blk-mq: initialize req->q in allocation
[linux-2.6/btrfs-unstable.git] / block / blk-mq.c
blobc26b3be1893c67748ce4a587a640191b31c08646
1 #include <linux/kernel.h>
2 #include <linux/module.h>
3 #include <linux/backing-dev.h>
4 #include <linux/bio.h>
5 #include <linux/blkdev.h>
6 #include <linux/mm.h>
7 #include <linux/init.h>
8 #include <linux/slab.h>
9 #include <linux/workqueue.h>
10 #include <linux/smp.h>
11 #include <linux/llist.h>
12 #include <linux/list_sort.h>
13 #include <linux/cpu.h>
14 #include <linux/cache.h>
15 #include <linux/sched/sysctl.h>
16 #include <linux/delay.h>
18 #include <trace/events/block.h>
20 #include <linux/blk-mq.h>
21 #include "blk.h"
22 #include "blk-mq.h"
23 #include "blk-mq-tag.h"
25 static DEFINE_MUTEX(all_q_mutex);
26 static LIST_HEAD(all_q_list);
28 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
30 static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
31 unsigned int cpu)
33 return per_cpu_ptr(q->queue_ctx, cpu);
37 * This assumes per-cpu software queueing queues. They could be per-node
38 * as well, for instance. For now this is hardcoded as-is. Note that we don't
39 * care about preemption, since we know the ctx's are persistent. This does
40 * mean that we can't rely on ctx always matching the currently running CPU.
42 static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
44 return __blk_mq_get_ctx(q, get_cpu());
47 static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
49 put_cpu();
53 * Check if any of the ctx's have pending work in this hardware queue
55 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
57 unsigned int i;
59 for (i = 0; i < hctx->nr_ctx_map; i++)
60 if (hctx->ctx_map[i])
61 return true;
63 return false;
67 * Mark this ctx as having pending work in this hardware queue
69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70 struct blk_mq_ctx *ctx)
72 if (!test_bit(ctx->index_hw, hctx->ctx_map))
73 set_bit(ctx->index_hw, hctx->ctx_map);
76 static struct request *__blk_mq_alloc_request(struct blk_mq_hw_ctx *hctx,
77 gfp_t gfp, bool reserved)
79 struct request *rq;
80 unsigned int tag;
82 tag = blk_mq_get_tag(hctx->tags, gfp, reserved);
83 if (tag != BLK_MQ_TAG_FAIL) {
84 rq = hctx->tags->rqs[tag];
85 rq->tag = tag;
87 return rq;
90 return NULL;
93 static int blk_mq_queue_enter(struct request_queue *q)
95 int ret;
97 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
98 smp_wmb();
99 /* we have problems to freeze the queue if it's initializing */
100 if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
101 return 0;
103 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
105 spin_lock_irq(q->queue_lock);
106 ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
107 !blk_queue_bypass(q) || blk_queue_dying(q),
108 *q->queue_lock);
109 /* inc usage with lock hold to avoid freeze_queue runs here */
110 if (!ret && !blk_queue_dying(q))
111 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
112 else if (blk_queue_dying(q))
113 ret = -ENODEV;
114 spin_unlock_irq(q->queue_lock);
116 return ret;
119 static void blk_mq_queue_exit(struct request_queue *q)
121 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
124 static void __blk_mq_drain_queue(struct request_queue *q)
126 while (true) {
127 s64 count;
129 spin_lock_irq(q->queue_lock);
130 count = percpu_counter_sum(&q->mq_usage_counter);
131 spin_unlock_irq(q->queue_lock);
133 if (count == 0)
134 break;
135 blk_mq_run_queues(q, false);
136 msleep(10);
141 * Guarantee no request is in use, so we can change any data structure of
142 * the queue afterward.
144 static void blk_mq_freeze_queue(struct request_queue *q)
146 bool drain;
148 spin_lock_irq(q->queue_lock);
149 drain = !q->bypass_depth++;
150 queue_flag_set(QUEUE_FLAG_BYPASS, q);
151 spin_unlock_irq(q->queue_lock);
153 if (drain)
154 __blk_mq_drain_queue(q);
157 void blk_mq_drain_queue(struct request_queue *q)
159 __blk_mq_drain_queue(q);
162 static void blk_mq_unfreeze_queue(struct request_queue *q)
164 bool wake = false;
166 spin_lock_irq(q->queue_lock);
167 if (!--q->bypass_depth) {
168 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
169 wake = true;
171 WARN_ON_ONCE(q->bypass_depth < 0);
172 spin_unlock_irq(q->queue_lock);
173 if (wake)
174 wake_up_all(&q->mq_freeze_wq);
177 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
179 return blk_mq_has_free_tags(hctx->tags);
181 EXPORT_SYMBOL(blk_mq_can_queue);
183 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
184 struct request *rq, unsigned int rw_flags)
186 if (blk_queue_io_stat(q))
187 rw_flags |= REQ_IO_STAT;
189 rq->q = q;
190 rq->mq_ctx = ctx;
191 rq->cmd_flags = rw_flags;
192 rq->start_time = jiffies;
193 set_start_time_ns(rq);
194 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
197 static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
198 int rw, gfp_t gfp,
199 bool reserved)
201 struct request *rq;
