bus: mvebu-mbus: Add new API for window creation
[linux-2.6/btrfs-unstable.git] / drivers / md / dm-table.c
blobf221812b7dbcf0d3bae7c5171fe9e184c781d7d7
1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm.h"
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
22 #define DM_MSG_PREFIX "table"
24 #define MAX_DEPTH 16
25 #define NODE_SIZE L1_CACHE_BYTES
26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
29 struct dm_table {
30 struct mapped_device *md;
31 unsigned type;
33 /* btree table */
34 unsigned int depth;
35 unsigned int counts[MAX_DEPTH]; /* in nodes */
36 sector_t *index[MAX_DEPTH];
38 unsigned int num_targets;
39 unsigned int num_allocated;
40 sector_t *highs;
41 struct dm_target *targets;
43 struct target_type *immutable_target_type;
44 unsigned integrity_supported:1;
45 unsigned singleton:1;
48 * Indicates the rw permissions for the new logical
49 * device. This should be a combination of FMODE_READ
50 * and FMODE_WRITE.
52 fmode_t mode;
54 /* a list of devices used by this table */
55 struct list_head devices;
57 /* events get handed up using this callback */
58 void (*event_fn)(void *);
59 void *event_context;
61 struct dm_md_mempools *mempools;
63 struct list_head target_callbacks;
67 * Similar to ceiling(log_size(n))
69 static unsigned int int_log(unsigned int n, unsigned int base)
71 int result = 0;
73 while (n > 1) {
74 n = dm_div_up(n, base);
75 result++;
78 return result;
82 * Calculate the index of the child node of the n'th node k'th key.
84 static inline unsigned int get_child(unsigned int n, unsigned int k)
86 return (n * CHILDREN_PER_NODE) + k;
90 * Return the n'th node of level l from table t.
92 static inline sector_t *get_node(struct dm_table *t,
93 unsigned int l, unsigned int n)
95 return t->index[l] + (n * KEYS_PER_NODE);
99 * Return the highest key that you could lookup from the n'th
100 * node on level l of the btree.
102 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
104 for (; l < t->depth - 1; l++)
105 n = get_child(n, CHILDREN_PER_NODE - 1);
107 if (n >= t->counts[l])
108 return (sector_t) - 1;
110 return get_node(t, l, n)[KEYS_PER_NODE - 1];
114 * Fills in a level of the btree based on the highs of the level
115 * below it.
117 static int setup_btree_index(unsigned int l, struct dm_table *t)
119 unsigned int n, k;
120 sector_t *node;
122 for (n = 0U; n < t->counts[l]; n++) {
123 node = get_node(t, l, n);
125 for (k = 0U; k < KEYS_PER_NODE; k++)
126 node[k] = high(t, l + 1, get_child(n, k));
129 return 0;
132 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
134 unsigned long size;
135 void *addr;
138 * Check that we're not going to overflow.
140 if (nmemb > (ULONG_MAX / elem_size))
141 return NULL;
143 size = nmemb * elem_size;
144 addr = vzalloc(size);
146 return addr;
148 EXPORT_SYMBOL(dm_vcalloc);
151 * highs, and targets are managed as dynamic arrays during a
152 * table load.
154 static int alloc_targets(struct dm_table *t, unsigned int num)
156 sector_t *n_highs;
157 struct dm_target *n_targets;
158 int n = t->num_targets;
161 * Allocate both the target array and offset array at once.
162 * Append an empty entry to catch sectors beyond the end of
163 * the device.
165 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
166 sizeof(sector_t));
167 if (!n_highs)
168 return -ENOMEM;
170 n_targets = (struct dm_target *) (n_highs + num);
172 if (n) {
173 memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
174 memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
177 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
178 vfree(t->highs);
180 t->num_allocated = num;
181 t->highs = n_highs;
182 t->targets = n_targets;
184 return 0;
187 int dm_table_create(struct dm_table **result, fmode_t mode,
188 unsigned num_targets, struct mapped_device *md)
190 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
192 if (!t)
193 return -ENOMEM;
195 INIT_LIST_HEAD(&t->devices);
196 INIT_LIST_HEAD(&t->target_callbacks);
198 if (!num_targets)
199 num_targets = KEYS_PER_NODE;
201 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
203 if (alloc_targets(t, num_targets)) {
204 kfree(t);
205 return -ENOMEM;
208 t->mode = mode;
209 t->md = md;
210 *result = t;
211 return 0;
214 static void free_devices(struct list_head *devices)
216 struct list_head *tmp, *next;
218 list_for_each_safe(tmp, next, devices) {
219 struct dm_dev_internal *dd =
220 list_entry(tmp, struct dm_dev_internal, list);
221 DMWARN("dm_table_destroy: dm_put_device call missing for %s",
222 dd->dm_dev.name);
223 kfree(dd);
227 void dm_table_destroy(struct dm_table *t)
229 unsigned int i;
231 if (!t)
232 return;
234 /* free the indexes */
235 if (t->depth >= 2)
236 vfree(t->index[t->depth - 2]);
238 /* free the targets */
239 for (i = 0; i < t->num_targets; i++) {
240 struct dm_target *tgt = t->targets + i;
242 if (tgt->type->dtr)
243 tgt->type->dtr(tgt);
245 dm_put_target_type(tgt->type);
248 vfree(t->highs);
250 /* free the device list */
251 free_devices(&t->devices);
253 dm_free_md_mempools(t->mempools);
255 kfree(t);
259 * Checks to see if we need to extend highs or targets.
