irqchip: gicv3-its: Zero itt before handling to hardware
[linux-2.6/btrfs-unstable.git] / fs / splice.c
blob7968da96bebbb5d1cd087cbfa2ece65c09cc8b4a
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
35 #include <linux/aio.h>
36 #include "internal.h"
39 * Attempt to steal a page from a pipe buffer. This should perhaps go into
40 * a vm helper function, it's already simplified quite a bit by the
41 * addition of remove_mapping(). If success is returned, the caller may
42 * attempt to reuse this page for another destination.
44 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
45 struct pipe_buffer *buf)
47 struct page *page = buf->page;
48 struct address_space *mapping;
50 lock_page(page);
52 mapping = page_mapping(page);
53 if (mapping) {
54 WARN_ON(!PageUptodate(page));
57 * At least for ext2 with nobh option, we need to wait on
58 * writeback completing on this page, since we'll remove it
59 * from the pagecache. Otherwise truncate wont wait on the
60 * page, allowing the disk blocks to be reused by someone else
61 * before we actually wrote our data to them. fs corruption
62 * ensues.
64 wait_on_page_writeback(page);
66 if (page_has_private(page) &&
67 !try_to_release_page(page, GFP_KERNEL))
68 goto out_unlock;
71 * If we succeeded in removing the mapping, set LRU flag
72 * and return good.
74 if (remove_mapping(mapping, page)) {
75 buf->flags |= PIPE_BUF_FLAG_LRU;
76 return 0;
81 * Raced with truncate or failed to remove page from current
82 * address space, unlock and return failure.
84 out_unlock:
85 unlock_page(page);
86 return 1;
89 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
90 struct pipe_buffer *buf)
92 page_cache_release(buf->page);
93 buf->flags &= ~PIPE_BUF_FLAG_LRU;
97 * Check whether the contents of buf is OK to access. Since the content
98 * is a page cache page, IO may be in flight.
100 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
101 struct pipe_buffer *buf)
103 struct page *page = buf->page;
104 int err;
106 if (!PageUptodate(page)) {
107 lock_page(page);
110 * Page got truncated/unhashed. This will cause a 0-byte
111 * splice, if this is the first page.
113 if (!page->mapping) {
114 err = -ENODATA;
115 goto error;
119 * Uh oh, read-error from disk.
121 if (!PageUptodate(page)) {
122 err = -EIO;
123 goto error;
127 * Page is ok afterall, we are done.
129 unlock_page(page);
132 return 0;
133 error:
134 unlock_page(page);
135 return err;
138 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
139 .can_merge = 0,
140 .confirm = page_cache_pipe_buf_confirm,
141 .release = page_cache_pipe_buf_release,
142 .steal = page_cache_pipe_buf_steal,
143 .get = generic_pipe_buf_get,
146 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
147 struct pipe_buffer *buf)
149 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
150 return 1;
152 buf->flags |= PIPE_BUF_FLAG_LRU;
153 return generic_pipe_buf_steal(pipe, buf);
156 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
157 .can_merge = 0,
158 .confirm = generic_pipe_buf_confirm,
159 .release = page_cache_pipe_buf_release,
160 .steal = user_page_pipe_buf_steal,
161 .get = generic_pipe_buf_get,
164 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
166 smp_mb();
167 if (waitqueue_active(&pipe->wait))
168 wake_up_interruptible(&pipe->wait);
169 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
173 * splice_to_pipe - fill passed data into a pipe
174 * @pipe: pipe to fill
175 * @spd: data to fill
177 * Description:
178 * @spd contains a map of pages and len/offset tuples, along with
179 * the struct pipe_buf_operations associated with these pages. This
180 * function will link that data to the pipe.
183 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
184 struct splice_pipe_desc *spd)
186 unsigned int spd_pages = spd->nr_pages;
187 int ret, do_wakeup, page_nr;
189 ret = 0;
190 do_wakeup = 0;
191 page_nr = 0;
193 pipe_lock(pipe);
195 for (;;) {
196 if (!pipe->readers) {
197 send_sig(SIGPIPE, current, 0);
198 if (!ret)
199 ret = -EPIPE;
200 break;
203 if (pipe->nrbufs < pipe->buffers) {
204 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
205 struct pipe_buffer *buf = pipe->bufs + newbuf;
207 buf->page = spd->pages[page_nr];
208 buf->offset = spd->partial[page_nr].offset;
209 buf->len = spd->partial[page_nr].len;
210 buf->private = spd->partial[page_nr].private;
211 buf->ops = spd->ops;
212 if (spd->flags & SPLICE_F_GIFT)
213 buf->flags |= PIPE_BUF_FLAG_GIFT;
215 pipe->nrbufs++;
216 page_nr++;
217 ret += buf->len;
219 if (pipe->files)
220 do_wakeup = 1;
222 if (!--spd->nr_pages)
223 break;
224 if (pipe->nrbufs < pipe->buffers)
225 continue;
227 break;
230 if (spd->flags & SPLICE_F_NONBLOCK) {
231 if (!ret)
232 ret = -EAGAIN;
233 break;
236 if (signal_pending(current)) {
237 if (!ret)
238 ret = -ERESTARTSYS;
239 break;
242 if (do_wakeup) {
243 smp_mb();
244 if (waitqueue_active(&pipe->wait))
245 wake_up_interruptible_sync(&pipe->wait);
246 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
247 do_wakeup = 0;
250 pipe->waiting_writers++;
251 pipe_wait(pipe);
252 pipe->waiting_writers--;
255 pipe_unlock(pipe);
257 if (do_wakeup)
258 wakeup_pipe_readers(pipe);
260 while (page_nr < spd_pages)
261 spd->spd_release(spd, page_nr++);
263 return ret;
266 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
268 page_cache_release(spd->pages[i]);
272 * Check if we need to grow the arrays holding pages and partial page
273 * descriptions.