203 do {
204 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
205 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);
207 rq = __blk_mq_alloc_request(hctx, gfp & ~__GFP_WAIT, reserved);
208 if (rq) {
209 blk_mq_rq_ctx_init(q, ctx, rq, rw);
210 break;
213 if (gfp & __GFP_WAIT) {
214 __blk_mq_run_hw_queue(hctx);
215 blk_mq_put_ctx(ctx);
216 } else {
217 blk_mq_put_ctx(ctx);
218 break;
221 blk_mq_wait_for_tags(hctx->tags);
222 } while (1);
224 return rq;
227 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp)
229 struct request *rq;
231 if (blk_mq_queue_enter(q))
232 return NULL;
234 rq = blk_mq_alloc_request_pinned(q, rw, gfp, false);
235 if (rq)
236 blk_mq_put_ctx(rq->mq_ctx);
237 return rq;
240 struct request *blk_mq_alloc_reserved_request(struct request_queue *q, int rw,
241 gfp_t gfp)
243 struct request *rq;
245 if (blk_mq_queue_enter(q))
246 return NULL;
248 rq = blk_mq_alloc_request_pinned(q, rw, gfp, true);
249 if (rq)
250 blk_mq_put_ctx(rq->mq_ctx);
251 return rq;
253 EXPORT_SYMBOL(blk_mq_alloc_reserved_request);
255 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
256 struct blk_mq_ctx *ctx, struct request *rq)
258 const int tag = rq->tag;
259 struct request_queue *q = rq->q;
261 blk_rq_init(hctx->queue, rq);
262 blk_mq_put_tag(hctx->tags, tag);
263 blk_mq_queue_exit(q);
266 void blk_mq_free_request(struct request *rq)
268 struct blk_mq_ctx *ctx = rq->mq_ctx;
269 struct blk_mq_hw_ctx *hctx;
270 struct request_queue *q = rq->q;
272 ctx->rq_completed[rq_is_sync(rq)]++;
274 hctx = q->mq_ops->map_queue(q, ctx->cpu);
275 __blk_mq_free_request(hctx, ctx, rq);
279 * Clone all relevant state from a request that has been put on hold in
280 * the flush state machine into the preallocated flush request that hangs
281 * off the request queue.
283 * For a driver the flush request should be invisible, that's why we are
284 * impersonating the original request here.
286 void blk_mq_clone_flush_request(struct request *flush_rq,
287 struct request *orig_rq)
289 struct blk_mq_hw_ctx *hctx =
290 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
292 flush_rq->mq_ctx = orig_rq->mq_ctx;
293 flush_rq->tag = orig_rq->tag;
294 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
295 hctx->cmd_size);
298 inline void __blk_mq_end_io(struct request *rq, int error)
300 blk_account_io_done(rq);
302 if (rq->end_io) {
303 rq->end_io(rq, error);
304 } else {
305 if (unlikely(blk_bidi_rq(rq)))
306 blk_mq_free_request(rq->next_rq);
307 blk_mq_free_request(rq);
310 EXPORT_SYMBOL(__blk_mq_end_io);
312 void blk_mq_end_io(struct request *rq, int error)
314 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
315 BUG();
316 __blk_mq_end_io(rq, error);
318 EXPORT_SYMBOL(blk_mq_end_io);
320 static void __blk_mq_complete_request_remote(void *data)
322 struct request *rq = data;
324 rq->q->softirq_done_fn(rq);
327 void __blk_mq_complete_request(struct request *rq)
329 struct blk_mq_ctx *ctx = rq->mq_ctx;
330 int cpu;
332 if (!ctx->ipi_redirect) {
333 rq->q->softirq_done_fn(rq);
334 return;
337 cpu = get_cpu();
338 if (cpu != ctx->cpu && cpu_online(ctx->cpu)) {
339 rq->csd.func = __blk_mq_complete_request_remote;
340 rq->csd.info = rq;
341 rq->csd.flags = 0;
342 smp_call_function_single_async(ctx->cpu, &rq->csd);
343 } else {
344 rq->q->softirq_done_fn(rq);
346 put_cpu();
350 * blk_mq_complete_request - end I/O on a request
351 * @rq: the request being processed
353 * Description:
354 * Ends all I/O on a request. It does not handle partial completions.
355 * The actual completion happens out-of-order, through a IPI handler.
357 void blk_mq_complete_request(struct request *rq)
359 if (unlikely(blk_should_fake_timeout(rq->q)))
360 return;
361 if (!blk_mark_rq_complete(rq))
362 __blk_mq_complete_request(rq);
364 EXPORT_SYMBOL(blk_mq_complete_request);
366 static void blk_mq_start_request(struct request *rq, bool last)
368 struct request_queue *q = rq->q;
370 trace_block_rq_issue(q, rq);
372 rq->resid_len = blk_rq_bytes(rq);
373 if (unlikely(blk_bidi_rq(rq)))
374 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
377 * Just mark start time and set the started bit. Due to memory
378 * ordering, we know we'll see the correct deadline as long as
379 * REQ_ATOMIC_STARTED is seen.
381 rq->deadline = jiffies + q->rq_timeout;
382 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
384 if (q->dma_drain_size && blk_rq_bytes(rq)) {
386 * Make sure space for the drain appears. We know we can do
387 * this because max_hw_segments has been adjusted to be one
388 * fewer than the device can handle.
390 rq->nr_phys_segments++;
394 * Flag the last request in the series so that drivers know when IO
395 * should be kicked off, if they don't do it on a per-request basis.
397 * Note: the flag isn't the only condition drivers should do kick off.
398 * If drive is busy, the last request might not have the bit set.