261 static inline int check_space(struct dm_table *t)
263 if (t->num_targets >= t->num_allocated)
264 return alloc_targets(t, t->num_allocated * 2);
266 return 0;
270 * See if we've already got a device in the list.
272 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
274 struct dm_dev_internal *dd;
276 list_for_each_entry (dd, l, list)
277 if (dd->dm_dev.bdev->bd_dev == dev)
278 return dd;
280 return NULL;
284 * Open a device so we can use it as a map destination.
286 static int open_dev(struct dm_dev_internal *d, dev_t dev,
287 struct mapped_device *md)
289 static char *_claim_ptr = "I belong to device-mapper";
290 struct block_device *bdev;
292 int r;
294 BUG_ON(d->dm_dev.bdev);
296 bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
297 if (IS_ERR(bdev))
298 return PTR_ERR(bdev);
300 r = bd_link_disk_holder(bdev, dm_disk(md));
301 if (r) {
302 blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
303 return r;
306 d->dm_dev.bdev = bdev;
307 return 0;
311 * Close a device that we've been using.
313 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
315 if (!d->dm_dev.bdev)
316 return;
318 bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
319 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
320 d->dm_dev.bdev = NULL;
324 * If possible, this checks an area of a destination device is invalid.
326 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
327 sector_t start, sector_t len, void *data)
329 struct request_queue *q;
330 struct queue_limits *limits = data;
331 struct block_device *bdev = dev->bdev;
332 sector_t dev_size =
333 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
334 unsigned short logical_block_size_sectors =
335 limits->logical_block_size >> SECTOR_SHIFT;
336 char b[BDEVNAME_SIZE];
339 * Some devices exist without request functions,
340 * such as loop devices not yet bound to backing files.
341 * Forbid the use of such devices.
343 q = bdev_get_queue(bdev);
344 if (!q || !q->make_request_fn) {
345 DMWARN("%s: %s is not yet initialised: "
346 "start=%llu, len=%llu, dev_size=%llu",
347 dm_device_name(ti->table->md), bdevname(bdev, b),
348 (unsigned long long)start,
349 (unsigned long long)len,
350 (unsigned long long)dev_size);
351 return 1;
354 if (!dev_size)
355 return 0;
357 if ((start >= dev_size) || (start + len > dev_size)) {
358 DMWARN("%s: %s too small for target: "
359 "start=%llu, len=%llu, dev_size=%llu",
360 dm_device_name(ti->table->md), bdevname(bdev, b),
361 (unsigned long long)start,
362 (unsigned long long)len,
363 (unsigned long long)dev_size);
364 return 1;
367 if (logical_block_size_sectors <= 1)
368 return 0;
370 if (start & (logical_block_size_sectors - 1)) {
371 DMWARN("%s: start=%llu not aligned to h/w "
372 "logical block size %u of %s",
373 dm_device_name(ti->table->md),
374 (unsigned long long)start,
375 limits->logical_block_size, bdevname(bdev, b));
376 return 1;
379 if (len & (logical_block_size_sectors - 1)) {
380 DMWARN("%s: len=%llu not aligned to h/w "
381 "logical block size %u of %s",
382 dm_device_name(ti->table->md),
383 (unsigned long long)len,
384 limits->logical_block_size, bdevname(bdev, b));
385 return 1;
388 return 0;
392 * This upgrades the mode on an already open dm_dev, being
393 * careful to leave things as they were if we fail to reopen the
394 * device and not to touch the existing bdev field in case
395 * it is accessed concurrently inside dm_table_any_congested().
397 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
398 struct mapped_device *md)
400 int r;
401 struct dm_dev_internal dd_new, dd_old;
403 dd_new = dd_old = *dd;
405 dd_new.dm_dev.mode |= new_mode;
406 dd_new.dm_dev.bdev = NULL;
408 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
409 if (r)
410 return r;
412 dd->dm_dev.mode |= new_mode;
413 close_dev(&dd_old, md);
415 return 0;
419 * Add a device to the list, or just increment the usage count if
420 * it's already present.
