thermal: exynos: Add TMU support for Exynos7 SoC
[linux-2.6/btrfs-unstable.git] / include / linux / crypto.h
blob9c8776d0ada87bcf9fa70bc401ce69e336b93d74
1 /*
2 * Scatterlist Cryptographic API.
4 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
5 * Copyright (c) 2002 David S. Miller (davem@redhat.com)
6 * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
8 * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
9 * and Nettle, by Niels Möller.
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the Free
13 * Software Foundation; either version 2 of the License, or (at your option)
14 * any later version.
17 #ifndef _LINUX_CRYPTO_H
18 #define _LINUX_CRYPTO_H
20 #include <linux/atomic.h>
21 #include <linux/kernel.h>
22 #include <linux/list.h>
23 #include <linux/bug.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
29 * Autoloaded crypto modules should only use a prefixed name to avoid allowing
30 * arbitrary modules to be loaded. Loading from userspace may still need the
31 * unprefixed names, so retains those aliases as well.
32 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
33 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
34 * expands twice on the same line. Instead, use a separate base name for the
35 * alias.
37 #define MODULE_ALIAS_CRYPTO(name) \
38 __MODULE_INFO(alias, alias_userspace, name); \
39 __MODULE_INFO(alias, alias_crypto, "crypto-" name)
42 * Algorithm masks and types.
44 #define CRYPTO_ALG_TYPE_MASK 0x0000000f
45 #define CRYPTO_ALG_TYPE_CIPHER 0x00000001
46 #define CRYPTO_ALG_TYPE_COMPRESS 0x00000002
47 #define CRYPTO_ALG_TYPE_AEAD 0x00000003
48 #define CRYPTO_ALG_TYPE_BLKCIPHER 0x00000004
49 #define CRYPTO_ALG_TYPE_ABLKCIPHER 0x00000005
50 #define CRYPTO_ALG_TYPE_GIVCIPHER 0x00000006
51 #define CRYPTO_ALG_TYPE_DIGEST 0x00000008
52 #define CRYPTO_ALG_TYPE_HASH 0x00000008
53 #define CRYPTO_ALG_TYPE_SHASH 0x00000009
54 #define CRYPTO_ALG_TYPE_AHASH 0x0000000a
55 #define CRYPTO_ALG_TYPE_RNG 0x0000000c
56 #define CRYPTO_ALG_TYPE_PCOMPRESS 0x0000000f
58 #define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e
59 #define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000c
60 #define CRYPTO_ALG_TYPE_BLKCIPHER_MASK 0x0000000c
62 #define CRYPTO_ALG_LARVAL 0x00000010
63 #define CRYPTO_ALG_DEAD 0x00000020
64 #define CRYPTO_ALG_DYING 0x00000040
65 #define CRYPTO_ALG_ASYNC 0x00000080
68 * Set this bit if and only if the algorithm requires another algorithm of
69 * the same type to handle corner cases.
71 #define CRYPTO_ALG_NEED_FALLBACK 0x00000100
74 * This bit is set for symmetric key ciphers that have already been wrapped
75 * with a generic IV generator to prevent them from being wrapped again.
77 #define CRYPTO_ALG_GENIV 0x00000200
80 * Set if the algorithm has passed automated run-time testing. Note that
81 * if there is no run-time testing for a given algorithm it is considered
82 * to have passed.
85 #define CRYPTO_ALG_TESTED 0x00000400
88 * Set if the algorithm is an instance that is build from templates.
90 #define CRYPTO_ALG_INSTANCE 0x00000800
92 /* Set this bit if the algorithm provided is hardware accelerated but
93 * not available to userspace via instruction set or so.
95 #define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000
98 * Transform masks and values (for crt_flags).
100 #define CRYPTO_TFM_REQ_MASK 0x000fff00
101 #define CRYPTO_TFM_RES_MASK 0xfff00000
103 #define CRYPTO_TFM_REQ_WEAK_KEY 0x00000100
104 #define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200
105 #define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400
106 #define CRYPTO_TFM_RES_WEAK_KEY 0x00100000
107 #define CRYPTO_TFM_RES_BAD_KEY_LEN 0x00200000
108 #define CRYPTO_TFM_RES_BAD_KEY_SCHED 0x00400000
109 #define CRYPTO_TFM_RES_BAD_BLOCK_LEN 0x00800000
110 #define CRYPTO_TFM_RES_BAD_FLAGS 0x01000000
113 * Miscellaneous stuff.
115 #define CRYPTO_MAX_ALG_NAME 64
118 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
119 * declaration) is used to ensure that the crypto_tfm context structure is
120 * aligned correctly for the given architecture so that there are no alignment
121 * faults for C data types. In particular, this is required on platforms such
122 * as arm where pointers are 32-bit aligned but there are data types such as
123 * u64 which require 64-bit alignment.
125 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
127 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
129 struct scatterlist;
130 struct crypto_ablkcipher;
131 struct crypto_async_request;
132 struct crypto_aead;
133 struct crypto_blkcipher;
134 struct crypto_hash;
135 struct crypto_rng;
136 struct crypto_tfm;
137 struct crypto_type;
138 struct aead_givcrypt_request;
139 struct skcipher_givcrypt_request;
141 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
144 * DOC: Block Cipher Context Data Structures
146 * These data structures define the operating context for each block cipher
147 * type.
150 struct crypto_async_request {
151 struct list_head list;
152 crypto_completion_t complete;
153 void *data;
154 struct crypto_tfm *tfm;
156 u32 flags;
159 struct ablkcipher_request {
160 struct crypto_async_request base;
162 unsigned int nbytes;
164 void *info;
166 struct scatterlist *src;
167 struct scatterlist *dst;
169 void *__ctx[] CRYPTO_MINALIGN_ATTR;
173 * struct aead_request - AEAD request
174 * @base: Common attributes for async crypto requests
175 * @assoclen: Length in bytes of associated data for authentication
176 * @cryptlen: Length of data to be encrypted or decrypted
177 * @iv: Initialisation vector
178 * @assoc: Associated data
179 * @src: Source data
180 * @dst: Destination data
181 * @__ctx: Start of private context data
183 struct aead_request {
184 struct crypto_async_request base;
186 unsigned int assoclen;
187 unsigned int cryptlen;
189 u8 *iv;
191 struct scatterlist *assoc;
192 struct scatterlist *src;
193 struct scatterlist *dst;
195 void *__ctx[] CRYPTO_MINALIGN_ATTR;
198 struct blkcipher_desc {
199 struct crypto_blkcipher *tfm;
200 void *info;
201 u32 flags;
204 struct cipher_desc {
205 struct crypto_tfm *tfm;
206 void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
207 unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst,
208 const u8 *src, unsigned int nbytes);
209 void *info;
212 struct hash_desc {
213 struct crypto_hash *tfm;
214 u32 flags;
218 * DOC: Block Cipher Algorithm Definitions
220 * These data structures define modular crypto algorithm implementations,
221 * managed via crypto_register_alg() and crypto_unregister_alg().
225 * struct ablkcipher_alg - asynchronous block cipher definition
226 * @min_keysize: Minimum key size supported by the transformation. This is the
227 * smallest key length supported by this transformation algorithm.
228 * This must be set to one of the pre-defined values as this is
229 * not hardware specific. Possible values for this field can be
230 * found via git grep "_MIN_KEY_SIZE" include/crypto/
231 * @max_keysize: Maximum key size supported by the transformation. This is the
232 * largest key length supported by this transformation algorithm.
233 * This must be set to one of the pre-defined values as this is
234 * not hardware specific. Possible values for this field can be
235 * found via git grep "_MAX_KEY_SIZE" include/crypto/
236 * @setkey: Set key for the transformation. This function is used to either
237 * program a supplied key into the hardware or store the key in the
238 * transformation context for programming it later. Note that this
239 * function does modify the transformation context. This function can
240 * be called multiple times during the existence of the transformation
241 * object, so one must make sure the key is properly reprogrammed into
242 * the hardware. This function is also responsible for checking the key
243 * length for validity. In case a software fallback was put in place in
244 * the @cra_init call, this function might need to use the fallback if
245 * the algorithm doesn't support all of the key sizes.
246 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
247 * the supplied scatterlist containing the blocks of data. The crypto
248 * API consumer is responsible for aligning the entries of the
249 * scatterlist properly and making sure the chunks are correctly
250 * sized. In case a software fallback was put in place in the
251 * @cra_init call, this function might need to use the fallback if
252 * the algorithm doesn't support all of the key sizes. In case the
253 * key was stored in transformation context, the key might need to be
254 * re-programmed into the hardware in this function. This function
255 * shall not modify the transformation context, as this function may
256 * be called in parallel with the same transformation object.
257 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
258 * and the conditions are exactly the same.
259 * @givencrypt: Update the IV for encryption. With this function, a cipher
260 * implementation may provide the function on how to update the IV
261 * for encryption.
262 * @givdecrypt: Update the IV for decryption. This is the reverse of
263 * @givencrypt .
264 * @geniv: The transformation implementation may use an "IV generator" provided
265 * by the kernel crypto API. Several use cases have a predefined
266 * approach how IVs are to be updated. For such use cases, the kernel
267 * crypto API provides ready-to-use implementations that can be
268 * referenced with this variable.
