return -EFAULT;
2970 if (copy_to_user(optval, &val, len))
2971 return -EFAULT;
2972 return 0;
2975 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2976 int __user *optlen)
2978 struct inet_connection_sock *icsk = inet_csk(sk);
2980 if (level != SOL_TCP)
2981 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2982 optval, optlen);
2983 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2985 EXPORT_SYMBOL(tcp_getsockopt);
2987 #ifdef CONFIG_COMPAT
2988 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2989 char __user *optval, int __user *optlen)
2991 if (level != SOL_TCP)
2992 return inet_csk_compat_getsockopt(sk, level, optname,
2993 optval, optlen);
2994 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2996 EXPORT_SYMBOL(compat_tcp_getsockopt);
2997 #endif
2999 struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
3000 netdev_features_t features)
3002 struct sk_buff *segs = ERR_PTR(-EINVAL);
3003 struct tcphdr *th;
3004 unsigned int thlen;
3005 unsigned int seq;
3006 __be32 delta;
3007 unsigned int oldlen;
3008 unsigned int mss;
3010 if (!pskb_may_pull(skb, sizeof(*th)))
3011 goto out;
3013 th = tcp_hdr(skb);
3014 thlen = th->doff * 4;
3015 if (thlen < sizeof(*th))
3016 goto out;
3018 if (!pskb_may_pull(skb, thlen))
3019 goto out;
3021 oldlen = (u16)~skb->len;
3022 __skb_pull(skb, thlen);
3024 mss = skb_shinfo(skb)->gso_size;
3025 if (unlikely(skb->len <= mss))
3026 goto out;
3028 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
3029 /* Packet is from an untrusted source, reset gso_segs. */
3030 int type = skb_shinfo(skb)->gso_type;
3032 if (unlikely(type &
3033 ~(SKB_GSO_TCPV4 |
3034 SKB_GSO_DODGY |
3035 SKB_GSO_TCP_ECN |
3036 SKB_GSO_TCPV6 |
3037 SKB_GSO_SHARED_FRAG |
3038 0) ||
3039 !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
3040 goto out;
3042 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
3044 segs = NULL;
3045 goto out;
3048 segs = skb_segment(skb, features);
3049 if (IS_ERR(segs))
3050 goto out;
3052 delta = htonl(oldlen + (thlen + mss));
3054 skb = segs;
3055 th = tcp_hdr(skb);
3056 seq = ntohl(th->seq);
3058 do {
3059 th->fin = th->psh = 0;
3061 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3062 (__force u32)delta));
3063 if (skb->ip_summed != CHECKSUM_PARTIAL)
3064 th->check =
3065 csum_fold(csum_partial(skb_transport_header(skb),
3066 thlen, skb->csum));
3068 seq += mss;
3069 skb = skb->next;
3070 th = tcp_hdr(skb);
3072 th->seq = htonl(seq);
3073 th->cwr = 0;
3074 } while (skb->next);
3076 delta = htonl(oldlen + (skb->tail - skb->transport_header) +
3077 skb->data_len);
3078 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3079 (__force u32)delta));
3080 if (skb->ip_summed != CHECKSUM_PARTIAL)
3081 th->check = csum_fold(csum_partial(skb_transport_header(skb),
3082 thlen, skb->csum));
3084 out:
3085 return segs;
3087 EXPORT_SYMBOL(tcp_tso_segment);
3089 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3091 struct sk_buff **pp = NULL;
3092 struct sk_buff *p;
3093 struct tcphdr *th;
3094 struct tcphdr *th2;
3095 unsigned int len;
3096 unsigned int thlen;
3097 __be32 flags;
3098 unsigned int mss = 1;
3099 unsigned int hlen;
3100 unsigned int off;
3101 int flush = 1;
3102 int i;
3104 off = skb_gro_offset(skb);
3105 hlen = off + sizeof(*th);
3106 th = skb_gro_header_fast(skb, off);
3107 if (skb_gro_header_hard(skb, hlen)) {
3108 th = skb_gro_header_slow(skb, hlen, off);
3109 if (unlikely(!th))
3110 goto out;
3113 thlen = th->doff * 4;
3114 if (thlen < sizeof(*th))
3115 goto out;
3117 hlen = off + thlen;
3118 if (skb_gro_header_hard(skb, hlen)) {
3119 th = skb_gro_header_slow(skb, hlen, off);
3120 if (unlikely(!th))
3121 goto out;
3124 skb_gro_pull(skb, thlen);
