2 * linux/mm/compaction.c
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 #include <linux/cpu.h>
11 #include <linux/swap.h>
12 #include <linux/migrate.h>
13 #include <linux/compaction.h>
14 #include <linux/mm_inline.h>
15 #include <linux/sched/signal.h>
16 #include <linux/backing-dev.h>
17 #include <linux/sysctl.h>
18 #include <linux/sysfs.h>
19 #include <linux/page-isolation.h>
20 #include <linux/kasan.h>
21 #include <linux/kthread.h>
22 #include <linux/freezer.h>
23 #include <linux/page_owner.h>
26 #ifdef CONFIG_COMPACTION
27 static inline void count_compact_event(enum vm_event_item item
)
32 static inline void count_compact_events(enum vm_event_item item
, long delta
)
34 count_vm_events(item
, delta
);
37 #define count_compact_event(item) do { } while (0)
38 #define count_compact_events(item, delta) do { } while (0)
41 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/compaction.h>
46 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
47 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
48 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
49 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
51 static unsigned long release_freepages(struct list_head
*freelist
)
53 struct page
*page
, *next
;
54 unsigned long high_pfn
= 0;
56 list_for_each_entry_safe(page
, next
, freelist
, lru
) {
57 unsigned long pfn
= page_to_pfn(page
);
67 static void map_pages(struct list_head
*list
)
69 unsigned int i
, order
, nr_pages
;
70 struct page
*page
, *next
;
73 list_for_each_entry_safe(page
, next
, list
, lru
) {
76 order
= page_private(page
);
77 nr_pages
= 1 << order
;
79 post_alloc_hook(page
, order
, __GFP_MOVABLE
);
81 split_page(page
, order
);
83 for (i
= 0; i
< nr_pages
; i
++) {
84 list_add(&page
->lru
, &tmp_list
);
89 list_splice(&tmp_list
, list
);
92 #ifdef CONFIG_COMPACTION
94 int PageMovable(struct page
*page
)
96 struct address_space
*mapping
;
98 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
99 if (!__PageMovable(page
))
102 mapping
= page_mapping(page
);
103 if (mapping
&& mapping
->a_ops
&& mapping
->a_ops
->isolate_page
)
108 EXPORT_SYMBOL(PageMovable
);
110 void __SetPageMovable(struct page
*page
, struct address_space
*mapping
)
112 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
113 VM_BUG_ON_PAGE((unsigned long)mapping
& PAGE_MAPPING_MOVABLE
, page
);
114 page
->mapping
= (void *)((unsigned long)mapping
| PAGE_MAPPING_MOVABLE
);
116 EXPORT_SYMBOL(__SetPageMovable
);
118 void __ClearPageMovable(struct page
*page
)
120 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
121 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
123 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
124 * flag so that VM can catch up released page by driver after isolation.
125 * With it, VM migration doesn't try to put it back.
127 page
->mapping
= (void *)((unsigned long)page
->mapping
&
128 PAGE_MAPPING_MOVABLE
);
130 EXPORT_SYMBOL(__ClearPageMovable
);
132 /* Do not skip compaction more than 64 times */
133 #define COMPACT_MAX_DEFER_SHIFT 6
136 * Compaction is deferred when compaction fails to result in a page
137 * allocation success. 1 << compact_defer_limit compactions are skipped up
138 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
140 void defer_compaction(struct zone
*zone
, int order
)
142 zone
->compact_considered
= 0;
143 zone
->compact_defer_shift
++;
145 if (order
< zone
->compact_order_failed
)
146 zone
->compact_order_failed
= order
;
148 if (zone
->compact_defer_shift
> COMPACT_MAX_DEFER_SHIFT
)
149 zone
->compact_defer_shift
= COMPACT_MAX_DEFER_SHIFT
;
151 trace_mm_compaction_defer_compaction(zone
, order
);
154 /* Returns true if compaction should be skipped this time */
155 bool compaction_deferred(struct zone
*zone
, int order
)
157 unsigned long defer_limit
= 1UL << zone
->compact_defer_shift
;
159 if (order
< zone
->compact_order_failed
)
162 /* Avoid possible overflow */
163 if (++zone
->compact_considered
> defer_limit
)
164 zone
->compact_considered
= defer_limit
;
166 if (zone
->compact_considered
>= defer_limit
)
169 trace_mm_compaction_deferred(zone
, order
);
175 * Update defer tracking counters after successful compaction of given order,
176 * which means an allocation either succeeded (alloc_success == true) or is
177 * expected to succeed.
