mtd: spi-nor: add support for s25fl128s
[linux-2.6/btrfs-unstable.git] / include / linux / skbuff.h
bloba59d9343c25bdc9575eefa1ac361732599db9ddf
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
24 #include <linux/atomic.h>
25 #include <asm/types.h>
26 #include <linux/spinlock.h>
27 #include <linux/net.h>
28 #include <linux/textsearch.h>
29 #include <net/checksum.h>
30 #include <linux/rcupdate.h>
31 #include <linux/hrtimer.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/netdev_features.h>
34 #include <linux/sched.h>
35 #include <net/flow_keys.h>
37 /* A. Checksumming of received packets by device.
39 * CHECKSUM_NONE:
41 * Device failed to checksum this packet e.g. due to lack of capabilities.
42 * The packet contains full (though not verified) checksum in packet but
43 * not in skb->csum. Thus, skb->csum is undefined in this case.
45 * CHECKSUM_UNNECESSARY:
47 * The hardware you're dealing with doesn't calculate the full checksum
48 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
49 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
50 * if their checksums are okay. skb->csum is still undefined in this case
51 * though. It is a bad option, but, unfortunately, nowadays most vendors do
52 * this. Apparently with the secret goal to sell you new devices, when you
53 * will add new protocol to your host, f.e. IPv6 8)
55 * CHECKSUM_UNNECESSARY is applicable to following protocols:
56 * TCP: IPv6 and IPv4.
57 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
58 * zero UDP checksum for either IPv4 or IPv6, the networking stack
59 * may perform further validation in this case.
60 * GRE: only if the checksum is present in the header.
61 * SCTP: indicates the CRC in SCTP header has been validated.
63 * skb->csum_level indicates the number of consecutive checksums found in
64 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
65 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
66 * and a device is able to verify the checksums for UDP (possibly zero),
67 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
68 * two. If the device were only able to verify the UDP checksum and not
69 * GRE, either because it doesn't support GRE checksum of because GRE
70 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
71 * not considered in this case).
73 * CHECKSUM_COMPLETE:
75 * This is the most generic way. The device supplied checksum of the _whole_
76 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
77 * hardware doesn't need to parse L3/L4 headers to implement this.
79 * Note: Even if device supports only some protocols, but is able to produce
80 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
82 * CHECKSUM_PARTIAL:
84 * This is identical to the case for output below. This may occur on a packet
85 * received directly from another Linux OS, e.g., a virtualized Linux kernel
86 * on the same host. The packet can be treated in the same way as
87 * CHECKSUM_UNNECESSARY, except that on output (i.e., forwarding) the
88 * checksum must be filled in by the OS or the hardware.
90 * B. Checksumming on output.
92 * CHECKSUM_NONE:
94 * The skb was already checksummed by the protocol, or a checksum is not
95 * required.
97 * CHECKSUM_PARTIAL:
99 * The device is required to checksum the packet as seen by hard_start_xmit()
100 * from skb->csum_start up to the end, and to record/write the checksum at
101 * offset skb->csum_start + skb->csum_offset.
103 * The device must show its capabilities in dev->features, set up at device
104 * setup time, e.g. netdev_features.h:
106 * NETIF_F_HW_CSUM - It's a clever device, it's able to checksum everything.
107 * NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
108 * IPv4. Sigh. Vendors like this way for an unknown reason.
109 * Though, see comment above about CHECKSUM_UNNECESSARY. 8)
110 * NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
111 * NETIF_F_... - Well, you get the picture.
113 * CHECKSUM_UNNECESSARY:
115 * Normally, the device will do per protocol specific checksumming. Protocol
116 * implementations that do not want the NIC to perform the checksum
117 * calculation should use this flag in their outgoing skbs.
119 * NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
120 * offload. Correspondingly, the FCoE protocol driver
121 * stack should use CHECKSUM_UNNECESSARY.
123 * Any questions? No questions, good. --ANK
126 /* Don't change this without changing skb_csum_unnecessary! */
127 #define CHECKSUM_NONE 0
128 #define CHECKSUM_UNNECESSARY 1
129 #define CHECKSUM_COMPLETE 2
130 #define CHECKSUM_PARTIAL 3
132 /* Maximum value in skb->csum_level */
133 #define SKB_MAX_CSUM_LEVEL 3
135 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
136 #define SKB_WITH_OVERHEAD(X) \
137 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
138 #define SKB_MAX_ORDER(X, ORDER) \
139 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
140 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
141 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
143 /* return minimum truesize of one skb containing X bytes of data */
144 #define SKB_TRUESIZE(X) ((X) + \
145 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
146 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
148 struct net_device;
149 struct scatterlist;
150 struct pipe_inode_info;
152 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
153 struct nf_conntrack {
154 atomic_t use;
156 #endif
158 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
159 struct nf_bridge_info {
160 atomic_t use;
161 unsigned int mask;
162 struct net_device *physindev;
163 struct net_device *physoutdev;
164 unsigned long data[32 / sizeof(unsigned long)];
166 #endif
168 struct sk_buff_head {
169 /* These two members must be first. */
170 struct sk_buff *next;
171 struct sk_buff *prev;
173 __u32 qlen;
174 spinlock_t lock;
177 struct sk_buff;
179 /* To allow 64K frame to be packed as single skb without frag_list we
180 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
181 * buffers which do not start on a page boundary.
183 * Since GRO uses frags we allocate at least 16 regardless of page
184 * size.
186 #if (65536/PAGE_SIZE + 1) < 16
187 #define MAX_SKB_FRAGS 16UL
188 #else
189 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
190 #endif
192 typedef struct skb_frag_struct skb_frag_t;
194 struct skb_frag_struct {
195 struct {
196 struct page *p;
197 } page;
198 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
199 __u32 page_offset;
200 __u32 size;
201 #else
202 __u16 page_offset;
203 __u16 size;
204 #endif
207 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
209 return frag->size;
212 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
214 frag->size = size;
217 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
219 frag->size += delta;
222 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
224 frag->size -= delta;
227 #define HAVE_HW_TIME_STAMP
230 * struct skb_shared_hwtstamps - hardware time stamps
231 * @hwtstamp: hardware time stamp transformed into duration
232 * since arbitrary point in time
234 * Software time stamps generated by ktime_get_real() are stored in
235 * skb->tstamp.
237 * hwtstamps can only be compared against other hwtstamps from
238 * the same device.
240 * This structure is attached to packets as part of the
241 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
243 struct skb_shared_hwtstamps {
244 ktime_t hwtstamp;
247 /* Definitions for tx_flags in struct skb_shared_info */
248 enum {
249 /* generate hardware time stamp */
250 SKBTX_HW_TSTAMP = 1 << 0,
252 /* generate software time stamp when queueing packet to NIC */
253 SKBTX_SW_TSTAMP = 1 << 1,
255 /* device driver is going to provide hardware time stamp */
256 SKBTX_IN_PROGRESS = 1 << 2,
258 /* device driver supports TX zero-copy buffers */
259 SKBTX_DEV_ZEROCOPY = 1 << 3,
261 /* generate wifi status information (where possible) */
262 SKBTX_WIFI_STATUS = 1 << 4,
264 /* This indicates at least one fragment might be overwritten
265 * (as in vmsplice(), sendfile() ...)
266 * If we need to compute a TX checksum, we'll need to copy
267 * all frags to avoid possible bad checksum
269 SKBTX_SHARED_FRAG = 1 << 5,
271 /* generate software time stamp when entering packet scheduling */
272 SKBTX_SCHED_TSTAMP = 1 << 6,
274 /* generate software timestamp on peer data acknowledgment */
275 SKBTX_ACK_TSTAMP = 1 << 7,
278 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
279 SKBTX_SCHED_TSTAMP | \
280 SKBTX_ACK_TSTAMP)
281 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
284 * The callback notifies userspace to release buffers when skb DMA is done in
285 * lower device, the skb last reference should be 0 when calling this.
286 * The zerocopy_success argument is true if zero copy transmit occurred,
287 * false on data copy or out of memory error caused by data copy attempt.
288 * The ctx field is used to track device context.
289 * The desc field is used to track userspace buffer index.
291 struct ubuf_info {
292 void (*callback)(struct ubuf_info *, bool zerocopy_success);
293 void *ctx;
294 unsigned long desc;
297 /* This data is invariant across clones and lives at
298 * the end of the header data, ie. at skb->end.
300 struct skb_shared_info {
301 unsigned char nr_frags;
302 __u8 tx_flags;
303 unsigned short gso_size;
304 /* Warning: this field is not always filled in (UFO)! */
305 unsigned short gso_segs;
306 unsigned short gso_type;
307 struct sk_buff *frag_list;
308 struct skb_shared_hwtstamps hwtstamps;
309 u32 tskey;
310 __be32 ip6_frag_id;
313 * Warning : all fields before dataref are cleared in __alloc_skb()
315 atomic_t dataref;
317 /* Intermediate layers must ensure that destructor_arg
318 * remains valid until skb destructor */
319 void * destructor_arg;
321 /* must be last field, see pskb_expand_head() */
322 skb_frag_t frags[MAX_SKB_FRAGS];
325 /* We divide dataref into two halves. The higher 16 bits hold references
326 * to the payload part of skb->data. The lower 16 bits hold references to
327 * the entire skb->data. A clone of a headerless skb holds the length of
328 * the header in skb->hdr_len.
330 * All users must obey the rule that the skb->data reference count must be
331 * greater than or equal to the payload reference count.
333 * Holding a reference to the payload part means that the user does not
334 * care about modifications to the header part of skb->data.
