powerpc/lib: Implement UACCESS_FLUSHCACHE API
[linux-2.6/btrfs-unstable.git] / block / partition-generic.c
blob86e8fe1adcdb7f1b10fd5acd8f5c36f712736971
1 /*
2 * Code extracted from drivers/block/genhd.c
3 * Copyright (C) 1991-1998 Linus Torvalds
4 * Re-organised Feb 1998 Russell King
6 * We now have independent partition support from the
7 * block drivers, which allows all the partition code to
8 * be grouped in one location, and it to be mostly self
9 * contained.
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/fs.h>
15 #include <linux/slab.h>
16 #include <linux/kmod.h>
17 #include <linux/ctype.h>
18 #include <linux/genhd.h>
19 #include <linux/blktrace_api.h>
21 #include "partitions/check.h"
23 #ifdef CONFIG_BLK_DEV_MD
24 extern void md_autodetect_dev(dev_t dev);
25 #endif
28 * disk_name() is used by partition check code and the genhd driver.
29 * It formats the devicename of the indicated disk into
30 * the supplied buffer (of size at least 32), and returns
31 * a pointer to that same buffer (for convenience).
34 char *disk_name(struct gendisk *hd, int partno, char *buf)
36 if (!partno)
37 snprintf(buf, BDEVNAME_SIZE, "%s", hd->disk_name);
38 else if (isdigit(hd->disk_name[strlen(hd->disk_name)-1]))
39 snprintf(buf, BDEVNAME_SIZE, "%sp%d", hd->disk_name, partno);
40 else
41 snprintf(buf, BDEVNAME_SIZE, "%s%d", hd->disk_name, partno);
43 return buf;
46 const char *bdevname(struct block_device *bdev, char *buf)
48 return disk_name(bdev->bd_disk, bdev->bd_part->partno, buf);
51 EXPORT_SYMBOL(bdevname);
54 * There's very little reason to use this, you should really
55 * have a struct block_device just about everywhere and use
56 * bdevname() instead.
58 const char *__bdevname(dev_t dev, char *buffer)
60 scnprintf(buffer, BDEVNAME_SIZE, "unknown-block(%u,%u)",
61 MAJOR(dev), MINOR(dev));
62 return buffer;
65 EXPORT_SYMBOL(__bdevname);
67 static ssize_t part_partition_show(struct device *dev,
68 struct device_attribute *attr, char *buf)
70 struct hd_struct *p = dev_to_part(dev);
72 return sprintf(buf, "%d\n", p->partno);
75 static ssize_t part_start_show(struct device *dev,
76 struct device_attribute *attr, char *buf)
78 struct hd_struct *p = dev_to_part(dev);
80 return sprintf(buf, "%llu\n",(unsigned long long)p->start_sect);
83 ssize_t part_size_show(struct device *dev,
84 struct device_attribute *attr, char *buf)
86 struct hd_struct *p = dev_to_part(dev);
87 return sprintf(buf, "%llu\n",(unsigned long long)part_nr_sects_read(p));
90 static ssize_t part_ro_show(struct device *dev,
91 struct device_attribute *attr, char *buf)
93 struct hd_struct *p = dev_to_part(dev);
94 return sprintf(buf, "%d\n", p->policy ? 1 : 0);
97 static ssize_t part_alignment_offset_show(struct device *dev,
98 struct device_attribute *attr, char *buf)
100 struct hd_struct *p = dev_to_part(dev);
101 return sprintf(buf, "%llu\n", (unsigned long long)p->alignment_offset);
104 static ssize_t part_discard_alignment_show(struct device *dev,
105 struct device_attribute *attr, char *buf)
107 struct hd_struct *p = dev_to_part(dev);
108 return sprintf(buf, "%u\n", p->discard_alignment);
111 ssize_t part_stat_show(struct device *dev,
112 struct device_attribute *attr, char *buf)
114 struct hd_struct *p = dev_to_part(dev);
115 struct request_queue *q = dev_to_disk(dev)->queue;
116 unsigned int inflight[2];
117 int cpu;
119 cpu = part_stat_lock();
120 part_round_stats(q, cpu, p);
121 part_stat_unlock();
122 part_in_flight(q, p, inflight);
123 return sprintf(buf,
124 "%8lu %8lu %8llu %8u "
125 "%8lu %8lu %8llu %8u "
126 "%8u %8u %8u"
127 "\n",
128 part_stat_read(p, ios[READ]),
129 part_stat_read(p, merges[READ]),