179 void compaction_defer_reset(struct zone
*zone
, int order
,
183 zone
->compact_considered
= 0;
184 zone
->compact_defer_shift
= 0;
186 if (order
>= zone
->compact_order_failed
)
187 zone
->compact_order_failed
= order
+ 1;
189 trace_mm_compaction_defer_reset(zone
, order
);
192 /* Returns true if restarting compaction after many failures */
193 bool compaction_restarting(struct zone
*zone
, int order
)
195 if (order
< zone
->compact_order_failed
)
198 return zone
->compact_defer_shift
== COMPACT_MAX_DEFER_SHIFT
&&
199 zone
->compact_considered
>= 1UL << zone
->compact_defer_shift
;
202 /* Returns true if the pageblock should be scanned for pages to isolate. */
203 static inline bool isolation_suitable(struct compact_control
*cc
,
206 if (cc
->ignore_skip_hint
)
209 return !get_pageblock_skip(page
);
212 static void reset_cached_positions(struct zone
*zone
)
214 zone
->compact_cached_migrate_pfn
[0] = zone
->zone_start_pfn
;
215 zone
->compact_cached_migrate_pfn
[1] = zone
->zone_start_pfn
;
216 zone
->compact_cached_free_pfn
=
217 pageblock_start_pfn(zone_end_pfn(zone
) - 1);
221 * This function is called to clear all cached information on pageblocks that
222 * should be skipped for page isolation when the migrate and free page scanner
225 static void __reset_isolation_suitable(struct zone
*zone
)
227 unsigned long start_pfn
= zone
->zone_start_pfn
;
228 unsigned long end_pfn
= zone_end_pfn(zone
);
231 zone
->compact_blockskip_flush
= false;
233 /* Walk the zone and mark every pageblock as suitable for isolation */
234 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
239 page
= pfn_to_online_page(pfn
);
242 if (zone
!= page_zone(page
))
245 clear_pageblock_skip(page
);
248 reset_cached_positions(zone
);
251 void reset_isolation_suitable(pg_data_t
*pgdat
)
255 for (zoneid
= 0; zoneid
< MAX_NR_ZONES
; zoneid
++) {
256 struct zone
*zone
= &pgdat
->node_zones
[zoneid
];
257 if (!populated_zone(zone
))
260 /* Only flush if a full compaction finished recently */
261 if (zone
->compact_blockskip_flush
)
262 __reset_isolation_suitable(zone
);
267 * If no pages were isolated then mark this pageblock to be skipped in the
268 * future. The information is later cleared by __reset_isolation_suitable().
270 static void update_pageblock_skip(struct compact_control
*cc
,
271 struct page
*page
, unsigned long nr_isolated
,
272 bool migrate_scanner
)
274 struct zone
*zone
= cc
->zone
;
277 if (cc
->ignore_skip_hint
)
286 set_pageblock_skip(page
);
288 pfn
= page_to_pfn(page
);
290 /* Update where async and sync compaction should restart */
291 if (migrate_scanner
) {
292 if (pfn
> zone
->compact_cached_migrate_pfn
[0])
293 zone
->compact_cached_migrate_pfn
[0] = pfn
;
294 if (cc
->mode
!= MIGRATE_ASYNC
&&
295 pfn
> zone
->compact_cached_migrate_pfn
[1])
296 zone
->compact_cached_migrate_pfn
[1] = pfn
;
298 if (pfn
< zone
->compact_cached_free_pfn
)
299 zone
->compact_cached_free_pfn
= pfn
;
303 static inline bool isolation_suitable(struct compact_control
*cc
,
309 static void update_pageblock_skip(struct compact_control
*cc
,
310 struct page
*page
, unsigned long nr_isolated
,
311 bool migrate_scanner
)
314 #endif /* CONFIG_COMPACTION */
317 * Compaction requires the taking of some coarse locks that are potentially
318 * very heavily contended. For async compaction, back out if the lock cannot
319 * be taken immediately. For sync compaction, spin on the lock if needed.
321 * Returns true if the lock is held
322 * Returns false if the lock is not held and compaction should abort
324 static bool compact_trylock_irqsave(spinlock_t
*lock
, unsigned long *flags
,
325 struct compact_control
*cc
)
327 if (cc
->mode
== MIGRATE_ASYNC
) {
328 if (!spin_trylock_irqsave(lock
, *flags
)) {
329 cc
->contended
= true;
333 spin_lock_irqsave(lock
, *flags
);
340 * Compaction requires the taking of some coarse locks that are potentially
341 * very heavily contended. The lock should be periodically unlocked to avoid
342 * having disabled IRQs for a long time, even when there is nobody waiting on
343 * the lock. It might also be that allowing the IRQs will result in
344 * need_resched() becoming true. If scheduling is needed, async compaction
345 * aborts. Sync compaction schedules.
346 * Either compaction type will also abort if a fatal signal is pending.
347 * In either case if the lock was locked, it is dropped and not regained.
349 * Returns true if compaction should abort due to fatal signal pending, or
350 * async compaction due to need_resched()
351 * Returns false when compaction can continue (sync compaction might have
354 static bool compact_unlock_should_abort(spinlock_t
*lock
,
355 unsigned long flags
, bool *locked
, struct compact_control
*cc
)
358 spin_unlock_irqrestore(lock
, flags
);
362 if (fatal_signal_pending(current
)) {
363 cc
->contended
= true;
367 if (need_resched()) {
368 if (cc
->mode
== MIGRATE_ASYNC
) {
369 cc
->contended
= true;
379 * Aside from avoiding lock contention, compaction also periodically checks
380 * need_resched() and either schedules in sync compaction or aborts async
381 * compaction. This is similar to what compact_unlock_should_abort() does, but
382 * is used where no lock is concerned.
384 * Returns false when no scheduling was needed, or sync compaction scheduled.
385 * Returns true when async compaction should abort.
387 static inline bool compact_should_abort(struct compact_control
*cc
)
389 /* async compaction aborts if contended */
390 if (need_resched()) {
391 if (cc
->mode
== MIGRATE_ASYNC
) {
392 cc
->contended
= true;
403 * Isolate free pages onto a private freelist. If @strict is true, will abort
404 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
405 * (even though it may still end up isolating some pages).