400 if (last)
401 rq->cmd_flags |= REQ_END;
404 static void __blk_mq_requeue_request(struct request *rq)
406 struct request_queue *q = rq->q;
408 trace_block_rq_requeue(q, rq);
409 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
411 rq->cmd_flags &= ~REQ_END;
413 if (q->dma_drain_size && blk_rq_bytes(rq))
414 rq->nr_phys_segments--;
417 void blk_mq_requeue_request(struct request *rq)
419 struct request_queue *q = rq->q;
421 __blk_mq_requeue_request(rq);
422 blk_clear_rq_complete(rq);
424 trace_block_rq_requeue(q, rq);
426 BUG_ON(blk_queued_rq(rq));
427 blk_mq_insert_request(rq, true, true, false);
429 EXPORT_SYMBOL(blk_mq_requeue_request);
431 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
433 return tags->rqs[tag];
435 EXPORT_SYMBOL(blk_mq_tag_to_rq);
437 struct blk_mq_timeout_data {
438 struct blk_mq_hw_ctx *hctx;
439 unsigned long *next;
440 unsigned int *next_set;
443 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
445 struct blk_mq_timeout_data *data = __data;
446 struct blk_mq_hw_ctx *hctx = data->hctx;
447 unsigned int tag;
449 /* It may not be in flight yet (this is where
450 * the REQ_ATOMIC_STARTED flag comes in). The requests are
451 * statically allocated, so we know it's always safe to access the
452 * memory associated with a bit offset into ->rqs[].
454 tag = 0;
455 do {
456 struct request *rq;
458 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
459 if (tag >= hctx->tags->nr_tags)
460 break;
462 rq = blk_mq_tag_to_rq(hctx->tags, tag++);
463 if (rq->q != hctx->queue)
464 continue;
465 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
466 continue;
468 blk_rq_check_expired(rq, data->next, data->next_set);
469 } while (1);
472 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
473 unsigned long *next,
474 unsigned int *next_set)
476 struct blk_mq_timeout_data data = {
477 .hctx = hctx,
478 .next = next,
479 .next_set = next_set,
483 * Ask the tagging code to iterate busy requests, so we can
484 * check them for timeout.
486 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
489 static void blk_mq_rq_timer(unsigned long data)
491 struct request_queue *q = (struct request_queue *) data;
492 struct blk_mq_hw_ctx *hctx;
493 unsigned long next = 0;
494 int i, next_set = 0;
496 queue_for_each_hw_ctx(q, hctx, i)
497 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
499 if (next_set)
500 mod_timer(&q->timeout, round_jiffies_up(next));
504 * Reverse check our software queue for entries that we could potentially
505 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
506 * too much time checking for merges.
508 static bool blk_mq_attempt_merge(struct request_queue *q,
509 struct blk_mq_ctx *ctx, struct bio *bio)
511 struct request *rq;
512 int checked = 8;
514 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
515 int el_ret;
517 if (!checked--)
518 break;
520 if (!blk_rq_merge_ok(rq, bio))
521 continue;
523 el_ret = blk_try_merge(rq, bio);
524 if (el_ret == ELEVATOR_BACK_MERGE) {
525 if (bio_attempt_back_merge(q, rq, bio)) {
526 ctx->rq_merged++;
527 return true;
529 break;
530 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
531 if (bio_attempt_front_merge(q, rq, bio)) {
532 ctx->rq_merged++;
533 return true;
535 break;
539 return false;
542 void blk_mq_add_timer(struct request *rq)
544 __blk_add_timer(rq, NULL);
548 * Run this hardware queue, pulling any software queues mapped to it in.
549 * Note that this function currently has various problems around ordering
550 * of IO. In particular, we'd like FIFO behaviour on handling existing
551 * items on the hctx->dispatch list. Ignore that for now.
553 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
555 struct request_queue *q = hctx->queue;
556 struct blk_mq_ctx *ctx;
557 struct request *rq;
558 LIST_HEAD(rq_list);
559 int bit, queued;
561 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
563 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
564 return;
566 hctx->run++;
569 * Touch any software queue that has pending entries.
571 for_each_set_bit(bit, hctx->ctx_map, hctx->nr_ctx) {
572 clear_bit(bit, hctx->ctx_map);
573 ctx = hctx->ctxs[bit];
574 BUG_ON(bit != ctx->index_hw);
576 spin_lock(&ctx->lock);
577 list_splice_tail_init(&ctx->rq_list, &rq_list);
578 spin_unlock(&ctx->lock);
582 * If we have previous entries on our dispatch list, grab them
583 * and stuff them at the front for more fair dispatch.
585 if (!list_empty_careful(&hctx->dispatch)) {
586 spin_lock(&hctx->lock);
587 if (!list_empty(&hctx->dispatch))
588 list_splice_init(&hctx->dispatch, &rq_list);
589 spin_unlock(&hctx->lock);
593 * Delete and return all entries from our dispatch list
595 queued = 0;
598 * Now process all the entries, sending them to the driver.