130 (unsigned long long)part_stat_read(p, sectors[READ]),
131 jiffies_to_msecs(part_stat_read(p, ticks[READ])),
132 part_stat_read(p, ios[WRITE]),
133 part_stat_read(p, merges[WRITE]),
134 (unsigned long long)part_stat_read(p, sectors[WRITE]),
135 jiffies_to_msecs(part_stat_read(p, ticks[WRITE])),
136 inflight[0],
137 jiffies_to_msecs(part_stat_read(p, io_ticks)),
138 jiffies_to_msecs(part_stat_read(p, time_in_queue)));
141 ssize_t part_inflight_show(struct device *dev,
142 struct device_attribute *attr, char *buf)
144 struct hd_struct *p = dev_to_part(dev);
146 return sprintf(buf, "%8u %8u\n", atomic_read(&p->in_flight[0]),
147 atomic_read(&p->in_flight[1]));
150 #ifdef CONFIG_FAIL_MAKE_REQUEST
151 ssize_t part_fail_show(struct device *dev,
152 struct device_attribute *attr, char *buf)
154 struct hd_struct *p = dev_to_part(dev);
156 return sprintf(buf, "%d\n", p->make_it_fail);
159 ssize_t part_fail_store(struct device *dev,
160 struct device_attribute *attr,
161 const char *buf, size_t count)
163 struct hd_struct *p = dev_to_part(dev);
164 int i;
166 if (count > 0 && sscanf(buf, "%d", &i) > 0)
167 p->make_it_fail = (i == 0) ? 0 : 1;
169 return count;
171 #endif
173 static DEVICE_ATTR(partition, S_IRUGO, part_partition_show, NULL);
174 static DEVICE_ATTR(start, S_IRUGO, part_start_show, NULL);
175 static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL);
176 static DEVICE_ATTR(ro, S_IRUGO, part_ro_show, NULL);
177 static DEVICE_ATTR(alignment_offset, S_IRUGO, part_alignment_offset_show, NULL);
178 static DEVICE_ATTR(discard_alignment, S_IRUGO, part_discard_alignment_show,
179 NULL);
180 static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL);
181 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL);
182 #ifdef CONFIG_FAIL_MAKE_REQUEST
183 static struct device_attribute dev_attr_fail =
184 __ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store);
185 #endif
187 static struct attribute *part_attrs[] = {
188 &dev_attr_partition.attr,
189 &dev_attr_start.attr,
190 &dev_attr_size.attr,
191 &dev_attr_ro.attr,
192 &dev_attr_alignment_offset.attr,
193 &dev_attr_discard_alignment.attr,
194 &dev_attr_stat.attr,
195 &dev_attr_inflight.attr,
196 #ifdef CONFIG_FAIL_MAKE_REQUEST
197 &dev_attr_fail.attr,
198 #endif
199 NULL
202 static struct attribute_group part_attr_group = {
203 .attrs = part_attrs,
206 static const struct attribute_group *part_attr_groups[] = {
207 &part_attr_group,
208 #ifdef CONFIG_BLK_DEV_IO_TRACE
209 &blk_trace_attr_group,
210 #endif
211 NULL
214 static void part_release(struct device *dev)
216 struct hd_struct *p = dev_to_part(dev);
217 blk_free_devt(dev->devt);
218 hd_free_part(p);
219 kfree(p);
222 static int part_uevent(struct device *dev, struct kobj_uevent_env *env)
224 struct hd_struct *part = dev_to_part(dev);
226 add_uevent_var(env, "PARTN=%u", part->partno);
227 if (part->info && part->info->volname[0])
228 add_uevent_var(env, "PARTNAME=%s", part->info->volname);
229 return 0;
232 struct device_type part_type = {
233 .name = "partition",
234 .groups = part_attr_groups,
235 .release = part_release,
236 .uevent = part_uevent,
239 static void delete_partition_rcu_cb(struct rcu_head *head)
241 struct hd_struct *part = container_of(head, struct hd_struct, rcu_head);
243 part->start_sect = 0;
244 part->nr_sects = 0;
245 part_stat_set_all(part, 0);
246 put_device(part_to_dev(part));
249 void __delete_partition(struct percpu_ref *ref)
251 struct hd_struct *part = container_of(ref, struct hd_struct, ref);
252 call_rcu(&part->rcu_head, delete_partition_rcu_cb);
256 * Must be called either with bd_mutex held, before a disk can be opened or
257 * after all disk users are gone.