422 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
423 struct dm_dev **result)
425 int r;
426 dev_t uninitialized_var(dev);
427 struct dm_dev_internal *dd;
428 unsigned int major, minor;
429 struct dm_table *t = ti->table;
430 char dummy;
432 BUG_ON(!t);
434 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
435 /* Extract the major/minor numbers */
436 dev = MKDEV(major, minor);
437 if (MAJOR(dev) != major || MINOR(dev) != minor)
438 return -EOVERFLOW;
439 } else {
440 /* convert the path to a device */
441 struct block_device *bdev = lookup_bdev(path);
443 if (IS_ERR(bdev))
444 return PTR_ERR(bdev);
445 dev = bdev->bd_dev;
446 bdput(bdev);
449 dd = find_device(&t->devices, dev);
450 if (!dd) {
451 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
452 if (!dd)
453 return -ENOMEM;
455 dd->dm_dev.mode = mode;
456 dd->dm_dev.bdev = NULL;
458 if ((r = open_dev(dd, dev, t->md))) {
459 kfree(dd);
460 return r;
463 format_dev_t(dd->dm_dev.name, dev);
465 atomic_set(&dd->count, 0);
466 list_add(&dd->list, &t->devices);
468 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
469 r = upgrade_mode(dd, mode, t->md);
470 if (r)
471 return r;
473 atomic_inc(&dd->count);
475 *result = &dd->dm_dev;
476 return 0;
478 EXPORT_SYMBOL(dm_get_device);
480 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
481 sector_t start, sector_t len, void *data)
483 struct queue_limits *limits = data;
484 struct block_device *bdev = dev->bdev;
485 struct request_queue *q = bdev_get_queue(bdev);
486 char b[BDEVNAME_SIZE];
488 if (unlikely(!q)) {
489 DMWARN("%s: Cannot set limits for nonexistent device %s",
490 dm_device_name(ti->table->md), bdevname(bdev, b));
491 return 0;
494 if (bdev_stack_limits(limits, bdev, start) < 0)
495 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
496 "physical_block_size=%u, logical_block_size=%u, "
497 "alignment_offset=%u, start=%llu",
498 dm_device_name(ti->table->md), bdevname(bdev, b),
499 q->limits.physical_block_size,
500 q->limits.logical_block_size,
501 q->limits.alignment_offset,
502 (unsigned long long) start << SECTOR_SHIFT);
505 * Check if merge fn is supported.
506 * If not we'll force DM to use PAGE_SIZE or
507 * smaller I/O, just to be safe.
509 if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
510 blk_limits_max_hw_sectors(limits,
511 (unsigned int) (PAGE_SIZE >> 9));
512 return 0;
514 EXPORT_SYMBOL_GPL(dm_set_device_limits);
517 * Decrement a device's use count and remove it if necessary.
519 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
521 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
522 dm_dev);
524 if (atomic_dec_and_test(&dd->count)) {
525 close_dev(dd, ti->table->md);
526 list_del(&dd->list);
527 kfree(dd);
530 EXPORT_SYMBOL(dm_put_device);
533 * Checks to see if the target joins onto the end of the table.
535 static int adjoin(struct dm_table *table, struct dm_target *ti)
537 struct dm_target *prev;
539 if (!table->num_targets)
540 return !ti->begin;
542 prev = &table->targets[table->num_targets - 1];
543 return (ti->begin == (prev->begin + prev->len));
547 * Used to dynamically allocate the arg array.
549 static char **realloc_argv(unsigned *array_size, char **old_argv)
551 char **argv;
552 unsigned new_size;
554 new_size = *array_size ? *array_size * 2 : 64;
555 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
556 if (argv) {
557 memcpy(argv, old_argv, *array_size * sizeof(*argv));
558 *array_size = new_size;
561 kfree(old_argv);
562 return argv;
566 * Destructively splits up the argument list to pass to ctr.
568 int dm_split_args(int *argc, char ***argvp, char *input)
570 char *start, *end = input, *out, **argv = NULL;
571 unsigned array_size = 0;
573 *argc = 0;
575 if (!input) {
576 *argvp = NULL;
577 return 0;
580 argv = realloc_argv(&array_size, argv);
581 if (!argv)
582 return -ENOMEM;
584 while (1) {
585 /* Skip whitespace */
586 start = skip_spaces(end);
588 if (!*start)
589 break; /* success, we hit the end */
591 /* 'out' is used to remove any back-quotes */
592 end = out = start;
593 while (*end) {
594 /* Everything apart from '\0' can be quoted */
595 if (*end == '\\' && *(end + 1)) {
596 *out++ = *(end + 1);
597 end += 2;
598 continue;
601 if (isspace(*end))
602 break; /* end of token */
604 *out++ = *end++;
607 /* have we already filled the array ? */
608 if ((*argc + 1) > array_size) {
609 argv = realloc_argv(&array_size, argv);
610 if (!argv)
611 return -ENOMEM;
614 /* we know this is whitespace */
615 if (*end)
616 end++;
618 /* terminate the string and put it in the array */
619 *out = '\0';
620 argv[*argc] = start;
621 (*argc)++;
624 *argvp = argv;
625 return 0;
629 * Impose necessary and sufficient conditions on a devices's table such
630 * that any incoming bio which respects its logical_block_size can be
631 * processed successfully. If it falls across the boundary between
632 * two or more targets, the size of each piece it gets split into must
633 * be compatible with the logical_block_size of the target processing it.
635 static int validate_hardware_logical_block_alignment(struct dm_table *table,
636 struct queue_limits *limits)
639 * This function uses arithmetic modulo the logical_block_size
640 * (in units of 512-byte sectors).