600 while (!list_empty(&rq_list)) {
601 int ret;
603 rq = list_first_entry(&rq_list, struct request, queuelist);
604 list_del_init(&rq->queuelist);
606 blk_mq_start_request(rq, list_empty(&rq_list));
608 ret = q->mq_ops->queue_rq(hctx, rq);
609 switch (ret) {
610 case BLK_MQ_RQ_QUEUE_OK:
611 queued++;
612 continue;
613 case BLK_MQ_RQ_QUEUE_BUSY:
615 * FIXME: we should have a mechanism to stop the queue
616 * like blk_stop_queue, otherwise we will waste cpu
617 * time
619 list_add(&rq->queuelist, &rq_list);
620 __blk_mq_requeue_request(rq);
621 break;
622 default:
623 pr_err("blk-mq: bad return on queue: %d\n", ret);
624 case BLK_MQ_RQ_QUEUE_ERROR:
625 rq->errors = -EIO;
626 blk_mq_end_io(rq, rq->errors);
627 break;
630 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
631 break;
634 if (!queued)
635 hctx->dispatched[0]++;
636 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
637 hctx->dispatched[ilog2(queued) + 1]++;
640 * Any items that need requeuing? Stuff them into hctx->dispatch,
641 * that is where we will continue on next queue run.
643 if (!list_empty(&rq_list)) {
644 spin_lock(&hctx->lock);
645 list_splice(&rq_list, &hctx->dispatch);
646 spin_unlock(&hctx->lock);
650 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
652 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
653 return;
655 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
656 __blk_mq_run_hw_queue(hctx);
657 else if (hctx->queue->nr_hw_queues == 1)
658 kblockd_schedule_delayed_work(&hctx->run_work, 0);
659 else {
660 unsigned int cpu;
663 * It'd be great if the workqueue API had a way to pass
664 * in a mask and had some smarts for more clever placement
665 * than the first CPU. Or we could round-robin here. For now,
666 * just queue on the first CPU.
668 cpu = cpumask_first(hctx->cpumask);
669 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
673 void blk_mq_run_queues(struct request_queue *q, bool async)
675 struct blk_mq_hw_ctx *hctx;
676 int i;
678 queue_for_each_hw_ctx(q, hctx, i) {
679 if ((!blk_mq_hctx_has_pending(hctx) &&
680 list_empty_careful(&hctx->dispatch)) ||
681 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
682 continue;
684 preempt_disable();
685 blk_mq_run_hw_queue(hctx, async);
686 preempt_enable();
689 EXPORT_SYMBOL(blk_mq_run_queues);
691 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
693 cancel_delayed_work(&hctx->run_work);
694 cancel_delayed_work(&hctx->delay_work);
695 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
697 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
699 void blk_mq_stop_hw_queues(struct request_queue *q)
701 struct blk_mq_hw_ctx *hctx;
702 int i;
704 queue_for_each_hw_ctx(q, hctx, i)
705 blk_mq_stop_hw_queue(hctx);
707 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
709 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
711 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
713 preempt_disable();
714 __blk_mq_run_hw_queue(hctx);
715 preempt_enable();
717 EXPORT_SYMBOL(blk_mq_start_hw_queue);
719 void blk_mq_start_hw_queues(struct request_queue *q)
721 struct blk_mq_hw_ctx *hctx;
722 int i;
724 queue_for_each_hw_ctx(q, hctx, i)
725 blk_mq_start_hw_queue(hctx);
727 EXPORT_SYMBOL(blk_mq_start_hw_queues);
730 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
732 struct blk_mq_hw_ctx *hctx;
733 int i;
735 queue_for_each_hw_ctx(q, hctx, i) {
736 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
737 continue;
739 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
740 preempt_disable();
741 blk_mq_run_hw_queue(hctx, async);
742 preempt_enable();
745 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
747 static void blk_mq_run_work_fn(struct work_struct *work)
749 struct blk_mq_hw_ctx *hctx;
751 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
753 __blk_mq_run_hw_queue(hctx);
756 static void blk_mq_delay_work_fn(struct work_struct *work)
758 struct blk_mq_hw_ctx *hctx;
760 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
762 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
763 __blk_mq_run_hw_queue(hctx);
766 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
768 unsigned long tmo = msecs_to_jiffies(msecs);
770 if (hctx->queue->nr_hw_queues == 1)
771 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
772 else {
773 unsigned int cpu;
776 * It'd be great if the workqueue API had a way to pass
777 * in a mask and had some smarts for more clever placement
778 * than the first CPU. Or we could round-robin here. For now,
779 * just queue on the first CPU.
781 cpu = cpumask_first(hctx->cpumask);
782 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
785 EXPORT_SYMBOL(blk_mq_delay_queue);
787 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
788 struct request *rq, bool at_head)
790 struct blk_mq_ctx *ctx = rq->mq_ctx;
792 trace_block_rq_insert(hctx->queue, rq);
794 if (at_head)
795 list_add(&rq->queuelist, &ctx->rq_list);
796 else
797 list_add_tail(&rq->queuelist, &ctx->rq_list);
798 blk_mq_hctx_mark_pending(hctx, ctx);
801 * We do this early, to ensure we are on the right CPU.