3126 len = skb_gro_len(skb);
3127 flags = tcp_flag_word(th);
3129 for (; (p = *head); head = &p->next) {
3130 if (!NAPI_GRO_CB(p)->same_flow)
3131 continue;
3133 th2 = tcp_hdr(p);
3135 if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
3136 NAPI_GRO_CB(p)->same_flow = 0;
3137 continue;
3140 goto found;
3143 goto out_check_final;
3145 found:
3146 flush = NAPI_GRO_CB(p)->flush;
3147 flush |= (__force int)(flags & TCP_FLAG_CWR);
3148 flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
3149 ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
3150 flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
3151 for (i = sizeof(*th); i < thlen; i += 4)
3152 flush |= *(u32 *)((u8 *)th + i) ^
3153 *(u32 *)((u8 *)th2 + i);
3155 mss = skb_shinfo(p)->gso_size;
3157 flush |= (len - 1) >= mss;
3158 flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
3160 if (flush || skb_gro_receive(head, skb)) {
3161 mss = 1;
3162 goto out_check_final;
3165 p = *head;
3166 th2 = tcp_hdr(p);
3167 tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
3169 out_check_final:
3170 flush = len < mss;
3171 flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
3172 TCP_FLAG_RST | TCP_FLAG_SYN |
3173 TCP_FLAG_FIN));
3175 if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
3176 pp = head;
3178 out:
3179 NAPI_GRO_CB(skb)->flush |= flush;
3181 return pp;
3183 EXPORT_SYMBOL(tcp_gro_receive);
3185 int tcp_gro_complete(struct sk_buff *skb)
3187 struct tcphdr *th = tcp_hdr(skb);
3189 skb->csum_start = skb_transport_header(skb) - skb->head;
3190 skb->csum_offset = offsetof(struct tcphdr, check);
3191 skb->ip_summed = CHECKSUM_PARTIAL;
3193 skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3195 if (th->cwr)
3196 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3198 return 0;
3200 EXPORT_SYMBOL(tcp_gro_complete);
3202 #ifdef CONFIG_TCP_MD5SIG
3203 static unsigned long tcp_md5sig_users;
3204 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool;
3205 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
3207 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
3209 int cpu;
3211 for_each_possible_cpu(cpu) {
3212 struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
3214 if (p->md5_desc.tfm)
3215 crypto_free_hash(p->md5_desc.tfm);
3217 free_percpu(pool);
3220 void tcp_free_md5sig_pool(void)
3222 struct tcp_md5sig_pool __percpu *pool = NULL;
3224 spin_lock_bh(&tcp_md5sig_pool_lock);
3225 if (--tcp_md5sig_users == 0) {
3226 pool = tcp_md5sig_pool;
3227 tcp_md5sig_pool = NULL;
3229 spin_unlock_bh(&tcp_md5sig_pool_lock);
3230 if (pool)
3231 __tcp_free_md5sig_pool(pool);
3233 EXPORT_SYMBOL(tcp_free_md5sig_pool);
3235 static struct tcp_md5sig_pool __percpu *
3236 __tcp_alloc_md5sig_pool(struct sock *sk)
3238 int cpu;
3239 struct tcp_md5sig_pool __percpu *pool;
3241 pool = alloc_percpu(struct tcp_md5sig_pool);
3242 if (!pool)
3243 return NULL;
3245 for_each_possible_cpu(cpu) {
3246 struct crypto_hash *hash;
3248 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
3249 if (IS_ERR_OR_NULL(hash))
3250 goto out_free;
3252 per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
3254 return pool;
3255 out_free:
3256 __tcp_free_md5sig_pool(pool);
3257 return NULL;
3260 struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
3262 struct tcp_md5sig_pool __percpu *pool;
3263 bool alloc = false;
3265 retry:
3266 spin_lock_bh(&tcp_md5sig_pool_lock);
3267 pool = tcp_md5sig_pool;
3268 if (tcp_md5sig_users++ == 0) {
3269 alloc = true;
3270 spin_unlock_bh(&tcp_md5sig_pool_lock);
3271 } else if (!pool) {
3272 tcp_md5sig_users--;
3273 spin_unlock_bh(&tcp_md5sig_pool_lock);
3274 cpu_relax();
3275 goto retry;
3276 } else
3277 spin_unlock_bh(&tcp_md5sig_pool_lock);