642 unsigned short device_logical_block_size_sects =
643 limits->logical_block_size >> SECTOR_SHIFT;
646 * Offset of the start of the next table entry, mod logical_block_size.
648 unsigned short next_target_start = 0;
651 * Given an aligned bio that extends beyond the end of a
652 * target, how many sectors must the next target handle?
654 unsigned short remaining = 0;
656 struct dm_target *uninitialized_var(ti);
657 struct queue_limits ti_limits;
658 unsigned i = 0;
661 * Check each entry in the table in turn.
663 while (i < dm_table_get_num_targets(table)) {
664 ti = dm_table_get_target(table, i++);
666 blk_set_stacking_limits(&ti_limits);
668 /* combine all target devices' limits */
669 if (ti->type->iterate_devices)
670 ti->type->iterate_devices(ti, dm_set_device_limits,
671 &ti_limits);
674 * If the remaining sectors fall entirely within this
675 * table entry are they compatible with its logical_block_size?
677 if (remaining < ti->len &&
678 remaining & ((ti_limits.logical_block_size >>
679 SECTOR_SHIFT) - 1))
680 break; /* Error */
682 next_target_start =
683 (unsigned short) ((next_target_start + ti->len) &
684 (device_logical_block_size_sects - 1));
685 remaining = next_target_start ?
686 device_logical_block_size_sects - next_target_start : 0;
689 if (remaining) {
690 DMWARN("%s: table line %u (start sect %llu len %llu) "
691 "not aligned to h/w logical block size %u",
692 dm_device_name(table->md), i,
693 (unsigned long long) ti->begin,
694 (unsigned long long) ti->len,
695 limits->logical_block_size);
696 return -EINVAL;
699 return 0;
702 int dm_table_add_target(struct dm_table *t, const char *type,
703 sector_t start, sector_t len, char *params)
705 int r = -EINVAL, argc;
706 char **argv;
707 struct dm_target *tgt;
709 if (t->singleton) {
710 DMERR("%s: target type %s must appear alone in table",
711 dm_device_name(t->md), t->targets->type->name);
712 return -EINVAL;
715 if ((r = check_space(t)))
716 return r;
718 tgt = t->targets + t->num_targets;
719 memset(tgt, 0, sizeof(*tgt));
721 if (!len) {
722 DMERR("%s: zero-length target", dm_device_name(t->md));
723 return -EINVAL;
726 tgt->type = dm_get_target_type(type);
727 if (!tgt->type) {
728 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
729 type);
730 return -EINVAL;
733 if (dm_target_needs_singleton(tgt->type)) {
734 if (t->num_targets) {
735 DMERR("%s: target type %s must appear alone in table",
736 dm_device_name(t->md), type);
737 return -EINVAL;
739 t->singleton = 1;
742 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
743 DMERR("%s: target type %s may not be included in read-only tables",
744 dm_device_name(t->md), type);
745 return -EINVAL;
748 if (t->immutable_target_type) {
749 if (t->immutable_target_type != tgt->type) {
750 DMERR("%s: immutable target type %s cannot be mixed with other target types",
751 dm_device_name(t->md), t->immutable_target_type->name);
752 return -EINVAL;
754 } else if (dm_target_is_immutable(tgt->type)) {
755 if (t->num_targets) {
756 DMERR("%s: immutable target type %s cannot be mixed with other target types",
757 dm_device_name(t->md), tgt->type->name);
758 return -EINVAL;
760 t->immutable_target_type = tgt->type;
763 tgt->table = t;
764 tgt->begin = start;
765 tgt->len = len;
766 tgt->error = "Unknown error";
769 * Does this target adjoin the previous one ?
771 if (!adjoin(t, tgt)) {
772 tgt->error = "Gap in table";
773 r = -EINVAL;
774 goto bad;
777 r = dm_split_args(&argc, &argv, params);
778 if (r) {
779 tgt->error = "couldn't split parameters (insufficient memory)";
780 goto bad;
783 r = tgt->type->ctr(tgt, argc, argv);
784 kfree(argv);
785 if (r)
786 goto bad;
788 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
790 if (!tgt->num_discard_bios && tgt->discards_supported)
791 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
792 dm_device_name(t->md), type);
794 return 0;
796 bad:
797 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
798 dm_put_target_type(tgt->type);
799 return r;
803 * Target argument parsing helpers.