269 * @ivsize: IV size applicable for transformation. The consumer must provide an
270 * IV of exactly that size to perform the encrypt or decrypt operation.
272 * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
273 * mandatory and must be filled.
275 struct ablkcipher_alg {
276 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
277 unsigned int keylen);
278 int (*encrypt)(struct ablkcipher_request *req);
279 int (*decrypt)(struct ablkcipher_request *req);
280 int (*givencrypt)(struct skcipher_givcrypt_request *req);
281 int (*givdecrypt)(struct skcipher_givcrypt_request *req);
283 const char *geniv;
285 unsigned int min_keysize;
286 unsigned int max_keysize;
287 unsigned int ivsize;
291 * struct aead_alg - AEAD cipher definition
292 * @maxauthsize: Set the maximum authentication tag size supported by the
293 * transformation. A transformation may support smaller tag sizes.
294 * As the authentication tag is a message digest to ensure the
295 * integrity of the encrypted data, a consumer typically wants the
296 * largest authentication tag possible as defined by this
297 * variable.
298 * @setauthsize: Set authentication size for the AEAD transformation. This
299 * function is used to specify the consumer requested size of the
300 * authentication tag to be either generated by the transformation
301 * during encryption or the size of the authentication tag to be
302 * supplied during the decryption operation. This function is also
303 * responsible for checking the authentication tag size for
304 * validity.
305 * @setkey: see struct ablkcipher_alg
306 * @encrypt: see struct ablkcipher_alg
307 * @decrypt: see struct ablkcipher_alg
308 * @givencrypt: see struct ablkcipher_alg
309 * @givdecrypt: see struct ablkcipher_alg
310 * @geniv: see struct ablkcipher_alg
311 * @ivsize: see struct ablkcipher_alg
313 * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
314 * mandatory and must be filled.
316 struct aead_alg {
317 int (*setkey)(struct crypto_aead *tfm, const u8 *key,
318 unsigned int keylen);
319 int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize);
320 int (*encrypt)(struct aead_request *req);
321 int (*decrypt)(struct aead_request *req);
322 int (*givencrypt)(struct aead_givcrypt_request *req);
323 int (*givdecrypt)(struct aead_givcrypt_request *req);
325 const char *geniv;
327 unsigned int ivsize;
328 unsigned int maxauthsize;
332 * struct blkcipher_alg - synchronous block cipher definition
333 * @min_keysize: see struct ablkcipher_alg
334 * @max_keysize: see struct ablkcipher_alg
335 * @setkey: see struct ablkcipher_alg
336 * @encrypt: see struct ablkcipher_alg
337 * @decrypt: see struct ablkcipher_alg
338 * @geniv: see struct ablkcipher_alg
339 * @ivsize: see struct ablkcipher_alg
341 * All fields except @geniv and @ivsize are mandatory and must be filled.
343 struct blkcipher_alg {
344 int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
345 unsigned int keylen);
346 int (*encrypt)(struct blkcipher_desc *desc,
347 struct scatterlist *dst, struct scatterlist *src,
348 unsigned int nbytes);
349 int (*decrypt)(struct blkcipher_desc *desc,
350 struct scatterlist *dst, struct scatterlist *src,
351 unsigned int nbytes);
353 const char *geniv;
355 unsigned int min_keysize;
356 unsigned int max_keysize;
357 unsigned int ivsize;
361 * struct cipher_alg - single-block symmetric ciphers definition
362 * @cia_min_keysize: Minimum key size supported by the transformation. This is
363 * the smallest key length supported by this transformation
364 * algorithm. This must be set to one of the pre-defined
365 * values as this is not hardware specific. Possible values
366 * for this field can be found via git grep "_MIN_KEY_SIZE"
367 * include/crypto/
368 * @cia_max_keysize: Maximum key size supported by the transformation. This is
369 * the largest key length supported by this transformation
370 * algorithm. This must be set to one of the pre-defined values
371 * as this is not hardware specific. Possible values for this
372 * field can be found via git grep "_MAX_KEY_SIZE"
373 * include/crypto/
374 * @cia_setkey: Set key for the transformation. This function is used to either
375 * program a supplied key into the hardware or store the key in the
376 * transformation context for programming it later. Note that this
377 * function does modify the transformation context. This function
378 * can be called multiple times during the existence of the
379 * transformation object, so one must make sure the key is properly
380 * reprogrammed into the hardware. This function is also
381 * responsible for checking the key length for validity.
382 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
383 * single block of data, which must be @cra_blocksize big. This
384 * always operates on a full @cra_blocksize and it is not possible
385 * to encrypt a block of smaller size. The supplied buffers must
386 * therefore also be at least of @cra_blocksize size. Both the
387 * input and output buffers are always aligned to @cra_alignmask.
388 * In case either of the input or output buffer supplied by user
389 * of the crypto API is not aligned to @cra_alignmask, the crypto
390 * API will re-align the buffers. The re-alignment means that a
391 * new buffer will be allocated, the data will be copied into the
392 * new buffer, then the processing will happen on the new buffer,
393 * then the data will be copied back into the original buffer and
394 * finally the new buffer will be freed. In case a software
395 * fallback was put in place in the @cra_init call, this function
396 * might need to use the fallback if the algorithm doesn't support
397 * all of the key sizes. In case the key was stored in
398 * transformation context, the key might need to be re-programmed
399 * into the hardware in this function. This function shall not
400 * modify the transformation context, as this function may be
401 * called in parallel with the same transformation object.
402 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
403 * @cia_encrypt, and the conditions are exactly the same.
405 * All fields are mandatory and must be filled.
407 struct cipher_alg {
408 unsigned int cia_min_keysize;
409 unsigned int cia_max_keysize;
410 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
411 unsigned int keylen);
412 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
413 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
416 struct compress_alg {
417 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
418 unsigned int slen, u8 *dst, unsigned int *dlen);
419 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
420 unsigned int slen, u8 *dst, unsigned int *dlen);
424 * struct rng_alg - random number generator definition
425 * @rng_make_random: The function defined by this variable obtains a random
426 * number. The random number generator transform must generate
427 * the random number out of the context provided with this
428 * call.
429 * @rng_reset: Reset of the random number generator by clearing the entire state.
430 * With the invocation of this function call, the random number
431 * generator shall completely reinitialize its state. If the random
432 * number generator requires a seed for setting up a new state,
433 * the seed must be provided by the consumer while invoking this
434 * function. The required size of the seed is defined with
435 * @seedsize .
436 * @seedsize: The seed size required for a random number generator
437 * initialization defined with this variable. Some random number
438 * generators like the SP800-90A DRBG does not require a seed as the
439 * seeding is implemented internally without the need of support by
440 * the consumer. In this case, the seed size is set to zero.
442 struct rng_alg {
443 int (*rng_make_random)(struct crypto_rng *tfm, u8 *rdata,
444 unsigned int dlen);
445 int (*rng_reset)(struct crypto_rng *tfm, u8 *seed, unsigned int slen);
447 unsigned int seedsize;
451 #define cra_ablkcipher cra_u.ablkcipher
452 #define cra_aead cra_u.aead
453 #define cra_blkcipher cra_u.blkcipher
454 #define cra_cipher cra_u.cipher
455 #define cra_compress cra_u.compress
456 #define cra_rng cra_u.rng
459 * struct crypto_alg - definition of a cryptograpic cipher algorithm
460 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
461 * CRYPTO_ALG_* flags for the flags which go in here. Those are
462 * used for fine-tuning the description of the transformation
463 * algorithm.
464 * @cra_blocksize: Minimum block size of this transformation. The size in bytes
465 * of the smallest possible unit which can be transformed with
466 * this algorithm. The users must respect this value.
467 * In case of HASH transformation, it is possible for a smaller
468 * block than @cra_blocksize to be passed to the crypto API for
469 * transformation, in case of any other transformation type, an
470 * error will be returned upon any attempt to transform smaller
471 * than @cra_blocksize chunks.
472 * @cra_ctxsize: Size of the operational context of the transformation. This
473 * value informs the kernel crypto API about the memory size
474 * needed to be allocated for the transformation context.
475 * @cra_alignmask: Alignment mask for the input and output data buffer. The data
476 * buffer containing the input data for the algorithm must be
477 * aligned to this alignment mask. The data buffer for the
478 * output data must be aligned to this alignment mask. Note that
479 * the Crypto API will do the re-alignment in software, but
480 * only under special conditions and there is a performance hit.
481 * The re-alignment happens at these occasions for different
482 * @cra_u types: cipher -- For both input data and output data
483 * buffer; ahash -- For output hash destination buf; shash --
484 * For output hash destination buf.
485 * This is needed on hardware which is flawed by design and
486 * cannot pick data from arbitrary addresses.
487 * @cra_priority: Priority of this transformation implementation. In case
488 * multiple transformations with same @cra_name are available to
489 * the Crypto API, the kernel will use the one with highest
490 * @cra_priority.
491 * @cra_name: Generic name (usable by multiple implementations) of the
492 * transformation algorithm. This is the name of the transformation
493 * itself. This field is used by the kernel when looking up the
494 * providers of particular transformation.
495 * @cra_driver_name: Unique name of the transformation provider. This is the
496 * name of the provider of the transformation. This can be any
497 * arbitrary value, but in the usual case, this contains the
498 * name of the chip or provider and the name of the
499 * transformation algorithm.