3279 if (alloc) {
3280 /* we cannot hold spinlock here because this may sleep. */
3281 struct tcp_md5sig_pool __percpu *p;
3283 p = __tcp_alloc_md5sig_pool(sk);
3284 spin_lock_bh(&tcp_md5sig_pool_lock);
3285 if (!p) {
3286 tcp_md5sig_users--;
3287 spin_unlock_bh(&tcp_md5sig_pool_lock);
3288 return NULL;
3290 pool = tcp_md5sig_pool;
3291 if (pool) {
3292 /* oops, it has already been assigned. */
3293 spin_unlock_bh(&tcp_md5sig_pool_lock);
3294 __tcp_free_md5sig_pool(p);
3295 } else {
3296 tcp_md5sig_pool = pool = p;
3297 spin_unlock_bh(&tcp_md5sig_pool_lock);
3300 return pool;
3302 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3306 * tcp_get_md5sig_pool - get md5sig_pool for this user
3308 * We use percpu structure, so if we succeed, we exit with preemption
3309 * and BH disabled, to make sure another thread or softirq handling
3310 * wont try to get same context.
3312 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3314 struct tcp_md5sig_pool __percpu *p;
3316 local_bh_disable();
3318 spin_lock(&tcp_md5sig_pool_lock);
3319 p = tcp_md5sig_pool;
3320 if (p)
3321 tcp_md5sig_users++;
3322 spin_unlock(&tcp_md5sig_pool_lock);
3324 if (p)
3325 return this_cpu_ptr(p);
3327 local_bh_enable();
3328 return NULL;
3330 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3332 void tcp_put_md5sig_pool(void)
3334 local_bh_enable();
3335 tcp_free_md5sig_pool();
3337 EXPORT_SYMBOL(tcp_put_md5sig_pool);
3339 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3340 const struct tcphdr *th)
3342 struct scatterlist sg;
3343 struct tcphdr hdr;
3344 int err;
3346 /* We are not allowed to change tcphdr, make a local copy */
3347 memcpy(&hdr, th, sizeof(hdr));
3348 hdr.check = 0;
3350 /* options aren't included in the hash */
3351 sg_init_one(&sg, &hdr, sizeof(hdr));
3352 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3353 return err;
3355 EXPORT_SYMBOL(tcp_md5_hash_header);
3357 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3358 const struct sk_buff *skb, unsigned int header_len)
3360 struct scatterlist sg;
3361 const struct tcphdr *tp = tcp_hdr(skb);
3362 struct hash_desc *desc = &hp->md5_desc;
3363 unsigned int i;
3364 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3365 skb_headlen(skb) - header_len : 0;
3366 const struct skb_shared_info *shi = skb_shinfo(skb);
3367 struct sk_buff *frag_iter;
3369 sg_init_table(&sg, 1);
3371 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3372 if (crypto_hash_update(desc, &sg, head_data_len))
3373 return 1;
3375 for (i = 0; i < shi->nr_frags; ++i) {
3376 const struct skb_frag_struct *f = &shi->frags[i];
3377 struct page *page = skb_frag_page(f);
3378 sg_set_page(&sg, page, skb_frag_size(f), f->page_offset);
3379 if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3380 return 1;
3383 skb_walk_frags(skb, frag_iter)
3384 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3385 return 1;
3387 return 0;
3389 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3391 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3393 struct scatterlist sg;
3395 sg_init_one(&sg, key->key, key->keylen);
3396 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3398 EXPORT_SYMBOL(tcp_md5_hash_key);
3400 #endif
3402 /* Each Responder maintains up to two secret values concurrently for
3403 * efficient secret rollover. Each secret value has 4 states:
3405 * Generating. (tcp_secret_generating != tcp_secret_primary)
3406 * Generates new Responder-Cookies, but not yet used for primary
3407 * verification. This is a short-term state, typically lasting only
3408 * one round trip time (RTT).
3410 * Primary. (tcp_secret_generating == tcp_secret_primary)
3411 * Used both for generation and primary verification.