805 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
806 unsigned *value, char **error, unsigned grouped)
808 const char *arg_str = dm_shift_arg(arg_set);
809 char dummy;
811 if (!arg_str ||
812 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
813 (*value < arg->min) ||
814 (*value > arg->max) ||
815 (grouped && arg_set->argc < *value)) {
816 *error = arg->error;
817 return -EINVAL;
820 return 0;
823 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
824 unsigned *value, char **error)
826 return validate_next_arg(arg, arg_set, value, error, 0);
828 EXPORT_SYMBOL(dm_read_arg);
830 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
831 unsigned *value, char **error)
833 return validate_next_arg(arg, arg_set, value, error, 1);
835 EXPORT_SYMBOL(dm_read_arg_group);
837 const char *dm_shift_arg(struct dm_arg_set *as)
839 char *r;
841 if (as->argc) {
842 as->argc--;
843 r = *as->argv;
844 as->argv++;
845 return r;
848 return NULL;
850 EXPORT_SYMBOL(dm_shift_arg);
852 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
854 BUG_ON(as->argc < num_args);
855 as->argc -= num_args;
856 as->argv += num_args;
858 EXPORT_SYMBOL(dm_consume_args);
860 static int dm_table_set_type(struct dm_table *t)
862 unsigned i;
863 unsigned bio_based = 0, request_based = 0;
864 struct dm_target *tgt;
865 struct dm_dev_internal *dd;
866 struct list_head *devices;
868 for (i = 0; i < t->num_targets; i++) {
869 tgt = t->targets + i;
870 if (dm_target_request_based(tgt))
871 request_based = 1;
872 else
873 bio_based = 1;
875 if (bio_based && request_based) {
876 DMWARN("Inconsistent table: different target types"
877 " can't be mixed up");
878 return -EINVAL;
882 if (bio_based) {
883 /* We must use this table as bio-based */
884 t->type = DM_TYPE_BIO_BASED;
885 return 0;
888 BUG_ON(!request_based); /* No targets in this table */
890 /* Non-request-stackable devices can't be used for request-based dm */
891 devices = dm_table_get_devices(t);
892 list_for_each_entry(dd, devices, list) {
893 if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
894 DMWARN("table load rejected: including"
895 " non-request-stackable devices");
896 return -EINVAL;
901 * Request-based dm supports only tables that have a single target now.
902 * To support multiple targets, request splitting support is needed,
903 * and that needs lots of changes in the block-layer.
904 * (e.g. request completion process for partial completion.)
906 if (t->num_targets > 1) {
907 DMWARN("Request-based dm doesn't support multiple targets yet");
908 return -EINVAL;
911 t->type = DM_TYPE_REQUEST_BASED;
913 return 0;
916 unsigned dm_table_get_type(struct dm_table *t)
918 return t->type;
921 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
923 return t->immutable_target_type;
926 bool dm_table_request_based(struct dm_table *t)
928 return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
931 int dm_table_alloc_md_mempools(struct dm_table *t)
933 unsigned type = dm_table_get_type(t);
934 unsigned per_bio_data_size = 0;
935 struct dm_target *tgt;
936 unsigned i;
938 if (unlikely(type == DM_TYPE_NONE)) {
939 DMWARN("no table type is set, can't allocate mempools");
940 return -EINVAL;
943 if (type == DM_TYPE_BIO_BASED)
944 for (i = 0; i < t->num_targets; i++) {
945 tgt = t->targets + i;
946 per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size);
949 t->mempools = dm_alloc_md_mempools(type, t->integrity_supported, per_bio_data_size);
950 if (!t->mempools)
951 return -ENOMEM;
953 return 0;
956 void dm_table_free_md_mempools(struct dm_table *t)
958 dm_free_md_mempools(t->mempools);
959 t->mempools = NULL;
962 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
964 return t->mempools;
967 static int setup_indexes(struct dm_table *t)
969 int i;
970 unsigned int total = 0;
971 sector_t *indexes;
973 /* allocate the space for *all* the indexes */
974 for (i = t->depth - 2; i >= 0; i--) {
975 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
976 total += t->counts[i];
979 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
980 if (!indexes)
981 return -ENOMEM;
983 /* set up internal nodes, bottom-up */
984 for (i = t->depth - 2; i >= 0; i--) {
985 t->index[i] = indexes;
986 indexes += (KEYS_PER_NODE * t->counts[i]);
987 setup_btree_index(i, t);
990 return 0;
994 * Builds the btree to index the map.
996 static int dm_table_build_index(struct dm_table *t)
998 int r = 0;
999 unsigned int leaf_nodes;
1001 /* how many indexes will the btree have ? */
1002 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1003 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1005 /* leaf layer has already been set up */
1006 t->counts[t->depth - 1] = leaf_nodes;
1007 t->index[t->depth - 1] = t->highs;
1009 if (t->depth >= 2)
1010 r = setup_indexes(t);
1012 return r;
1016 * Get a disk whose integrity profile reflects the table's profile.
1017 * If %match_all is true, all devices' profiles must match.
1018 * If %match_all is false, all devices must at least have an
1019 * allocated integrity profile; but uninitialized is ok.
1020 * Returns NULL if integrity support was inconsistent or unavailable.