500 * @cra_type: Type of the cryptographic transformation. This is a pointer to
501 * struct crypto_type, which implements callbacks common for all
502 * trasnformation types. There are multiple options:
503 * &crypto_blkcipher_type, &crypto_ablkcipher_type,
504 * &crypto_ahash_type, &crypto_aead_type, &crypto_rng_type.
505 * This field might be empty. In that case, there are no common
506 * callbacks. This is the case for: cipher, compress, shash.
507 * @cra_u: Callbacks implementing the transformation. This is a union of
508 * multiple structures. Depending on the type of transformation selected
509 * by @cra_type and @cra_flags above, the associated structure must be
510 * filled with callbacks. This field might be empty. This is the case
511 * for ahash, shash.
512 * @cra_init: Initialize the cryptographic transformation object. This function
513 * is used to initialize the cryptographic transformation object.
514 * This function is called only once at the instantiation time, right
515 * after the transformation context was allocated. In case the
516 * cryptographic hardware has some special requirements which need to
517 * be handled by software, this function shall check for the precise
518 * requirement of the transformation and put any software fallbacks
519 * in place.
520 * @cra_exit: Deinitialize the cryptographic transformation object. This is a
521 * counterpart to @cra_init, used to remove various changes set in
522 * @cra_init.
523 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
524 * @cra_list: internally used
525 * @cra_users: internally used
526 * @cra_refcnt: internally used
527 * @cra_destroy: internally used
529 * The struct crypto_alg describes a generic Crypto API algorithm and is common
530 * for all of the transformations. Any variable not documented here shall not
531 * be used by a cipher implementation as it is internal to the Crypto API.
533 struct crypto_alg {
534 struct list_head cra_list;
535 struct list_head cra_users;
537 u32 cra_flags;
538 unsigned int cra_blocksize;
539 unsigned int cra_ctxsize;
540 unsigned int cra_alignmask;
542 int cra_priority;
543 atomic_t cra_refcnt;
545 char cra_name[CRYPTO_MAX_ALG_NAME];
546 char cra_driver_name[CRYPTO_MAX_ALG_NAME];
548 const struct crypto_type *cra_type;
550 union {
551 struct ablkcipher_alg ablkcipher;
552 struct aead_alg aead;
553 struct blkcipher_alg blkcipher;
554 struct cipher_alg cipher;
555 struct compress_alg compress;
556 struct rng_alg rng;
557 } cra_u;
559 int (*cra_init)(struct crypto_tfm *tfm);
560 void (*cra_exit)(struct crypto_tfm *tfm);
561 void (*cra_destroy)(struct crypto_alg *alg);
563 struct module *cra_module;
567 * Algorithm registration interface.
569 int crypto_register_alg(struct crypto_alg *alg);
570 int crypto_unregister_alg(struct crypto_alg *alg);
571 int crypto_register_algs(struct crypto_alg *algs, int count);
572 int crypto_unregister_algs(struct crypto_alg *algs, int count);
575 * Algorithm query interface.
577 int crypto_has_alg(const char *name, u32 type, u32 mask);
580 * Transforms: user-instantiated objects which encapsulate algorithms
581 * and core processing logic. Managed via crypto_alloc_*() and
582 * crypto_free_*(), as well as the various helpers below.
585 struct ablkcipher_tfm {
586 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
587 unsigned int keylen);
588 int (*encrypt)(struct ablkcipher_request *req);
589 int (*decrypt)(struct ablkcipher_request *req);
590 int (*givencrypt)(struct skcipher_givcrypt_request *req);
591 int (*givdecrypt)(struct skcipher_givcrypt_request *req);
593 struct crypto_ablkcipher *base;
595 unsigned int ivsize;
596 unsigned int reqsize;
599 struct aead_tfm {
600 int (*setkey)(struct crypto_aead *tfm, const u8 *key,
601 unsigned int keylen);
602 int (*encrypt)(struct aead_request *req);
603 int (*decrypt)(struct aead_request *req);
604 int (*givencrypt)(struct aead_givcrypt_request *req);
605 int (*givdecrypt)(struct aead_givcrypt_request *req);
607 struct crypto_aead *base;
609 unsigned int ivsize;
610 unsigned int authsize;
611 unsigned int reqsize;
614 struct blkcipher_tfm {
615 void *iv;
616 int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
617 unsigned int keylen);
618 int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
619 struct scatterlist *src, unsigned int nbytes);
620 int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
621 struct scatterlist *src, unsigned int nbytes);
624 struct cipher_tfm {
625 int (*cit_setkey)(struct crypto_tfm *tfm,
626 const u8 *key, unsigned int keylen);
627 void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
628 void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
631 struct hash_tfm {
632 int (*init)(struct hash_desc *desc);
633 int (*update)(struct hash_desc *desc,
634 struct scatterlist *sg, unsigned int nsg);
635 int (*final)(struct hash_desc *desc, u8 *out);
636 int (*digest)(struct hash_desc *desc, struct scatterlist *sg,
637 unsigned int nsg, u8 *out);
638 int (*setkey)(struct crypto_hash *tfm, const u8 *key,
639 unsigned int keylen);
640 unsigned int digestsize;
643 struct compress_tfm {
644 int (*cot_compress)(struct crypto_tfm *tfm,
645 const u8 *src, unsigned int slen,
646 u8 *dst, unsigned int *dlen);
647 int (*cot_decompress)(struct crypto_tfm *tfm,
648 const u8 *src, unsigned int slen,
649 u8 *dst, unsigned int *dlen);
652 struct rng_tfm {
653 int (*rng_gen_random)(struct crypto_rng *tfm, u8 *rdata,
654 unsigned int dlen);
655 int (*rng_reset)(struct crypto_rng *tfm, u8 *seed, unsigned int slen);
658 #define crt_ablkcipher crt_u.ablkcipher
659 #define crt_aead crt_u.aead
660 #define crt_blkcipher crt_u.blkcipher
661 #define crt_cipher crt_u.cipher
662 #define crt_hash crt_u.hash
663 #define crt_compress crt_u.compress
664 #define crt_rng crt_u.rng
666 struct crypto_tfm {
668 u32 crt_flags;
670 union {
671 struct ablkcipher_tfm ablkcipher;
672 struct aead_tfm aead;
673 struct blkcipher_tfm blkcipher;
674 struct cipher_tfm cipher;
675 struct hash_tfm hash;
676 struct compress_tfm compress;
677 struct rng_tfm rng;
678 } crt_u;
680 void (*exit)(struct crypto_tfm *tfm);
682 struct crypto_alg *__crt_alg;
684 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
687 struct crypto_ablkcipher {
688 struct crypto_tfm base;
691 struct crypto_aead {
692 struct crypto_tfm base;
695 struct crypto_blkcipher {
696 struct crypto_tfm base;
699 struct crypto_cipher {
700 struct crypto_tfm base;
703 struct crypto_comp {
704 struct crypto_tfm base;
707 struct crypto_hash {
708 struct crypto_tfm base;
711 struct crypto_rng {
712 struct crypto_tfm base;
715 enum {
716 CRYPTOA_UNSPEC,
717 CRYPTOA_ALG,
718 CRYPTOA_TYPE,
719 CRYPTOA_U32,
720 __CRYPTOA_MAX,
723 #define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
725 /* Maximum number of (rtattr) parameters for each template. */
726 #define CRYPTO_MAX_ATTRS 32
728 struct crypto_attr_alg {
729 char name[CRYPTO_MAX_ALG_NAME];
732 struct crypto_attr_type {
733 u32 type;
734 u32 mask;
737 struct crypto_attr_u32 {
738 u32 num;
742 * Transform user interface.
745 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
746 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
748 static inline void crypto_free_tfm(struct crypto_tfm *tfm)
750 return crypto_destroy_tfm(tfm, tfm);
753 int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
756 * Transform helpers which query the underlying algorithm.
758 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
760 return tfm->__crt_alg->cra_name;
763 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
765 return tfm->__crt_alg->cra_driver_name;
768 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
770 return tfm->__crt_alg->cra_priority;
773 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
775 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
778 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
780 return tfm->__crt_alg->cra_blocksize;
783 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
785 return tfm->__crt_alg->cra_alignmask;
788 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
790 return tfm->crt_flags;
793 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
795 tfm->crt_flags |= flags;
798 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
800 tfm->crt_flags &= ~flags;
803 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
805 return tfm->__crt_ctx;
808 static inline unsigned int crypto_tfm_ctx_alignment(void)
810 struct crypto_tfm *tfm;
811 return __alignof__(tfm->__crt_ctx);
815 * API wrappers.
817 static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast(
818 struct crypto_tfm *tfm)
820 return (struct crypto_ablkcipher *)tfm;
823 static inline u32 crypto_skcipher_type(u32 type)
825 type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
826 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
827 return type;
830 static inline u32 crypto_skcipher_mask(u32 mask)
832 mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
833 mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK;
834 return mask;
838 * DOC: Asynchronous Block Cipher API
840 * Asynchronous block cipher API is used with the ciphers of type
841 * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
843 * Asynchronous cipher operations imply that the function invocation for a
844 * cipher request returns immediately before the completion of the operation.