407 static unsigned long isolate_freepages_block(struct compact_control
*cc
,
408 unsigned long *start_pfn
,
409 unsigned long end_pfn
,
410 struct list_head
*freelist
,
413 int nr_scanned
= 0, total_isolated
= 0;
414 struct page
*cursor
, *valid_page
= NULL
;
415 unsigned long flags
= 0;
417 unsigned long blockpfn
= *start_pfn
;
420 cursor
= pfn_to_page(blockpfn
);
422 /* Isolate free pages. */
423 for (; blockpfn
< end_pfn
; blockpfn
++, cursor
++) {
425 struct page
*page
= cursor
;
428 * Periodically drop the lock (if held) regardless of its
429 * contention, to give chance to IRQs. Abort if fatal signal
430 * pending or async compaction detects need_resched()
432 if (!(blockpfn
% SWAP_CLUSTER_MAX
)
433 && compact_unlock_should_abort(&cc
->zone
->lock
, flags
,
438 if (!pfn_valid_within(blockpfn
))
445 * For compound pages such as THP and hugetlbfs, we can save
446 * potentially a lot of iterations if we skip them at once.
447 * The check is racy, but we can consider only valid values
448 * and the only danger is skipping too much.
450 if (PageCompound(page
)) {
451 unsigned int comp_order
= compound_order(page
);
453 if (likely(comp_order
< MAX_ORDER
)) {
454 blockpfn
+= (1UL << comp_order
) - 1;
455 cursor
+= (1UL << comp_order
) - 1;
461 if (!PageBuddy(page
))
465 * If we already hold the lock, we can skip some rechecking.
466 * Note that if we hold the lock now, checked_pageblock was
467 * already set in some previous iteration (or strict is true),
468 * so it is correct to skip the suitable migration target
473 * The zone lock must be held to isolate freepages.
474 * Unfortunately this is a very coarse lock and can be
475 * heavily contended if there are parallel allocations
476 * or parallel compactions. For async compaction do not
477 * spin on the lock and we acquire the lock as late as
480 locked
= compact_trylock_irqsave(&cc
->zone
->lock
,
485 /* Recheck this is a buddy page under lock */
486 if (!PageBuddy(page
))
490 /* Found a free page, will break it into order-0 pages */
491 order
= page_order(page
);
492 isolated
= __isolate_free_page(page
, order
);
495 set_page_private(page
, order
);
497 total_isolated
+= isolated
;
498 cc
->nr_freepages
+= isolated
;
499 list_add_tail(&page
->lru
, freelist
);
501 if (!strict
&& cc
->nr_migratepages
<= cc
->nr_freepages
) {
502 blockpfn
+= isolated
;
505 /* Advance to the end of split page */
506 blockpfn
+= isolated
- 1;
507 cursor
+= isolated
- 1;
519 spin_unlock_irqrestore(&cc
->zone
->lock
, flags
);
522 * There is a tiny chance that we have read bogus compound_order(),
523 * so be careful to not go outside of the pageblock.
525 if (unlikely(blockpfn
> end_pfn
))
528 trace_mm_compaction_isolate_freepages(*start_pfn
, blockpfn
,
529 nr_scanned
, total_isolated
);
531 /* Record how far we have got within the block */
532 *start_pfn
= blockpfn
;
535 * If strict isolation is requested by CMA then check that all the
536 * pages requested were isolated. If there were any failures, 0 is
537 * returned and CMA will fail.
539 if (strict
&& blockpfn
< end_pfn
)
542 /* Update the pageblock-skip if the whole pageblock was scanned */
543 if (blockpfn
== end_pfn
)
544 update_pageblock_skip(cc
, valid_page
, total_isolated
, false);
546 cc
->total_free_scanned
+= nr_scanned
;
548 count_compact_events(COMPACTISOLATED
, total_isolated
);
549 return total_isolated
;
553 * isolate_freepages_range() - isolate free pages.
554 * @start_pfn: The first PFN to start isolating.
555 * @end_pfn: The one-past-last PFN.
557 * Non-free pages, invalid PFNs, or zone boundaries within the
558 * [start_pfn, end_pfn) range are considered errors, cause function to
559 * undo its actions and return zero.
561 * Otherwise, function returns one-past-the-last PFN of isolated page
562 * (which may be greater then end_pfn if end fell in a middle of
566 isolate_freepages_range(struct compact_control
*cc
,
567 unsigned long start_pfn
, unsigned long end_pfn
)
569 unsigned long isolated
, pfn
, block_start_pfn
, block_end_pfn
;
573 block_start_pfn
= pageblock_start_pfn(pfn
);
574 if (block_start_pfn
< cc
->zone
->zone_start_pfn
)
575 block_start_pfn
= cc
->zone
->zone_start_pfn
;
576 block_end_pfn
= pageblock_end_pfn(pfn
);
578 for (; pfn
< end_pfn
; pfn
+= isolated
,
579 block_start_pfn
= block_end_pfn
,
580 block_end_pfn
+= pageblock_nr_pages
) {
581 /* Protect pfn from changing by isolate_freepages_block */
582 unsigned long isolate_start_pfn
= pfn
;
584 block_end_pfn
= min(block_end_pfn
, end_pfn
);
587 * pfn could pass the block_end_pfn if isolated freepage
588 * is more than pageblock order. In this case, we adjust
589 * scanning range to right one.
591 if (pfn
>= block_end_pfn
) {
592 block_start_pfn
= pageblock_start_pfn(pfn
);
593 block_end_pfn
= pageblock_end_pfn(pfn
);
594 block_end_pfn
= min(block_end_pfn
, end_pfn
);
597 if (!pageblock_pfn_to_page(block_start_pfn
,
598 block_end_pfn
, cc
->zone
))
601 isolated
= isolate_freepages_block(cc
, &isolate_start_pfn
,
602 block_end_pfn
, &freelist
, true);
605 * In strict mode, isolate_freepages_block() returns 0 if
606 * there are any holes in the block (ie. invalid PFNs or
613 * If we managed to isolate pages, it is always (1 << n) *
614 * pageblock_nr_pages for some non-negative n. (Max order
615 * page may span two pageblocks).