275 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
277 unsigned int buffers = ACCESS_ONCE(pipe->buffers);
279 spd->nr_pages_max = buffers;
280 if (buffers <= PIPE_DEF_BUFFERS)
281 return 0;
283 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
284 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
286 if (spd->pages && spd->partial)
287 return 0;
289 kfree(spd->pages);
290 kfree(spd->partial);
291 return -ENOMEM;
294 void splice_shrink_spd(struct splice_pipe_desc *spd)
296 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
297 return;
299 kfree(spd->pages);
300 kfree(spd->partial);
303 static int
304 __generic_file_splice_read(struct file *in, loff_t *ppos,
305 struct pipe_inode_info *pipe, size_t len,
306 unsigned int flags)
308 struct address_space *mapping = in->f_mapping;
309 unsigned int loff, nr_pages, req_pages;
310 struct page *pages[PIPE_DEF_BUFFERS];
311 struct partial_page partial[PIPE_DEF_BUFFERS];
312 struct page *page;
313 pgoff_t index, end_index;
314 loff_t isize;
315 int error, page_nr;
316 struct splice_pipe_desc spd = {
317 .pages = pages,
318 .partial = partial,
319 .nr_pages_max = PIPE_DEF_BUFFERS,
320 .flags = flags,
321 .ops = &page_cache_pipe_buf_ops,
322 .spd_release = spd_release_page,
325 if (splice_grow_spd(pipe, &spd))
326 return -ENOMEM;
328 index = *ppos >> PAGE_CACHE_SHIFT;
329 loff = *ppos & ~PAGE_CACHE_MASK;
330 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
331 nr_pages = min(req_pages, spd.nr_pages_max);
334 * Lookup the (hopefully) full range of pages we need.
336 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
337 index += spd.nr_pages;
340 * If find_get_pages_contig() returned fewer pages than we needed,
341 * readahead/allocate the rest and fill in the holes.
343 if (spd.nr_pages < nr_pages)
344 page_cache_sync_readahead(mapping, &in->f_ra, in,
345 index, req_pages - spd.nr_pages);
347 error = 0;
348 while (spd.nr_pages < nr_pages) {
350 * Page could be there, find_get_pages_contig() breaks on
351 * the first hole.
353 page = find_get_page(mapping, index);
354 if (!page) {
356 * page didn't exist, allocate one.
358 page = page_cache_alloc_cold(mapping);
359 if (!page)
360 break;
362 error = add_to_page_cache_lru(page, mapping, index,
363 GFP_KERNEL);
364 if (unlikely(error)) {
365 page_cache_release(page);
366 if (error == -EEXIST)
367 continue;
368 break;
371 * add_to_page_cache() locks the page, unlock it
372 * to avoid convoluting the logic below even more.
374 unlock_page(page);
377 spd.pages[spd.nr_pages++] = page;
378 index++;
382 * Now loop over the map and see if we need to start IO on any
383 * pages, fill in the partial map, etc.
385 index = *ppos >> PAGE_CACHE_SHIFT;
386 nr_pages = spd.nr_pages;
387 spd.nr_pages = 0;
388 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
389 unsigned int this_len;
391 if (!len)
392 break;
395 * this_len is the max we'll use from this page
397 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
398 page = spd.pages[page_nr];
400 if (PageReadahead(page))
401 page_cache_async_readahead(mapping, &in->f_ra, in,
402 page, index, req_pages - page_nr);
405 * If the page isn't uptodate, we may need to start io on it
407 if (!PageUptodate(page)) {
408 lock_page(page);
411 * Page was truncated, or invalidated by the
412 * filesystem. Redo the find/create, but this time the
413 * page is kept locked, so there's no chance of another
414 * race with truncate/invalidate.
416 if (!page->mapping) {
417 unlock_page(page);
418 page = find_or_create_page(mapping, index,
419 mapping_gfp_mask(mapping));
421 if (!page) {
422 error = -ENOMEM;
423 break;
425 page_cache_release(spd.pages[page_nr]);
426 spd.pages[page_nr] = page;
429 * page was already under io and is now done, great
431 if (PageUptodate(page)) {
432 unlock_page(page);
433 goto fill_it;
437 * need to read in the page
439 error = mapping->a_ops->readpage(in, page);
440 if (unlikely(error)) {
442 * We really should re-lookup the page here,
443 * but it complicates things a lot. Instead
444 * lets just do what we already stored, and
445 * we'll get it the next time we are called.
447 if (error == AOP_TRUNCATED_PAGE)
448 error = 0;
450 break;
453 fill_it:
455 * i_size must be checked after PageUptodate.
457 isize = i_size_read(mapping->host);
458 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
459 if (unlikely(!isize || index > end_index))
460 break;
463 * if this is the last page, see if we need to shrink
464 * the length and stop
466 if (end_index == index) {
467 unsigned int plen;
470 * max good bytes in this page
472 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
473 if (plen <= loff)
474 break;
477 * force quit after adding this page
479 this_len = min(this_len, plen - loff);
480 len = this_len;
483 spd.partial[page_nr].offset = loff;
484 spd.partial[page_nr].len = this_len;
485 len -= this_len;
486 loff = 0;
487 spd.nr_pages++;
488 index++;
492 * Release any pages at the end, if we quit early. 'page_nr' is how far
493 * we got, 'nr_pages' is how many pages are in the map.
495 while (page_nr < nr_pages)
496 page_cache_release(spd.pages[page_nr++]);
497 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
499 if (spd.nr_pages)
500 error = splice_to_pipe(pipe, &spd);
502 splice_shrink_spd(&spd);
503 return error;
507 * generic_file_splice_read - splice data from file to a pipe
508 * @in: file to splice from
509 * @ppos: position in @in
510 * @pipe: pipe to splice to
511 * @len: number of bytes to splice
512 * @flags: splice modifier flags
514 * Description:
515 * Will read pages from given file and fill them into a pipe. Can be
516 * used as long as the address_space operations for the source implements
517 * a readpage() hook.