336 #define SKB_DATAREF_SHIFT 16
337 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
340 enum {
341 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
342 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
343 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
344 SKB_FCLONE_FREE, /* this companion fclone skb is available */
347 enum {
348 SKB_GSO_TCPV4 = 1 << 0,
349 SKB_GSO_UDP = 1 << 1,
351 /* This indicates the skb is from an untrusted source. */
352 SKB_GSO_DODGY = 1 << 2,
354 /* This indicates the tcp segment has CWR set. */
355 SKB_GSO_TCP_ECN = 1 << 3,
357 SKB_GSO_TCPV6 = 1 << 4,
359 SKB_GSO_FCOE = 1 << 5,
361 SKB_GSO_GRE = 1 << 6,
363 SKB_GSO_GRE_CSUM = 1 << 7,
365 SKB_GSO_IPIP = 1 << 8,
367 SKB_GSO_SIT = 1 << 9,
369 SKB_GSO_UDP_TUNNEL = 1 << 10,
371 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
373 SKB_GSO_MPLS = 1 << 12,
377 #if BITS_PER_LONG > 32
378 #define NET_SKBUFF_DATA_USES_OFFSET 1
379 #endif
381 #ifdef NET_SKBUFF_DATA_USES_OFFSET
382 typedef unsigned int sk_buff_data_t;
383 #else
384 typedef unsigned char *sk_buff_data_t;
385 #endif
388 * struct skb_mstamp - multi resolution time stamps
389 * @stamp_us: timestamp in us resolution
390 * @stamp_jiffies: timestamp in jiffies
392 struct skb_mstamp {
393 union {
394 u64 v64;
395 struct {
396 u32 stamp_us;
397 u32 stamp_jiffies;
403 * skb_mstamp_get - get current timestamp
404 * @cl: place to store timestamps
406 static inline void skb_mstamp_get(struct skb_mstamp *cl)
408 u64 val = local_clock();
410 do_div(val, NSEC_PER_USEC);
411 cl->stamp_us = (u32)val;
412 cl->stamp_jiffies = (u32)jiffies;
416 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
417 * @t1: pointer to newest sample
418 * @t0: pointer to oldest sample
420 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
421 const struct skb_mstamp *t0)
423 s32 delta_us = t1->stamp_us - t0->stamp_us;
424 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
426 /* If delta_us is negative, this might be because interval is too big,
427 * or local_clock() drift is too big : fallback using jiffies.
429 if (delta_us <= 0 ||
430 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
432 delta_us = jiffies_to_usecs(delta_jiffies);
434 return delta_us;
438 /**
439 * struct sk_buff - socket buffer
440 * @next: Next buffer in list
441 * @prev: Previous buffer in list
442 * @tstamp: Time we arrived/left
443 * @sk: Socket we are owned by
444 * @dev: Device we arrived on/are leaving by
445 * @cb: Control buffer. Free for use by every layer. Put private vars here
446 * @_skb_refdst: destination entry (with norefcount bit)
447 * @sp: the security path, used for xfrm
448 * @len: Length of actual data
449 * @data_len: Data length
450 * @mac_len: Length of link layer header
451 * @hdr_len: writable header length of cloned skb
452 * @csum: Checksum (must include start/offset pair)
453 * @csum_start: Offset from skb->head where checksumming should start
454 * @csum_offset: Offset from csum_start where checksum should be stored
455 * @priority: Packet queueing priority
456 * @ignore_df: allow local fragmentation
457 * @cloned: Head may be cloned (check refcnt to be sure)
458 * @ip_summed: Driver fed us an IP checksum
459 * @nohdr: Payload reference only, must not modify header
460 * @nfctinfo: Relationship of this skb to the connection
461 * @pkt_type: Packet class
462 * @fclone: skbuff clone status
463 * @ipvs_property: skbuff is owned by ipvs
464 * @peeked: this packet has been seen already, so stats have been
465 * done for it, don't do them again
466 * @nf_trace: netfilter packet trace flag
467 * @protocol: Packet protocol from driver
468 * @destructor: Destruct function
469 * @nfct: Associated connection, if any
470 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
471 * @skb_iif: ifindex of device we arrived on
472 * @tc_index: Traffic control index
473 * @tc_verd: traffic control verdict
474 * @hash: the packet hash
475 * @queue_mapping: Queue mapping for multiqueue devices
476 * @xmit_more: More SKBs are pending for this queue
477 * @ndisc_nodetype: router type (from link layer)
478 * @ooo_okay: allow the mapping of a socket to a queue to be changed
479 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
480 * ports.
481 * @sw_hash: indicates hash was computed in software stack
482 * @wifi_acked_valid: wifi_acked was set
483 * @wifi_acked: whether frame was acked on wifi or not
484 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
485 * @napi_id: id of the NAPI struct this skb came from
486 * @secmark: security marking
487 * @mark: Generic packet mark
488 * @dropcount: total number of sk_receive_queue overflows
489 * @vlan_proto: vlan encapsulation protocol
490 * @vlan_tci: vlan tag control information
491 * @inner_protocol: Protocol (encapsulation)
492 * @inner_transport_header: Inner transport layer header (encapsulation)
493 * @inner_network_header: Network layer header (encapsulation)
494 * @inner_mac_header: Link layer header (encapsulation)
495 * @transport_header: Transport layer header
496 * @network_header: Network layer header
497 * @mac_header: Link layer header
498 * @tail: Tail pointer
499 * @end: End pointer
500 * @head: Head of buffer
501 * @data: Data head pointer
502 * @truesize: Buffer size
503 * @users: User count - see {datagram,tcp}.c
506 struct sk_buff {
507 /* These two members must be first. */
508 struct sk_buff *next;
509 struct sk_buff *prev;
511 union {
512 ktime_t tstamp;
513 struct skb_mstamp skb_mstamp;
516 struct sock *sk;
517 struct net_device *dev;
520 * This is the control buffer. It is free to use for every
521 * layer. Please put your private variables there. If you
522 * want to keep them across layers you have to do a skb_clone()
523 * first. This is owned by whoever has the skb queued ATM.
525 char cb[48] __aligned(8);
527 unsigned long _skb_refdst;
528 void (*destructor)(struct sk_buff *skb);
529 #ifdef CONFIG_XFRM
530 struct sec_path *sp;
531 #endif
532 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
533 struct nf_conntrack *nfct;
534 #endif
535 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
536 struct nf_bridge_info *nf_bridge;
537 #endif
538 unsigned int len,
539 data_len;
540 __u16 mac_len,
541 hdr_len;
543 /* Following fields are _not_ copied in __copy_skb_header()
544 * Note that queue_mapping is here mostly to fill a hole.
546 kmemcheck_bitfield_begin(flags1);
547 __u16 queue_mapping;
548 __u8 cloned:1,
549 nohdr:1,
550 fclone:2,
551 peeked:1,
552 head_frag:1,
553 xmit_more:1;
554 /* one bit hole */
555 kmemcheck_bitfield_end(flags1);
557 /* fields enclosed in headers_start/headers_end are copied
558 * using a single memcpy() in __copy_skb_header()
560 __u32 headers_start[0];
562 /* if you move pkt_type around you also must adapt those constants */
563 #ifdef __BIG_ENDIAN_BITFIELD
564 #define PKT_TYPE_MAX (7 << 5)
565 #else
566 #define PKT_TYPE_MAX 7
567 #endif
568 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
570 __u8 __pkt_type_offset[0];
571 __u8 pkt_type:3;
572 __u8 pfmemalloc:1;
573 __u8 ignore_df:1;
574 __u8 nfctinfo:3;
576 __u8 nf_trace:1;
577 __u8 ip_summed:2;
578 __u8 ooo_okay:1;
579 __u8 l4_hash:1;
580 __u8 sw_hash:1;
581 __u8 wifi_acked_valid:1;
582 __u8 wifi_acked:1;
584 __u8 no_fcs:1;
585 /* Indicates the inner headers are valid in the skbuff. */
586 __u8 encapsulation:1;
587 __u8 encap_hdr_csum:1;
588 __u8 csum_valid:1;
589 __u8 csum_complete_sw:1;
590 __u8 csum_level:2;
591 __u8 csum_bad:1;
593 #ifdef CONFIG_IPV6_NDISC_NODETYPE
594 __u8 ndisc_nodetype:2;
595 #endif
596 __u8 ipvs_property:1;
597 __u8 inner_protocol_type:1;
598 /* 4 or 6 bit hole */
600 #ifdef CONFIG_NET_SCHED
601 __u16 tc_index; /* traffic control index */
602 #ifdef CONFIG_NET_CLS_ACT
603 __u16 tc_verd; /* traffic control verdict */
604 #endif
605 #endif
607 union {
608 __wsum csum;
609 struct {
610 __u16 csum_start;
611 __u16 csum_offset;
614 __u32 priority;
615 int skb_iif;
616 __u32 hash;
617 __be16 vlan_proto;
618 __u16 vlan_tci;
619 #ifdef CONFIG_NET_RX_BUSY_POLL
620 unsigned int napi_id;
621 #endif
622 #ifdef CONFIG_NETWORK_SECMARK
623 __u32 secmark;
624 #endif
625 union {
626 __u32 mark;
627 __u32 dropcount;
628 __u32 reserved_tailroom;
631 union {
632 __be16 inner_protocol;
633 __u8 inner_ipproto;
636 __u16 inner_transport_header;
637 __u16 inner_network_header;
638 __u16 inner_mac_header;
640 __be16 protocol;
641 __u16 transport_header;
642 __u16 network_header;
643 __u16 mac_header;
645 __u32 headers_end[0];
647 /* These elements must be at the end, see alloc_skb() for details. */
648 sk_buff_data_t tail;
649 sk_buff_data_t end;
650 unsigned char *head,
651 *data;
652 unsigned int truesize;
653 atomic_t users;
656 #ifdef __KERNEL__
658 * Handling routines are only of interest to the kernel
660 #include <linux/slab.h>
663 #define SKB_ALLOC_FCLONE 0x01
664 #define SKB_ALLOC_RX 0x02
666 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
667 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
669 return unlikely(skb->pfmemalloc);
673 * skb might have a dst pointer attached, refcounted or not.
674 * _skb_refdst low order bit is set if refcount was _not_ taken
676 #define SKB_DST_NOREF 1UL
677 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
680 * skb_dst - returns skb dst_entry
681 * @skb: buffer
683 * Returns skb dst_entry, regardless of reference taken or not.
685 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
687 /* If refdst was not refcounted, check we still are in a
688 * rcu_read_lock section
690 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
691 !rcu_read_lock_held() &&
692 !rcu_read_lock_bh_held());
693 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
697 * skb_dst_set - sets skb dst
698 * @skb: buffer
699 * @dst: dst entry
701 * Sets skb dst, assuming a reference was taken on dst and should
702 * be released by skb_dst_drop()
704 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
706 skb->_skb_refdst = (unsigned long)dst;
709 void __skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst,
710 bool force);
713 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
714 * @skb: buffer
715 * @dst: dst entry
717 * Sets skb dst, assuming a reference was not taken on dst.
718 * If dst entry is cached, we do not take reference and dst_release
719 * will be avoided by refdst_drop. If dst entry is not cached, we take
720 * reference, so that last dst_release can destroy the dst immediately.