619 /* __isolate_free_page() does not map the pages */
620 map_pages(&freelist
);
623 /* Loop terminated early, cleanup. */
624 release_freepages(&freelist
);
628 /* We don't use freelists for anything. */
632 /* Similar to reclaim, but different enough that they don't share logic */
633 static bool too_many_isolated(struct zone
*zone
)
635 unsigned long active
, inactive
, isolated
;
637 inactive
= node_page_state(zone
->zone_pgdat
, NR_INACTIVE_FILE
) +
638 node_page_state(zone
->zone_pgdat
, NR_INACTIVE_ANON
);
639 active
= node_page_state(zone
->zone_pgdat
, NR_ACTIVE_FILE
) +
640 node_page_state(zone
->zone_pgdat
, NR_ACTIVE_ANON
);
641 isolated
= node_page_state(zone
->zone_pgdat
, NR_ISOLATED_FILE
) +
642 node_page_state(zone
->zone_pgdat
, NR_ISOLATED_ANON
);
644 return isolated
> (inactive
+ active
) / 2;
648 * isolate_migratepages_block() - isolate all migrate-able pages within
650 * @cc: Compaction control structure.
651 * @low_pfn: The first PFN to isolate
652 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
653 * @isolate_mode: Isolation mode to be used.
655 * Isolate all pages that can be migrated from the range specified by
656 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
657 * Returns zero if there is a fatal signal pending, otherwise PFN of the
658 * first page that was not scanned (which may be both less, equal to or more
661 * The pages are isolated on cc->migratepages list (not required to be empty),
662 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
663 * is neither read nor updated.
666 isolate_migratepages_block(struct compact_control
*cc
, unsigned long low_pfn
,
667 unsigned long end_pfn
, isolate_mode_t isolate_mode
)
669 struct zone
*zone
= cc
->zone
;
670 unsigned long nr_scanned
= 0, nr_isolated
= 0;
671 struct lruvec
*lruvec
;
672 unsigned long flags
= 0;
674 struct page
*page
= NULL
, *valid_page
= NULL
;
675 unsigned long start_pfn
= low_pfn
;
676 bool skip_on_failure
= false;
677 unsigned long next_skip_pfn
= 0;
680 * Ensure that there are not too many pages isolated from the LRU
681 * list by either parallel reclaimers or compaction. If there are,
682 * delay for some time until fewer pages are isolated
684 while (unlikely(too_many_isolated(zone
))) {
685 /* async migration should just abort */
686 if (cc
->mode
== MIGRATE_ASYNC
)
689 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
691 if (fatal_signal_pending(current
))
695 if (compact_should_abort(cc
))
698 if (cc
->direct_compaction
&& (cc
->mode
== MIGRATE_ASYNC
)) {
699 skip_on_failure
= true;
700 next_skip_pfn
= block_end_pfn(low_pfn
, cc
->order
);
703 /* Time to isolate some pages for migration */
704 for (; low_pfn
< end_pfn
; low_pfn
++) {
706 if (skip_on_failure
&& low_pfn
>= next_skip_pfn
) {
708 * We have isolated all migration candidates in the
709 * previous order-aligned block, and did not skip it due
710 * to failure. We should migrate the pages now and
711 * hopefully succeed compaction.
717 * We failed to isolate in the previous order-aligned
718 * block. Set the new boundary to the end of the
719 * current block. Note we can't simply increase
720 * next_skip_pfn by 1 << order, as low_pfn might have
721 * been incremented by a higher number due to skipping
722 * a compound or a high-order buddy page in the
723 * previous loop iteration.
725 next_skip_pfn
= block_end_pfn(low_pfn
, cc
->order
);
729 * Periodically drop the lock (if held) regardless of its
730 * contention, to give chance to IRQs. Abort async compaction
733 if (!(low_pfn
% SWAP_CLUSTER_MAX
)
734 && compact_unlock_should_abort(zone_lru_lock(zone
), flags
,
738 if (!pfn_valid_within(low_pfn
))
742 page
= pfn_to_page(low_pfn
);
748 * Skip if free. We read page order here without zone lock
749 * which is generally unsafe, but the race window is small and
750 * the worst thing that can happen is that we skip some
751 * potential isolation targets.
753 if (PageBuddy(page
)) {
754 unsigned long freepage_order
= page_order_unsafe(page
);
757 * Without lock, we cannot be sure that what we got is
758 * a valid page order. Consider only values in the
759 * valid order range to prevent low_pfn overflow.
761 if (freepage_order
> 0 && freepage_order
< MAX_ORDER
)
762 low_pfn
+= (1UL << freepage_order
) - 1;
767 * Regardless of being on LRU, compound pages such as THP and
768 * hugetlbfs are not to be compacted. We can potentially save
769 * a lot of iterations if we skip them at once. The check is
770 * racy, but we can consider only valid values and the only
771 * danger is skipping too much.
773 if (PageCompound(page
)) {
774 unsigned int comp_order
= compound_order(page
);
776 if (likely(comp_order
< MAX_ORDER
))
777 low_pfn
+= (1UL << comp_order
) - 1;
783 * Check may be lockless but that's ok as we recheck later.
784 * It's possible to migrate LRU and non-lru movable pages.
785 * Skip any other type of page
787 if (!PageLRU(page
)) {
789 * __PageMovable can return false positive so we need
790 * to verify it under page_lock.