520 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
521 struct pipe_inode_info *pipe, size_t len,
522 unsigned int flags)
524 loff_t isize, left;
525 int ret;
527 isize = i_size_read(in->f_mapping->host);
528 if (unlikely(*ppos >= isize))
529 return 0;
531 left = isize - *ppos;
532 if (unlikely(left < len))
533 len = left;
535 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
536 if (ret > 0) {
537 *ppos += ret;
538 file_accessed(in);
541 return ret;
543 EXPORT_SYMBOL(generic_file_splice_read);
545 static const struct pipe_buf_operations default_pipe_buf_ops = {
546 .can_merge = 0,
547 .confirm = generic_pipe_buf_confirm,
548 .release = generic_pipe_buf_release,
549 .steal = generic_pipe_buf_steal,
550 .get = generic_pipe_buf_get,
553 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
554 struct pipe_buffer *buf)
556 return 1;
559 /* Pipe buffer operations for a socket and similar. */
560 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
561 .can_merge = 0,
562 .confirm = generic_pipe_buf_confirm,
563 .release = generic_pipe_buf_release,
564 .steal = generic_pipe_buf_nosteal,
565 .get = generic_pipe_buf_get,
567 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
569 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
570 unsigned long vlen, loff_t offset)
572 mm_segment_t old_fs;
573 loff_t pos = offset;
574 ssize_t res;
576 old_fs = get_fs();
577 set_fs(get_ds());
578 /* The cast to a user pointer is valid due to the set_fs() */
579 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
580 set_fs(old_fs);
582 return res;
585 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
586 loff_t pos)
588 mm_segment_t old_fs;
589 ssize_t res;
591 old_fs = get_fs();
592 set_fs(get_ds());
593 /* The cast to a user pointer is valid due to the set_fs() */
594 res = vfs_write(file, (__force const char __user *)buf, count, &pos);
595 set_fs(old_fs);
597 return res;
599 EXPORT_SYMBOL(kernel_write);
601 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
602 struct pipe_inode_info *pipe, size_t len,
603 unsigned int flags)
605 unsigned int nr_pages;
606 unsigned int nr_freed;
607 size_t offset;
608 struct page *pages[PIPE_DEF_BUFFERS];
609 struct partial_page partial[PIPE_DEF_BUFFERS];
610 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
611 ssize_t res;
612 size_t this_len;
613 int error;
614 int i;
615 struct splice_pipe_desc spd = {
616 .pages = pages,
617 .partial = partial,
618 .nr_pages_max = PIPE_DEF_BUFFERS,
619 .flags = flags,
620 .ops = &default_pipe_buf_ops,
621 .spd_release = spd_release_page,
624 if (splice_grow_spd(pipe, &spd))
625 return -ENOMEM;
627 res = -ENOMEM;
628 vec = __vec;
629 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
630 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
631 if (!vec)
632 goto shrink_ret;
635 offset = *ppos & ~PAGE_CACHE_MASK;
636 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
638 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
639 struct page *page;
641 page = alloc_page(GFP_USER);
642 error = -ENOMEM;
643 if (!page)
644 goto err;
646 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
647 vec[i].iov_base = (void __user *) page_address(page);
648 vec[i].iov_len = this_len;
649 spd.pages[i] = page;
650 spd.nr_pages++;
651 len -= this_len;
652 offset = 0;
655 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
656 if (res < 0) {
657 error = res;
658 goto err;
661 error = 0;
662 if (!res)
663 goto err;
665 nr_freed = 0;
666 for (i = 0; i < spd.nr_pages; i++) {
667 this_len = min_t(size_t, vec[i].iov_len, res);
668 spd.partial[i].offset = 0;
669 spd.partial[i].len = this_len;
670 if (!this_len) {
671 __free_page(spd.pages[i]);
672 spd.pages[i] = NULL;
673 nr_freed++;
675 res -= this_len;
677 spd.nr_pages -= nr_freed;
679 res = splice_to_pipe(pipe, &spd);
680 if (res > 0)
681 *ppos += res;
683 shrink_ret:
684 if (vec != __vec)
685 kfree(vec);
686 splice_shrink_spd(&spd);
687 return res;
689 err:
690 for (i = 0; i < spd.nr_pages; i++)
691 __free_page(spd.pages[i]);
693 res = error;
694 goto shrink_ret;
696 EXPORT_SYMBOL(default_file_splice_read);
699 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
700 * using sendpage(). Return the number of bytes sent.
702 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
703 struct pipe_buffer *buf, struct splice_desc *sd)
705 struct file *file = sd->u.file;
706 loff_t pos = sd->pos;
707 int more;
709 if (!likely(file->f_op->sendpage))
710 return -EINVAL;
712 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
714 if (sd->len < sd->total_len && pipe->nrbufs > 1)
715 more |= MSG_SENDPAGE_NOTLAST;
717 return file->f_op->sendpage(file, buf->page, buf->offset,
718 sd->len, &pos, more);
721 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
723 smp_mb();
724 if (waitqueue_active(&pipe->wait))
725 wake_up_interruptible(&pipe->wait);
726 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
730 * splice_from_pipe_feed - feed available data from a pipe to a file
731 * @pipe: pipe to splice from
732 * @sd: information to @actor
733 * @actor: handler that splices the data
735 * Description:
736 * This function loops over the pipe and calls @actor to do the
737 * actual moving of a single struct pipe_buffer to the desired
738 * destination. It returns when there's no more buffers left in
739 * the pipe or if the requested number of bytes (@sd->total_len)
740 * have been copied. It returns a positive number (one) if the
741 * pipe needs to be filled with more data, zero if the required
742 * number of bytes have been copied and -errno on error.
744 * This, together with splice_from_pipe_{begin,end,next}, may be
745 * used to implement the functionality of __splice_from_pipe() when
746 * locking is required around copying the pipe buffers to the
747 * destination.
749 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
750 splice_actor *actor)
752 int ret;
754 while (pipe->nrbufs) {
755 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
756 const struct pipe_buf_operations *ops = buf->ops;
758 sd->len = buf->len;
759 if (sd->len > sd->total_len)
760 sd->len = sd->total_len;
762 ret = buf->ops->confirm(pipe, buf);
763 if (unlikely(ret)) {
764 if (ret == -ENODATA)
765 ret = 0;
766 return ret;
769 ret = actor(pipe, buf, sd);
770 if (ret <= 0)
771 return ret;
773 buf->offset += ret;
774 buf->len -= ret;
776 sd->num_spliced += ret;
777 sd->len -= ret;
778 sd->pos += ret;
779 sd->total_len -= ret;
781 if (!buf->len) {
782 buf->ops = NULL;
783 ops->release(pipe, buf);
784 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
785 pipe->nrbufs--;
786 if (pipe->files)
787 sd->need_wakeup = true;
790 if (!sd->total_len)
791 return 0;
794 return 1;
798 * splice_from_pipe_next - wait for some data to splice from
799 * @pipe: pipe to splice from
800 * @sd: information about the splice operation
802 * Description:
803 * This function will wait for some data and return a positive
804 * value (one) if pipe buffers are available. It will return zero
805 * or -errno if no more data needs to be spliced.