803 blk_mq_add_timer(rq);
806 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
807 bool async)
809 struct request_queue *q = rq->q;
810 struct blk_mq_hw_ctx *hctx;
811 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
813 current_ctx = blk_mq_get_ctx(q);
814 if (!cpu_online(ctx->cpu))
815 rq->mq_ctx = ctx = current_ctx;
817 hctx = q->mq_ops->map_queue(q, ctx->cpu);
819 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
820 !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
821 blk_insert_flush(rq);
822 } else {
823 spin_lock(&ctx->lock);
824 __blk_mq_insert_request(hctx, rq, at_head);
825 spin_unlock(&ctx->lock);
828 if (run_queue)
829 blk_mq_run_hw_queue(hctx, async);
831 blk_mq_put_ctx(current_ctx);
834 static void blk_mq_insert_requests(struct request_queue *q,
835 struct blk_mq_ctx *ctx,
836 struct list_head *list,
837 int depth,
838 bool from_schedule)
841 struct blk_mq_hw_ctx *hctx;
842 struct blk_mq_ctx *current_ctx;
844 trace_block_unplug(q, depth, !from_schedule);
846 current_ctx = blk_mq_get_ctx(q);
848 if (!cpu_online(ctx->cpu))
849 ctx = current_ctx;
850 hctx = q->mq_ops->map_queue(q, ctx->cpu);
853 * preemption doesn't flush plug list, so it's possible ctx->cpu is
854 * offline now
856 spin_lock(&ctx->lock);
857 while (!list_empty(list)) {
858 struct request *rq;
860 rq = list_first_entry(list, struct request, queuelist);
861 list_del_init(&rq->queuelist);
862 rq->mq_ctx = ctx;
863 __blk_mq_insert_request(hctx, rq, false);
865 spin_unlock(&ctx->lock);
867 blk_mq_run_hw_queue(hctx, from_schedule);
868 blk_mq_put_ctx(current_ctx);
871 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
873 struct request *rqa = container_of(a, struct request, queuelist);
874 struct request *rqb = container_of(b, struct request, queuelist);
876 return !(rqa->mq_ctx < rqb->mq_ctx ||
877 (rqa->mq_ctx == rqb->mq_ctx &&
878 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
881 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
883 struct blk_mq_ctx *this_ctx;
884 struct request_queue *this_q;
885 struct request *rq;
886 LIST_HEAD(list);
887 LIST_HEAD(ctx_list);
888 unsigned int depth;
890 list_splice_init(&plug->mq_list, &list);
892 list_sort(NULL, &list, plug_ctx_cmp);
894 this_q = NULL;
895 this_ctx = NULL;
896 depth = 0;
898 while (!list_empty(&list)) {
899 rq = list_entry_rq(list.next);
900 list_del_init(&rq->queuelist);
901 BUG_ON(!rq->q);
902 if (rq->mq_ctx != this_ctx) {
903 if (this_ctx) {
904 blk_mq_insert_requests(this_q, this_ctx,
905 &ctx_list, depth,
906 from_schedule);
909 this_ctx = rq->mq_ctx;
910 this_q = rq->q;
911 depth = 0;
914 depth++;
915 list_add_tail(&rq->queuelist, &ctx_list);
919 * If 'this_ctx' is set, we know we have entries to complete
920 * on 'ctx_list'. Do those.
922 if (this_ctx) {
923 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
924 from_schedule);
928 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
930 init_request_from_bio(rq, bio);
931 blk_account_io_start(rq, 1);
934 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
936 struct blk_mq_hw_ctx *hctx;
937 struct blk_mq_ctx *ctx;
938 const int is_sync = rw_is_sync(bio->bi_rw);
939 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
940 int rw = bio_data_dir(bio);
941 struct request *rq;
942 unsigned int use_plug, request_count = 0;
945 * If we have multiple hardware queues, just go directly to
946 * one of those for sync IO.
948 use_plug = !is_flush_fua && ((q->nr_hw_queues == 1) || !is_sync);
950 blk_queue_bounce(q, &bio);
952 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
953 bio_endio(bio, -EIO);
954 return;
957 if (use_plug && blk_attempt_plug_merge(q, bio, &request_count))
958 return;
960 if (blk_mq_queue_enter(q)) {
961 bio_endio(bio, -EIO);
962 return;
965 ctx = blk_mq_get_ctx(q);
966 hctx = q->mq_ops->map_queue(q, ctx->cpu);
968 if (is_sync)
969 rw |= REQ_SYNC;
970 trace_block_getrq(q, bio, rw);
971 rq = __blk_mq_alloc_request(hctx, GFP_ATOMIC, false);
972 if (likely(rq))
973 blk_mq_rq_ctx_init(q, ctx, rq, rw);
974 else {
975 blk_mq_put_ctx(ctx);
976 trace_block_sleeprq(q, bio, rw);
977 rq = blk_mq_alloc_request_pinned(q, rw, __GFP_WAIT|GFP_ATOMIC,
978 false);
979 ctx = rq->mq_ctx;
980 hctx = q->mq_ops->map_queue(q, ctx->cpu);
983 hctx->queued++;
985 if (unlikely(is_flush_fua)) {
986 blk_mq_bio_to_request(rq, bio);
987 blk_insert_flush(rq);
988 goto run_queue;
992 * A task plug currently exists. Since this is completely lockless,
993 * utilize that to temporarily store requests until the task is
994 * either done or scheduled away.
996 if (use_plug) {
997 struct blk_plug *plug = current->plug;
999 if (plug) {
1000 blk_mq_bio_to_request(rq, bio);
1001 if (list_empty(&plug->mq_list))
1002 trace_block_plug(q);
1003 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1004 blk_flush_plug_list(plug, false);
1005 trace_block_plug(q);
1007 list_add_tail(&rq->queuelist, &plug->mq_list);
1008 blk_mq_put_ctx(ctx);
1009 return;
1013 spin_lock(&ctx->lock);
1015 if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1016 blk_mq_attempt_merge(q, ctx, bio))
1017 __blk_mq_free_request(hctx, ctx, rq);
1018 else {
1019 blk_mq_bio_to_request(rq, bio);
1020 __blk_mq_insert_request(hctx, rq, false);
1023 spin_unlock(&ctx->lock);
1026 * For a SYNC request, send it to the hardware immediately. For an
1027 * ASYNC request, just ensure that we run it later on. The latter
1028 * allows for merging opportunities and more efficient dispatching.