3413 * Retiring. (tcp_secret_retiring != tcp_secret_secondary)
3414 * Used for verification, until the first failure that can be
3415 * verified by the newer Generating secret. At that time, this
3416 * cookie's state is changed to Secondary, and the Generating
3417 * cookie's state is changed to Primary. This is a short-term state,
3418 * typically lasting only one round trip time (RTT).
3420 * Secondary. (tcp_secret_retiring == tcp_secret_secondary)
3421 * Used for secondary verification, after primary verification
3422 * failures. This state lasts no more than twice the Maximum Segment
3423 * Lifetime (2MSL). Then, the secret is discarded.
3425 struct tcp_cookie_secret {
3426 /* The secret is divided into two parts. The digest part is the
3427 * equivalent of previously hashing a secret and saving the state,
3428 * and serves as an initialization vector (IV). The message part
3429 * serves as the trailing secret.
3431 u32 secrets[COOKIE_WORKSPACE_WORDS];
3432 unsigned long expires;
3435 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3436 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3437 #define TCP_SECRET_LIFE (HZ * 600)
3439 static struct tcp_cookie_secret tcp_secret_one;
3440 static struct tcp_cookie_secret tcp_secret_two;
3442 /* Essentially a circular list, without dynamic allocation. */
3443 static struct tcp_cookie_secret *tcp_secret_generating;
3444 static struct tcp_cookie_secret *tcp_secret_primary;
3445 static struct tcp_cookie_secret *tcp_secret_retiring;
3446 static struct tcp_cookie_secret *tcp_secret_secondary;
3448 static DEFINE_SPINLOCK(tcp_secret_locker);
3450 /* Select a pseudo-random word in the cookie workspace.
3452 static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3454 return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3457 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3458 * Called in softirq context.
3459 * Returns: 0 for success.
3461 int tcp_cookie_generator(u32 *bakery)
3463 unsigned long jiffy = jiffies;
3465 if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3466 spin_lock_bh(&tcp_secret_locker);
3467 if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3468 /* refreshed by another */
3469 memcpy(bakery,
3470 &tcp_secret_generating->secrets[0],
3471 COOKIE_WORKSPACE_WORDS);
3472 } else {
3473 /* still needs refreshing */
3474 get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3476 /* The first time, paranoia assumes that the
3477 * randomization function isn't as strong. But,
3478 * this secret initialization is delayed until
3479 * the last possible moment (packet arrival).
3480 * Although that time is observable, it is
3481 * unpredictably variable. Mash in the most
3482 * volatile clock bits available, and expire the
3483 * secret extra quickly.
3485 if (unlikely(tcp_secret_primary->expires ==
3486 tcp_secret_secondary->expires)) {
3487 struct timespec tv;
3489 getnstimeofday(&tv);
3490 bakery[COOKIE_DIGEST_WORDS+0] ^=
3491 (u32)tv.tv_nsec;
3493 tcp_secret_secondary->expires = jiffy
3494 + TCP_SECRET_1MSL
3495 + (0x0f & tcp_cookie_work(bakery, 0));
3496 } else {
3497 tcp_secret_secondary->expires = jiffy
3498 + TCP_SECRET_LIFE
3499 + (0xff & tcp_cookie_work(bakery, 1));
3500 tcp_secret_primary->expires = jiffy
3501 + TCP_SECRET_2MSL
3502 + (0x1f & tcp_cookie_work(bakery, 2));
3504 memcpy(&tcp_secret_secondary->secrets[0],
3505 bakery, COOKIE_WORKSPACE_WORDS);
3507 rcu_assign_pointer(tcp_secret_generating,
3508 tcp_secret_secondary);
3509 rcu_assign_pointer(tcp_secret_retiring,
3510 tcp_secret_primary);
3512 * Neither call_rcu() nor synchronize_rcu() needed.
3513 * Retiring data is not freed. It is replaced after
3514 * further (locked) pointer updates, and a quiet time
3515 * (minimum 1MSL, maximum LIFE - 2MSL).