807 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
809 while (!pipe->nrbufs) {
810 if (!pipe->writers)
811 return 0;
813 if (!pipe->waiting_writers && sd->num_spliced)
814 return 0;
816 if (sd->flags & SPLICE_F_NONBLOCK)
817 return -EAGAIN;
819 if (signal_pending(current))
820 return -ERESTARTSYS;
822 if (sd->need_wakeup) {
823 wakeup_pipe_writers(pipe);
824 sd->need_wakeup = false;
827 pipe_wait(pipe);
830 return 1;
834 * splice_from_pipe_begin - start splicing from pipe
835 * @sd: information about the splice operation
837 * Description:
838 * This function should be called before a loop containing
839 * splice_from_pipe_next() and splice_from_pipe_feed() to
840 * initialize the necessary fields of @sd.
842 static void splice_from_pipe_begin(struct splice_desc *sd)
844 sd->num_spliced = 0;
845 sd->need_wakeup = false;
849 * splice_from_pipe_end - finish splicing from pipe
850 * @pipe: pipe to splice from
851 * @sd: information about the splice operation
853 * Description:
854 * This function will wake up pipe writers if necessary. It should
855 * be called after a loop containing splice_from_pipe_next() and
856 * splice_from_pipe_feed().
858 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
860 if (sd->need_wakeup)
861 wakeup_pipe_writers(pipe);
865 * __splice_from_pipe - splice data from a pipe to given actor
866 * @pipe: pipe to splice from
867 * @sd: information to @actor
868 * @actor: handler that splices the data
870 * Description:
871 * This function does little more than loop over the pipe and call
872 * @actor to do the actual moving of a single struct pipe_buffer to
873 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
874 * pipe_to_user.
877 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
878 splice_actor *actor)
880 int ret;
882 splice_from_pipe_begin(sd);
883 do {
884 ret = splice_from_pipe_next(pipe, sd);
885 if (ret > 0)
886 ret = splice_from_pipe_feed(pipe, sd, actor);
887 } while (ret > 0);
888 splice_from_pipe_end(pipe, sd);
890 return sd->num_spliced ? sd->num_spliced : ret;
892 EXPORT_SYMBOL(__splice_from_pipe);
895 * splice_from_pipe - splice data from a pipe to a file
896 * @pipe: pipe to splice from
897 * @out: file to splice to
898 * @ppos: position in @out
899 * @len: how many bytes to splice
900 * @flags: splice modifier flags
901 * @actor: handler that splices the data
903 * Description:
904 * See __splice_from_pipe. This function locks the pipe inode,
905 * otherwise it's identical to __splice_from_pipe().
908 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
909 loff_t *ppos, size_t len, unsigned int flags,
910 splice_actor *actor)
912 ssize_t ret;
913 struct splice_desc sd = {
914 .total_len = len,
915 .flags = flags,
916 .pos = *ppos,
917 .u.file = out,
920 pipe_lock(pipe);
921 ret = __splice_from_pipe(pipe, &sd, actor);
922 pipe_unlock(pipe);
924 return ret;
928 * iter_file_splice_write - splice data from a pipe to a file
929 * @pipe: pipe info
930 * @out: file to write to
931 * @ppos: position in @out
932 * @len: number of bytes to splice
933 * @flags: splice modifier flags
935 * Description:
936 * Will either move or copy pages (determined by @flags options) from
937 * the given pipe inode to the given file.
938 * This one is ->write_iter-based.
941 ssize_t
942 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
943 loff_t *ppos, size_t len, unsigned int flags)
945 struct splice_desc sd = {
946 .total_len = len,
947 .flags = flags,
948 .pos = *ppos,
949 .u.file = out,
951 int nbufs = pipe->buffers;
952 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
953 GFP_KERNEL);
954 ssize_t ret;
956 if (unlikely(!array))
957 return -ENOMEM;
959 pipe_lock(pipe);
961 splice_from_pipe_begin(&sd);
962 while (sd.total_len) {
963 struct iov_iter from;
964 size_t left;
965 int n, idx;
967 ret = splice_from_pipe_next(pipe, &sd);
968 if (ret <= 0)
969 break;
971 if (unlikely(nbufs < pipe->buffers)) {
972 kfree(array);
973 nbufs = pipe->buffers;
974 array = kcalloc(nbufs, sizeof(struct bio_vec),
975 GFP_KERNEL);
976 if (!array) {
977 ret = -ENOMEM;
978 break;
982 /* build the vector */
983 left = sd.total_len;
984 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
985 struct pipe_buffer *buf = pipe->bufs + idx;
986 size_t this_len = buf->len;
988 if (this_len > left)
989 this_len = left;
991 if (idx == pipe->buffers - 1)
992 idx = -1;
994 ret = buf->ops->confirm(pipe, buf);
995 if (unlikely(ret)) {
996 if (ret == -ENODATA)
997 ret = 0;
998 goto done;
1001 array[n].bv_page = buf->page;
1002 array[n].bv_len = this_len;
1003 array[n].bv_offset = buf->offset;
1004 left -= this_len;
1007 iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
1008 sd.total_len - left);
1009 ret = vfs_iter_write(out, &from, &sd.pos);
1010 if (ret <= 0)
1011 break;
1013 sd.num_spliced += ret;
1014 sd.total_len -= ret;
1015 *ppos = sd.pos;
1017 /* dismiss the fully eaten buffers, adjust the partial one */
1018 while (ret) {
1019 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
1020 if (ret >= buf->len) {
1021 const struct pipe_buf_operations *ops = buf->ops;
1022 ret -= buf->len;
1023 buf->len = 0;
1024 buf->ops = NULL;
1025 ops->release(pipe, buf);
1026 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
1027 pipe->nrbufs--;
1028 if (pipe->files)
1029 sd.need_wakeup = true;
1030 } else {
1031 buf->offset += ret;
1032 buf->len -= ret;
1033 ret = 0;
1037 done:
1038 kfree(array);
1039 splice_from_pipe_end(pipe, &sd);
1041 pipe_unlock(pipe);
1043 if (sd.num_spliced)
1044 ret = sd.num_spliced;
1046 return ret;
1049 EXPORT_SYMBOL(iter_file_splice_write);
1051 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1052 struct splice_desc *sd)
1054 int ret;
1055 void *data;
1056 loff_t tmp = sd->pos;
1058 data = kmap(buf->page);
1059 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1060 kunmap(buf->page);
1062 return ret;
1065 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1066 struct file *out, loff_t *ppos,
1067 size_t len, unsigned int flags)
1069 ssize_t ret;
1071 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1072 if (ret > 0)
1073 *ppos += ret;
1075 return ret;
1079 * generic_splice_sendpage - splice data from a pipe to a socket
1080 * @pipe: pipe to splice from
1081 * @out: socket to write to
1082 * @ppos: position in @out
1083 * @len: number of bytes to splice
1084 * @flags: splice modifier flags
1086 * Description:
1087 * Will send @len bytes from the pipe to a network socket. No data copying
1088 * is involved.