722 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
724 __skb_dst_set_noref(skb, dst, false);
728 * skb_dst_set_noref_force - sets skb dst, without taking reference
729 * @skb: buffer
730 * @dst: dst entry
732 * Sets skb dst, assuming a reference was not taken on dst.
733 * No reference is taken and no dst_release will be called. While for
734 * cached dsts deferred reclaim is a basic feature, for entries that are
735 * not cached it is caller's job to guarantee that last dst_release for
736 * provided dst happens when nobody uses it, eg. after a RCU grace period.
738 static inline void skb_dst_set_noref_force(struct sk_buff *skb,
739 struct dst_entry *dst)
741 __skb_dst_set_noref(skb, dst, true);
745 * skb_dst_is_noref - Test if skb dst isn't refcounted
746 * @skb: buffer
748 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
750 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
753 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
755 return (struct rtable *)skb_dst(skb);
758 void kfree_skb(struct sk_buff *skb);
759 void kfree_skb_list(struct sk_buff *segs);
760 void skb_tx_error(struct sk_buff *skb);
761 void consume_skb(struct sk_buff *skb);
762 void __kfree_skb(struct sk_buff *skb);
763 extern struct kmem_cache *skbuff_head_cache;
765 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
766 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
767 bool *fragstolen, int *delta_truesize);
769 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
770 int node);
771 struct sk_buff *build_skb(void *data, unsigned int frag_size);
772 static inline struct sk_buff *alloc_skb(unsigned int size,
773 gfp_t priority)
775 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
778 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
779 unsigned long data_len,
780 int max_page_order,
781 int *errcode,
782 gfp_t gfp_mask);
784 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
785 struct sk_buff_fclones {
786 struct sk_buff skb1;
788 struct sk_buff skb2;
790 atomic_t fclone_ref;
794 * skb_fclone_busy - check if fclone is busy
795 * @skb: buffer
797 * Returns true is skb is a fast clone, and its clone is not freed.
799 static inline bool skb_fclone_busy(const struct sk_buff *skb)
801 const struct sk_buff_fclones *fclones;
803 fclones = container_of(skb, struct sk_buff_fclones, skb1);
805 return skb->fclone == SKB_FCLONE_ORIG &&
806 fclones->skb2.fclone == SKB_FCLONE_CLONE;
809 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
810 gfp_t priority)
812 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
815 struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
816 static inline struct sk_buff *alloc_skb_head(gfp_t priority)
818 return __alloc_skb_head(priority, -1);
821 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
822 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
823 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
824 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
825 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
826 gfp_t gfp_mask, bool fclone);
827 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
828 gfp_t gfp_mask)
830 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
833 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
834 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
835 unsigned int headroom);
836 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
837 int newtailroom, gfp_t priority);
838 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
839 int offset, int len);
840 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
841 int len);
842 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
843 int skb_pad(struct sk_buff *skb, int pad);
844 #define dev_kfree_skb(a) consume_skb(a)
846 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
847 int getfrag(void *from, char *to, int offset,
848 int len, int odd, struct sk_buff *skb),
849 void *from, int length);
851 struct skb_seq_state {
852 __u32 lower_offset;
853 __u32 upper_offset;
854 __u32 frag_idx;
855 __u32 stepped_offset;
856 struct sk_buff *root_skb;
857 struct sk_buff *cur_skb;
858 __u8 *frag_data;
861 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
862 unsigned int to, struct skb_seq_state *st);
863 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
864 struct skb_seq_state *st);
865 void skb_abort_seq_read(struct skb_seq_state *st);
867 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
868 unsigned int to, struct ts_config *config,
869 struct ts_state *state);
872 * Packet hash types specify the type of hash in skb_set_hash.
874 * Hash types refer to the protocol layer addresses which are used to
875 * construct a packet's hash. The hashes are used to differentiate or identify
876 * flows of the protocol layer for the hash type. Hash types are either
877 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
879 * Properties of hashes:
881 * 1) Two packets in different flows have different hash values
882 * 2) Two packets in the same flow should have the same hash value
884 * A hash at a higher layer is considered to be more specific. A driver should
885 * set the most specific hash possible.
887 * A driver cannot indicate a more specific hash than the layer at which a hash
888 * was computed. For instance an L3 hash cannot be set as an L4 hash.
890 * A driver may indicate a hash level which is less specific than the
891 * actual layer the hash was computed on. For instance, a hash computed
892 * at L4 may be considered an L3 hash. This should only be done if the
893 * driver can't unambiguously determine that the HW computed the hash at
894 * the higher layer. Note that the "should" in the second property above
895 * permits this.
897 enum pkt_hash_types {
898 PKT_HASH_TYPE_NONE, /* Undefined type */
899 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
900 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
901 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
904 static inline void
905 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
907 skb->l4_hash = (type == PKT_HASH_TYPE_L4);
908 skb->sw_hash = 0;
909 skb->hash = hash;
912 void __skb_get_hash(struct sk_buff *skb);
913 static inline __u32 skb_get_hash(struct sk_buff *skb)
915 if (!skb->l4_hash && !skb->sw_hash)
916 __skb_get_hash(skb);
918 return skb->hash;
921 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
923 return skb->hash;
926 static inline void skb_clear_hash(struct sk_buff *skb)
928 skb->hash = 0;
929 skb->sw_hash = 0;
930 skb->l4_hash = 0;
933 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
935 if (!skb->l4_hash)
936 skb_clear_hash(skb);
939 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
941 to->hash = from->hash;
942 to->sw_hash = from->sw_hash;
943 to->l4_hash = from->l4_hash;
946 #ifdef NET_SKBUFF_DATA_USES_OFFSET
947 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
949 return skb->head + skb->end;
952 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
954 return skb->end;
956 #else
957 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
959 return skb->end;
962 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
964 return skb->end - skb->head;
966 #endif
968 /* Internal */
969 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
971 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
973 return &skb_shinfo(skb)->hwtstamps;
977 * skb_queue_empty - check if a queue is empty
978 * @list: queue head
980 * Returns true if the queue is empty, false otherwise.
982 static inline int skb_queue_empty(const struct sk_buff_head *list)
984 return list->next == (const struct sk_buff *) list;
988 * skb_queue_is_last - check if skb is the last entry in the queue
989 * @list: queue head
990 * @skb: buffer
992 * Returns true if @skb is the last buffer on the list.
994 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
995 const struct sk_buff *skb)
997 return skb->next == (const struct sk_buff *) list;
1001 * skb_queue_is_first - check if skb is the first entry in the queue
1002 * @list: queue head
1003 * @skb: buffer
1005 * Returns true if @skb is the first buffer on the list.
1007 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1008 const struct sk_buff *skb)
1010 return skb->prev == (const struct sk_buff *) list;
1014 * skb_queue_next - return the next packet in the queue
1015 * @list: queue head
1016 * @skb: current buffer
1018 * Return the next packet in @list after @skb. It is only valid to
1019 * call this if skb_queue_is_last() evaluates to false.
1021 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1022 const struct sk_buff *skb)
1024 /* This BUG_ON may seem severe, but if we just return then we
1025 * are going to dereference garbage.
1027 BUG_ON(skb_queue_is_last(list, skb));
1028 return skb->next;
1032 * skb_queue_prev - return the prev packet in the queue
1033 * @list: queue head
1034 * @skb: current buffer
1036 * Return the prev packet in @list before @skb. It is only valid to
1037 * call this if skb_queue_is_first() evaluates to false.
1039 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1040 const struct sk_buff *skb)
1042 /* This BUG_ON may seem severe, but if we just return then we
1043 * are going to dereference garbage.
1045 BUG_ON(skb_queue_is_first(list, skb));
1046 return skb->prev;
1050 * skb_get - reference buffer
1051 * @skb: buffer to reference
1053 * Makes another reference to a socket buffer and returns a pointer
1054 * to the buffer.
1056 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1058 atomic_inc(&skb->users);
1059 return skb;
1063 * If users == 1, we are the only owner and are can avoid redundant
1064 * atomic change.
1068 * skb_cloned - is the buffer a clone
1069 * @skb: buffer to check
1071 * Returns true if the buffer was generated with skb_clone() and is
1072 * one of multiple shared copies of the buffer. Cloned buffers are
1073 * shared data so must not be written to under normal circumstances.
1075 static inline int skb_cloned(const struct sk_buff *skb)
1077 return skb->cloned &&
1078 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1081 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1083 might_sleep_if(pri & __GFP_WAIT);
1085 if (skb_cloned(skb))
1086 return pskb_expand_head(skb, 0, 0, pri);
1088 return 0;
1092 * skb_header_cloned - is the header a clone
1093 * @skb: buffer to check
1095 * Returns true if modifying the header part of the buffer requires
1096 * the data to be copied.
1098 static inline int skb_header_cloned(const struct sk_buff *skb)
1100 int dataref;
1102 if (!skb->cloned)
1103 return 0;
1105 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1106 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1107 return dataref != 1;
1111 * skb_header_release - release reference to header
1112 * @skb: buffer to operate on
1114 * Drop a reference to the header part of the buffer. This is done
1115 * by acquiring a payload reference. You must not read from the header
1116 * part of skb->data after this.
1117 * Note : Check if you can use __skb_header_release() instead.
1119 static inline void skb_header_release(struct sk_buff *skb)
1121 BUG_ON(skb->nohdr);
1122 skb->nohdr = 1;
1123 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1127 * __skb_header_release - release reference to header
1128 * @skb: buffer to operate on
1130 * Variant of skb_header_release() assuming skb is private to caller.
1131 * We can avoid one atomic operation.
1133 static inline void __skb_header_release(struct sk_buff *skb)
1135 skb->nohdr = 1;
1136 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1141 * skb_shared - is the buffer shared
1142 * @skb: buffer to check
1144 * Returns true if more than one person has a reference to this
1145 * buffer.
1147 static inline int skb_shared(const struct sk_buff *skb)
1149 return atomic_read(&skb->users) != 1;
1153 * skb_share_check - check if buffer is shared and if so clone it
1154 * @skb: buffer to check
1155 * @pri: priority for memory allocation
1157 * If the buffer is shared the buffer is cloned and the old copy
1158 * drops a reference. A new clone with a single reference is returned.