1022 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1023 bool match_all)
1025 struct list_head *devices = dm_table_get_devices(t);
1026 struct dm_dev_internal *dd = NULL;
1027 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1029 list_for_each_entry(dd, devices, list) {
1030 template_disk = dd->dm_dev.bdev->bd_disk;
1031 if (!blk_get_integrity(template_disk))
1032 goto no_integrity;
1033 if (!match_all && !blk_integrity_is_initialized(template_disk))
1034 continue; /* skip uninitialized profiles */
1035 else if (prev_disk &&
1036 blk_integrity_compare(prev_disk, template_disk) < 0)
1037 goto no_integrity;
1038 prev_disk = template_disk;
1041 return template_disk;
1043 no_integrity:
1044 if (prev_disk)
1045 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1046 dm_device_name(t->md),
1047 prev_disk->disk_name,
1048 template_disk->disk_name);
1049 return NULL;
1053 * Register the mapped device for blk_integrity support if
1054 * the underlying devices have an integrity profile. But all devices
1055 * may not have matching profiles (checking all devices isn't reliable
1056 * during table load because this table may use other DM device(s) which
1057 * must be resumed before they will have an initialized integity profile).
1058 * Stacked DM devices force a 2 stage integrity profile validation:
1059 * 1 - during load, validate all initialized integrity profiles match
1060 * 2 - during resume, validate all integrity profiles match
1062 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1064 struct gendisk *template_disk = NULL;
1066 template_disk = dm_table_get_integrity_disk(t, false);
1067 if (!template_disk)
1068 return 0;
1070 if (!blk_integrity_is_initialized(dm_disk(md))) {
1071 t->integrity_supported = 1;
1072 return blk_integrity_register(dm_disk(md), NULL);
1076 * If DM device already has an initalized integrity
1077 * profile the new profile should not conflict.
1079 if (blk_integrity_is_initialized(template_disk) &&
1080 blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1081 DMWARN("%s: conflict with existing integrity profile: "
1082 "%s profile mismatch",
1083 dm_device_name(t->md),
1084 template_disk->disk_name);
1085 return 1;
1088 /* Preserve existing initialized integrity profile */
1089 t->integrity_supported = 1;
1090 return 0;
1094 * Prepares the table for use by building the indices,
1095 * setting the type, and allocating mempools.
1097 int dm_table_complete(struct dm_table *t)
1099 int r;
1101 r = dm_table_set_type(t);
1102 if (r) {
1103 DMERR("unable to set table type");
1104 return r;
1107 r = dm_table_build_index(t);
1108 if (r) {
1109 DMERR("unable to build btrees");
1110 return r;
1113 r = dm_table_prealloc_integrity(t, t->md);
1114 if (r) {
1115 DMERR("could not register integrity profile.");
1116 return r;
1119 r = dm_table_alloc_md_mempools(t);
1120 if (r)
1121 DMERR("unable to allocate mempools");
1123 return r;
1126 static DEFINE_MUTEX(_event_lock);
1127 void dm_table_event_callback(struct dm_table *t,
1128 void (*fn)(void *), void *context)
1130 mutex_lock(&_event_lock);
1131 t->event_fn = fn;
1132 t->event_context = context;
1133 mutex_unlock(&_event_lock);
1136 void dm_table_event(struct dm_table *t)
1139 * You can no longer call dm_table_event() from interrupt
1140 * context, use a bottom half instead.
1142 BUG_ON(in_interrupt());
1144 mutex_lock(&_event_lock);
1145 if (t->event_fn)
1146 t->event_fn(t->event_context);
1147 mutex_unlock(&_event_lock);
1149 EXPORT_SYMBOL(dm_table_event);
1151 sector_t dm_table_get_size(struct dm_table *t)
1153 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1155 EXPORT_SYMBOL(dm_table_get_size);
1157 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1159 if (index >= t->num_targets)
1160 return NULL;
1162 return t->targets + index;
1166 * Search the btree for the correct target.
1168 * Caller should check returned pointer with dm_target_is_valid()
1169 * to trap I/O beyond end of device.
1171 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1173 unsigned int l, n = 0, k = 0;
1174 sector_t *node;
1176 for (l = 0; l < t->depth; l++) {
1177 n = get_child(n, k);
1178 node = get_node(t, l, n);
1180 for (k = 0; k < KEYS_PER_NODE; k++)
1181 if (node[k] >= sector)
1182 break;
1185 return &t->targets[(KEYS_PER_NODE * n) + k];
1188 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1189 sector_t start, sector_t len, void *data)
1191 unsigned *num_devices = data;
1193 (*num_devices)++;
1195 return 0;
1199 * Check whether a table has no data devices attached using each
1200 * target's iterate_devices method.
1201 * Returns false if the result is unknown because a target doesn't
1202 * support iterate_devices.
1204 bool dm_table_has_no_data_devices(struct dm_table *table)
1206 struct dm_target *uninitialized_var(ti);
1207 unsigned i = 0, num_devices = 0;
1209 while (i < dm_table_get_num_targets(table)) {
1210 ti = dm_table_get_target(table, i++);
1212 if (!ti->type->iterate_devices)
1213 return false;
1215 ti->type->iterate_devices(ti, count_device, &num_devices);
1216 if (num_devices)
1217 return false;
1220 return true;
1224 * Establish the new table's queue_limits and validate them.