1091 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1092 loff_t *ppos, size_t len, unsigned int flags)
1094 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1097 EXPORT_SYMBOL(generic_splice_sendpage);
1100 * Attempt to initiate a splice from pipe to file.
1102 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1103 loff_t *ppos, size_t len, unsigned int flags)
1105 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1106 loff_t *, size_t, unsigned int);
1108 if (out->f_op->splice_write)
1109 splice_write = out->f_op->splice_write;
1110 else
1111 splice_write = default_file_splice_write;
1113 return splice_write(pipe, out, ppos, len, flags);
1117 * Attempt to initiate a splice from a file to a pipe.
1119 static long do_splice_to(struct file *in, loff_t *ppos,
1120 struct pipe_inode_info *pipe, size_t len,
1121 unsigned int flags)
1123 ssize_t (*splice_read)(struct file *, loff_t *,
1124 struct pipe_inode_info *, size_t, unsigned int);
1125 int ret;
1127 if (unlikely(!(in->f_mode & FMODE_READ)))
1128 return -EBADF;
1130 ret = rw_verify_area(READ, in, ppos, len);
1131 if (unlikely(ret < 0))
1132 return ret;
1134 if (in->f_op->splice_read)
1135 splice_read = in->f_op->splice_read;
1136 else
1137 splice_read = default_file_splice_read;
1139 return splice_read(in, ppos, pipe, len, flags);
1143 * splice_direct_to_actor - splices data directly between two non-pipes
1144 * @in: file to splice from
1145 * @sd: actor information on where to splice to
1146 * @actor: handles the data splicing
1148 * Description:
1149 * This is a special case helper to splice directly between two
1150 * points, without requiring an explicit pipe. Internally an allocated
1151 * pipe is cached in the process, and reused during the lifetime of
1152 * that process.
1155 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1156 splice_direct_actor *actor)
1158 struct pipe_inode_info *pipe;
1159 long ret, bytes;
1160 umode_t i_mode;
1161 size_t len;
1162 int i, flags;
1165 * We require the input being a regular file, as we don't want to
1166 * randomly drop data for eg socket -> socket splicing. Use the
1167 * piped splicing for that!
1169 i_mode = file_inode(in)->i_mode;
1170 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1171 return -EINVAL;
1174 * neither in nor out is a pipe, setup an internal pipe attached to
1175 * 'out' and transfer the wanted data from 'in' to 'out' through that
1177 pipe = current->splice_pipe;
1178 if (unlikely(!pipe)) {
1179 pipe = alloc_pipe_info();
1180 if (!pipe)
1181 return -ENOMEM;
1184 * We don't have an immediate reader, but we'll read the stuff
1185 * out of the pipe right after the splice_to_pipe(). So set
1186 * PIPE_READERS appropriately.
1188 pipe->readers = 1;
1190 current->splice_pipe = pipe;
1194 * Do the splice.
1196 ret = 0;
1197 bytes = 0;
1198 len = sd->total_len;
1199 flags = sd->flags;
1202 * Don't block on output, we have to drain the direct pipe.
1204 sd->flags &= ~SPLICE_F_NONBLOCK;
1206 while (len) {
1207 size_t read_len;
1208 loff_t pos = sd->pos, prev_pos = pos;
1210 ret = do_splice_to(in, &pos, pipe, len, flags);
1211 if (unlikely(ret <= 0))
1212 goto out_release;
1214 read_len = ret;
1215 sd->total_len = read_len;
1218 * NOTE: nonblocking mode only applies to the input. We
1219 * must not do the output in nonblocking mode as then we
1220 * could get stuck data in the internal pipe:
1222 ret = actor(pipe, sd);
1223 if (unlikely(ret <= 0)) {
1224 sd->pos = prev_pos;
1225 goto out_release;
1228 bytes += ret;
1229 len -= ret;
1230 sd->pos = pos;
1232 if (ret < read_len) {
1233 sd->pos = prev_pos + ret;
1234 goto out_release;
1238 done:
1239 pipe->nrbufs = pipe->curbuf = 0;
1240 file_accessed(in);
1241 return bytes;
1243 out_release:
1245 * If we did an incomplete transfer we must release
1246 * the pipe buffers in question:
1248 for (i = 0; i < pipe->buffers; i++) {
1249 struct pipe_buffer *buf = pipe->bufs + i;
1251 if (buf->ops) {
1252 buf->ops->release(pipe, buf);
1253 buf->ops = NULL;
1257 if (!bytes)
1258 bytes = ret;
1260 goto done;
1262 EXPORT_SYMBOL(splice_direct_to_actor);
1264 static int direct_splice_actor(struct pipe_inode_info *pipe,
1265 struct splice_desc *sd)
1267 struct file *file = sd->u.file;
1269 return do_splice_from(pipe, file, sd->opos, sd->total_len,
1270 sd->flags);
1274 * do_splice_direct - splices data directly between two files
1275 * @in: file to splice from
1276 * @ppos: input file offset
1277 * @out: file to splice to
1278 * @opos: output file offset
1279 * @len: number of bytes to splice
1280 * @flags: splice modifier flags
1282 * Description:
1283 * For use by do_sendfile(). splice can easily emulate sendfile, but
1284 * doing it in the application would incur an extra system call
1285 * (splice in + splice out, as compared to just sendfile()). So this helper
1286 * can splice directly through a process-private pipe.