1159 * If the buffer is not shared the original buffer is returned. When
1160 * being called from interrupt status or with spinlocks held pri must
1161 * be GFP_ATOMIC.
1163 * NULL is returned on a memory allocation failure.
1165 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1167 might_sleep_if(pri & __GFP_WAIT);
1168 if (skb_shared(skb)) {
1169 struct sk_buff *nskb = skb_clone(skb, pri);
1171 if (likely(nskb))
1172 consume_skb(skb);
1173 else
1174 kfree_skb(skb);
1175 skb = nskb;
1177 return skb;
1181 * Copy shared buffers into a new sk_buff. We effectively do COW on
1182 * packets to handle cases where we have a local reader and forward
1183 * and a couple of other messy ones. The normal one is tcpdumping
1184 * a packet thats being forwarded.
1188 * skb_unshare - make a copy of a shared buffer
1189 * @skb: buffer to check
1190 * @pri: priority for memory allocation
1192 * If the socket buffer is a clone then this function creates a new
1193 * copy of the data, drops a reference count on the old copy and returns
1194 * the new copy with the reference count at 1. If the buffer is not a clone
1195 * the original buffer is returned. When called with a spinlock held or
1196 * from interrupt state @pri must be %GFP_ATOMIC
1198 * %NULL is returned on a memory allocation failure.
1200 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1201 gfp_t pri)
1203 might_sleep_if(pri & __GFP_WAIT);
1204 if (skb_cloned(skb)) {
1205 struct sk_buff *nskb = skb_copy(skb, pri);
1207 /* Free our shared copy */
1208 if (likely(nskb))
1209 consume_skb(skb);
1210 else
1211 kfree_skb(skb);
1212 skb = nskb;
1214 return skb;
1218 * skb_peek - peek at the head of an &sk_buff_head
1219 * @list_: list to peek at
1221 * Peek an &sk_buff. Unlike most other operations you _MUST_
1222 * be careful with this one. A peek leaves the buffer on the
1223 * list and someone else may run off with it. You must hold
1224 * the appropriate locks or have a private queue to do this.
1226 * Returns %NULL for an empty list or a pointer to the head element.
1227 * The reference count is not incremented and the reference is therefore
1228 * volatile. Use with caution.
1230 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1232 struct sk_buff *skb = list_->next;
1234 if (skb == (struct sk_buff *)list_)
1235 skb = NULL;
1236 return skb;
1240 * skb_peek_next - peek skb following the given one from a queue
1241 * @skb: skb to start from
1242 * @list_: list to peek at
1244 * Returns %NULL when the end of the list is met or a pointer to the
1245 * next element. The reference count is not incremented and the
1246 * reference is therefore volatile. Use with caution.
1248 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1249 const struct sk_buff_head *list_)
1251 struct sk_buff *next = skb->next;
1253 if (next == (struct sk_buff *)list_)
1254 next = NULL;
1255 return next;
1259 * skb_peek_tail - peek at the tail of an &sk_buff_head
1260 * @list_: list to peek at
1262 * Peek an &sk_buff. Unlike most other operations you _MUST_
1263 * be careful with this one. A peek leaves the buffer on the
1264 * list and someone else may run off with it. You must hold
1265 * the appropriate locks or have a private queue to do this.
1267 * Returns %NULL for an empty list or a pointer to the tail element.
1268 * The reference count is not incremented and the reference is therefore
1269 * volatile. Use with caution.
1271 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1273 struct sk_buff *skb = list_->prev;
1275 if (skb == (struct sk_buff *)list_)
1276 skb = NULL;
1277 return skb;
1282 * skb_queue_len - get queue length
1283 * @list_: list to measure
1285 * Return the length of an &sk_buff queue.
1287 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1289 return list_->qlen;
1293 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1294 * @list: queue to initialize
1296 * This initializes only the list and queue length aspects of
1297 * an sk_buff_head object. This allows to initialize the list
1298 * aspects of an sk_buff_head without reinitializing things like
1299 * the spinlock. It can also be used for on-stack sk_buff_head
1300 * objects where the spinlock is known to not be used.
1302 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1304 list->prev = list->next = (struct sk_buff *)list;
1305 list->qlen = 0;
1309 * This function creates a split out lock class for each invocation;
1310 * this is needed for now since a whole lot of users of the skb-queue
1311 * infrastructure in drivers have different locking usage (in hardirq)
1312 * than the networking core (in softirq only). In the long run either the
1313 * network layer or drivers should need annotation to consolidate the
1314 * main types of usage into 3 classes.
1316 static inline void skb_queue_head_init(struct sk_buff_head *list)
1318 spin_lock_init(&list->lock);
1319 __skb_queue_head_init(list);
1322 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1323 struct lock_class_key *class)
1325 skb_queue_head_init(list);
1326 lockdep_set_class(&list->lock, class);
1330 * Insert an sk_buff on a list.
1332 * The "__skb_xxxx()" functions are the non-atomic ones that
1333 * can only be called with interrupts disabled.
1335 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1336 struct sk_buff_head *list);
1337 static inline void __skb_insert(struct sk_buff *newsk,
1338 struct sk_buff *prev, struct sk_buff *next,
1339 struct sk_buff_head *list)
1341 newsk->next = next;
1342 newsk->prev = prev;
1343 next->prev = prev->next = newsk;
1344 list->qlen++;
1347 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1348 struct sk_buff *prev,
1349 struct sk_buff *next)
1351 struct sk_buff *first = list->next;
1352 struct sk_buff *last = list->prev;
1354 first->prev = prev;
1355 prev->next = first;
1357 last->next = next;
1358 next->prev = last;
1362 * skb_queue_splice - join two skb lists, this is designed for stacks
1363 * @list: the new list to add
1364 * @head: the place to add it in the first list
1366 static inline void skb_queue_splice(const struct sk_buff_head *list,
1367 struct sk_buff_head *head)
1369 if (!skb_queue_empty(list)) {
1370 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1371 head->qlen += list->qlen;
1376 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1377 * @list: the new list to add
1378 * @head: the place to add it in the first list
1380 * The list at @list is reinitialised
1382 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1383 struct sk_buff_head *head)
1385 if (!skb_queue_empty(list)) {
1386 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1387 head->qlen += list->qlen;
1388 __skb_queue_head_init(list);
1393 * skb_queue_splice_tail - join two skb lists, each list being a queue
1394 * @list: the new list to add
1395 * @head: the place to add it in the first list
1397 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1398 struct sk_buff_head *head)
1400 if (!skb_queue_empty(list)) {
1401 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1402 head->qlen += list->qlen;
1407 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1408 * @list: the new list to add
1409 * @head: the place to add it in the first list
1411 * Each of the lists is a queue.
1412 * The list at @list is reinitialised
1414 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1415 struct sk_buff_head *head)
1417 if (!skb_queue_empty(list)) {
1418 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1419 head->qlen += list->qlen;
1420 __skb_queue_head_init(list);
1425 * __skb_queue_after - queue a buffer at the list head
1426 * @list: list to use
1427 * @prev: place after this buffer
1428 * @newsk: buffer to queue
1430 * Queue a buffer int the middle of a list. This function takes no locks
1431 * and you must therefore hold required locks before calling it.
1433 * A buffer cannot be placed on two lists at the same time.
1435 static inline void __skb_queue_after(struct sk_buff_head *list,
1436 struct sk_buff *prev,
1437 struct sk_buff *newsk)
1439 __skb_insert(newsk, prev, prev->next, list);
1442 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1443 struct sk_buff_head *list);
1445 static inline void __skb_queue_before(struct sk_buff_head *list,
1446 struct sk_buff *next,
1447 struct sk_buff *newsk)
1449 __skb_insert(newsk, next->prev, next, list);
1453 * __skb_queue_head - queue a buffer at the list head
1454 * @list: list to use
1455 * @newsk: buffer to queue
1457 * Queue a buffer at the start of a list. This function takes no locks
1458 * and you must therefore hold required locks before calling it.
1460 * A buffer cannot be placed on two lists at the same time.
1462 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1463 static inline void __skb_queue_head(struct sk_buff_head *list,
1464 struct sk_buff *newsk)
1466 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1470 * __skb_queue_tail - queue a buffer at the list tail
1471 * @list: list to use
1472 * @newsk: buffer to queue
1474 * Queue a buffer at the end of a list. This function takes no locks
1475 * and you must therefore hold required locks before calling it.
1477 * A buffer cannot be placed on two lists at the same time.
1479 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1480 static inline void __skb_queue_tail(struct sk_buff_head *list,
1481 struct sk_buff *newsk)
1483 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1487 * remove sk_buff from list. _Must_ be called atomically, and with
1488 * the list known..
1490 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1491 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1493 struct sk_buff *next, *prev;
1495 list->qlen--;
1496 next = skb->next;
1497 prev = skb->prev;
1498 skb->next = skb->prev = NULL;
1499 next->prev = prev;
1500 prev->next = next;
1504 * __skb_dequeue - remove from the head of the queue
1505 * @list: list to dequeue from
1507 * Remove the head of the list. This function does not take any locks
1508 * so must be used with appropriate locks held only. The head item is
1509 * returned or %NULL if the list is empty.
1511 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1512 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1514 struct sk_buff *skb = skb_peek(list);
1515 if (skb)
1516 __skb_unlink(skb, list);
1517 return skb;
1521 * __skb_dequeue_tail - remove from the tail of the queue
1522 * @list: list to dequeue from
1524 * Remove the tail of the list. This function does not take any locks
1525 * so must be used with appropriate locks held only. The tail item is
1526 * returned or %NULL if the list is empty.
1528 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1529 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1531 struct sk_buff *skb = skb_peek_tail(list);
1532 if (skb)
1533 __skb_unlink(skb, list);
1534 return skb;
1538 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1540 return skb->data_len;
1543 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1545 return skb->len - skb->data_len;
1548 static inline int skb_pagelen(const struct sk_buff *skb)
1550 int i, len = 0;
1552 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1553 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1554 return len + skb_headlen(skb);
1558 * __skb_fill_page_desc - initialise a paged fragment in an skb
1559 * @skb: buffer containing fragment to be initialised
1560 * @i: paged fragment index to initialise
1561 * @page: the page to use for this fragment
1562 * @off: the offset to the data with @page
1563 * @size: the length of the data
1565 * Initialises the @i'th fragment of @skb to point to &size bytes at
1566 * offset @off within @page.
1568 * Does not take any additional reference on the fragment.
