net: sctp: implement rfc6458, 8.1.31. SCTP_DEFAULT_SNDINFO support
[linux-2.6/btrfs-unstable.git] / kernel / trace / trace_clock.c
blob26dc348332b798eeb43a77cf2d89357512d9e8c0
1 /*
2 * tracing clocks
4 * Copyright (C) 2009 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Implements 3 trace clock variants, with differing scalability/precision
7 * tradeoffs:
9 * - local: CPU-local trace clock
10 * - medium: scalable global clock with some jitter
11 * - global: globally monotonic, serialized clock
13 * Tracer plugins will chose a default from these clocks.
15 #include <linux/spinlock.h>
16 #include <linux/irqflags.h>
17 #include <linux/hardirq.h>
18 #include <linux/module.h>
19 #include <linux/percpu.h>
20 #include <linux/sched.h>
21 #include <linux/ktime.h>
22 #include <linux/trace_clock.h>
25 * trace_clock_local(): the simplest and least coherent tracing clock.
27 * Useful for tracing that does not cross to other CPUs nor
28 * does it go through idle events.
30 u64 notrace trace_clock_local(void)
32 u64 clock;
35 * sched_clock() is an architecture implemented, fast, scalable,
36 * lockless clock. It is not guaranteed to be coherent across
37 * CPUs, nor across CPU idle events.
39 preempt_disable_notrace();
40 clock = sched_clock();
41 preempt_enable_notrace();
43 return clock;
45 EXPORT_SYMBOL_GPL(trace_clock_local);
48 * trace_clock(): 'between' trace clock. Not completely serialized,
49 * but not completely incorrect when crossing CPUs either.
51 * This is based on cpu_clock(), which will allow at most ~1 jiffy of
52 * jitter between CPUs. So it's a pretty scalable clock, but there
53 * can be offsets in the trace data.
55 u64 notrace trace_clock(void)
57 return local_clock();
61 * trace_jiffy_clock(): Simply use jiffies as a clock counter.
63 u64 notrace trace_clock_jiffies(void)
65 u64 jiffy = jiffies - INITIAL_JIFFIES;
67 /* Return nsecs */
68 return (u64)jiffies_to_usecs(jiffy) * 1000ULL;
72 * trace_clock_global(): special globally coherent trace clock
74 * It has higher overhead than the other trace clocks but is still
75 * an order of magnitude faster than GTOD derived hardware clocks.
77 * Used by plugins that need globally coherent timestamps.
80 /* keep prev_time and lock in the same cacheline. */
81 static struct {
82 u64 prev_time;
83 arch_spinlock_t lock;
84 } trace_clock_struct ____cacheline_aligned_in_smp =
86 .lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED,
89 u64 notrace trace_clock_global(void)
91 unsigned long flags;
92 int this_cpu;
93 u64 now;
95 local_irq_save(flags);
97 this_cpu = raw_smp_processor_id();
98 now = sched_clock_cpu(this_cpu);
100 * If in an NMI context then dont risk lockups and return the
101 * cpu_clock() time:
103 if (unlikely(in_nmi()))
104 goto out;
106 arch_spin_lock(&trace_clock_struct.lock);
109 * TODO: if this happens often then maybe we should reset
110 * my_scd->clock to prev_time+1, to make sure
111 * we start ticking with the local clock from now on?
113 if ((s64)(now - trace_clock_struct.prev_time) < 0)
114 now = trace_clock_struct.prev_time + 1;
116 trace_clock_struct.prev_time = now;
118 arch_spin_unlock(&trace_clock_struct.lock);
120 out:
121 local_irq_restore(flags);
123 return now;
126 static atomic64_t trace_counter;
129 * trace_clock_counter(): simply an atomic counter.
130 * Use the trace_counter "counter" for cases where you do not care
131 * about timings, but are interested in strict ordering.
133 u64 notrace trace_clock_counter(void)
135 return atomic64_add_return(1, &trace_counter);