1226 int dm_calculate_queue_limits(struct dm_table *table,
1227 struct queue_limits *limits)
1229 struct dm_target *uninitialized_var(ti);
1230 struct queue_limits ti_limits;
1231 unsigned i = 0;
1233 blk_set_stacking_limits(limits);
1235 while (i < dm_table_get_num_targets(table)) {
1236 blk_set_stacking_limits(&ti_limits);
1238 ti = dm_table_get_target(table, i++);
1240 if (!ti->type->iterate_devices)
1241 goto combine_limits;
1244 * Combine queue limits of all the devices this target uses.
1246 ti->type->iterate_devices(ti, dm_set_device_limits,
1247 &ti_limits);
1249 /* Set I/O hints portion of queue limits */
1250 if (ti->type->io_hints)
1251 ti->type->io_hints(ti, &ti_limits);
1254 * Check each device area is consistent with the target's
1255 * overall queue limits.
1257 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1258 &ti_limits))
1259 return -EINVAL;
1261 combine_limits:
1263 * Merge this target's queue limits into the overall limits
1264 * for the table.
1266 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1267 DMWARN("%s: adding target device "
1268 "(start sect %llu len %llu) "
1269 "caused an alignment inconsistency",
1270 dm_device_name(table->md),
1271 (unsigned long long) ti->begin,
1272 (unsigned long long) ti->len);
1275 return validate_hardware_logical_block_alignment(table, limits);
1279 * Set the integrity profile for this device if all devices used have
1280 * matching profiles. We're quite deep in the resume path but still
1281 * don't know if all devices (particularly DM devices this device
1282 * may be stacked on) have matching profiles. Even if the profiles
1283 * don't match we have no way to fail (to resume) at this point.
1285 static void dm_table_set_integrity(struct dm_table *t)
1287 struct gendisk *template_disk = NULL;
1289 if (!blk_get_integrity(dm_disk(t->md)))
1290 return;
1292 template_disk = dm_table_get_integrity_disk(t, true);
1293 if (template_disk)
1294 blk_integrity_register(dm_disk(t->md),
1295 blk_get_integrity(template_disk));
1296 else if (blk_integrity_is_initialized(dm_disk(t->md)))
1297 DMWARN("%s: device no longer has a valid integrity profile",
1298 dm_device_name(t->md));
1299 else
1300 DMWARN("%s: unable to establish an integrity profile",
1301 dm_device_name(t->md));
1304 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1305 sector_t start, sector_t len, void *data)
1307 unsigned flush = (*(unsigned *)data);
1308 struct request_queue *q = bdev_get_queue(dev->bdev);
1310 return q && (q->flush_flags & flush);
1313 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1315 struct dm_target *ti;
1316 unsigned i = 0;
1319 * Require at least one underlying device to support flushes.
1320 * t->devices includes internal dm devices such as mirror logs
1321 * so we need to use iterate_devices here, which targets
1322 * supporting flushes must provide.
1324 while (i < dm_table_get_num_targets(t)) {
1325 ti = dm_table_get_target(t, i++);
1327 if (!ti->num_flush_bios)
1328 continue;
1330 if (ti->flush_supported)
1331 return 1;
1333 if (ti->type->iterate_devices &&
1334 ti->type->iterate_devices(ti, device_flush_capable, &flush))
1335 return 1;
1338 return 0;
1341 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1343 struct dm_target *ti;
1344 unsigned i = 0;
1346 /* Ensure that all targets supports discard_zeroes_data. */
1347 while (i < dm_table_get_num_targets(t)) {
1348 ti = dm_table_get_target(t, i++);
1350 if (ti->discard_zeroes_data_unsupported)
1351 return 0;
1354 return 1;
1357 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1358 sector_t start, sector_t len, void *data)
1360 struct request_queue *q = bdev_get_queue(dev->bdev);
1362 return q && blk_queue_nonrot(q);
1365 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1366 sector_t start, sector_t len, void *data)
1368 struct request_queue *q = bdev_get_queue(dev->bdev);
1370 return q && !blk_queue_add_random(q);
1373 static bool dm_table_all_devices_attribute(struct dm_table *t,
1374 iterate_devices_callout_fn func)
1376 struct dm_target *ti;
1377 unsigned i = 0;
1379 while (i < dm_table_get_num_targets(t)) {
1380 ti = dm_table_get_target(t, i++);
1382 if (!ti->type->iterate_devices ||
1383 !ti->type->iterate_devices(ti, func, NULL))
1384 return 0;
1387 return 1;
1390 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1391 sector_t start, sector_t len, void *data)
1393 struct request_queue *q = bdev_get_queue(dev->bdev);
1395 return q && !q->limits.max_write_same_sectors;
1398 static bool dm_table_supports_write_same(struct dm_table *t)
1400 struct dm_target *ti;
1401 unsigned i = 0;
1403 while (i < dm_table_get_num_targets(t)) {
1404 ti = dm_table_get_target(t, i++);
1406 if (!ti->num_write_same_bios)
1407 return false;
1409 if (!ti->type->iterate_devices ||
1410 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1411 return false;
1414 return true;
1417 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1418 struct queue_limits *limits)
1420 unsigned flush = 0;
1423 * Copy table's limits to the DM device's request_queue
1425 q->limits = *limits;
1427 if (!dm_table_supports_discards(t))
1428 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1429 else
1430 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1432 if (dm_table_supports_flush(t, REQ_FLUSH)) {
1433 flush |= REQ_FLUSH;
1434 if (dm_table_supports_flush(t, REQ_FUA))
1435 flush |= REQ_FUA;
1437 blk_queue_flush(q, flush);
1439 if (!dm_table_discard_zeroes_data(t))
1440 q->limits.discard_zeroes_data = 0;
1442 /* Ensure that all underlying devices are non-rotational. */
1443 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1444 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1445 else
1446 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1448 if (!dm_table_supports_write_same(t))
1449 q->limits.max_write_same_sectors = 0;
1451 dm_table_set_integrity(t);
1454 * Determine whether or not this queue's I/O timings contribute
1455 * to the entropy pool, Only request-based targets use this.