3518 spin_unlock_bh(&tcp_secret_locker);
3519 } else {
3520 rcu_read_lock_bh();
3521 memcpy(bakery,
3522 &rcu_dereference(tcp_secret_generating)->secrets[0],
3523 COOKIE_WORKSPACE_WORDS);
3524 rcu_read_unlock_bh();
3526 return 0;
3528 EXPORT_SYMBOL(tcp_cookie_generator);
3530 void tcp_done(struct sock *sk)
3532 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3534 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3535 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3537 tcp_set_state(sk, TCP_CLOSE);
3538 tcp_clear_xmit_timers(sk);
3539 if (req != NULL)
3540 reqsk_fastopen_remove(sk, req, false);
3542 sk->sk_shutdown = SHUTDOWN_MASK;
3544 if (!sock_flag(sk, SOCK_DEAD))
3545 sk->sk_state_change(sk);
3546 else
3547 inet_csk_destroy_sock(sk);
3549 EXPORT_SYMBOL_GPL(tcp_done);
3551 extern struct tcp_congestion_ops tcp_reno;
3553 static __initdata unsigned long thash_entries;
3554 static int __init set_thash_entries(char *str)
3556 ssize_t ret;
3558 if (!str)
3559 return 0;
3561 ret = kstrtoul(str, 0, &thash_entries);
3562 if (ret)
3563 return 0;
3565 return 1;
3567 __setup("thash_entries=", set_thash_entries);
3569 void tcp_init_mem(struct net *net)
3571 unsigned long limit = nr_free_buffer_pages() / 8;
3572 limit = max(limit, 128UL);
3573 net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
3574 net->ipv4.sysctl_tcp_mem[1] = limit;
3575 net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
3578 void __init tcp_init(void)
3580 struct sk_buff *skb = NULL;
3581 unsigned long limit;
3582 int max_rshare, max_wshare, cnt;
3583 unsigned int i;
3584 unsigned long jiffy = jiffies;
3586 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3588 percpu_counter_init(&tcp_sockets_allocated, 0);
3589 percpu_counter_init(&tcp_orphan_count, 0);
3590 tcp_hashinfo.bind_bucket_cachep =
3591 kmem_cache_create("tcp_bind_bucket",
3592 sizeof(struct inet_bind_bucket), 0,
3593 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3595 /* Size and allocate the main established and bind bucket
3596 * hash tables.
3598 * The methodology is similar to that of the buffer cache.
3600 tcp_hashinfo.ehash =
3601 alloc_large_system_hash("TCP established",
3602 sizeof(struct inet_ehash_bucket),
3603 thash_entries,
3604 17, /* one slot per 128 KB of memory */
3606 NULL,
3607 &tcp_hashinfo.ehash_mask,
3609 thash_entries ? 0 : 512 * 1024);
3610 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3611 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3612 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3614 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3615 panic("TCP: failed to alloc ehash_locks");
3616 tcp_hashinfo.bhash =
3617 alloc_large_system_hash("TCP bind",
3618 sizeof(struct inet_bind_hashbucket),
3619 tcp_hashinfo.ehash_mask + 1,
3620 17, /* one slot per 128 KB of memory */
3622 &tcp_hashinfo.bhash_size,
3623 NULL,
3625 64 * 1024);
3626 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3627 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3628 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3629 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3633 cnt = tcp_hashinfo.ehash_mask + 1;
3635 tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3636 sysctl_tcp_max_orphans = cnt / 2;
3637 sysctl_max_syn_backlog = max(128, cnt / 256);
3639 tcp_init_mem(&init_net);
3640 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3641 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3642 max_wshare = min(4UL*1024*1024, limit);
3643 max_rshare = min(6UL*1024*1024, limit);
3645 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3646 sysctl_tcp_wmem[1] = 16*1024;
3647 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3649 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3650 sysctl_tcp_rmem[1] = 87380;
3651 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3653 pr_info("Hash tables configured (established %u bind %u)\n",
3654 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3656 tcp_metrics_init();
3658 tcp_register_congestion_control(&tcp_reno);
3660 memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3661 memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3662 tcp_secret_one.expires = jiffy; /* past due */
3663 tcp_secret_two.expires = jiffy; /* past due */
3664 tcp_secret_generating = &tcp_secret_one;
3665 tcp_secret_primary = &tcp_secret_one;
3666 tcp_secret_retiring = &tcp_secret_two;
3667 tcp_secret_secondary = &tcp_secret_two;
3668 tcp_tasklet_init();