845 * The cipher request is scheduled as a separate kernel thread and therefore
846 * load-balanced on the different CPUs via the process scheduler. To allow
847 * the kernel crypto API to inform the caller about the completion of a cipher
848 * request, the caller must provide a callback function. That function is
849 * invoked with the cipher handle when the request completes.
851 * To support the asynchronous operation, additional information than just the
852 * cipher handle must be supplied to the kernel crypto API. That additional
853 * information is given by filling in the ablkcipher_request data structure.
855 * For the asynchronous block cipher API, the state is maintained with the tfm
856 * cipher handle. A single tfm can be used across multiple calls and in
857 * parallel. For asynchronous block cipher calls, context data supplied and
858 * only used by the caller can be referenced the request data structure in
859 * addition to the IV used for the cipher request. The maintenance of such
860 * state information would be important for a crypto driver implementer to
861 * have, because when calling the callback function upon completion of the
862 * cipher operation, that callback function may need some information about
863 * which operation just finished if it invoked multiple in parallel. This
864 * state information is unused by the kernel crypto API.
868 * crypto_alloc_ablkcipher() - allocate asynchronous block cipher handle
869 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
870 * ablkcipher cipher
871 * @type: specifies the type of the cipher
872 * @mask: specifies the mask for the cipher
874 * Allocate a cipher handle for an ablkcipher. The returned struct
875 * crypto_ablkcipher is the cipher handle that is required for any subsequent
876 * API invocation for that ablkcipher.
878 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
879 * of an error, PTR_ERR() returns the error code.
881 struct crypto_ablkcipher *crypto_alloc_ablkcipher(const char *alg_name,
882 u32 type, u32 mask);
884 static inline struct crypto_tfm *crypto_ablkcipher_tfm(
885 struct crypto_ablkcipher *tfm)
887 return &tfm->base;
891 * crypto_free_ablkcipher() - zeroize and free cipher handle
892 * @tfm: cipher handle to be freed
894 static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
896 crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
900 * crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
901 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
902 * ablkcipher
903 * @type: specifies the type of the cipher
904 * @mask: specifies the mask for the cipher
906 * Return: true when the ablkcipher is known to the kernel crypto API; false
907 * otherwise
909 static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
910 u32 mask)
912 return crypto_has_alg(alg_name, crypto_skcipher_type(type),
913 crypto_skcipher_mask(mask));
916 static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
917 struct crypto_ablkcipher *tfm)
919 return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
923 * crypto_ablkcipher_ivsize() - obtain IV size
924 * @tfm: cipher handle
926 * The size of the IV for the ablkcipher referenced by the cipher handle is
927 * returned. This IV size may be zero if the cipher does not need an IV.
929 * Return: IV size in bytes
931 static inline unsigned int crypto_ablkcipher_ivsize(
932 struct crypto_ablkcipher *tfm)
934 return crypto_ablkcipher_crt(tfm)->ivsize;
938 * crypto_ablkcipher_blocksize() - obtain block size of cipher
939 * @tfm: cipher handle
941 * The block size for the ablkcipher referenced with the cipher handle is
942 * returned. The caller may use that information to allocate appropriate
943 * memory for the data returned by the encryption or decryption operation
945 * Return: block size of cipher
947 static inline unsigned int crypto_ablkcipher_blocksize(
948 struct crypto_ablkcipher *tfm)
950 return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm));
953 static inline unsigned int crypto_ablkcipher_alignmask(
954 struct crypto_ablkcipher *tfm)
956 return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm));
959 static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm)
961 return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm));
964 static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm,
965 u32 flags)
967 crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags);
970 static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
971 u32 flags)
973 crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
977 * crypto_ablkcipher_setkey() - set key for cipher
978 * @tfm: cipher handle
979 * @key: buffer holding the key
980 * @keylen: length of the key in bytes
982 * The caller provided key is set for the ablkcipher referenced by the cipher
983 * handle.
985 * Note, the key length determines the cipher type. Many block ciphers implement
986 * different cipher modes depending on the key size, such as AES-128 vs AES-192
987 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
988 * is performed.
990 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
992 static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
993 const u8 *key, unsigned int keylen)
995 struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm);
997 return crt->setkey(crt->base, key, keylen);
1001 * crypto_ablkcipher_reqtfm() - obtain cipher handle from request
1002 * @req: ablkcipher_request out of which the cipher handle is to be obtained
1004 * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
1005 * data structure.
1007 * Return: crypto_ablkcipher handle
1009 static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
1010 struct ablkcipher_request *req)
1012 return __crypto_ablkcipher_cast(req->base.tfm);
1016 * crypto_ablkcipher_encrypt() - encrypt plaintext
1017 * @req: reference to the ablkcipher_request handle that holds all information
1018 * needed to perform the cipher operation
1020 * Encrypt plaintext data using the ablkcipher_request handle. That data
1021 * structure and how it is filled with data is discussed with the
1022 * ablkcipher_request_* functions.
1024 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1026 static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
1028 struct ablkcipher_tfm *crt =
1029 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
1030 return crt->encrypt(req);
1034 * crypto_ablkcipher_decrypt() - decrypt ciphertext
1035 * @req: reference to the ablkcipher_request handle that holds all information
1036 * needed to perform the cipher operation
1038 * Decrypt ciphertext data using the ablkcipher_request handle. That data
1039 * structure and how it is filled with data is discussed with the
1040 * ablkcipher_request_* functions.
1042 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1044 static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
1046 struct ablkcipher_tfm *crt =
1047 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
1048 return crt->decrypt(req);
1052 * DOC: Asynchronous Cipher Request Handle
1054 * The ablkcipher_request data structure contains all pointers to data
1055 * required for the asynchronous cipher operation. This includes the cipher
1056 * handle (which can be used by multiple ablkcipher_request instances), pointer
1057 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
1058 * as a handle to the ablkcipher_request_* API calls in a similar way as
1059 * ablkcipher handle to the crypto_ablkcipher_* API calls.
1063 * crypto_ablkcipher_reqsize() - obtain size of the request data structure
1064 * @tfm: cipher handle
1066 * Return: number of bytes
1068 static inline unsigned int crypto_ablkcipher_reqsize(
1069 struct crypto_ablkcipher *tfm)
1071 return crypto_ablkcipher_crt(tfm)->reqsize;
1075 * ablkcipher_request_set_tfm() - update cipher handle reference in request
1076 * @req: request handle to be modified
1077 * @tfm: cipher handle that shall be added to the request handle
1079 * Allow the caller to replace the existing ablkcipher handle in the request
1080 * data structure with a different one.
1082 static inline void ablkcipher_request_set_tfm(
1083 struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
1085 req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base);
1088 static inline struct ablkcipher_request *ablkcipher_request_cast(
1089 struct crypto_async_request *req)
1091 return container_of(req, struct ablkcipher_request, base);
1095 * ablkcipher_request_alloc() - allocate request data structure
1096 * @tfm: cipher handle to be registered with the request
1097 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
1099 * Allocate the request data structure that must be used with the ablkcipher
1100 * encrypt and decrypt API calls. During the allocation, the provided ablkcipher
1101 * handle is registered in the request data structure.
1103 * Return: allocated request handle in case of success; IS_ERR() is true in case
1104 * of an error, PTR_ERR() returns the error code.
1106 static inline struct ablkcipher_request *ablkcipher_request_alloc(
1107 struct crypto_ablkcipher *tfm, gfp_t gfp)
1109 struct ablkcipher_request *req;
1111 req = kmalloc(sizeof(struct ablkcipher_request) +
1112 crypto_ablkcipher_reqsize(tfm), gfp);
1114 if (likely(req))
1115 ablkcipher_request_set_tfm(req, tfm);
1117 return req;
1121 * ablkcipher_request_free() - zeroize and free request data structure
1122 * @req: request data structure cipher handle to be freed
1124 static inline void ablkcipher_request_free(struct ablkcipher_request *req)
1126 kzfree(req);
1130 * ablkcipher_request_set_callback() - set asynchronous callback function
1131 * @req: request handle
1132 * @flags: specify zero or an ORing of the flags
1133 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
1134 * increase the wait queue beyond the initial maximum size;
1135 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
1136 * @compl: callback function pointer to be registered with the request handle
1137 * @data: The data pointer refers to memory that is not used by the kernel
1138 * crypto API, but provided to the callback function for it to use. Here,
1139 * the caller can provide a reference to memory the callback function can
1140 * operate on. As the callback function is invoked asynchronously to the
1141 * related functionality, it may need to access data structures of the
1142 * related functionality which can be referenced using this pointer. The
1143 * callback function can access the memory via the "data" field in the
1144 * crypto_async_request data structure provided to the callback function.
1146 * This function allows setting the callback function that is triggered once the
1147 * cipher operation completes.
1149 * The callback function is registered with the ablkcipher_request handle and
1150 * must comply with the following template:
1152 * void callback_function(struct crypto_async_request *req, int error)
1154 static inline void ablkcipher_request_set_callback(
1155 struct ablkcipher_request *req,
1156 u32 flags, crypto_completion_t compl, void *data)
1158 req->base.complete = compl;
1159 req->base.data = data;
1160 req->base.flags = flags;
1164 * ablkcipher_request_set_crypt() - set data buffers
1165 * @req: request handle
1166 * @src: source scatter / gather list
1167 * @dst: destination scatter / gather list
1168 * @nbytes: number of bytes to process from @src
1169 * @iv: IV for the cipher operation which must comply with the IV size defined
1170 * by crypto_ablkcipher_ivsize
1172 * This function allows setting of the source data and destination data
1173 * scatter / gather lists.