1456 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1457 * have it set.
1459 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1460 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1463 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1464 * visible to other CPUs because, once the flag is set, incoming bios
1465 * are processed by request-based dm, which refers to the queue
1466 * settings.
1467 * Until the flag set, bios are passed to bio-based dm and queued to
1468 * md->deferred where queue settings are not needed yet.
1469 * Those bios are passed to request-based dm at the resume time.
1471 smp_mb();
1472 if (dm_table_request_based(t))
1473 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1476 unsigned int dm_table_get_num_targets(struct dm_table *t)
1478 return t->num_targets;
1481 struct list_head *dm_table_get_devices(struct dm_table *t)
1483 return &t->devices;
1486 fmode_t dm_table_get_mode(struct dm_table *t)
1488 return t->mode;
1490 EXPORT_SYMBOL(dm_table_get_mode);
1492 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1494 int i = t->num_targets;
1495 struct dm_target *ti = t->targets;
1497 while (i--) {
1498 if (postsuspend) {
1499 if (ti->type->postsuspend)
1500 ti->type->postsuspend(ti);
1501 } else if (ti->type->presuspend)
1502 ti->type->presuspend(ti);
1504 ti++;
1508 void dm_table_presuspend_targets(struct dm_table *t)
1510 if (!t)
1511 return;
1513 suspend_targets(t, 0);
1516 void dm_table_postsuspend_targets(struct dm_table *t)
1518 if (!t)
1519 return;
1521 suspend_targets(t, 1);
1524 int dm_table_resume_targets(struct dm_table *t)
1526 int i, r = 0;
1528 for (i = 0; i < t->num_targets; i++) {
1529 struct dm_target *ti = t->targets + i;
1531 if (!ti->type->preresume)
1532 continue;
1534 r = ti->type->preresume(ti);
1535 if (r)
1536 return r;
1539 for (i = 0; i < t->num_targets; i++) {
1540 struct dm_target *ti = t->targets + i;
1542 if (ti->type->resume)
1543 ti->type->resume(ti);
1546 return 0;
1549 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1551 list_add(&cb->list, &t->target_callbacks);
1553 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1555 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1557 struct dm_dev_internal *dd;
1558 struct list_head *devices = dm_table_get_devices(t);
1559 struct dm_target_callbacks *cb;
1560 int r = 0;
1562 list_for_each_entry(dd, devices, list) {
1563 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1564 char b[BDEVNAME_SIZE];
1566 if (likely(q))
1567 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1568 else
1569 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1570 dm_device_name(t->md),
1571 bdevname(dd->dm_dev.bdev, b));
1574 list_for_each_entry(cb, &t->target_callbacks, list)
1575 if (cb->congested_fn)
1576 r |= cb->congested_fn(cb, bdi_bits);
1578 return r;
1581 int dm_table_any_busy_target(struct dm_table *t)
1583 unsigned i;
1584 struct dm_target *ti;
1586 for (i = 0; i < t->num_targets; i++) {
1587 ti = t->targets + i;
1588 if (ti->type->busy && ti->type->busy(ti))
1589 return 1;
1592 return 0;
1595 struct mapped_device *dm_table_get_md(struct dm_table *t)
1597 return t->md;
1599 EXPORT_SYMBOL(dm_table_get_md);
1601 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1602 sector_t start, sector_t len, void *data)
1604 struct request_queue *q = bdev_get_queue(dev->bdev);
1606 return q && blk_queue_discard(q);
1609 bool dm_table_supports_discards(struct dm_table *t)
1611 struct dm_target *ti;
1612 unsigned i = 0;
1615 * Unless any target used by the table set discards_supported,
1616 * require at least one underlying device to support discards.
1617 * t->devices includes internal dm devices such as mirror logs
1618 * so we need to use iterate_devices here, which targets
1619 * supporting discard selectively must provide.
1621 while (i < dm_table_get_num_targets(t)) {
1622 ti = dm_table_get_target(t, i++);
1624 if (!ti->num_discard_bios)
1625 continue;
1627 if (ti->discards_supported)
1628 return 1;
1630 if (ti->type->iterate_devices &&
1631 ti->type->iterate_devices(ti, device_discard_capable, NULL))
1632 return 1;
1635 return 0;