792 if (unlikely(__PageMovable(page
)) &&
793 !PageIsolated(page
)) {
795 spin_unlock_irqrestore(zone_lru_lock(zone
),
800 if (!isolate_movable_page(page
, isolate_mode
))
801 goto isolate_success
;
808 * Migration will fail if an anonymous page is pinned in memory,
809 * so avoid taking lru_lock and isolating it unnecessarily in an
810 * admittedly racy check.
812 if (!page_mapping(page
) &&
813 page_count(page
) > page_mapcount(page
))
817 * Only allow to migrate anonymous pages in GFP_NOFS context
818 * because those do not depend on fs locks.
820 if (!(cc
->gfp_mask
& __GFP_FS
) && page_mapping(page
))
823 /* If we already hold the lock, we can skip some rechecking */
825 locked
= compact_trylock_irqsave(zone_lru_lock(zone
),
830 /* Recheck PageLRU and PageCompound under lock */
835 * Page become compound since the non-locked check,
836 * and it's on LRU. It can only be a THP so the order
837 * is safe to read and it's 0 for tail pages.
839 if (unlikely(PageCompound(page
))) {
840 low_pfn
+= (1UL << compound_order(page
)) - 1;
845 lruvec
= mem_cgroup_page_lruvec(page
, zone
->zone_pgdat
);
847 /* Try isolate the page */
848 if (__isolate_lru_page(page
, isolate_mode
) != 0)
851 VM_BUG_ON_PAGE(PageCompound(page
), page
);
853 /* Successfully isolated */
854 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
855 inc_node_page_state(page
,
856 NR_ISOLATED_ANON
+ page_is_file_cache(page
));
859 list_add(&page
->lru
, &cc
->migratepages
);
860 cc
->nr_migratepages
++;
864 * Record where we could have freed pages by migration and not
865 * yet flushed them to buddy allocator.
866 * - this is the lowest page that was isolated and likely be
867 * then freed by migration.
869 if (!cc
->last_migrated_pfn
)
870 cc
->last_migrated_pfn
= low_pfn
;
872 /* Avoid isolating too much */
873 if (cc
->nr_migratepages
== COMPACT_CLUSTER_MAX
) {
880 if (!skip_on_failure
)
884 * We have isolated some pages, but then failed. Release them
885 * instead of migrating, as we cannot form the cc->order buddy
890 spin_unlock_irqrestore(zone_lru_lock(zone
), flags
);
893 putback_movable_pages(&cc
->migratepages
);
894 cc
->nr_migratepages
= 0;
895 cc
->last_migrated_pfn
= 0;
899 if (low_pfn
< next_skip_pfn
) {
900 low_pfn
= next_skip_pfn
- 1;
902 * The check near the loop beginning would have updated
903 * next_skip_pfn too, but this is a bit simpler.
905 next_skip_pfn
+= 1UL << cc
->order
;
910 * The PageBuddy() check could have potentially brought us outside
911 * the range to be scanned.
913 if (unlikely(low_pfn
> end_pfn
))
917 spin_unlock_irqrestore(zone_lru_lock(zone
), flags
);
920 * Update the pageblock-skip information and cached scanner pfn,
921 * if the whole pageblock was scanned without isolating any page.
923 if (low_pfn
== end_pfn
)
924 update_pageblock_skip(cc
, valid_page
, nr_isolated
, true);
926 trace_mm_compaction_isolate_migratepages(start_pfn
, low_pfn
,
927 nr_scanned
, nr_isolated
);
929 cc
->total_migrate_scanned
+= nr_scanned
;
931 count_compact_events(COMPACTISOLATED
, nr_isolated
);
937 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
938 * @cc: Compaction control structure.
939 * @start_pfn: The first PFN to start isolating.
940 * @end_pfn: The one-past-last PFN.
942 * Returns zero if isolation fails fatally due to e.g. pending signal.
943 * Otherwise, function returns one-past-the-last PFN of isolated page
944 * (which may be greater than end_pfn if end fell in a middle of a THP page).
947 isolate_migratepages_range(struct compact_control
*cc
, unsigned long start_pfn
,
948 unsigned long end_pfn
)
950 unsigned long pfn
, block_start_pfn
, block_end_pfn
;
952 /* Scan block by block. First and last block may be incomplete */
954 block_start_pfn
= pageblock_start_pfn(pfn
);
955 if (block_start_pfn
< cc
->zone
->zone_start_pfn
)
956 block_start_pfn
= cc
->zone
->zone_start_pfn
;
957 block_end_pfn
= pageblock_end_pfn(pfn
);
959 for (; pfn
< end_pfn
; pfn
= block_end_pfn
,
960 block_start_pfn
= block_end_pfn
,
961 block_end_pfn
+= pageblock_nr_pages
) {
963 block_end_pfn
= min(block_end_pfn
, end_pfn
);
965 if (!pageblock_pfn_to_page(block_start_pfn
,
966 block_end_pfn
, cc
->zone
))
969 pfn
= isolate_migratepages_block(cc
, pfn
, block_end_pfn
,
970 ISOLATE_UNEVICTABLE
);
975 if (cc
->nr_migratepages
== COMPACT_CLUSTER_MAX
)
982 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
983 #ifdef CONFIG_COMPACTION
985 static bool suitable_migration_source(struct compact_control
*cc
,
990 if ((cc
->mode
!= MIGRATE_ASYNC
) || !cc
->direct_compaction
)
993 block_mt
= get_pageblock_migratetype(page
);
995 if (cc
->migratetype
== MIGRATE_MOVABLE
)
996 return is_migrate_movable(block_mt
);
998 return block_mt
== cc
->migratetype
;
1001 /* Returns true if the page is within a block suitable for migration to */
1002 static bool suitable_migration_target(struct compact_control
*cc
,
1005 /* If the page is a large free page, then disallow migration */
1006 if (PageBuddy(page
)) {
1008 * We are checking page_order without zone->lock taken. But
1009 * the only small danger is that we skip a potentially suitable
1010 * pageblock, so it's not worth to check order for valid range.