1175 * For encryption, the source is treated as the plaintext and the
1176 * destination is the ciphertext. For a decryption operation, the use is
1177 * reversed: the source is the ciphertext and the destination is the plaintext.
1179 static inline void ablkcipher_request_set_crypt(
1180 struct ablkcipher_request *req,
1181 struct scatterlist *src, struct scatterlist *dst,
1182 unsigned int nbytes, void *iv)
1184 req->src = src;
1185 req->dst = dst;
1186 req->nbytes = nbytes;
1187 req->info = iv;
1191 * DOC: Authenticated Encryption With Associated Data (AEAD) Cipher API
1193 * The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD
1194 * (listed as type "aead" in /proc/crypto)
1196 * The most prominent examples for this type of encryption is GCM and CCM.
1197 * However, the kernel supports other types of AEAD ciphers which are defined
1198 * with the following cipher string:
1200 * authenc(keyed message digest, block cipher)
1202 * For example: authenc(hmac(sha256), cbc(aes))
1204 * The example code provided for the asynchronous block cipher operation
1205 * applies here as well. Naturally all *ablkcipher* symbols must be exchanged
1206 * the *aead* pendants discussed in the following. In addtion, for the AEAD
1207 * operation, the aead_request_set_assoc function must be used to set the
1208 * pointer to the associated data memory location before performing the
1209 * encryption or decryption operation. In case of an encryption, the associated
1210 * data memory is filled during the encryption operation. For decryption, the
1211 * associated data memory must contain data that is used to verify the integrity
1212 * of the decrypted data. Another deviation from the asynchronous block cipher
1213 * operation is that the caller should explicitly check for -EBADMSG of the
1214 * crypto_aead_decrypt. That error indicates an authentication error, i.e.
1215 * a breach in the integrity of the message. In essence, that -EBADMSG error
1216 * code is the key bonus an AEAD cipher has over "standard" block chaining
1217 * modes.
1220 static inline struct crypto_aead *__crypto_aead_cast(struct crypto_tfm *tfm)
1222 return (struct crypto_aead *)tfm;
1226 * crypto_alloc_aead() - allocate AEAD cipher handle
1227 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1228 * AEAD cipher
1229 * @type: specifies the type of the cipher
1230 * @mask: specifies the mask for the cipher
1232 * Allocate a cipher handle for an AEAD. The returned struct
1233 * crypto_aead is the cipher handle that is required for any subsequent
1234 * API invocation for that AEAD.
1236 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1237 * of an error, PTR_ERR() returns the error code.
1239 struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask);
1241 static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm)
1243 return &tfm->base;
1247 * crypto_free_aead() - zeroize and free aead handle
1248 * @tfm: cipher handle to be freed
1250 static inline void crypto_free_aead(struct crypto_aead *tfm)
1252 crypto_free_tfm(crypto_aead_tfm(tfm));
1255 static inline struct aead_tfm *crypto_aead_crt(struct crypto_aead *tfm)
1257 return &crypto_aead_tfm(tfm)->crt_aead;
1261 * crypto_aead_ivsize() - obtain IV size
1262 * @tfm: cipher handle
1264 * The size of the IV for the aead referenced by the cipher handle is
1265 * returned. This IV size may be zero if the cipher does not need an IV.
1267 * Return: IV size in bytes
1269 static inline unsigned int crypto_aead_ivsize(struct crypto_aead *tfm)
1271 return crypto_aead_crt(tfm)->ivsize;
1275 * crypto_aead_authsize() - obtain maximum authentication data size
1276 * @tfm: cipher handle
1278 * The maximum size of the authentication data for the AEAD cipher referenced
1279 * by the AEAD cipher handle is returned. The authentication data size may be
1280 * zero if the cipher implements a hard-coded maximum.
1282 * The authentication data may also be known as "tag value".
1284 * Return: authentication data size / tag size in bytes
1286 static inline unsigned int crypto_aead_authsize(struct crypto_aead *tfm)
1288 return crypto_aead_crt(tfm)->authsize;
1292 * crypto_aead_blocksize() - obtain block size of cipher
1293 * @tfm: cipher handle
1295 * The block size for the AEAD referenced with the cipher handle is returned.
1296 * The caller may use that information to allocate appropriate memory for the
1297 * data returned by the encryption or decryption operation
1299 * Return: block size of cipher
1301 static inline unsigned int crypto_aead_blocksize(struct crypto_aead *tfm)
1303 return crypto_tfm_alg_blocksize(crypto_aead_tfm(tfm));
1306 static inline unsigned int crypto_aead_alignmask(struct crypto_aead *tfm)
1308 return crypto_tfm_alg_alignmask(crypto_aead_tfm(tfm));
1311 static inline u32 crypto_aead_get_flags(struct crypto_aead *tfm)
1313 return crypto_tfm_get_flags(crypto_aead_tfm(tfm));
1316 static inline void crypto_aead_set_flags(struct crypto_aead *tfm, u32 flags)
1318 crypto_tfm_set_flags(crypto_aead_tfm(tfm), flags);
1321 static inline void crypto_aead_clear_flags(struct crypto_aead *tfm, u32 flags)
1323 crypto_tfm_clear_flags(crypto_aead_tfm(tfm), flags);
1327 * crypto_aead_setkey() - set key for cipher
1328 * @tfm: cipher handle
1329 * @key: buffer holding the key
1330 * @keylen: length of the key in bytes
1332 * The caller provided key is set for the AEAD referenced by the cipher
1333 * handle.
1335 * Note, the key length determines the cipher type. Many block ciphers implement
1336 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1337 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1338 * is performed.
1340 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1342 static inline int crypto_aead_setkey(struct crypto_aead *tfm, const u8 *key,
1343 unsigned int keylen)
1345 struct aead_tfm *crt = crypto_aead_crt(tfm);
1347 return crt->setkey(crt->base, key, keylen);
1351 * crypto_aead_setauthsize() - set authentication data size
1352 * @tfm: cipher handle
1353 * @authsize: size of the authentication data / tag in bytes
1355 * Set the authentication data size / tag size. AEAD requires an authentication
1356 * tag (or MAC) in addition to the associated data.
1358 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1360 int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize);
1362 static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req)
1364 return __crypto_aead_cast(req->base.tfm);
1368 * crypto_aead_encrypt() - encrypt plaintext
1369 * @req: reference to the aead_request handle that holds all information
1370 * needed to perform the cipher operation
1372 * Encrypt plaintext data using the aead_request handle. That data structure
1373 * and how it is filled with data is discussed with the aead_request_*
1374 * functions.
1376 * IMPORTANT NOTE The encryption operation creates the authentication data /
1377 * tag. That data is concatenated with the created ciphertext.
1378 * The ciphertext memory size is therefore the given number of
1379 * block cipher blocks + the size defined by the
1380 * crypto_aead_setauthsize invocation. The caller must ensure
1381 * that sufficient memory is available for the ciphertext and
1382 * the authentication tag.
1384 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1386 static inline int crypto_aead_encrypt(struct aead_request *req)
1388 return crypto_aead_crt(crypto_aead_reqtfm(req))->encrypt(req);
1392 * crypto_aead_decrypt() - decrypt ciphertext
1393 * @req: reference to the ablkcipher_request handle that holds all information
1394 * needed to perform the cipher operation
1396 * Decrypt ciphertext data using the aead_request handle. That data structure
1397 * and how it is filled with data is discussed with the aead_request_*
1398 * functions.
1400 * IMPORTANT NOTE The caller must concatenate the ciphertext followed by the
1401 * authentication data / tag. That authentication data / tag
1402 * must have the size defined by the crypto_aead_setauthsize
1403 * invocation.
1406 * Return: 0 if the cipher operation was successful; -EBADMSG: The AEAD
1407 * cipher operation performs the authentication of the data during the
1408 * decryption operation. Therefore, the function returns this error if
1409 * the authentication of the ciphertext was unsuccessful (i.e. the
1410 * integrity of the ciphertext or the associated data was violated);
1411 * < 0 if an error occurred.
1413 static inline int crypto_aead_decrypt(struct aead_request *req)
1415 return crypto_aead_crt(crypto_aead_reqtfm(req))->decrypt(req);
1419 * DOC: Asynchronous AEAD Request Handle
1421 * The aead_request data structure contains all pointers to data required for
1422 * the AEAD cipher operation. This includes the cipher handle (which can be
1423 * used by multiple aead_request instances), pointer to plaintext and
1424 * ciphertext, asynchronous callback function, etc. It acts as a handle to the
1425 * aead_request_* API calls in a similar way as AEAD handle to the
1426 * crypto_aead_* API calls.
1430 * crypto_aead_reqsize() - obtain size of the request data structure
1431 * @tfm: cipher handle
1433 * Return: number of bytes
1435 static inline unsigned int crypto_aead_reqsize(struct crypto_aead *tfm)
1437 return crypto_aead_crt(tfm)->reqsize;
1441 * aead_request_set_tfm() - update cipher handle reference in request
1442 * @req: request handle to be modified
1443 * @tfm: cipher handle that shall be added to the request handle
1445 * Allow the caller to replace the existing aead handle in the request
1446 * data structure with a different one.