1030 run_queue:
1031 blk_mq_run_hw_queue(hctx, !is_sync || is_flush_fua);
1032 blk_mq_put_ctx(ctx);
1036 * Default mapping to a software queue, since we use one per CPU.
1038 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1040 return q->queue_hw_ctx[q->mq_map[cpu]];
1042 EXPORT_SYMBOL(blk_mq_map_queue);
1044 struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_tag_set *set,
1045 unsigned int hctx_index)
1047 return kmalloc_node(sizeof(struct blk_mq_hw_ctx),
1048 GFP_KERNEL | __GFP_ZERO, set->numa_node);
1050 EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);
1052 void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
1053 unsigned int hctx_index)
1055 kfree(hctx);
1057 EXPORT_SYMBOL(blk_mq_free_single_hw_queue);
1059 static void blk_mq_hctx_notify(void *data, unsigned long action,
1060 unsigned int cpu)
1062 struct blk_mq_hw_ctx *hctx = data;
1063 struct request_queue *q = hctx->queue;
1064 struct blk_mq_ctx *ctx;
1065 LIST_HEAD(tmp);
1067 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1068 return;
1071 * Move ctx entries to new CPU, if this one is going away.
1073 ctx = __blk_mq_get_ctx(q, cpu);
1075 spin_lock(&ctx->lock);
1076 if (!list_empty(&ctx->rq_list)) {
1077 list_splice_init(&ctx->rq_list, &tmp);
1078 clear_bit(ctx->index_hw, hctx->ctx_map);
1080 spin_unlock(&ctx->lock);
1082 if (list_empty(&tmp))
1083 return;
1085 ctx = blk_mq_get_ctx(q);
1086 spin_lock(&ctx->lock);
1088 while (!list_empty(&tmp)) {
1089 struct request *rq;
1091 rq = list_first_entry(&tmp, struct request, queuelist);
1092 rq->mq_ctx = ctx;
1093 list_move_tail(&rq->queuelist, &ctx->rq_list);
1096 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1097 blk_mq_hctx_mark_pending(hctx, ctx);
1099 spin_unlock(&ctx->lock);
1101 blk_mq_run_hw_queue(hctx, true);
1102 blk_mq_put_ctx(ctx);
1105 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1106 struct blk_mq_tags *tags, unsigned int hctx_idx)
1108 struct page *page;
1110 if (tags->rqs && set->ops->exit_request) {
1111 int i;
1113 for (i = 0; i < tags->nr_tags; i++) {
1114 if (!tags->rqs[i])
1115 continue;
1116 set->ops->exit_request(set->driver_data, tags->rqs[i],
1117 hctx_idx, i);
1121 while (!list_empty(&tags->page_list)) {
1122 page = list_first_entry(&tags->page_list, struct page, lru);
1123 list_del_init(&page->lru);
1124 __free_pages(page, page->private);
1127 kfree(tags->rqs);
1129 blk_mq_free_tags(tags);
1132 static size_t order_to_size(unsigned int order)
1134 return (size_t)PAGE_SIZE << order;
1137 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1138 unsigned int hctx_idx)
1140 struct blk_mq_tags *tags;
1141 unsigned int i, j, entries_per_page, max_order = 4;
1142 size_t rq_size, left;
1144 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1145 set->numa_node);
1146 if (!tags)
1147 return NULL;
1149 INIT_LIST_HEAD(&tags->page_list);
1151 tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
1152 GFP_KERNEL, set->numa_node);
1153 if (!tags->rqs) {
1154 blk_mq_free_tags(tags);
1155 return NULL;
1159 * rq_size is the size of the request plus driver payload, rounded
1160 * to the cacheline size
1162 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1163 cache_line_size());
1164 left = rq_size * set->queue_depth;
1166 for (i = 0; i < set->queue_depth; ) {
1167 int this_order = max_order;
1168 struct page *page;
1169 int to_do;
1170 void *p;
1172 while (left < order_to_size(this_order - 1) && this_order)
1173 this_order--;
1175 do {
1176 page = alloc_pages_node(set->numa_node, GFP_KERNEL,
1177 this_order);
1178 if (page)
1179 break;
1180 if (!this_order--)
1181 break;
1182 if (order_to_size(this_order) < rq_size)
1183 break;
1184 } while (1);
1186 if (!page)
1187 goto fail;
1189 page->private = this_order;
1190 list_add_tail(&page->lru, &tags->page_list);
1192 p = page_address(page);
1193 entries_per_page = order_to_size(this_order) / rq_size;
1194 to_do = min(entries_per_page, set->queue_depth - i);
1195 left -= to_do * rq_size;
1196 for (j = 0; j < to_do; j++) {
1197 tags->rqs[i] = p;
1198 blk_rq_init(NULL, tags->rqs[i]);
1199 if (set->ops->init_request) {
1200 if (set->ops->init_request(set->driver_data,
1201 tags->rqs[i], hctx_idx, i,
1202 set->numa_node))
1203 goto fail;
1206 p += rq_size;
1207 i++;
1211 return tags;
1213 fail:
1214 pr_warn("%s: failed to allocate requests\n", __func__);
1215 blk_mq_free_rq_map(set, tags, hctx_idx);