1570 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1571 struct page *page, int off, int size)
1573 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1576 * Propagate page->pfmemalloc to the skb if we can. The problem is
1577 * that not all callers have unique ownership of the page. If
1578 * pfmemalloc is set, we check the mapping as a mapping implies
1579 * page->index is set (index and pfmemalloc share space).
1580 * If it's a valid mapping, we cannot use page->pfmemalloc but we
1581 * do not lose pfmemalloc information as the pages would not be
1582 * allocated using __GFP_MEMALLOC.
1584 frag->page.p = page;
1585 frag->page_offset = off;
1586 skb_frag_size_set(frag, size);
1588 page = compound_head(page);
1589 if (page->pfmemalloc && !page->mapping)
1590 skb->pfmemalloc = true;
1594 * skb_fill_page_desc - initialise a paged fragment in an skb
1595 * @skb: buffer containing fragment to be initialised
1596 * @i: paged fragment index to initialise
1597 * @page: the page to use for this fragment
1598 * @off: the offset to the data with @page
1599 * @size: the length of the data
1601 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1602 * @skb to point to @size bytes at offset @off within @page. In
1603 * addition updates @skb such that @i is the last fragment.
1605 * Does not take any additional reference on the fragment.
1607 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1608 struct page *page, int off, int size)
1610 __skb_fill_page_desc(skb, i, page, off, size);
1611 skb_shinfo(skb)->nr_frags = i + 1;
1614 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1615 int size, unsigned int truesize);
1617 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1618 unsigned int truesize);
1620 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1621 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1622 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1624 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1625 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1627 return skb->head + skb->tail;
1630 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1632 skb->tail = skb->data - skb->head;
1635 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1637 skb_reset_tail_pointer(skb);
1638 skb->tail += offset;
1641 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1642 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1644 return skb->tail;
1647 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1649 skb->tail = skb->data;
1652 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1654 skb->tail = skb->data + offset;
1657 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1660 * Add data to an sk_buff
1662 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1663 unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1664 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1666 unsigned char *tmp = skb_tail_pointer(skb);
1667 SKB_LINEAR_ASSERT(skb);
1668 skb->tail += len;
1669 skb->len += len;
1670 return tmp;
1673 unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1674 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1676 skb->data -= len;
1677 skb->len += len;
1678 return skb->data;
1681 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1682 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1684 skb->len -= len;
1685 BUG_ON(skb->len < skb->data_len);
1686 return skb->data += len;
1689 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1691 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1694 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1696 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1698 if (len > skb_headlen(skb) &&
1699 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1700 return NULL;
1701 skb->len -= len;
1702 return skb->data += len;
1705 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1707 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1710 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1712 if (likely(len <= skb_headlen(skb)))
1713 return 1;
1714 if (unlikely(len > skb->len))
1715 return 0;
1716 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1720 * skb_headroom - bytes at buffer head
1721 * @skb: buffer to check
1723 * Return the number of bytes of free space at the head of an &sk_buff.
1725 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1727 return skb->data - skb->head;
1731 * skb_tailroom - bytes at buffer end
1732 * @skb: buffer to check
1734 * Return the number of bytes of free space at the tail of an sk_buff
1736 static inline int skb_tailroom(const struct sk_buff *skb)
1738 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1742 * skb_availroom - bytes at buffer end
1743 * @skb: buffer to check
1745 * Return the number of bytes of free space at the tail of an sk_buff
1746 * allocated by sk_stream_alloc()
1748 static inline int skb_availroom(const struct sk_buff *skb)
1750 if (skb_is_nonlinear(skb))
1751 return 0;
1753 return skb->end - skb->tail - skb->reserved_tailroom;
1757 * skb_reserve - adjust headroom
1758 * @skb: buffer to alter
1759 * @len: bytes to move
1761 * Increase the headroom of an empty &sk_buff by reducing the tail
1762 * room. This is only allowed for an empty buffer.
1764 static inline void skb_reserve(struct sk_buff *skb, int len)
1766 skb->data += len;
1767 skb->tail += len;
1770 #define ENCAP_TYPE_ETHER 0
1771 #define ENCAP_TYPE_IPPROTO 1
1773 static inline void skb_set_inner_protocol(struct sk_buff *skb,
1774 __be16 protocol)
1776 skb->inner_protocol = protocol;
1777 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
1780 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
1781 __u8 ipproto)
1783 skb->inner_ipproto = ipproto;
1784 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
1787 static inline void skb_reset_inner_headers(struct sk_buff *skb)
1789 skb->inner_mac_header = skb->mac_header;
1790 skb->inner_network_header = skb->network_header;
1791 skb->inner_transport_header = skb->transport_header;
1794 static inline void skb_reset_mac_len(struct sk_buff *skb)
1796 skb->mac_len = skb->network_header - skb->mac_header;
1799 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1800 *skb)
1802 return skb->head + skb->inner_transport_header;
1805 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1807 skb->inner_transport_header = skb->data - skb->head;
1810 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1811 const int offset)
1813 skb_reset_inner_transport_header(skb);
1814 skb->inner_transport_header += offset;
1817 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1819 return skb->head + skb->inner_network_header;
1822 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1824 skb->inner_network_header = skb->data - skb->head;
1827 static inline void skb_set_inner_network_header(struct sk_buff *skb,
1828 const int offset)
1830 skb_reset_inner_network_header(skb);
1831 skb->inner_network_header += offset;
1834 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1836 return skb->head + skb->inner_mac_header;
1839 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
1841 skb->inner_mac_header = skb->data - skb->head;
1844 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
1845 const int offset)
1847 skb_reset_inner_mac_header(skb);
1848 skb->inner_mac_header += offset;
1850 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1852 return skb->transport_header != (typeof(skb->transport_header))~0U;
1855 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1857 return skb->head + skb->transport_header;
1860 static inline void skb_reset_transport_header(struct sk_buff *skb)
1862 skb->transport_header = skb->data - skb->head;
1865 static inline void skb_set_transport_header(struct sk_buff *skb,
1866 const int offset)
1868 skb_reset_transport_header(skb);
1869 skb->transport_header += offset;
1872 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1874 return skb->head + skb->network_header;
1877 static inline void skb_reset_network_header(struct sk_buff *skb)
1879 skb->network_header = skb->data - skb->head;
1882 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1884 skb_reset_network_header(skb);
1885 skb->network_header += offset;
1888 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1890 return skb->head + skb->mac_header;
1893 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1895 return skb->mac_header != (typeof(skb->mac_header))~0U;
1898 static inline void skb_reset_mac_header(struct sk_buff *skb)
1900 skb->mac_header = skb->data - skb->head;
1903 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1905 skb_reset_mac_header(skb);
1906 skb->mac_header += offset;
1909 static inline void skb_pop_mac_header(struct sk_buff *skb)
1911 skb->mac_header = skb->network_header;
1914 static inline void skb_probe_transport_header(struct sk_buff *skb,
1915 const int offset_hint)
1917 struct flow_keys keys;
1919 if (skb_transport_header_was_set(skb))
1920 return;
1921 else if (skb_flow_dissect(skb, &keys))
1922 skb_set_transport_header(skb, keys.thoff);
1923 else
1924 skb_set_transport_header(skb, offset_hint);
1927 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1929 if (skb_mac_header_was_set(skb)) {
1930 const unsigned char *old_mac = skb_mac_header(skb);
1932 skb_set_mac_header(skb, -skb->mac_len);
1933 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1937 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1939 return skb->csum_start - skb_headroom(skb);
1942 static inline int skb_transport_offset(const struct sk_buff *skb)
1944 return skb_transport_header(skb) - skb->data;
1947 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1949 return skb->transport_header - skb->network_header;
1952 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
1954 return skb->inner_transport_header - skb->inner_network_header;
1957 static inline int skb_network_offset(const struct sk_buff *skb)
1959 return skb_network_header(skb) - skb->data;
1962 static inline int skb_inner_network_offset(const struct sk_buff *skb)
1964 return skb_inner_network_header(skb) - skb->data;
1967 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1969 return pskb_may_pull(skb, skb_network_offset(skb) + len);
1973 * CPUs often take a performance hit when accessing unaligned memory
1974 * locations. The actual performance hit varies, it can be small if the
1975 * hardware handles it or large if we have to take an exception and fix it
1976 * in software.
1978 * Since an ethernet header is 14 bytes network drivers often end up with
1979 * the IP header at an unaligned offset. The IP header can be aligned by
1980 * shifting the start of the packet by 2 bytes. Drivers should do this
1981 * with:
1983 * skb_reserve(skb, NET_IP_ALIGN);
1985 * The downside to this alignment of the IP header is that the DMA is now
1986 * unaligned. On some architectures the cost of an unaligned DMA is high
1987 * and this cost outweighs the gains made by aligning the IP header.
1989 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1990 * to be overridden.
1992 #ifndef NET_IP_ALIGN
1993 #define NET_IP_ALIGN 2
1994 #endif
1997 * The networking layer reserves some headroom in skb data (via
1998 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1999 * the header has to grow. In the default case, if the header has to grow
2000 * 32 bytes or less we avoid the reallocation.
2002 * Unfortunately this headroom changes the DMA alignment of the resulting
2003 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2004 * on some architectures. An architecture can override this value,
2005 * perhaps setting it to a cacheline in size (since that will maintain
2006 * cacheline alignment of the DMA). It must be a power of 2.
2008 * Various parts of the networking layer expect at least 32 bytes of
2009 * headroom, you should not reduce this.
2011 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2012 * to reduce average number of cache lines per packet.
2013 * get_rps_cpus() for example only access one 64 bytes aligned block :
2014 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2016 #ifndef NET_SKB_PAD
2017 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2018 #endif
2020 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2022 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2024 if (unlikely(skb_is_nonlinear(skb))) {
2025 WARN_ON(1);
2026 return;
2028 skb->len = len;
2029 skb_set_tail_pointer(skb, len);
2032 void skb_trim(struct sk_buff *skb, unsigned int len);
2034 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2036 if (skb->data_len)
2037 return ___pskb_trim(skb, len);
2038 __skb_trim(skb, len);
2039 return 0;
2042 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2044 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2048 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2049 * @skb: buffer to alter
2050 * @len: new length
2052 * This is identical to pskb_trim except that the caller knows that
2053 * the skb is not cloned so we should never get an error due to out-
2054 * of-memory.