1289 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1290 loff_t *opos, size_t len, unsigned int flags)
1292 struct splice_desc sd = {
1293 .len = len,
1294 .total_len = len,
1295 .flags = flags,
1296 .pos = *ppos,
1297 .u.file = out,
1298 .opos = opos,
1300 long ret;
1302 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1303 return -EBADF;
1305 if (unlikely(out->f_flags & O_APPEND))
1306 return -EINVAL;
1308 ret = rw_verify_area(WRITE, out, opos, len);
1309 if (unlikely(ret < 0))
1310 return ret;
1312 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1313 if (ret > 0)
1314 *ppos = sd.pos;
1316 return ret;
1318 EXPORT_SYMBOL(do_splice_direct);
1320 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1321 struct pipe_inode_info *opipe,
1322 size_t len, unsigned int flags);
1325 * Determine where to splice to/from.
1327 static long do_splice(struct file *in, loff_t __user *off_in,
1328 struct file *out, loff_t __user *off_out,
1329 size_t len, unsigned int flags)
1331 struct pipe_inode_info *ipipe;
1332 struct pipe_inode_info *opipe;
1333 loff_t offset;
1334 long ret;
1336 ipipe = get_pipe_info(in);
1337 opipe = get_pipe_info(out);
1339 if (ipipe && opipe) {
1340 if (off_in || off_out)
1341 return -ESPIPE;
1343 if (!(in->f_mode & FMODE_READ))
1344 return -EBADF;
1346 if (!(out->f_mode & FMODE_WRITE))
1347 return -EBADF;
1349 /* Splicing to self would be fun, but... */
1350 if (ipipe == opipe)
1351 return -EINVAL;
1353 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1356 if (ipipe) {
1357 if (off_in)
1358 return -ESPIPE;
1359 if (off_out) {
1360 if (!(out->f_mode & FMODE_PWRITE))
1361 return -EINVAL;
1362 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1363 return -EFAULT;
1364 } else {
1365 offset = out->f_pos;
1368 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1369 return -EBADF;
1371 if (unlikely(out->f_flags & O_APPEND))
1372 return -EINVAL;
1374 ret = rw_verify_area(WRITE, out, &offset, len);
1375 if (unlikely(ret < 0))
1376 return ret;
1378 file_start_write(out);
1379 ret = do_splice_from(ipipe, out, &offset, len, flags);
1380 file_end_write(out);
1382 if (!off_out)
1383 out->f_pos = offset;
1384 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1385 ret = -EFAULT;
1387 return ret;
1390 if (opipe) {
1391 if (off_out)
1392 return -ESPIPE;
1393 if (off_in) {
1394 if (!(in->f_mode & FMODE_PREAD))
1395 return -EINVAL;
1396 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1397 return -EFAULT;
1398 } else {
1399 offset = in->f_pos;
1402 ret = do_splice_to(in, &offset, opipe, len, flags);
1404 if (!off_in)
1405 in->f_pos = offset;
1406 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1407 ret = -EFAULT;
1409 return ret;
1412 return -EINVAL;
1416 * Map an iov into an array of pages and offset/length tupples. With the
1417 * partial_page structure, we can map several non-contiguous ranges into
1418 * our ones pages[] map instead of splitting that operation into pieces.
1419 * Could easily be exported as a generic helper for other users, in which
1420 * case one would probably want to add a 'max_nr_pages' parameter as well.
1422 static int get_iovec_page_array(const struct iovec __user *iov,
1423 unsigned int nr_vecs, struct page **pages,
1424 struct partial_page *partial, bool aligned,
1425 unsigned int pipe_buffers)
1427 int buffers = 0, error = 0;
1429 while (nr_vecs) {
1430 unsigned long off, npages;
1431 struct iovec entry;
1432 void __user *base;
1433 size_t len;
1434 int i;
1436 error = -EFAULT;
1437 if (copy_from_user(&entry, iov, sizeof(entry)))
1438 break;
1440 base = entry.iov_base;
1441 len = entry.iov_len;
1444 * Sanity check this iovec. 0 read succeeds.
1446 error = 0;
1447 if (unlikely(!len))
1448 break;
1449 error = -EFAULT;
1450 if (!access_ok(VERIFY_READ, base, len))
1451 break;
1454 * Get this base offset and number of pages, then map
1455 * in the user pages.
1457 off = (unsigned long) base & ~PAGE_MASK;
1460 * If asked for alignment, the offset must be zero and the
1461 * length a multiple of the PAGE_SIZE.
1463 error = -EINVAL;
1464 if (aligned && (off || len & ~PAGE_MASK))
1465 break;
1467 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1468 if (npages > pipe_buffers - buffers)
1469 npages = pipe_buffers - buffers;
1471 error = get_user_pages_fast((unsigned long)base, npages,
1472 0, &pages[buffers]);
1474 if (unlikely(error <= 0))
1475 break;
1478 * Fill this contiguous range into the partial page map.
1480 for (i = 0; i < error; i++) {
1481 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1483 partial[buffers].offset = off;
1484 partial[buffers].len = plen;
1486 off = 0;
1487 len -= plen;
1488 buffers++;
1492 * We didn't complete this iov, stop here since it probably
1493 * means we have to move some of this into a pipe to
1494 * be able to continue.
1496 if (len)
1497 break;
1500 * Don't continue if we mapped fewer pages than we asked for,
1501 * or if we mapped the max number of pages that we have
1502 * room for.
1504 if (error < npages || buffers == pipe_buffers)
1505 break;
1507 nr_vecs--;
1508 iov++;
1511 if (buffers)
1512 return buffers;
1514 return error;
1517 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1518 struct splice_desc *sd)
1520 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1521 return n == sd->len ? n : -EFAULT;
1525 * For lack of a better implementation, implement vmsplice() to userspace
1526 * as a simple copy of the pipes pages to the user iov.