1216 return NULL;
1219 static int blk_mq_init_hw_queues(struct request_queue *q,
1220 struct blk_mq_tag_set *set)
1222 struct blk_mq_hw_ctx *hctx;
1223 unsigned int i, j;
1226 * Initialize hardware queues
1228 queue_for_each_hw_ctx(q, hctx, i) {
1229 unsigned int num_maps;
1230 int node;
1232 node = hctx->numa_node;
1233 if (node == NUMA_NO_NODE)
1234 node = hctx->numa_node = set->numa_node;
1236 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1237 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1238 spin_lock_init(&hctx->lock);
1239 INIT_LIST_HEAD(&hctx->dispatch);
1240 hctx->queue = q;
1241 hctx->queue_num = i;
1242 hctx->flags = set->flags;
1243 hctx->cmd_size = set->cmd_size;
1245 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1246 blk_mq_hctx_notify, hctx);
1247 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1249 hctx->tags = set->tags[i];
1252 * Allocate space for all possible cpus to avoid allocation in
1253 * runtime
1255 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1256 GFP_KERNEL, node);
1257 if (!hctx->ctxs)
1258 break;
1260 num_maps = ALIGN(nr_cpu_ids, BITS_PER_LONG) / BITS_PER_LONG;
1261 hctx->ctx_map = kzalloc_node(num_maps * sizeof(unsigned long),
1262 GFP_KERNEL, node);
1263 if (!hctx->ctx_map)
1264 break;
1266 hctx->nr_ctx_map = num_maps;
1267 hctx->nr_ctx = 0;
1269 if (set->ops->init_hctx &&
1270 set->ops->init_hctx(hctx, set->driver_data, i))
1271 break;
1274 if (i == q->nr_hw_queues)
1275 return 0;
1278 * Init failed
1280 queue_for_each_hw_ctx(q, hctx, j) {
1281 if (i == j)
1282 break;
1284 if (set->ops->exit_hctx)
1285 set->ops->exit_hctx(hctx, j);
1287 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1288 kfree(hctx->ctxs);
1289 kfree(hctx->ctx_map);
1292 return 1;
1295 static void blk_mq_init_cpu_queues(struct request_queue *q,
1296 unsigned int nr_hw_queues)
1298 unsigned int i;
1300 for_each_possible_cpu(i) {
1301 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1302 struct blk_mq_hw_ctx *hctx;
1304 memset(__ctx, 0, sizeof(*__ctx));
1305 __ctx->cpu = i;
1306 spin_lock_init(&__ctx->lock);
1307 INIT_LIST_HEAD(&__ctx->rq_list);
1308 __ctx->queue = q;
1310 /* If the cpu isn't online, the cpu is mapped to first hctx */
1311 if (!cpu_online(i))
1312 continue;
1314 hctx = q->mq_ops->map_queue(q, i);
1315 cpumask_set_cpu(i, hctx->cpumask);
1316 hctx->nr_ctx++;
1319 * Set local node, IFF we have more than one hw queue. If
1320 * not, we remain on the home node of the device
1322 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1323 hctx->numa_node = cpu_to_node(i);
1327 static void blk_mq_map_swqueue(struct request_queue *q)
1329 unsigned int i;
1330 struct blk_mq_hw_ctx *hctx;
1331 struct blk_mq_ctx *ctx;
1333 queue_for_each_hw_ctx(q, hctx, i) {
1334 cpumask_clear(hctx->cpumask);
1335 hctx->nr_ctx = 0;
1339 * Map software to hardware queues
1341 queue_for_each_ctx(q, ctx, i) {
1342 /* If the cpu isn't online, the cpu is mapped to first hctx */
1343 if (!cpu_online(i))
1344 continue;
1346 hctx = q->mq_ops->map_queue(q, i);
1347 cpumask_set_cpu(i, hctx->cpumask);
1348 ctx->index_hw = hctx->nr_ctx;
1349 hctx->ctxs[hctx->nr_ctx++] = ctx;
1353 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1355 struct blk_mq_hw_ctx **hctxs;
1356 struct blk_mq_ctx *ctx;
1357 struct request_queue *q;
1358 int i;
1360 ctx = alloc_percpu(struct blk_mq_ctx);
1361 if (!ctx)
1362 return ERR_PTR(-ENOMEM);
1364 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1365 set->numa_node);
1367 if (!hctxs)
1368 goto err_percpu;
1370 for (i = 0; i < set->nr_hw_queues; i++) {
1371 hctxs[i] = set->ops->alloc_hctx(set, i);
1372 if (!hctxs[i])
1373 goto err_hctxs;
1375 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1376 goto err_hctxs;
1378 hctxs[i]->numa_node = NUMA_NO_NODE;
1379 hctxs[i]->queue_num = i;
1382 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1383 if (!q)
1384 goto err_hctxs;
1386 q->mq_map = blk_mq_make_queue_map(set);
1387 if (!q->mq_map)
1388 goto err_map;
1390 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1391 blk_queue_rq_timeout(q, 30000);
1393 q->nr_queues = nr_cpu_ids;
1394 q->nr_hw_queues = set->nr_hw_queues;
1396 q->queue_ctx = ctx;
1397 q->queue_hw_ctx = hctxs;
1399 q->mq_ops = set->ops;
1400 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1402 q->sg_reserved_size = INT_MAX;
1404 blk_queue_make_request(q, blk_mq_make_request);