259 void delete_partition(struct gendisk *disk, int partno)
261 struct disk_part_tbl *ptbl =
262 rcu_dereference_protected(disk->part_tbl, 1);
263 struct hd_struct *part;
265 if (partno >= ptbl->len)
266 return;
268 part = rcu_dereference_protected(ptbl->part[partno], 1);
269 if (!part)
270 return;
272 rcu_assign_pointer(ptbl->part[partno], NULL);
273 rcu_assign_pointer(ptbl->last_lookup, NULL);
274 kobject_put(part->holder_dir);
275 device_del(part_to_dev(part));
277 hd_struct_kill(part);
280 static ssize_t whole_disk_show(struct device *dev,
281 struct device_attribute *attr, char *buf)
283 return 0;
285 static DEVICE_ATTR(whole_disk, S_IRUSR | S_IRGRP | S_IROTH,
286 whole_disk_show, NULL);
289 * Must be called either with bd_mutex held, before a disk can be opened or
290 * after all disk users are gone.
292 struct hd_struct *add_partition(struct gendisk *disk, int partno,
293 sector_t start, sector_t len, int flags,
294 struct partition_meta_info *info)
296 struct hd_struct *p;
297 dev_t devt = MKDEV(0, 0);
298 struct device *ddev = disk_to_dev(disk);
299 struct device *pdev;
300 struct disk_part_tbl *ptbl;
301 const char *dname;
302 int err;
304 err = disk_expand_part_tbl(disk, partno);
305 if (err)
306 return ERR_PTR(err);
307 ptbl = rcu_dereference_protected(disk->part_tbl, 1);
309 if (ptbl->part[partno])
310 return ERR_PTR(-EBUSY);
312 p = kzalloc(sizeof(*p), GFP_KERNEL);
313 if (!p)
314 return ERR_PTR(-EBUSY);
316 if (!init_part_stats(p)) {
317 err = -ENOMEM;
318 goto out_free;
321 seqcount_init(&p->nr_sects_seq);
322 pdev = part_to_dev(p);
324 p->start_sect = start;
325 p->alignment_offset =
326 queue_limit_alignment_offset(&disk->queue->limits, start);
327 p->discard_alignment =
328 queue_limit_discard_alignment(&disk->queue->limits, start);
329 p->nr_sects = len;
330 p->partno = partno;
331 p->policy = get_disk_ro(disk);
333 if (info) {
334 struct partition_meta_info *pinfo = alloc_part_info(disk);
335 if (!pinfo) {
336 err = -ENOMEM;
337 goto out_free_stats;
339 memcpy(pinfo, info, sizeof(*info));
340 p->info = pinfo;
343 dname = dev_name(ddev);
344 if (isdigit(dname[strlen(dname) - 1]))
345 dev_set_name(pdev, "%sp%d", dname, partno);
346 else
347 dev_set_name(pdev, "%s%d", dname, partno);
349 device_initialize(pdev);
350 pdev->class = &block_class;
351 pdev->type = &part_type;
352 pdev->parent = ddev;
354 err = blk_alloc_devt(p, &devt);
355 if (err)
356 goto out_free_info;
357 pdev->devt = devt;
359 /* delay uevent until 'holders' subdir is created */
360 dev_set_uevent_suppress(pdev, 1);
361 err = device_add(pdev);
362 if (err)
363 goto out_put;
365 err = -ENOMEM;
366 p->holder_dir = kobject_create_and_add("holders", &pdev->kobj);
367 if (!p->holder_dir)
368 goto out_del;
370 dev_set_uevent_suppress(pdev, 0);
371 if (flags & ADDPART_FLAG_WHOLEDISK) {
372 err = device_create_file(pdev, &dev_attr_whole_disk);
373 if (err)
374 goto out_del;
377 err = hd_ref_init(p);
378 if (err) {
379 if (flags & ADDPART_FLAG_WHOLEDISK)
380 goto out_remove_file;
381 goto out_del;
384 /* everything is up and running, commence */
385 rcu_assign_pointer(ptbl->part[partno], p);
387 /* suppress uevent if the disk suppresses it */
388 if (!dev_get_uevent_suppress(ddev))
389 kobject_uevent(&pdev->kobj, KOBJ_ADD);
390 return p;
392 out_free_info:
393 free_part_info(p);
394 out_free_stats:
395 free_part_stats(p);