1012 if (page_order_unsafe(page
) >= pageblock_order
)
1016 if (cc
->ignore_block_suitable
)
1019 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1020 if (is_migrate_movable(get_pageblock_migratetype(page
)))
1023 /* Otherwise skip the block */
1028 * Test whether the free scanner has reached the same or lower pageblock than
1029 * the migration scanner, and compaction should thus terminate.
1031 static inline bool compact_scanners_met(struct compact_control
*cc
)
1033 return (cc
->free_pfn
>> pageblock_order
)
1034 <= (cc
->migrate_pfn
>> pageblock_order
);
1038 * Based on information in the current compact_control, find blocks
1039 * suitable for isolating free pages from and then isolate them.
1041 static void isolate_freepages(struct compact_control
*cc
)
1043 struct zone
*zone
= cc
->zone
;
1045 unsigned long block_start_pfn
; /* start of current pageblock */
1046 unsigned long isolate_start_pfn
; /* exact pfn we start at */
1047 unsigned long block_end_pfn
; /* end of current pageblock */
1048 unsigned long low_pfn
; /* lowest pfn scanner is able to scan */
1049 struct list_head
*freelist
= &cc
->freepages
;
1052 * Initialise the free scanner. The starting point is where we last
1053 * successfully isolated from, zone-cached value, or the end of the
1054 * zone when isolating for the first time. For looping we also need
1055 * this pfn aligned down to the pageblock boundary, because we do
1056 * block_start_pfn -= pageblock_nr_pages in the for loop.
1057 * For ending point, take care when isolating in last pageblock of a
1058 * a zone which ends in the middle of a pageblock.
1059 * The low boundary is the end of the pageblock the migration scanner
1062 isolate_start_pfn
= cc
->free_pfn
;
1063 block_start_pfn
= pageblock_start_pfn(cc
->free_pfn
);
1064 block_end_pfn
= min(block_start_pfn
+ pageblock_nr_pages
,
1065 zone_end_pfn(zone
));
1066 low_pfn
= pageblock_end_pfn(cc
->migrate_pfn
);
1069 * Isolate free pages until enough are available to migrate the
1070 * pages on cc->migratepages. We stop searching if the migrate
1071 * and free page scanners meet or enough free pages are isolated.
1073 for (; block_start_pfn
>= low_pfn
;
1074 block_end_pfn
= block_start_pfn
,
1075 block_start_pfn
-= pageblock_nr_pages
,
1076 isolate_start_pfn
= block_start_pfn
) {
1078 * This can iterate a massively long zone without finding any
1079 * suitable migration targets, so periodically check if we need
1080 * to schedule, or even abort async compaction.
1082 if (!(block_start_pfn
% (SWAP_CLUSTER_MAX
* pageblock_nr_pages
))
1083 && compact_should_abort(cc
))
1086 page
= pageblock_pfn_to_page(block_start_pfn
, block_end_pfn
,
1091 /* Check the block is suitable for migration */
1092 if (!suitable_migration_target(cc
, page
))
1095 /* If isolation recently failed, do not retry */
1096 if (!isolation_suitable(cc
, page
))
1099 /* Found a block suitable for isolating free pages from. */
1100 isolate_freepages_block(cc
, &isolate_start_pfn
, block_end_pfn
,
1104 * If we isolated enough freepages, or aborted due to lock
1105 * contention, terminate.
1107 if ((cc
->nr_freepages
>= cc
->nr_migratepages
)
1109 if (isolate_start_pfn
>= block_end_pfn
) {
1111 * Restart at previous pageblock if more
1112 * freepages can be isolated next time.
1115 block_start_pfn
- pageblock_nr_pages
;
1118 } else if (isolate_start_pfn
< block_end_pfn
) {
1120 * If isolation failed early, do not continue
1127 /* __isolate_free_page() does not map the pages */
1128 map_pages(freelist
);
1131 * Record where the free scanner will restart next time. Either we
1132 * broke from the loop and set isolate_start_pfn based on the last
1133 * call to isolate_freepages_block(), or we met the migration scanner
1134 * and the loop terminated due to isolate_start_pfn < low_pfn
1136 cc
->free_pfn
= isolate_start_pfn
;
1140 * This is a migrate-callback that "allocates" freepages by taking pages
1141 * from the isolated freelists in the block we are migrating to.
1143 static struct page
*compaction_alloc(struct page
*migratepage
,
1147 struct compact_control
*cc
= (struct compact_control
*)data
;
1148 struct page
*freepage
;
1151 * Isolate free pages if necessary, and if we are not aborting due to
1154 if (list_empty(&cc
->freepages
)) {
1156 isolate_freepages(cc
);
1158 if (list_empty(&cc
->freepages
))
1162 freepage
= list_entry(cc
->freepages
.next
, struct page
, lru
);
1163 list_del(&freepage
->lru
);
1170 * This is a migrate-callback that "frees" freepages back to the isolated
1171 * freelist. All pages on the freelist are from the same zone, so there is no
1172 * special handling needed for NUMA.
1174 static void compaction_free(struct page
*page
, unsigned long data
)
1176 struct compact_control
*cc
= (struct compact_control
*)data
;
1178 list_add(&page
->lru
, &cc
->freepages
);
1182 /* possible outcome of isolate_migratepages */
1184 ISOLATE_ABORT
, /* Abort compaction now */
1185 ISOLATE_NONE
, /* No pages isolated, continue scanning */
1186 ISOLATE_SUCCESS
, /* Pages isolated, migrate */
1187 } isolate_migrate_t
;
1190 * Allow userspace to control policy on scanning the unevictable LRU for
1191 * compactable pages.