2056 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2058 int err = pskb_trim(skb, len);
2059 BUG_ON(err);
2063 * skb_orphan - orphan a buffer
2064 * @skb: buffer to orphan
2066 * If a buffer currently has an owner then we call the owner's
2067 * destructor function and make the @skb unowned. The buffer continues
2068 * to exist but is no longer charged to its former owner.
2070 static inline void skb_orphan(struct sk_buff *skb)
2072 if (skb->destructor) {
2073 skb->destructor(skb);
2074 skb->destructor = NULL;
2075 skb->sk = NULL;
2076 } else {
2077 BUG_ON(skb->sk);
2082 * skb_orphan_frags - orphan the frags contained in a buffer
2083 * @skb: buffer to orphan frags from
2084 * @gfp_mask: allocation mask for replacement pages
2086 * For each frag in the SKB which needs a destructor (i.e. has an
2087 * owner) create a copy of that frag and release the original
2088 * page by calling the destructor.
2090 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2092 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2093 return 0;
2094 return skb_copy_ubufs(skb, gfp_mask);
2098 * __skb_queue_purge - empty a list
2099 * @list: list to empty
2101 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2102 * the list and one reference dropped. This function does not take the
2103 * list lock and the caller must hold the relevant locks to use it.
2105 void skb_queue_purge(struct sk_buff_head *list);
2106 static inline void __skb_queue_purge(struct sk_buff_head *list)
2108 struct sk_buff *skb;
2109 while ((skb = __skb_dequeue(list)) != NULL)
2110 kfree_skb(skb);
2113 #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
2114 #define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
2115 #define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE
2117 void *netdev_alloc_frag(unsigned int fragsz);
2119 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2120 gfp_t gfp_mask);
2123 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2124 * @dev: network device to receive on
2125 * @length: length to allocate
2127 * Allocate a new &sk_buff and assign it a usage count of one. The
2128 * buffer has unspecified headroom built in. Users should allocate
2129 * the headroom they think they need without accounting for the
2130 * built in space. The built in space is used for optimisations.
2132 * %NULL is returned if there is no free memory. Although this function
2133 * allocates memory it can be called from an interrupt.
2135 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2136 unsigned int length)
2138 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2141 /* legacy helper around __netdev_alloc_skb() */
2142 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2143 gfp_t gfp_mask)
2145 return __netdev_alloc_skb(NULL, length, gfp_mask);
2148 /* legacy helper around netdev_alloc_skb() */
2149 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2151 return netdev_alloc_skb(NULL, length);
2155 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2156 unsigned int length, gfp_t gfp)
2158 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2160 if (NET_IP_ALIGN && skb)
2161 skb_reserve(skb, NET_IP_ALIGN);
2162 return skb;
2165 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2166 unsigned int length)
2168 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2172 * __skb_alloc_pages - allocate pages for ps-rx on a skb and preserve pfmemalloc data
2173 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
2174 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
2175 * @order: size of the allocation
2177 * Allocate a new page.
2179 * %NULL is returned if there is no free memory.
2181 static inline struct page *__skb_alloc_pages(gfp_t gfp_mask,
2182 struct sk_buff *skb,
2183 unsigned int order)
2185 struct page *page;
2187 gfp_mask |= __GFP_COLD;
2189 if (!(gfp_mask & __GFP_NOMEMALLOC))
2190 gfp_mask |= __GFP_MEMALLOC;
2192 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2193 if (skb && page && page->pfmemalloc)
2194 skb->pfmemalloc = true;
2196 return page;
2200 * __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data
2201 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
2202 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
2204 * Allocate a new page.
2206 * %NULL is returned if there is no free memory.
2208 static inline struct page *__skb_alloc_page(gfp_t gfp_mask,
2209 struct sk_buff *skb)
2211 return __skb_alloc_pages(gfp_mask, skb, 0);
2215 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2216 * @page: The page that was allocated from skb_alloc_page
2217 * @skb: The skb that may need pfmemalloc set
2219 static inline void skb_propagate_pfmemalloc(struct page *page,
2220 struct sk_buff *skb)
2222 if (page && page->pfmemalloc)
2223 skb->pfmemalloc = true;
2227 * skb_frag_page - retrieve the page referred to by a paged fragment
2228 * @frag: the paged fragment
2230 * Returns the &struct page associated with @frag.
2232 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2234 return frag->page.p;
2238 * __skb_frag_ref - take an addition reference on a paged fragment.
2239 * @frag: the paged fragment
2241 * Takes an additional reference on the paged fragment @frag.
2243 static inline void __skb_frag_ref(skb_frag_t *frag)
2245 get_page(skb_frag_page(frag));
2249 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2250 * @skb: the buffer
2251 * @f: the fragment offset.
2253 * Takes an additional reference on the @f'th paged fragment of @skb.
2255 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2257 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2261 * __skb_frag_unref - release a reference on a paged fragment.
2262 * @frag: the paged fragment
2264 * Releases a reference on the paged fragment @frag.
2266 static inline void __skb_frag_unref(skb_frag_t *frag)
2268 put_page(skb_frag_page(frag));
2272 * skb_frag_unref - release a reference on a paged fragment of an skb.
2273 * @skb: the buffer
2274 * @f: the fragment offset
2276 * Releases a reference on the @f'th paged fragment of @skb.
2278 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2280 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2284 * skb_frag_address - gets the address of the data contained in a paged fragment
2285 * @frag: the paged fragment buffer
2287 * Returns the address of the data within @frag. The page must already
2288 * be mapped.
2290 static inline void *skb_frag_address(const skb_frag_t *frag)
2292 return page_address(skb_frag_page(frag)) + frag->page_offset;
2296 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2297 * @frag: the paged fragment buffer
2299 * Returns the address of the data within @frag. Checks that the page
2300 * is mapped and returns %NULL otherwise.
2302 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2304 void *ptr = page_address(skb_frag_page(frag));
2305 if (unlikely(!ptr))
2306 return NULL;
2308 return ptr + frag->page_offset;
2312 * __skb_frag_set_page - sets the page contained in a paged fragment
2313 * @frag: the paged fragment
2314 * @page: the page to set
2316 * Sets the fragment @frag to contain @page.
2318 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2320 frag->page.p = page;
2324 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2325 * @skb: the buffer
2326 * @f: the fragment offset
2327 * @page: the page to set
2329 * Sets the @f'th fragment of @skb to contain @page.
2331 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2332 struct page *page)
2334 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2337 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2340 * skb_frag_dma_map - maps a paged fragment via the DMA API
2341 * @dev: the device to map the fragment to
2342 * @frag: the paged fragment to map
2343 * @offset: the offset within the fragment (starting at the
2344 * fragment's own offset)
2345 * @size: the number of bytes to map
2346 * @dir: the direction of the mapping (%PCI_DMA_*)
2348 * Maps the page associated with @frag to @device.
2350 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2351 const skb_frag_t *frag,
2352 size_t offset, size_t size,
2353 enum dma_data_direction dir)
2355 return dma_map_page(dev, skb_frag_page(frag),
2356 frag->page_offset + offset, size, dir);
2359 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2360 gfp_t gfp_mask)
2362 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2366 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2367 gfp_t gfp_mask)
2369 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2374 * skb_clone_writable - is the header of a clone writable
2375 * @skb: buffer to check
2376 * @len: length up to which to write
2378 * Returns true if modifying the header part of the cloned buffer
2379 * does not requires the data to be copied.
2381 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2383 return !skb_header_cloned(skb) &&
2384 skb_headroom(skb) + len <= skb->hdr_len;
2387 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2388 int cloned)
2390 int delta = 0;
2392 if (headroom > skb_headroom(skb))
2393 delta = headroom - skb_headroom(skb);
2395 if (delta || cloned)
2396 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2397 GFP_ATOMIC);
2398 return 0;
2402 * skb_cow - copy header of skb when it is required
2403 * @skb: buffer to cow
2404 * @headroom: needed headroom
2406 * If the skb passed lacks sufficient headroom or its data part
2407 * is shared, data is reallocated. If reallocation fails, an error
2408 * is returned and original skb is not changed.
2410 * The result is skb with writable area skb->head...skb->tail
2411 * and at least @headroom of space at head.
2413 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2415 return __skb_cow(skb, headroom, skb_cloned(skb));
2419 * skb_cow_head - skb_cow but only making the head writable
2420 * @skb: buffer to cow
2421 * @headroom: needed headroom
2423 * This function is identical to skb_cow except that we replace the
2424 * skb_cloned check by skb_header_cloned. It should be used when
2425 * you only need to push on some header and do not need to modify
2426 * the data.
2428 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2430 return __skb_cow(skb, headroom, skb_header_cloned(skb));
2434 * skb_padto - pad an skbuff up to a minimal size
2435 * @skb: buffer to pad
2436 * @len: minimal length
2438 * Pads up a buffer to ensure the trailing bytes exist and are
2439 * blanked. If the buffer already contains sufficient data it
2440 * is untouched. Otherwise it is extended. Returns zero on
2441 * success. The skb is freed on error.
2444 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2446 unsigned int size = skb->len;
2447 if (likely(size >= len))
2448 return 0;
2449 return skb_pad(skb, len - size);
2452 static inline int skb_add_data(struct sk_buff *skb,
2453 char __user *from, int copy)
2455 const int off = skb->len;
2457 if (skb->ip_summed == CHECKSUM_NONE) {
2458 int err = 0;
2459 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
2460 copy, 0, &err);
2461 if (!err) {
2462 skb->csum = csum_block_add(skb->csum, csum, off);
2463 return 0;
2465 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
2466 return 0;
2468 __skb_trim(skb, off);
2469 return -EFAULT;
2472 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2473 const struct page *page, int off)
2475 if (i) {
2476 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2478 return page == skb_frag_page(frag) &&
2479 off == frag->page_offset + skb_frag_size(frag);
2481 return false;
2484 static inline int __skb_linearize(struct sk_buff *skb)
2486 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2490 * skb_linearize - convert paged skb to linear one
2491 * @skb: buffer to linarize
2493 * If there is no free memory -ENOMEM is returned, otherwise zero
2494 * is returned and the old skb data released.