1448 static inline void aead_request_set_tfm(struct aead_request *req,
1449 struct crypto_aead *tfm)
1451 req->base.tfm = crypto_aead_tfm(crypto_aead_crt(tfm)->base);
1455 * aead_request_alloc() - allocate request data structure
1456 * @tfm: cipher handle to be registered with the request
1457 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
1459 * Allocate the request data structure that must be used with the AEAD
1460 * encrypt and decrypt API calls. During the allocation, the provided aead
1461 * handle is registered in the request data structure.
1463 * Return: allocated request handle in case of success; IS_ERR() is true in case
1464 * of an error, PTR_ERR() returns the error code.
1466 static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm,
1467 gfp_t gfp)
1469 struct aead_request *req;
1471 req = kmalloc(sizeof(*req) + crypto_aead_reqsize(tfm), gfp);
1473 if (likely(req))
1474 aead_request_set_tfm(req, tfm);
1476 return req;
1480 * aead_request_free() - zeroize and free request data structure
1481 * @req: request data structure cipher handle to be freed
1483 static inline void aead_request_free(struct aead_request *req)
1485 kzfree(req);
1489 * aead_request_set_callback() - set asynchronous callback function
1490 * @req: request handle
1491 * @flags: specify zero or an ORing of the flags
1492 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
1493 * increase the wait queue beyond the initial maximum size;
1494 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
1495 * @compl: callback function pointer to be registered with the request handle
1496 * @data: The data pointer refers to memory that is not used by the kernel
1497 * crypto API, but provided to the callback function for it to use. Here,
1498 * the caller can provide a reference to memory the callback function can
1499 * operate on. As the callback function is invoked asynchronously to the
1500 * related functionality, it may need to access data structures of the
1501 * related functionality which can be referenced using this pointer. The
1502 * callback function can access the memory via the "data" field in the
1503 * crypto_async_request data structure provided to the callback function.
1505 * Setting the callback function that is triggered once the cipher operation
1506 * completes
1508 * The callback function is registered with the aead_request handle and
1509 * must comply with the following template:
1511 * void callback_function(struct crypto_async_request *req, int error)
1513 static inline void aead_request_set_callback(struct aead_request *req,
1514 u32 flags,
1515 crypto_completion_t compl,
1516 void *data)
1518 req->base.complete = compl;
1519 req->base.data = data;
1520 req->base.flags = flags;
1524 * aead_request_set_crypt - set data buffers
1525 * @req: request handle
1526 * @src: source scatter / gather list
1527 * @dst: destination scatter / gather list
1528 * @cryptlen: number of bytes to process from @src
1529 * @iv: IV for the cipher operation which must comply with the IV size defined
1530 * by crypto_aead_ivsize()
1532 * Setting the source data and destination data scatter / gather lists.
1534 * For encryption, the source is treated as the plaintext and the
1535 * destination is the ciphertext. For a decryption operation, the use is
1536 * reversed: the source is the ciphertext and the destination is the plaintext.
1538 * IMPORTANT NOTE AEAD requires an authentication tag (MAC). For decryption,
1539 * the caller must concatenate the ciphertext followed by the
1540 * authentication tag and provide the entire data stream to the
1541 * decryption operation (i.e. the data length used for the
1542 * initialization of the scatterlist and the data length for the
1543 * decryption operation is identical). For encryption, however,
1544 * the authentication tag is created while encrypting the data.
1545 * The destination buffer must hold sufficient space for the
1546 * ciphertext and the authentication tag while the encryption
1547 * invocation must only point to the plaintext data size. The
1548 * following code snippet illustrates the memory usage
1549 * buffer = kmalloc(ptbuflen + (enc ? authsize : 0));
1550 * sg_init_one(&sg, buffer, ptbuflen + (enc ? authsize : 0));
1551 * aead_request_set_crypt(req, &sg, &sg, ptbuflen, iv);
1553 static inline void aead_request_set_crypt(struct aead_request *req,
1554 struct scatterlist *src,
1555 struct scatterlist *dst,
1556 unsigned int cryptlen, u8 *iv)
1558 req->src = src;
1559 req->dst = dst;
1560 req->cryptlen = cryptlen;
1561 req->iv = iv;
1565 * aead_request_set_assoc() - set the associated data scatter / gather list
1566 * @req: request handle
1567 * @assoc: associated data scatter / gather list
1568 * @assoclen: number of bytes to process from @assoc
1570 * For encryption, the memory is filled with the associated data. For
1571 * decryption, the memory must point to the associated data.
1573 static inline void aead_request_set_assoc(struct aead_request *req,
1574 struct scatterlist *assoc,
1575 unsigned int assoclen)
1577 req->assoc = assoc;
1578 req->assoclen = assoclen;
1582 * DOC: Synchronous Block Cipher API
1584 * The synchronous block cipher API is used with the ciphers of type
1585 * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
1587 * Synchronous calls, have a context in the tfm. But since a single tfm can be
1588 * used in multiple calls and in parallel, this info should not be changeable
1589 * (unless a lock is used). This applies, for example, to the symmetric key.
1590 * However, the IV is changeable, so there is an iv field in blkcipher_tfm
1591 * structure for synchronous blkcipher api. So, its the only state info that can
1592 * be kept for synchronous calls without using a big lock across a tfm.
1594 * The block cipher API allows the use of a complete cipher, i.e. a cipher
1595 * consisting of a template (a block chaining mode) and a single block cipher
1596 * primitive (e.g. AES).
1598 * The plaintext data buffer and the ciphertext data buffer are pointed to
1599 * by using scatter/gather lists. The cipher operation is performed
1600 * on all segments of the provided scatter/gather lists.
1602 * The kernel crypto API supports a cipher operation "in-place" which means that
1603 * the caller may provide the same scatter/gather list for the plaintext and
1604 * cipher text. After the completion of the cipher operation, the plaintext
1605 * data is replaced with the ciphertext data in case of an encryption and vice
1606 * versa for a decryption. The caller must ensure that the scatter/gather lists
1607 * for the output data point to sufficiently large buffers, i.e. multiples of
1608 * the block size of the cipher.
1611 static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
1612 struct crypto_tfm *tfm)
1614 return (struct crypto_blkcipher *)tfm;
1617 static inline struct crypto_blkcipher *crypto_blkcipher_cast(
1618 struct crypto_tfm *tfm)
1620 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER);
1621 return __crypto_blkcipher_cast(tfm);
1625 * crypto_alloc_blkcipher() - allocate synchronous block cipher handle
1626 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1627 * blkcipher cipher
1628 * @type: specifies the type of the cipher
1629 * @mask: specifies the mask for the cipher
1631 * Allocate a cipher handle for a block cipher. The returned struct
1632 * crypto_blkcipher is the cipher handle that is required for any subsequent
1633 * API invocation for that block cipher.
1635 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1636 * of an error, PTR_ERR() returns the error code.
1638 static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
1639 const char *alg_name, u32 type, u32 mask)
1641 type &= ~CRYPTO_ALG_TYPE_MASK;
1642 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1643 mask |= CRYPTO_ALG_TYPE_MASK;
1645 return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask));
1648 static inline struct crypto_tfm *crypto_blkcipher_tfm(
1649 struct crypto_blkcipher *tfm)
1651 return &tfm->base;
1655 * crypto_free_blkcipher() - zeroize and free the block cipher handle
1656 * @tfm: cipher handle to be freed
1658 static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
1660 crypto_free_tfm(crypto_blkcipher_tfm(tfm));
1664 * crypto_has_blkcipher() - Search for the availability of a block cipher
1665 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1666 * block cipher
1667 * @type: specifies the type of the cipher
1668 * @mask: specifies the mask for the cipher
1670 * Return: true when the block cipher is known to the kernel crypto API; false
1671 * otherwise
1673 static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
1675 type &= ~CRYPTO_ALG_TYPE_MASK;
1676 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1677 mask |= CRYPTO_ALG_TYPE_MASK;
1679 return crypto_has_alg(alg_name, type, mask);
1683 * crypto_blkcipher_name() - return the name / cra_name from the cipher handle
1684 * @tfm: cipher handle
1686 * Return: The character string holding the name of the cipher
1688 static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
1690 return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
1693 static inline struct blkcipher_tfm *crypto_blkcipher_crt(
1694 struct crypto_blkcipher *tfm)
1696 return &crypto_blkcipher_tfm(tfm)->crt_blkcipher;
1699 static inline struct blkcipher_alg *crypto_blkcipher_alg(
1700 struct crypto_blkcipher *tfm)
1702 return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
1706 * crypto_blkcipher_ivsize() - obtain IV size
1707 * @tfm: cipher handle
1709 * The size of the IV for the block cipher referenced by the cipher handle is
1710 * returned. This IV size may be zero if the cipher does not need an IV.
1712 * Return: IV size in bytes
1714 static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
1716 return crypto_blkcipher_alg(tfm)->ivsize;
1720 * crypto_blkcipher_blocksize() - obtain block size of cipher
1721 * @tfm: cipher handle
1723 * The block size for the block cipher referenced with the cipher handle is
1724 * returned. The caller may use that information to allocate appropriate
1725 * memory for the data returned by the encryption or decryption operation.