396 out_free:
397 kfree(p);
398 return ERR_PTR(err);
399 out_remove_file:
400 device_remove_file(pdev, &dev_attr_whole_disk);
401 out_del:
402 kobject_put(p->holder_dir);
403 device_del(pdev);
404 out_put:
405 put_device(pdev);
406 return ERR_PTR(err);
409 static bool disk_unlock_native_capacity(struct gendisk *disk)
411 const struct block_device_operations *bdops = disk->fops;
413 if (bdops->unlock_native_capacity &&
414 !(disk->flags & GENHD_FL_NATIVE_CAPACITY)) {
415 printk(KERN_CONT "enabling native capacity\n");
416 bdops->unlock_native_capacity(disk);
417 disk->flags |= GENHD_FL_NATIVE_CAPACITY;
418 return true;
419 } else {
420 printk(KERN_CONT "truncated\n");
421 return false;
425 static int drop_partitions(struct gendisk *disk, struct block_device *bdev)
427 struct disk_part_iter piter;
428 struct hd_struct *part;
429 int res;
431 if (bdev->bd_part_count || bdev->bd_super)
432 return -EBUSY;
433 res = invalidate_partition(disk, 0);
434 if (res)
435 return res;
437 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
438 while ((part = disk_part_iter_next(&piter)))
439 delete_partition(disk, part->partno);
440 disk_part_iter_exit(&piter);
442 return 0;
445 static bool part_zone_aligned(struct gendisk *disk,
446 struct block_device *bdev,
447 sector_t from, sector_t size)
449 unsigned int zone_sectors = bdev_zone_sectors(bdev);
452 * If this function is called, then the disk is a zoned block device
453 * (host-aware or host-managed). This can be detected even if the
454 * zoned block device support is disabled (CONFIG_BLK_DEV_ZONED not
455 * set). In this case, however, only host-aware devices will be seen
456 * as a block device is not created for host-managed devices. Without
457 * zoned block device support, host-aware drives can still be used as
458 * regular block devices (no zone operation) and their zone size will
459 * be reported as 0. Allow this case.
461 if (!zone_sectors)
462 return true;
465 * Check partition start and size alignement. If the drive has a
466 * smaller last runt zone, ignore it and allow the partition to
467 * use it. Check the zone size too: it should be a power of 2 number
468 * of sectors.
470 if (WARN_ON_ONCE(!is_power_of_2(zone_sectors))) {
471 u32 rem;
473 div_u64_rem(from, zone_sectors, &rem);
474 if (rem)
475 return false;
476 if ((from + size) < get_capacity(disk)) {
477 div_u64_rem(size, zone_sectors, &rem);
478 if (rem)
479 return false;
482 } else {
484 if (from & (zone_sectors - 1))
485 return false;
486 if ((from + size) < get_capacity(disk) &&
487 (size & (zone_sectors - 1)))
488 return false;
492 return true;
495 int rescan_partitions(struct gendisk *disk, struct block_device *bdev)
497 struct parsed_partitions *state = NULL;
498 struct hd_struct *part;
499 int p, highest, res;
500 rescan:
501 if (state && !IS_ERR(state)) {
502 free_partitions(state);
503 state = NULL;
506 res = drop_partitions(disk, bdev);
507 if (res)
508 return res;
510 if (disk->fops->revalidate_disk)
511 disk->fops->revalidate_disk(disk);
512 check_disk_size_change(disk, bdev);
513 bdev->bd_invalidated = 0;
514 if (!get_capacity(disk) || !(state = check_partition(disk, bdev)))
515 return 0;
516 if (IS_ERR(state)) {
518 * I/O error reading the partition table. If any
519 * partition code tried to read beyond EOD, retry
520 * after unlocking native capacity.