1405 blk_queue_rq_timed_out(q, set->ops->timeout);
1406 if (set->timeout)
1407 blk_queue_rq_timeout(q, set->timeout);
1409 if (set->ops->complete)
1410 blk_queue_softirq_done(q, set->ops->complete);
1412 blk_mq_init_flush(q);
1413 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1415 q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1416 set->cmd_size, cache_line_size()),
1417 GFP_KERNEL);
1418 if (!q->flush_rq)
1419 goto err_hw;
1421 if (blk_mq_init_hw_queues(q, set))
1422 goto err_flush_rq;
1424 blk_mq_map_swqueue(q);
1426 mutex_lock(&all_q_mutex);
1427 list_add_tail(&q->all_q_node, &all_q_list);
1428 mutex_unlock(&all_q_mutex);
1430 return q;
1432 err_flush_rq:
1433 kfree(q->flush_rq);
1434 err_hw:
1435 kfree(q->mq_map);
1436 err_map:
1437 blk_cleanup_queue(q);
1438 err_hctxs:
1439 for (i = 0; i < set->nr_hw_queues; i++) {
1440 if (!hctxs[i])
1441 break;
1442 free_cpumask_var(hctxs[i]->cpumask);
1443 set->ops->free_hctx(hctxs[i], i);
1445 kfree(hctxs);
1446 err_percpu:
1447 free_percpu(ctx);
1448 return ERR_PTR(-ENOMEM);
1450 EXPORT_SYMBOL(blk_mq_init_queue);
1452 void blk_mq_free_queue(struct request_queue *q)
1454 struct blk_mq_hw_ctx *hctx;
1455 int i;
1457 queue_for_each_hw_ctx(q, hctx, i) {
1458 kfree(hctx->ctx_map);
1459 kfree(hctx->ctxs);
1460 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1461 if (q->mq_ops->exit_hctx)
1462 q->mq_ops->exit_hctx(hctx, i);
1463 free_cpumask_var(hctx->cpumask);
1464 q->mq_ops->free_hctx(hctx, i);
1467 free_percpu(q->queue_ctx);
1468 kfree(q->queue_hw_ctx);
1469 kfree(q->mq_map);
1471 q->queue_ctx = NULL;
1472 q->queue_hw_ctx = NULL;
1473 q->mq_map = NULL;
1475 mutex_lock(&all_q_mutex);
1476 list_del_init(&q->all_q_node);
1477 mutex_unlock(&all_q_mutex);
1480 /* Basically redo blk_mq_init_queue with queue frozen */
1481 static void blk_mq_queue_reinit(struct request_queue *q)
1483 blk_mq_freeze_queue(q);
1485 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1488 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1489 * we should change hctx numa_node according to new topology (this
1490 * involves free and re-allocate memory, worthy doing?)
1493 blk_mq_map_swqueue(q);
1495 blk_mq_unfreeze_queue(q);
1498 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1499 unsigned long action, void *hcpu)
1501 struct request_queue *q;
1504 * Before new mapping is established, hotadded cpu might already start
1505 * handling requests. This doesn't break anything as we map offline
1506 * CPUs to first hardware queue. We will re-init queue below to get
1507 * optimal settings.
1509 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1510 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1511 return NOTIFY_OK;
1513 mutex_lock(&all_q_mutex);
1514 list_for_each_entry(q, &all_q_list, all_q_node)
1515 blk_mq_queue_reinit(q);
1516 mutex_unlock(&all_q_mutex);
1517 return NOTIFY_OK;
1520 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
1522 int i;
1524 if (!set->nr_hw_queues)
1525 return -EINVAL;
1526 if (!set->queue_depth || set->queue_depth > BLK_MQ_MAX_DEPTH)
1527 return -EINVAL;
1528 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
1529 return -EINVAL;
1531 if (!set->nr_hw_queues ||
1532 !set->ops->queue_rq || !set->ops->map_queue ||
1533 !set->ops->alloc_hctx || !set->ops->free_hctx)
1534 return -EINVAL;
1537 set->tags = kmalloc_node(set->nr_hw_queues *
1538 sizeof(struct blk_mq_tags *),
1539 GFP_KERNEL, set->numa_node);
1540 if (!set->tags)
1541 goto out;
1543 for (i = 0; i < set->nr_hw_queues; i++) {
1544 set->tags[i] = blk_mq_init_rq_map(set, i);
1545 if (!set->tags[i])
1546 goto out_unwind;
1549 return 0;
1551 out_unwind:
1552 while (--i >= 0)
1553 blk_mq_free_rq_map(set, set->tags[i], i);
1554 out:
1555 return -ENOMEM;
1557 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
1559 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
1561 int i;
1563 for (i = 0; i < set->nr_hw_queues; i++)
1564 blk_mq_free_rq_map(set, set->tags[i], i);
1566 EXPORT_SYMBOL(blk_mq_free_tag_set);
1568 void blk_mq_disable_hotplug(void)
1570 mutex_lock(&all_q_mutex);
1573 void blk_mq_enable_hotplug(void)
1575 mutex_unlock(&all_q_mutex);
1578 static int __init blk_mq_init(void)
1580 blk_mq_cpu_init();
1582 /* Must be called after percpu_counter_hotcpu_callback() */
1583 hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
1585 return 0;
1587 subsys_initcall(blk_mq_init);