1528 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1529 unsigned long nr_segs, unsigned int flags)
1531 struct pipe_inode_info *pipe;
1532 struct splice_desc sd;
1533 long ret;
1534 struct iovec iovstack[UIO_FASTIOV];
1535 struct iovec *iov = iovstack;
1536 struct iov_iter iter;
1537 ssize_t count;
1539 pipe = get_pipe_info(file);
1540 if (!pipe)
1541 return -EBADF;
1543 ret = rw_copy_check_uvector(READ, uiov, nr_segs,
1544 ARRAY_SIZE(iovstack), iovstack, &iov);
1545 if (ret <= 0)
1546 goto out;
1548 count = ret;
1549 iov_iter_init(&iter, READ, iov, nr_segs, count);
1551 sd.len = 0;
1552 sd.total_len = count;
1553 sd.flags = flags;
1554 sd.u.data = &iter;
1555 sd.pos = 0;
1557 pipe_lock(pipe);
1558 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1559 pipe_unlock(pipe);
1561 out:
1562 if (iov != iovstack)
1563 kfree(iov);
1565 return ret;
1569 * vmsplice splices a user address range into a pipe. It can be thought of
1570 * as splice-from-memory, where the regular splice is splice-from-file (or
1571 * to file). In both cases the output is a pipe, naturally.
1573 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1574 unsigned long nr_segs, unsigned int flags)
1576 struct pipe_inode_info *pipe;
1577 struct page *pages[PIPE_DEF_BUFFERS];
1578 struct partial_page partial[PIPE_DEF_BUFFERS];
1579 struct splice_pipe_desc spd = {
1580 .pages = pages,
1581 .partial = partial,
1582 .nr_pages_max = PIPE_DEF_BUFFERS,
1583 .flags = flags,
1584 .ops = &user_page_pipe_buf_ops,
1585 .spd_release = spd_release_page,
1587 long ret;
1589 pipe = get_pipe_info(file);
1590 if (!pipe)
1591 return -EBADF;
1593 if (splice_grow_spd(pipe, &spd))
1594 return -ENOMEM;
1596 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1597 spd.partial, false,
1598 spd.nr_pages_max);
1599 if (spd.nr_pages <= 0)
1600 ret = spd.nr_pages;
1601 else
1602 ret = splice_to_pipe(pipe, &spd);
1604 splice_shrink_spd(&spd);
1605 return ret;
1609 * Note that vmsplice only really supports true splicing _from_ user memory
1610 * to a pipe, not the other way around. Splicing from user memory is a simple
1611 * operation that can be supported without any funky alignment restrictions
1612 * or nasty vm tricks. We simply map in the user memory and fill them into
1613 * a pipe. The reverse isn't quite as easy, though. There are two possible
1614 * solutions for that:
1616 * - memcpy() the data internally, at which point we might as well just
1617 * do a regular read() on the buffer anyway.
1618 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1619 * has restriction limitations on both ends of the pipe).
1621 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1624 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1625 unsigned long, nr_segs, unsigned int, flags)
1627 struct fd f;
1628 long error;
1630 if (unlikely(nr_segs > UIO_MAXIOV))
1631 return -EINVAL;
1632 else if (unlikely(!nr_segs))
1633 return 0;
1635 error = -EBADF;
1636 f = fdget(fd);
1637 if (f.file) {
1638 if (f.file->f_mode & FMODE_WRITE)
1639 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1640 else if (f.file->f_mode & FMODE_READ)
1641 error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1643 fdput(f);
1646 return error;
1649 #ifdef CONFIG_COMPAT
1650 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1651 unsigned int, nr_segs, unsigned int, flags)
1653 unsigned i;
1654 struct iovec __user *iov;
1655 if (nr_segs > UIO_MAXIOV)
1656 return -EINVAL;
1657 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1658 for (i = 0; i < nr_segs; i++) {
1659 struct compat_iovec v;
1660 if (get_user(v.iov_base, &iov32[i].iov_base) ||
1661 get_user(v.iov_len, &iov32[i].iov_len) ||
1662 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1663 put_user(v.iov_len, &iov[i].iov_len))
1664 return -EFAULT;
1666 return sys_vmsplice(fd, iov, nr_segs, flags);
1668 #endif
1670 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1671 int, fd_out, loff_t __user *, off_out,
1672 size_t, len, unsigned int, flags)
1674 struct fd in, out;
1675 long error;
1677 if (unlikely(!len))
1678 return 0;
1680 error = -EBADF;
1681 in = fdget(fd_in);
1682 if (in.file) {
1683 if (in.file->f_mode & FMODE_READ) {
1684 out = fdget(fd_out);
1685 if (out.file) {
1686 if (out.file->f_mode & FMODE_WRITE)
1687 error = do_splice(in.file, off_in,
1688 out.file, off_out,
1689 len, flags);
1690 fdput(out);
1693 fdput(in);
1695 return error;
1699 * Make sure there's data to read. Wait for input if we can, otherwise
1700 * return an appropriate error.
1702 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1704 int ret;
1707 * Check ->nrbufs without the inode lock first. This function
1708 * is speculative anyways, so missing one is ok.
1710 if (pipe->nrbufs)
1711 return 0;
1713 ret = 0;
1714 pipe_lock(pipe);
1716 while (!pipe->nrbufs) {
1717 if (signal_pending(current)) {
1718 ret = -ERESTARTSYS;
1719 break;
1721 if (!pipe->writers)
1722 break;
1723 if (!pipe->waiting_writers) {
1724 if (flags & SPLICE_F_NONBLOCK) {
1725 ret = -EAGAIN;
1726 break;
1729 pipe_wait(pipe);
1732 pipe_unlock(pipe);
1733 return ret;
1737 * Make sure there's writeable room. Wait for room if we can, otherwise
1738 * return an appropriate error.
1740 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1742 int ret;
1745 * Check ->nrbufs without the inode lock first. This function
1746 * is speculative anyways, so missing one is ok.
1748 if (pipe->nrbufs < pipe->buffers)
1749 return 0;
1751 ret = 0;
1752 pipe_lock(pipe);
1754 while (pipe->nrbufs >= pipe->buffers) {
1755 if (!pipe->readers) {
1756 send_sig(SIGPIPE, current, 0);
1757 ret = -EPIPE;
1758 break;
1760 if (flags & SPLICE_F_NONBLOCK) {
1761 ret = -EAGAIN;
1762 break;
1764 if (signal_pending(current)) {
1765 ret = -ERESTARTSYS;
1766 break;
1768 pipe->waiting_writers++;
1769 pipe_wait(pipe);
1770 pipe->waiting_writers--;
1773 pipe_unlock(pipe);
1774 return ret;
1778 * Splice contents of ipipe to opipe.