2496 static inline int skb_linearize(struct sk_buff *skb)
2498 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2502 * skb_has_shared_frag - can any frag be overwritten
2503 * @skb: buffer to test
2505 * Return true if the skb has at least one frag that might be modified
2506 * by an external entity (as in vmsplice()/sendfile())
2508 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2510 return skb_is_nonlinear(skb) &&
2511 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2515 * skb_linearize_cow - make sure skb is linear and writable
2516 * @skb: buffer to process
2518 * If there is no free memory -ENOMEM is returned, otherwise zero
2519 * is returned and the old skb data released.
2521 static inline int skb_linearize_cow(struct sk_buff *skb)
2523 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2524 __skb_linearize(skb) : 0;
2528 * skb_postpull_rcsum - update checksum for received skb after pull
2529 * @skb: buffer to update
2530 * @start: start of data before pull
2531 * @len: length of data pulled
2533 * After doing a pull on a received packet, you need to call this to
2534 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2535 * CHECKSUM_NONE so that it can be recomputed from scratch.
2538 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2539 const void *start, unsigned int len)
2541 if (skb->ip_summed == CHECKSUM_COMPLETE)
2542 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2545 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2548 * pskb_trim_rcsum - trim received skb and update checksum
2549 * @skb: buffer to trim
2550 * @len: new length
2552 * This is exactly the same as pskb_trim except that it ensures the
2553 * checksum of received packets are still valid after the operation.
2556 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2558 if (likely(len >= skb->len))
2559 return 0;
2560 if (skb->ip_summed == CHECKSUM_COMPLETE)
2561 skb->ip_summed = CHECKSUM_NONE;
2562 return __pskb_trim(skb, len);
2565 #define skb_queue_walk(queue, skb) \
2566 for (skb = (queue)->next; \
2567 skb != (struct sk_buff *)(queue); \
2568 skb = skb->next)
2570 #define skb_queue_walk_safe(queue, skb, tmp) \
2571 for (skb = (queue)->next, tmp = skb->next; \
2572 skb != (struct sk_buff *)(queue); \
2573 skb = tmp, tmp = skb->next)
2575 #define skb_queue_walk_from(queue, skb) \
2576 for (; skb != (struct sk_buff *)(queue); \
2577 skb = skb->next)
2579 #define skb_queue_walk_from_safe(queue, skb, tmp) \
2580 for (tmp = skb->next; \
2581 skb != (struct sk_buff *)(queue); \
2582 skb = tmp, tmp = skb->next)
2584 #define skb_queue_reverse_walk(queue, skb) \
2585 for (skb = (queue)->prev; \
2586 skb != (struct sk_buff *)(queue); \
2587 skb = skb->prev)
2589 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2590 for (skb = (queue)->prev, tmp = skb->prev; \
2591 skb != (struct sk_buff *)(queue); \
2592 skb = tmp, tmp = skb->prev)
2594 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2595 for (tmp = skb->prev; \
2596 skb != (struct sk_buff *)(queue); \
2597 skb = tmp, tmp = skb->prev)
2599 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2601 return skb_shinfo(skb)->frag_list != NULL;
2604 static inline void skb_frag_list_init(struct sk_buff *skb)
2606 skb_shinfo(skb)->frag_list = NULL;
2609 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2611 frag->next = skb_shinfo(skb)->frag_list;
2612 skb_shinfo(skb)->frag_list = frag;
2615 #define skb_walk_frags(skb, iter) \
2616 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2618 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2619 int *peeked, int *off, int *err);
2620 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2621 int *err);
2622 unsigned int datagram_poll(struct file *file, struct socket *sock,
2623 struct poll_table_struct *wait);
2624 int skb_copy_datagram_iovec(const struct sk_buff *from, int offset,
2625 struct iovec *to, int size);
2626 int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, int hlen,
2627 struct iovec *iov);
2628 int skb_copy_datagram_from_iovec(struct sk_buff *skb, int offset,
2629 const struct iovec *from, int from_offset,
2630 int len);
2631 int zerocopy_sg_from_iovec(struct sk_buff *skb, const struct iovec *frm,
2632 int offset, size_t count);
2633 int skb_copy_datagram_const_iovec(const struct sk_buff *from, int offset,
2634 const struct iovec *to, int to_offset,
2635 int size);
2636 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2637 void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
2638 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
2639 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2640 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2641 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2642 int len, __wsum csum);
2643 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
2644 struct pipe_inode_info *pipe, unsigned int len,
2645 unsigned int flags);
2646 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2647 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
2648 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
2649 int len, int hlen);
2650 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2651 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2652 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
2653 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
2654 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
2655 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
2657 struct skb_checksum_ops {
2658 __wsum (*update)(const void *mem, int len, __wsum wsum);
2659 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
2662 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2663 __wsum csum, const struct skb_checksum_ops *ops);
2664 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
2665 __wsum csum);
2667 static inline void *__skb_header_pointer(const struct sk_buff *skb, int offset,
2668 int len, void *data, int hlen, void *buffer)
2670 if (hlen - offset >= len)
2671 return data + offset;
2673 if (!skb ||
2674 skb_copy_bits(skb, offset, buffer, len) < 0)
2675 return NULL;
2677 return buffer;
2680 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2681 int len, void *buffer)
2683 return __skb_header_pointer(skb, offset, len, skb->data,
2684 skb_headlen(skb), buffer);
2688 * skb_needs_linearize - check if we need to linearize a given skb
2689 * depending on the given device features.
2690 * @skb: socket buffer to check
2691 * @features: net device features
2693 * Returns true if either:
2694 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2695 * 2. skb is fragmented and the device does not support SG.
2697 static inline bool skb_needs_linearize(struct sk_buff *skb,
2698 netdev_features_t features)
2700 return skb_is_nonlinear(skb) &&
2701 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
2702 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
2705 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2706 void *to,
2707 const unsigned int len)
2709 memcpy(to, skb->data, len);
2712 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2713 const int offset, void *to,
2714 const unsigned int len)
2716 memcpy(to, skb->data + offset, len);
2719 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2720 const void *from,
2721 const unsigned int len)
2723 memcpy(skb->data, from, len);
2726 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2727 const int offset,
2728 const void *from,
2729 const unsigned int len)
2731 memcpy(skb->data + offset, from, len);
2734 void skb_init(void);
2736 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2738 return skb->tstamp;
2742 * skb_get_timestamp - get timestamp from a skb
2743 * @skb: skb to get stamp from
2744 * @stamp: pointer to struct timeval to store stamp in
2746 * Timestamps are stored in the skb as offsets to a base timestamp.
2747 * This function converts the offset back to a struct timeval and stores
2748 * it in stamp.
2750 static inline void skb_get_timestamp(const struct sk_buff *skb,
2751 struct timeval *stamp)
2753 *stamp = ktime_to_timeval(skb->tstamp);
2756 static inline void skb_get_timestampns(const struct sk_buff *skb,
2757 struct timespec *stamp)
2759 *stamp = ktime_to_timespec(skb->tstamp);
2762 static inline void __net_timestamp(struct sk_buff *skb)
2764 skb->tstamp = ktime_get_real();
2767 static inline ktime_t net_timedelta(ktime_t t)
2769 return ktime_sub(ktime_get_real(), t);
2772 static inline ktime_t net_invalid_timestamp(void)
2774 return ktime_set(0, 0);
2777 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
2779 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2781 void skb_clone_tx_timestamp(struct sk_buff *skb);
2782 bool skb_defer_rx_timestamp(struct sk_buff *skb);
2784 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2786 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2790 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2792 return false;
2795 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2798 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2800 * PHY drivers may accept clones of transmitted packets for
2801 * timestamping via their phy_driver.txtstamp method. These drivers
2802 * must call this function to return the skb back to the stack, with
2803 * or without a timestamp.
2805 * @skb: clone of the the original outgoing packet
2806 * @hwtstamps: hardware time stamps, may be NULL if not available
2809 void skb_complete_tx_timestamp(struct sk_buff *skb,
2810 struct skb_shared_hwtstamps *hwtstamps);
2812 void __skb_tstamp_tx(struct sk_buff *orig_skb,
2813 struct skb_shared_hwtstamps *hwtstamps,
2814 struct sock *sk, int tstype);
2817 * skb_tstamp_tx - queue clone of skb with send time stamps
2818 * @orig_skb: the original outgoing packet
2819 * @hwtstamps: hardware time stamps, may be NULL if not available
2821 * If the skb has a socket associated, then this function clones the
2822 * skb (thus sharing the actual data and optional structures), stores
2823 * the optional hardware time stamping information (if non NULL) or
2824 * generates a software time stamp (otherwise), then queues the clone
2825 * to the error queue of the socket. Errors are silently ignored.
2827 void skb_tstamp_tx(struct sk_buff *orig_skb,
2828 struct skb_shared_hwtstamps *hwtstamps);
2830 static inline void sw_tx_timestamp(struct sk_buff *skb)
2832 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2833 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2834 skb_tstamp_tx(skb, NULL);
2838 * skb_tx_timestamp() - Driver hook for transmit timestamping
2840 * Ethernet MAC Drivers should call this function in their hard_xmit()
2841 * function immediately before giving the sk_buff to the MAC hardware.
2843 * Specifically, one should make absolutely sure that this function is
2844 * called before TX completion of this packet can trigger. Otherwise
2845 * the packet could potentially already be freed.
2847 * @skb: A socket buffer.
2849 static inline void skb_tx_timestamp(struct sk_buff *skb)
2851 skb_clone_tx_timestamp(skb);
2852 sw_tx_timestamp(skb);
2856 * skb_complete_wifi_ack - deliver skb with wifi status
2858 * @skb: the original outgoing packet
2859 * @acked: ack status
2862 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2864 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2865 __sum16 __skb_checksum_complete(struct sk_buff *skb);
2867 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2869 return ((skb->ip_summed & CHECKSUM_UNNECESSARY) || skb->csum_valid);
2873 * skb_checksum_complete - Calculate checksum of an entire packet
2874 * @skb: packet to process
2876 * This function calculates the checksum over the entire packet plus
2877 * the value of skb->csum. The latter can be used to supply the
2878 * checksum of a pseudo header as used by TCP/UDP. It returns the
2879 * checksum.
2881 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2882 * this function can be used to verify that checksum on received
2883 * packets. In that case the function should return zero if the
2884 * checksum is correct. In particular, this function will return zero
2885 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2886 * hardware has already verified the correctness of the checksum.
2888 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2890 return skb_csum_unnecessary(skb) ?