1727 * Return: block size of cipher
1729 static inline unsigned int crypto_blkcipher_blocksize(
1730 struct crypto_blkcipher *tfm)
1732 return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm));
1735 static inline unsigned int crypto_blkcipher_alignmask(
1736 struct crypto_blkcipher *tfm)
1738 return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm));
1741 static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm)
1743 return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm));
1746 static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm,
1747 u32 flags)
1749 crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags);
1752 static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
1753 u32 flags)
1755 crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
1759 * crypto_blkcipher_setkey() - set key for cipher
1760 * @tfm: cipher handle
1761 * @key: buffer holding the key
1762 * @keylen: length of the key in bytes
1764 * The caller provided key is set for the block cipher referenced by the cipher
1765 * handle.
1767 * Note, the key length determines the cipher type. Many block ciphers implement
1768 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1769 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1770 * is performed.
1772 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1774 static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
1775 const u8 *key, unsigned int keylen)
1777 return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm),
1778 key, keylen);
1782 * crypto_blkcipher_encrypt() - encrypt plaintext
1783 * @desc: reference to the block cipher handle with meta data
1784 * @dst: scatter/gather list that is filled by the cipher operation with the
1785 * ciphertext
1786 * @src: scatter/gather list that holds the plaintext
1787 * @nbytes: number of bytes of the plaintext to encrypt.
1789 * Encrypt plaintext data using the IV set by the caller with a preceding
1790 * call of crypto_blkcipher_set_iv.
1792 * The blkcipher_desc data structure must be filled by the caller and can
1793 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1794 * with the block cipher handle; desc.flags is filled with either
1795 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1797 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1799 static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
1800 struct scatterlist *dst,
1801 struct scatterlist *src,
1802 unsigned int nbytes)
1804 desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1805 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1809 * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
1810 * @desc: reference to the block cipher handle with meta data
1811 * @dst: scatter/gather list that is filled by the cipher operation with the
1812 * ciphertext
1813 * @src: scatter/gather list that holds the plaintext
1814 * @nbytes: number of bytes of the plaintext to encrypt.
1816 * Encrypt plaintext data with the use of an IV that is solely used for this
1817 * cipher operation. Any previously set IV is not used.
1819 * The blkcipher_desc data structure must be filled by the caller and can
1820 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1821 * with the block cipher handle; desc.info is filled with the IV to be used for
1822 * the current operation; desc.flags is filled with either
1823 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1825 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1827 static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
1828 struct scatterlist *dst,
1829 struct scatterlist *src,
1830 unsigned int nbytes)
1832 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1836 * crypto_blkcipher_decrypt() - decrypt ciphertext
1837 * @desc: reference to the block cipher handle with meta data
1838 * @dst: scatter/gather list that is filled by the cipher operation with the
1839 * plaintext
1840 * @src: scatter/gather list that holds the ciphertext
1841 * @nbytes: number of bytes of the ciphertext to decrypt.
1843 * Decrypt ciphertext data using the IV set by the caller with a preceding
1844 * call of crypto_blkcipher_set_iv.
1846 * The blkcipher_desc data structure must be filled by the caller as documented
1847 * for the crypto_blkcipher_encrypt call above.
1849 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1852 static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
1853 struct scatterlist *dst,
1854 struct scatterlist *src,
1855 unsigned int nbytes)
1857 desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1858 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1862 * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
1863 * @desc: reference to the block cipher handle with meta data
1864 * @dst: scatter/gather list that is filled by the cipher operation with the
1865 * plaintext
1866 * @src: scatter/gather list that holds the ciphertext
1867 * @nbytes: number of bytes of the ciphertext to decrypt.
1869 * Decrypt ciphertext data with the use of an IV that is solely used for this
1870 * cipher operation. Any previously set IV is not used.
1872 * The blkcipher_desc data structure must be filled by the caller as documented
1873 * for the crypto_blkcipher_encrypt_iv call above.
1875 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1877 static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
1878 struct scatterlist *dst,
1879 struct scatterlist *src,
1880 unsigned int nbytes)
1882 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1886 * crypto_blkcipher_set_iv() - set IV for cipher
1887 * @tfm: cipher handle
1888 * @src: buffer holding the IV
1889 * @len: length of the IV in bytes
1891 * The caller provided IV is set for the block cipher referenced by the cipher
1892 * handle.
1894 static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
1895 const u8 *src, unsigned int len)
1897 memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
1901 * crypto_blkcipher_get_iv() - obtain IV from cipher
1902 * @tfm: cipher handle
1903 * @dst: buffer filled with the IV
1904 * @len: length of the buffer dst
1906 * The caller can obtain the IV set for the block cipher referenced by the
1907 * cipher handle and store it into the user-provided buffer. If the buffer
1908 * has an insufficient space, the IV is truncated to fit the buffer.
1910 static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
1911 u8 *dst, unsigned int len)
1913 memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
1917 * DOC: Single Block Cipher API
1919 * The single block cipher API is used with the ciphers of type
1920 * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
1922 * Using the single block cipher API calls, operations with the basic cipher
1923 * primitive can be implemented. These cipher primitives exclude any block
1924 * chaining operations including IV handling.
1926 * The purpose of this single block cipher API is to support the implementation
1927 * of templates or other concepts that only need to perform the cipher operation
1928 * on one block at a time. Templates invoke the underlying cipher primitive
1929 * block-wise and process either the input or the output data of these cipher
1930 * operations.
1933 static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
1935 return (struct crypto_cipher *)tfm;
1938 static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
1940 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
1941 return __crypto_cipher_cast(tfm);
1945 * crypto_alloc_cipher() - allocate single block cipher handle
1946 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1947 * single block cipher
1948 * @type: specifies the type of the cipher
1949 * @mask: specifies the mask for the cipher
1951 * Allocate a cipher handle for a single block cipher. The returned struct
1952 * crypto_cipher is the cipher handle that is required for any subsequent API
1953 * invocation for that single block cipher.
1955 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1956 * of an error, PTR_ERR() returns the error code.
1958 static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
1959 u32 type, u32 mask)
1961 type &= ~CRYPTO_ALG_TYPE_MASK;
1962 type |= CRYPTO_ALG_TYPE_CIPHER;
1963 mask |= CRYPTO_ALG_TYPE_MASK;
1965 return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
1968 static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
1970 return &tfm->base;
1974 * crypto_free_cipher() - zeroize and free the single block cipher handle
1975 * @tfm: cipher handle to be freed
1977 static inline void crypto_free_cipher(struct crypto_cipher *tfm)
1979 crypto_free_tfm(crypto_cipher_tfm(tfm));
1983 * crypto_has_cipher() - Search for the availability of a single block cipher
1984 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1985 * single block cipher
1986 * @type: specifies the type of the cipher
1987 * @mask: specifies the mask for the cipher
1989 * Return: true when the single block cipher is known to the kernel crypto API;
1990 * false otherwise
1992 static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
1994 type &= ~CRYPTO_ALG_TYPE_MASK;
1995 type |= CRYPTO_ALG_TYPE_CIPHER;
1996 mask |= CRYPTO_ALG_TYPE_MASK;
1998 return crypto_has_alg(alg_name, type, mask);
2001 static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
2003 return &crypto_cipher_tfm(tfm)->crt_cipher;
2007 * crypto_cipher_blocksize() - obtain block size for cipher
2008 * @tfm: cipher handle
2010 * The block size for the single block cipher referenced with the cipher handle
2011 * tfm is returned. The caller may use that information to allocate appropriate
2012 * memory for the data returned by the encryption or decryption operation
2014 * Return: block size of cipher
2016 static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
2018 return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
2021 static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
2023 return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
2026 static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
2028 return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
2031 static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
2032 u32 flags)
2034 crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
2037 static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
2038 u32 flags)
2040 crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
2044 * crypto_cipher_setkey() - set key for cipher
2045 * @tfm: cipher handle
2046 * @key: buffer holding the key
2047 * @keylen: length of the key in bytes
2049 * The caller provided key is set for the single block cipher referenced by the
2050 * cipher handle.
2052 * Note, the key length determines the cipher type. Many block ciphers implement
2053 * different cipher modes depending on the key size, such as AES-128 vs AES-192
2054 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
2055 * is performed.
2057 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
2059 static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
2060 const u8 *key, unsigned int keylen)
2062 return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
2063 key, keylen);
2067 * crypto_cipher_encrypt_one() - encrypt one block of plaintext
2068 * @tfm: cipher handle
2069 * @dst: points to the buffer that will be filled with the ciphertext
2070 * @src: buffer holding the plaintext to be encrypted
2072 * Invoke the encryption operation of one block. The caller must ensure that
2073 * the plaintext and ciphertext buffers are at least one block in size.
2075 static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
2076 u8 *dst, const u8 *src)
2078 crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
2079 dst, src);
2083 * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
2084 * @tfm: cipher handle
2085 * @dst: points to the buffer that will be filled with the plaintext
2086 * @src: buffer holding the ciphertext to be decrypted
2088 * Invoke the decryption operation of one block. The caller must ensure that
2089 * the plaintext and ciphertext buffers are at least one block in size.