1780 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1781 struct pipe_inode_info *opipe,
1782 size_t len, unsigned int flags)
1784 struct pipe_buffer *ibuf, *obuf;
1785 int ret = 0, nbuf;
1786 bool input_wakeup = false;
1789 retry:
1790 ret = ipipe_prep(ipipe, flags);
1791 if (ret)
1792 return ret;
1794 ret = opipe_prep(opipe, flags);
1795 if (ret)
1796 return ret;
1799 * Potential ABBA deadlock, work around it by ordering lock
1800 * grabbing by pipe info address. Otherwise two different processes
1801 * could deadlock (one doing tee from A -> B, the other from B -> A).
1803 pipe_double_lock(ipipe, opipe);
1805 do {
1806 if (!opipe->readers) {
1807 send_sig(SIGPIPE, current, 0);
1808 if (!ret)
1809 ret = -EPIPE;
1810 break;
1813 if (!ipipe->nrbufs && !ipipe->writers)
1814 break;
1817 * Cannot make any progress, because either the input
1818 * pipe is empty or the output pipe is full.
1820 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1821 /* Already processed some buffers, break */
1822 if (ret)
1823 break;
1825 if (flags & SPLICE_F_NONBLOCK) {
1826 ret = -EAGAIN;
1827 break;
1831 * We raced with another reader/writer and haven't
1832 * managed to process any buffers. A zero return
1833 * value means EOF, so retry instead.
1835 pipe_unlock(ipipe);
1836 pipe_unlock(opipe);
1837 goto retry;
1840 ibuf = ipipe->bufs + ipipe->curbuf;
1841 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1842 obuf = opipe->bufs + nbuf;
1844 if (len >= ibuf->len) {
1846 * Simply move the whole buffer from ipipe to opipe
1848 *obuf = *ibuf;
1849 ibuf->ops = NULL;
1850 opipe->nrbufs++;
1851 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1852 ipipe->nrbufs--;
1853 input_wakeup = true;
1854 } else {
1856 * Get a reference to this pipe buffer,
1857 * so we can copy the contents over.
1859 ibuf->ops->get(ipipe, ibuf);
1860 *obuf = *ibuf;
1863 * Don't inherit the gift flag, we need to
1864 * prevent multiple steals of this page.
1866 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1868 obuf->len = len;
1869 opipe->nrbufs++;
1870 ibuf->offset += obuf->len;
1871 ibuf->len -= obuf->len;
1873 ret += obuf->len;
1874 len -= obuf->len;
1875 } while (len);
1877 pipe_unlock(ipipe);
1878 pipe_unlock(opipe);
1881 * If we put data in the output pipe, wakeup any potential readers.
1883 if (ret > 0)
1884 wakeup_pipe_readers(opipe);
1886 if (input_wakeup)
1887 wakeup_pipe_writers(ipipe);
1889 return ret;
1893 * Link contents of ipipe to opipe.
1895 static int link_pipe(struct pipe_inode_info *ipipe,
1896 struct pipe_inode_info *opipe,
1897 size_t len, unsigned int flags)
1899 struct pipe_buffer *ibuf, *obuf;
1900 int ret = 0, i = 0, nbuf;
1903 * Potential ABBA deadlock, work around it by ordering lock
1904 * grabbing by pipe info address. Otherwise two different processes
1905 * could deadlock (one doing tee from A -> B, the other from B -> A).
1907 pipe_double_lock(ipipe, opipe);
1909 do {
1910 if (!opipe->readers) {
1911 send_sig(SIGPIPE, current, 0);
1912 if (!ret)
1913 ret = -EPIPE;
1914 break;
1918 * If we have iterated all input buffers or ran out of
1919 * output room, break.
1921 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1922 break;
1924 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1925 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1928 * Get a reference to this pipe buffer,
1929 * so we can copy the contents over.
1931 ibuf->ops->get(ipipe, ibuf);
1933 obuf = opipe->bufs + nbuf;
1934 *obuf = *ibuf;
1937 * Don't inherit the gift flag, we need to
1938 * prevent multiple steals of this page.
1940 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1942 if (obuf->len > len)
1943 obuf->len = len;
1945 opipe->nrbufs++;
1946 ret += obuf->len;
1947 len -= obuf->len;
1948 i++;
1949 } while (len);
1952 * return EAGAIN if we have the potential of some data in the
1953 * future, otherwise just return 0
1955 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1956 ret = -EAGAIN;
1958 pipe_unlock(ipipe);
1959 pipe_unlock(opipe);
1962 * If we put data in the output pipe, wakeup any potential readers.
1964 if (ret > 0)
1965 wakeup_pipe_readers(opipe);
1967 return ret;
1971 * This is a tee(1) implementation that works on pipes. It doesn't copy
1972 * any data, it simply references the 'in' pages on the 'out' pipe.
1973 * The 'flags' used are the SPLICE_F_* variants, currently the only
1974 * applicable one is SPLICE_F_NONBLOCK.
1976 static long do_tee(struct file *in, struct file *out, size_t len,
1977 unsigned int flags)
1979 struct pipe_inode_info *ipipe = get_pipe_info(in);
1980 struct pipe_inode_info *opipe = get_pipe_info(out);
1981 int ret = -EINVAL;
1984 * Duplicate the contents of ipipe to opipe without actually
1985 * copying the data.
1987 if (ipipe && opipe && ipipe != opipe) {
1989 * Keep going, unless we encounter an error. The ipipe/opipe
1990 * ordering doesn't really matter.
1992 ret = ipipe_prep(ipipe, flags);
1993 if (!ret) {
1994 ret = opipe_prep(opipe, flags);
1995 if (!ret)
1996 ret = link_pipe(ipipe, opipe, len, flags);
2000 return ret;
2003 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2005 struct fd in;
2006 int error;
2008 if (unlikely(!len))
2009 return 0;
2011 error = -EBADF;
2012 in = fdget(fdin);
2013 if (in.file) {
2014 if (in.file->f_mode & FMODE_READ) {
2015 struct fd out = fdget(fdout);
2016 if (out.file) {
2017 if (out.file->f_mode & FMODE_WRITE)
2018 error = do_tee(in.file, out.file,
2019 len, flags);
2020 fdput(out);
2023 fdput(in);
2026 return error;