2891 0 : __skb_checksum_complete(skb);
2894 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
2896 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2897 if (skb->csum_level == 0)
2898 skb->ip_summed = CHECKSUM_NONE;
2899 else
2900 skb->csum_level--;
2904 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
2906 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2907 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
2908 skb->csum_level++;
2909 } else if (skb->ip_summed == CHECKSUM_NONE) {
2910 skb->ip_summed = CHECKSUM_UNNECESSARY;
2911 skb->csum_level = 0;
2915 static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
2917 /* Mark current checksum as bad (typically called from GRO
2918 * path). In the case that ip_summed is CHECKSUM_NONE
2919 * this must be the first checksum encountered in the packet.
2920 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
2921 * checksum after the last one validated. For UDP, a zero
2922 * checksum can not be marked as bad.
2925 if (skb->ip_summed == CHECKSUM_NONE ||
2926 skb->ip_summed == CHECKSUM_UNNECESSARY)
2927 skb->csum_bad = 1;
2930 /* Check if we need to perform checksum complete validation.
2932 * Returns true if checksum complete is needed, false otherwise
2933 * (either checksum is unnecessary or zero checksum is allowed).
2935 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
2936 bool zero_okay,
2937 __sum16 check)
2939 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
2940 skb->csum_valid = 1;
2941 __skb_decr_checksum_unnecessary(skb);
2942 return false;
2945 return true;
2948 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
2949 * in checksum_init.
2951 #define CHECKSUM_BREAK 76
2953 /* Validate (init) checksum based on checksum complete.
2955 * Return values:
2956 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
2957 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
2958 * checksum is stored in skb->csum for use in __skb_checksum_complete
2959 * non-zero: value of invalid checksum
2962 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
2963 bool complete,
2964 __wsum psum)
2966 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2967 if (!csum_fold(csum_add(psum, skb->csum))) {
2968 skb->csum_valid = 1;
2969 return 0;
2971 } else if (skb->csum_bad) {
2972 /* ip_summed == CHECKSUM_NONE in this case */
2973 return 1;
2976 skb->csum = psum;
2978 if (complete || skb->len <= CHECKSUM_BREAK) {
2979 __sum16 csum;
2981 csum = __skb_checksum_complete(skb);
2982 skb->csum_valid = !csum;
2983 return csum;
2986 return 0;
2989 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
2991 return 0;
2994 /* Perform checksum validate (init). Note that this is a macro since we only
2995 * want to calculate the pseudo header which is an input function if necessary.
2996 * First we try to validate without any computation (checksum unnecessary) and
2997 * then calculate based on checksum complete calling the function to compute
2998 * pseudo header.
3000 * Return values:
3001 * 0: checksum is validated or try to in skb_checksum_complete
3002 * non-zero: value of invalid checksum
3004 #define __skb_checksum_validate(skb, proto, complete, \
3005 zero_okay, check, compute_pseudo) \
3006 ({ \
3007 __sum16 __ret = 0; \
3008 skb->csum_valid = 0; \
3009 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3010 __ret = __skb_checksum_validate_complete(skb, \
3011 complete, compute_pseudo(skb, proto)); \
3012 __ret; \
3015 #define skb_checksum_init(skb, proto, compute_pseudo) \
3016 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3018 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3019 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3021 #define skb_checksum_validate(skb, proto, compute_pseudo) \
3022 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3024 #define skb_checksum_validate_zero_check(skb, proto, check, \
3025 compute_pseudo) \
3026 __skb_checksum_validate_(skb, proto, true, true, check, compute_pseudo)
3028 #define skb_checksum_simple_validate(skb) \
3029 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3031 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3033 return (skb->ip_summed == CHECKSUM_NONE &&
3034 skb->csum_valid && !skb->csum_bad);
3037 static inline void __skb_checksum_convert(struct sk_buff *skb,
3038 __sum16 check, __wsum pseudo)
3040 skb->csum = ~pseudo;
3041 skb->ip_summed = CHECKSUM_COMPLETE;
3044 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3045 do { \
3046 if (__skb_checksum_convert_check(skb)) \
3047 __skb_checksum_convert(skb, check, \
3048 compute_pseudo(skb, proto)); \
3049 } while (0)
3051 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3052 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3053 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3055 if (nfct && atomic_dec_and_test(&nfct->use))
3056 nf_conntrack_destroy(nfct);
3058 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3060 if (nfct)
3061 atomic_inc(&nfct->use);
3063 #endif
3064 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3065 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3067 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3068 kfree(nf_bridge);
3070 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3072 if (nf_bridge)
3073 atomic_inc(&nf_bridge->use);
3075 #endif /* CONFIG_BRIDGE_NETFILTER */
3076 static inline void nf_reset(struct sk_buff *skb)
3078 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3079 nf_conntrack_put(skb->nfct);
3080 skb->nfct = NULL;
3081 #endif
3082 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3083 nf_bridge_put(skb->nf_bridge);
3084 skb->nf_bridge = NULL;
3085 #endif
3088 static inline void nf_reset_trace(struct sk_buff *skb)
3090 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3091 skb->nf_trace = 0;
3092 #endif
3095 /* Note: This doesn't put any conntrack and bridge info in dst. */
3096 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3097 bool copy)
3099 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3100 dst->nfct = src->nfct;
3101 nf_conntrack_get(src->nfct);
3102 if (copy)
3103 dst->nfctinfo = src->nfctinfo;
3104 #endif
3105 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3106 dst->nf_bridge = src->nf_bridge;
3107 nf_bridge_get(src->nf_bridge);
3108 #endif
3109 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3110 if (copy)
3111 dst->nf_trace = src->nf_trace;
3112 #endif
3115 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3117 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3118 nf_conntrack_put(dst->nfct);
3119 #endif
3120 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3121 nf_bridge_put(dst->nf_bridge);
3122 #endif
3123 __nf_copy(dst, src, true);
3126 #ifdef CONFIG_NETWORK_SECMARK
3127 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3129 to->secmark = from->secmark;
3132 static inline void skb_init_secmark(struct sk_buff *skb)
3134 skb->secmark = 0;
3136 #else
3137 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3140 static inline void skb_init_secmark(struct sk_buff *skb)
3142 #endif
3144 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3146 return !skb->destructor &&
3147 #if IS_ENABLED(CONFIG_XFRM)
3148 !skb->sp &&
3149 #endif
3150 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3151 !skb->nfct &&
3152 #endif
3153 !skb->_skb_refdst &&
3154 !skb_has_frag_list(skb);
3157 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3159 skb->queue_mapping = queue_mapping;
3162 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3164 return skb->queue_mapping;
3167 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3169 to->queue_mapping = from->queue_mapping;
3172 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3174 skb->queue_mapping = rx_queue + 1;
3177 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3179 return skb->queue_mapping - 1;
3182 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3184 return skb->queue_mapping != 0;
3187 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3188 unsigned int num_tx_queues);
3190 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3192 #ifdef CONFIG_XFRM
3193 return skb->sp;
3194 #else
3195 return NULL;
3196 #endif
3199 /* Keeps track of mac header offset relative to skb->head.
3200 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3201 * For non-tunnel skb it points to skb_mac_header() and for
3202 * tunnel skb it points to outer mac header.
3203 * Keeps track of level of encapsulation of network headers.
3205 struct skb_gso_cb {
3206 int mac_offset;
3207 int encap_level;
3208 __u16 csum_start;
3210 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
3212 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3214 return (skb_mac_header(inner_skb) - inner_skb->head) -
3215 SKB_GSO_CB(inner_skb)->mac_offset;
3218 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3220 int new_headroom, headroom;
3221 int ret;
3223 headroom = skb_headroom(skb);
3224 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3225 if (ret)
3226 return ret;
3228 new_headroom = skb_headroom(skb);
3229 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3230 return 0;
3233 /* Compute the checksum for a gso segment. First compute the checksum value
3234 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3235 * then add in skb->csum (checksum from csum_start to end of packet).
3236 * skb->csum and csum_start are then updated to reflect the checksum of the
3237 * resultant packet starting from the transport header-- the resultant checksum
3238 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3239 * header.
3241 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3243 int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) -
3244 skb_transport_offset(skb);
3245 __u16 csum;
3247 csum = csum_fold(csum_partial(skb_transport_header(skb),
3248 plen, skb->csum));
3249 skb->csum = res;
3250 SKB_GSO_CB(skb)->csum_start -= plen;
3252 return csum;
3255 static inline bool skb_is_gso(const struct sk_buff *skb)
3257 return skb_shinfo(skb)->gso_size;
3260 /* Note: Should be called only if skb_is_gso(skb) is true */
3261 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3263 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3266 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3268 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3270 /* LRO sets gso_size but not gso_type, whereas if GSO is really
3271 * wanted then gso_type will be set. */
3272 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3274 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3275 unlikely(shinfo->gso_type == 0)) {
3276 __skb_warn_lro_forwarding(skb);
3277 return true;
3279 return false;
3282 static inline void skb_forward_csum(struct sk_buff *skb)
3284 /* Unfortunately we don't support this one. Any brave souls? */
3285 if (skb->ip_summed == CHECKSUM_COMPLETE)
3286 skb->ip_summed = CHECKSUM_NONE;
3290 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3291 * @skb: skb to check
3293 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3294 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3295 * use this helper, to document places where we make this assertion.
3297 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3299 #ifdef DEBUG
3300 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3301 #endif
3304 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3306 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3308 u32 skb_get_poff(const struct sk_buff *skb);
3309 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
3310 const struct flow_keys *keys, int hlen);
3313 * skb_head_is_locked - Determine if the skb->head is locked down
3314 * @skb: skb to check
3316 * The head on skbs build around a head frag can be removed if they are
3317 * not cloned. This function returns true if the skb head is locked down
3318 * due to either being allocated via kmalloc, or by being a clone with
3319 * multiple references to the head.
3321 static inline bool skb_head_is_locked(const struct sk_buff *skb)
3323 return !skb->head_frag || skb_cloned(skb);
3327 * skb_gso_network_seglen - Return length of individual segments of a gso packet
3329 * @skb: GSO skb
3331 * skb_gso_network_seglen is used to determine the real size of the
3332 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3334 * The MAC/L2 header is not accounted for.
3336 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3338 unsigned int hdr_len = skb_transport_header(skb) -
3339 skb_network_header(skb);
3340 return hdr_len + skb_gso_transport_seglen(skb);
3342 #endif /* __KERNEL__ */
3343 #endif /* _LINUX_SKBUFF_H */