1193 int sysctl_compact_unevictable_allowed __read_mostly
= 1;
1196 * Isolate all pages that can be migrated from the first suitable block,
1197 * starting at the block pointed to by the migrate scanner pfn within
1200 static isolate_migrate_t
isolate_migratepages(struct zone
*zone
,
1201 struct compact_control
*cc
)
1203 unsigned long block_start_pfn
;
1204 unsigned long block_end_pfn
;
1205 unsigned long low_pfn
;
1207 const isolate_mode_t isolate_mode
=
1208 (sysctl_compact_unevictable_allowed
? ISOLATE_UNEVICTABLE
: 0) |
1209 (cc
->mode
!= MIGRATE_SYNC
? ISOLATE_ASYNC_MIGRATE
: 0);
1212 * Start at where we last stopped, or beginning of the zone as
1213 * initialized by compact_zone()
1215 low_pfn
= cc
->migrate_pfn
;
1216 block_start_pfn
= pageblock_start_pfn(low_pfn
);
1217 if (block_start_pfn
< zone
->zone_start_pfn
)
1218 block_start_pfn
= zone
->zone_start_pfn
;
1220 /* Only scan within a pageblock boundary */
1221 block_end_pfn
= pageblock_end_pfn(low_pfn
);
1224 * Iterate over whole pageblocks until we find the first suitable.
1225 * Do not cross the free scanner.
1227 for (; block_end_pfn
<= cc
->free_pfn
;
1228 low_pfn
= block_end_pfn
,
1229 block_start_pfn
= block_end_pfn
,
1230 block_end_pfn
+= pageblock_nr_pages
) {
1233 * This can potentially iterate a massively long zone with
1234 * many pageblocks unsuitable, so periodically check if we
1235 * need to schedule, or even abort async compaction.
1237 if (!(low_pfn
% (SWAP_CLUSTER_MAX
* pageblock_nr_pages
))
1238 && compact_should_abort(cc
))
1241 page
= pageblock_pfn_to_page(block_start_pfn
, block_end_pfn
,
1246 /* If isolation recently failed, do not retry */
1247 if (!isolation_suitable(cc
, page
))
1251 * For async compaction, also only scan in MOVABLE blocks.
1252 * Async compaction is optimistic to see if the minimum amount
1253 * of work satisfies the allocation.
1255 if (!suitable_migration_source(cc
, page
))
1258 /* Perform the isolation */
1259 low_pfn
= isolate_migratepages_block(cc
, low_pfn
,
1260 block_end_pfn
, isolate_mode
);
1262 if (!low_pfn
|| cc
->contended
)
1263 return ISOLATE_ABORT
;
1266 * Either we isolated something and proceed with migration. Or
1267 * we failed and compact_zone should decide if we should
1273 /* Record where migration scanner will be restarted. */
1274 cc
->migrate_pfn
= low_pfn
;
1276 return cc
->nr_migratepages
? ISOLATE_SUCCESS
: ISOLATE_NONE
;
1280 * order == -1 is expected when compacting via
1281 * /proc/sys/vm/compact_memory
1283 static inline bool is_via_compact_memory(int order
)
1288 static enum compact_result
__compact_finished(struct zone
*zone
,
1289 struct compact_control
*cc
)
1292 const int migratetype
= cc
->migratetype
;
1294 if (cc
->contended
|| fatal_signal_pending(current
))
1295 return COMPACT_CONTENDED
;
1297 /* Compaction run completes if the migrate and free scanner meet */
1298 if (compact_scanners_met(cc
)) {
1299 /* Let the next compaction start anew. */
1300 reset_cached_positions(zone
);
1303 * Mark that the PG_migrate_skip information should be cleared
1304 * by kswapd when it goes to sleep. kcompactd does not set the
1305 * flag itself as the decision to be clear should be directly
1306 * based on an allocation request.
1308 if (cc
->direct_compaction
)
1309 zone
->compact_blockskip_flush
= true;
1312 return COMPACT_COMPLETE
;
1314 return COMPACT_PARTIAL_SKIPPED
;
1317 if (is_via_compact_memory(cc
->order
))
1318 return COMPACT_CONTINUE
;
1320 if (cc
->finishing_block
) {
1322 * We have finished the pageblock, but better check again that
1323 * we really succeeded.
1325 if (IS_ALIGNED(cc
->migrate_pfn
, pageblock_nr_pages
))
1326 cc
->finishing_block
= false;
1328 return COMPACT_CONTINUE
;
1331 /* Direct compactor: Is a suitable page free? */
1332 for (order
= cc
->order
; order
< MAX_ORDER
; order
++) {
1333 struct free_area
*area
= &zone
->free_area
[order
];
1336 /* Job done if page is free of the right migratetype */
1337 if (!list_empty(&area
->free_list
[migratetype
]))
1338 return COMPACT_SUCCESS
;
1341 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1342 if (migratetype
== MIGRATE_MOVABLE
&&
1343 !list_empty(&area
->free_list
[MIGRATE_CMA
]))
1344 return COMPACT_SUCCESS
;
1347 * Job done if allocation would steal freepages from
1348 * other migratetype buddy lists.