2091 static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
2092 u8 *dst, const u8 *src)
2094 crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
2095 dst, src);
2099 * DOC: Synchronous Message Digest API
2101 * The synchronous message digest API is used with the ciphers of type
2102 * CRYPTO_ALG_TYPE_HASH (listed as type "hash" in /proc/crypto)
2105 static inline struct crypto_hash *__crypto_hash_cast(struct crypto_tfm *tfm)
2107 return (struct crypto_hash *)tfm;
2110 static inline struct crypto_hash *crypto_hash_cast(struct crypto_tfm *tfm)
2112 BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_HASH) &
2113 CRYPTO_ALG_TYPE_HASH_MASK);
2114 return __crypto_hash_cast(tfm);
2118 * crypto_alloc_hash() - allocate synchronous message digest handle
2119 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
2120 * message digest cipher
2121 * @type: specifies the type of the cipher
2122 * @mask: specifies the mask for the cipher
2124 * Allocate a cipher handle for a message digest. The returned struct
2125 * crypto_hash is the cipher handle that is required for any subsequent
2126 * API invocation for that message digest.
2128 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
2129 * of an error, PTR_ERR() returns the error code.
2131 static inline struct crypto_hash *crypto_alloc_hash(const char *alg_name,
2132 u32 type, u32 mask)
2134 type &= ~CRYPTO_ALG_TYPE_MASK;
2135 mask &= ~CRYPTO_ALG_TYPE_MASK;
2136 type |= CRYPTO_ALG_TYPE_HASH;
2137 mask |= CRYPTO_ALG_TYPE_HASH_MASK;
2139 return __crypto_hash_cast(crypto_alloc_base(alg_name, type, mask));
2142 static inline struct crypto_tfm *crypto_hash_tfm(struct crypto_hash *tfm)
2144 return &tfm->base;
2148 * crypto_free_hash() - zeroize and free message digest handle
2149 * @tfm: cipher handle to be freed
2151 static inline void crypto_free_hash(struct crypto_hash *tfm)
2153 crypto_free_tfm(crypto_hash_tfm(tfm));
2157 * crypto_has_hash() - Search for the availability of a message digest
2158 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
2159 * message digest cipher
2160 * @type: specifies the type of the cipher
2161 * @mask: specifies the mask for the cipher
2163 * Return: true when the message digest cipher is known to the kernel crypto
2164 * API; false otherwise
2166 static inline int crypto_has_hash(const char *alg_name, u32 type, u32 mask)
2168 type &= ~CRYPTO_ALG_TYPE_MASK;
2169 mask &= ~CRYPTO_ALG_TYPE_MASK;
2170 type |= CRYPTO_ALG_TYPE_HASH;
2171 mask |= CRYPTO_ALG_TYPE_HASH_MASK;
2173 return crypto_has_alg(alg_name, type, mask);
2176 static inline struct hash_tfm *crypto_hash_crt(struct crypto_hash *tfm)
2178 return &crypto_hash_tfm(tfm)->crt_hash;
2182 * crypto_hash_blocksize() - obtain block size for message digest
2183 * @tfm: cipher handle
2185 * The block size for the message digest cipher referenced with the cipher
2186 * handle is returned.
2188 * Return: block size of cipher
2190 static inline unsigned int crypto_hash_blocksize(struct crypto_hash *tfm)
2192 return crypto_tfm_alg_blocksize(crypto_hash_tfm(tfm));
2195 static inline unsigned int crypto_hash_alignmask(struct crypto_hash *tfm)
2197 return crypto_tfm_alg_alignmask(crypto_hash_tfm(tfm));
2201 * crypto_hash_digestsize() - obtain message digest size
2202 * @tfm: cipher handle
2204 * The size for the message digest created by the message digest cipher
2205 * referenced with the cipher handle is returned.
2207 * Return: message digest size
2209 static inline unsigned int crypto_hash_digestsize(struct crypto_hash *tfm)
2211 return crypto_hash_crt(tfm)->digestsize;
2214 static inline u32 crypto_hash_get_flags(struct crypto_hash *tfm)
2216 return crypto_tfm_get_flags(crypto_hash_tfm(tfm));
2219 static inline void crypto_hash_set_flags(struct crypto_hash *tfm, u32 flags)
2221 crypto_tfm_set_flags(crypto_hash_tfm(tfm), flags);
2224 static inline void crypto_hash_clear_flags(struct crypto_hash *tfm, u32 flags)
2226 crypto_tfm_clear_flags(crypto_hash_tfm(tfm), flags);
2230 * crypto_hash_init() - (re)initialize message digest handle
2231 * @desc: cipher request handle that to be filled by caller --
2232 * desc.tfm is filled with the hash cipher handle;
2233 * desc.flags is filled with either CRYPTO_TFM_REQ_MAY_SLEEP or 0.
2235 * The call (re-)initializes the message digest referenced by the hash cipher
2236 * request handle. Any potentially existing state created by previous
2237 * operations is discarded.
2239 * Return: 0 if the message digest initialization was successful; < 0 if an
2240 * error occurred
2242 static inline int crypto_hash_init(struct hash_desc *desc)
2244 return crypto_hash_crt(desc->tfm)->init(desc);
2248 * crypto_hash_update() - add data to message digest for processing
2249 * @desc: cipher request handle
2250 * @sg: scatter / gather list pointing to the data to be added to the message
2251 * digest
2252 * @nbytes: number of bytes to be processed from @sg
2254 * Updates the message digest state of the cipher handle pointed to by the
2255 * hash cipher request handle with the input data pointed to by the
2256 * scatter/gather list.
2258 * Return: 0 if the message digest update was successful; < 0 if an error
2259 * occurred
2261 static inline int crypto_hash_update(struct hash_desc *desc,
2262 struct scatterlist *sg,
2263 unsigned int nbytes)
2265 return crypto_hash_crt(desc->tfm)->update(desc, sg, nbytes);
2269 * crypto_hash_final() - calculate message digest
2270 * @desc: cipher request handle
2271 * @out: message digest output buffer -- The caller must ensure that the out
2272 * buffer has a sufficient size (e.g. by using the crypto_hash_digestsize
2273 * function).
2275 * Finalize the message digest operation and create the message digest
2276 * based on all data added to the cipher handle. The message digest is placed
2277 * into the output buffer.
2279 * Return: 0 if the message digest creation was successful; < 0 if an error
2280 * occurred
2282 static inline int crypto_hash_final(struct hash_desc *desc, u8 *out)
2284 return crypto_hash_crt(desc->tfm)->final(desc, out);
2288 * crypto_hash_digest() - calculate message digest for a buffer
2289 * @desc: see crypto_hash_final()
2290 * @sg: see crypto_hash_update()
2291 * @nbytes: see crypto_hash_update()
2292 * @out: see crypto_hash_final()
2294 * This function is a "short-hand" for the function calls of crypto_hash_init,
2295 * crypto_hash_update and crypto_hash_final. The parameters have the same
2296 * meaning as discussed for those separate three functions.
2298 * Return: 0 if the message digest creation was successful; < 0 if an error
2299 * occurred
2301 static inline int crypto_hash_digest(struct hash_desc *desc,
2302 struct scatterlist *sg,
2303 unsigned int nbytes, u8 *out)
2305 return crypto_hash_crt(desc->tfm)->digest(desc, sg, nbytes, out);
2309 * crypto_hash_setkey() - set key for message digest
2310 * @hash: cipher handle
2311 * @key: buffer holding the key
2312 * @keylen: length of the key in bytes
2314 * The caller provided key is set for the message digest cipher. The cipher
2315 * handle must point to a keyed hash in order for this function to succeed.
2317 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
2319 static inline int crypto_hash_setkey(struct crypto_hash *hash,
2320 const u8 *key, unsigned int keylen)
2322 return crypto_hash_crt(hash)->setkey(hash, key, keylen);
2325 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
2327 return (struct crypto_comp *)tfm;
2330 static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
2332 BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
2333 CRYPTO_ALG_TYPE_MASK);
2334 return __crypto_comp_cast(tfm);
2337 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
2338 u32 type, u32 mask)
2340 type &= ~CRYPTO_ALG_TYPE_MASK;
2341 type |= CRYPTO_ALG_TYPE_COMPRESS;
2342 mask |= CRYPTO_ALG_TYPE_MASK;
2344 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
2347 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
2349 return &tfm->base;
2352 static inline void crypto_free_comp(struct crypto_comp *tfm)
2354 crypto_free_tfm(crypto_comp_tfm(tfm));
2357 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
2359 type &= ~CRYPTO_ALG_TYPE_MASK;
2360 type |= CRYPTO_ALG_TYPE_COMPRESS;
2361 mask |= CRYPTO_ALG_TYPE_MASK;
2363 return crypto_has_alg(alg_name, type, mask);
2366 static inline const char *crypto_comp_name(struct crypto_comp *tfm)
2368 return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
2371 static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
2373 return &crypto_comp_tfm(tfm)->crt_compress;
2376 static inline int crypto_comp_compress(struct crypto_comp *tfm,
2377 const u8 *src, unsigned int slen,
2378 u8 *dst, unsigned int *dlen)
2380 return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
2381 src, slen, dst, dlen);
2384 static inline int crypto_comp_decompress(struct crypto_comp *tfm,
2385 const u8 *src, unsigned int slen,
2386 u8 *dst, unsigned int *dlen)
2388 return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
2389 src, slen, dst, dlen);
2392 #endif /* _LINUX_CRYPTO_H */