522 if (PTR_ERR(state) == -ENOSPC) {
523 printk(KERN_WARNING "%s: partition table beyond EOD, ",
524 disk->disk_name);
525 if (disk_unlock_native_capacity(disk))
526 goto rescan;
528 return -EIO;
531 * If any partition code tried to read beyond EOD, try
532 * unlocking native capacity even if partition table is
533 * successfully read as we could be missing some partitions.
535 if (state->access_beyond_eod) {
536 printk(KERN_WARNING
537 "%s: partition table partially beyond EOD, ",
538 disk->disk_name);
539 if (disk_unlock_native_capacity(disk))
540 goto rescan;
543 /* tell userspace that the media / partition table may have changed */
544 kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
546 /* Detect the highest partition number and preallocate
547 * disk->part_tbl. This is an optimization and not strictly
548 * necessary.
550 for (p = 1, highest = 0; p < state->limit; p++)
551 if (state->parts[p].size)
552 highest = p;
554 disk_expand_part_tbl(disk, highest);
556 /* add partitions */
557 for (p = 1; p < state->limit; p++) {
558 sector_t size, from;
560 size = state->parts[p].size;
561 if (!size)
562 continue;
564 from = state->parts[p].from;
565 if (from >= get_capacity(disk)) {
566 printk(KERN_WARNING
567 "%s: p%d start %llu is beyond EOD, ",
568 disk->disk_name, p, (unsigned long long) from);
569 if (disk_unlock_native_capacity(disk))
570 goto rescan;
571 continue;
574 if (from + size > get_capacity(disk)) {
575 printk(KERN_WARNING
576 "%s: p%d size %llu extends beyond EOD, ",
577 disk->disk_name, p, (unsigned long long) size);
579 if (disk_unlock_native_capacity(disk)) {
580 /* free state and restart */
581 goto rescan;
582 } else {
584 * we can not ignore partitions of broken tables
585 * created by for example camera firmware, but
586 * we limit them to the end of the disk to avoid
587 * creating invalid block devices
589 size = get_capacity(disk) - from;
594 * On a zoned block device, partitions should be aligned on the
595 * device zone size (i.e. zone boundary crossing not allowed).
596 * Otherwise, resetting the write pointer of the last zone of
597 * one partition may impact the following partition.
599 if (bdev_is_zoned(bdev) &&
600 !part_zone_aligned(disk, bdev, from, size)) {
601 printk(KERN_WARNING
602 "%s: p%d start %llu+%llu is not zone aligned\n",
603 disk->disk_name, p, (unsigned long long) from,
604 (unsigned long long) size);
605 continue;
608 part = add_partition(disk, p, from, size,
609 state->parts[p].flags,
610 &state->parts[p].info);
611 if (IS_ERR(part)) {
612 printk(KERN_ERR " %s: p%d could not be added: %ld\n",
613 disk->disk_name, p, -PTR_ERR(part));
614 continue;
616 #ifdef CONFIG_BLK_DEV_MD
617 if (state->parts[p].flags & ADDPART_FLAG_RAID)
618 md_autodetect_dev(part_to_dev(part)->devt);
619 #endif
621 free_partitions(state);
622 return 0;
625 int invalidate_partitions(struct gendisk *disk, struct block_device *bdev)
627 int res;
629 if (!bdev->bd_invalidated)
630 return 0;
632 res = drop_partitions(disk, bdev);
633 if (res)
634 return res;
636 set_capacity(disk, 0);
637 check_disk_size_change(disk, bdev);
638 bdev->bd_invalidated = 0;
639 /* tell userspace that the media / partition table may have changed */
640 kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
642 return 0;
645 unsigned char *read_dev_sector(struct block_device *bdev, sector_t n, Sector *p)
647 struct address_space *mapping = bdev->bd_inode->i_mapping;
648 struct page *page;
650 page = read_mapping_page(mapping, (pgoff_t)(n >> (PAGE_SHIFT-9)), NULL);
651 if (!IS_ERR(page)) {
652 if (PageError(page))
653 goto fail;
654 p->v = page;
655 return (unsigned char *)page_address(page) + ((n & ((1 << (PAGE_SHIFT - 9)) - 1)) << 9);
656 fail:
657 put_page(page);
659 p->v = NULL;
660 return NULL;
663 EXPORT_SYMBOL(read_dev_sector);