1350 if (find_suitable_fallback(area
, order
, migratetype
,
1351 true, &can_steal
) != -1) {
1353 /* movable pages are OK in any pageblock */
1354 if (migratetype
== MIGRATE_MOVABLE
)
1355 return COMPACT_SUCCESS
;
1358 * We are stealing for a non-movable allocation. Make
1359 * sure we finish compacting the current pageblock
1360 * first so it is as free as possible and we won't
1361 * have to steal another one soon. This only applies
1362 * to sync compaction, as async compaction operates
1363 * on pageblocks of the same migratetype.
1365 if (cc
->mode
== MIGRATE_ASYNC
||
1366 IS_ALIGNED(cc
->migrate_pfn
,
1367 pageblock_nr_pages
)) {
1368 return COMPACT_SUCCESS
;
1371 cc
->finishing_block
= true;
1372 return COMPACT_CONTINUE
;
1376 return COMPACT_NO_SUITABLE_PAGE
;
1379 static enum compact_result
compact_finished(struct zone
*zone
,
1380 struct compact_control
*cc
)
1384 ret
= __compact_finished(zone
, cc
);
1385 trace_mm_compaction_finished(zone
, cc
->order
, ret
);
1386 if (ret
== COMPACT_NO_SUITABLE_PAGE
)
1387 ret
= COMPACT_CONTINUE
;
1393 * compaction_suitable: Is this suitable to run compaction on this zone now?
1395 * COMPACT_SKIPPED - If there are too few free pages for compaction
1396 * COMPACT_SUCCESS - If the allocation would succeed without compaction
1397 * COMPACT_CONTINUE - If compaction should run now
1399 static enum compact_result
__compaction_suitable(struct zone
*zone
, int order
,
1400 unsigned int alloc_flags
,
1402 unsigned long wmark_target
)
1404 unsigned long watermark
;
1406 if (is_via_compact_memory(order
))
1407 return COMPACT_CONTINUE
;
1409 watermark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1411 * If watermarks for high-order allocation are already met, there
1412 * should be no need for compaction at all.
1414 if (zone_watermark_ok(zone
, order
, watermark
, classzone_idx
,
1416 return COMPACT_SUCCESS
;
1419 * Watermarks for order-0 must be met for compaction to be able to
1420 * isolate free pages for migration targets. This means that the
1421 * watermark and alloc_flags have to match, or be more pessimistic than
1422 * the check in __isolate_free_page(). We don't use the direct
1423 * compactor's alloc_flags, as they are not relevant for freepage
1424 * isolation. We however do use the direct compactor's classzone_idx to
1425 * skip over zones where lowmem reserves would prevent allocation even
1426 * if compaction succeeds.
1427 * For costly orders, we require low watermark instead of min for
1428 * compaction to proceed to increase its chances.
1429 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1430 * suitable migration targets
1432 watermark
= (order
> PAGE_ALLOC_COSTLY_ORDER
) ?
1433 low_wmark_pages(zone
) : min_wmark_pages(zone
);
1434 watermark
+= compact_gap(order
);
1435 if (!__zone_watermark_ok(zone
, 0, watermark
, classzone_idx
,
1436 ALLOC_CMA
, wmark_target
))
1437 return COMPACT_SKIPPED
;
1439 return COMPACT_CONTINUE
;
1442 enum compact_result
compaction_suitable(struct zone
*zone
, int order
,
1443 unsigned int alloc_flags
,
1446 enum compact_result ret
;
1449 ret
= __compaction_suitable(zone
, order
, alloc_flags
, classzone_idx
,
1450 zone_page_state(zone
, NR_FREE_PAGES
));
1452 * fragmentation index determines if allocation failures are due to
1453 * low memory or external fragmentation
1455 * index of -1000 would imply allocations might succeed depending on
1456 * watermarks, but we already failed the high-order watermark check
1457 * index towards 0 implies failure is due to lack of memory
1458 * index towards 1000 implies failure is due to fragmentation
1460 * Only compact if a failure would be due to fragmentation. Also
1461 * ignore fragindex for non-costly orders where the alternative to
1462 * a successful reclaim/compaction is OOM. Fragindex and the
1463 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
1464 * excessive compaction for costly orders, but it should not be at the
1465 * expense of system stability.
1467 if (ret
== COMPACT_CONTINUE
&& (order
> PAGE_ALLOC_COSTLY_ORDER
)) {
1468 fragindex
= fragmentation_index(zone
, order
);
1469 if (fragindex
>= 0 && fragindex
<= sysctl_extfrag_threshold
)
1470 ret
= COMPACT_NOT_SUITABLE_ZONE
;
1473 trace_mm_compaction_suitable(zone
, order
, ret
);
1474 if (ret
== COMPACT_NOT_SUITABLE_ZONE
)
1475 ret
= COMPACT_SKIPPED
;
1480 bool compaction_zonelist_suitable(struct alloc_context
*ac
, int order
,
1487 * Make sure at least one zone would pass __compaction_suitable if we continue
1488 * retrying the reclaim.
1490 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
1492 unsigned long available
;
1493 enum compact_result compact_result
;
1496 * Do not consider all the reclaimable memory because we do not
1497 * want to trash just for a single high order allocation which
1498 * is even not guaranteed to appear even if __compaction_suitable
1499 * is happy about the watermark check.
1501 available
= zone_reclaimable_pages(zone
) / order
;
1502 available
+= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
1503 compact_result
= __compaction_suitable(zone
, order
, alloc_flags
,
1504 ac_classzone_idx(ac
), available
);
1505 if (compact_result
!= COMPACT_SKIPPED
)
1512 static enum compact_result
compact_zone(struct zone
*zone
, struct compact_control
*cc
)
1514 enum compact_result ret
;
1515 unsigned long start_pfn
= zone
->zone_start_pfn
;
1516 unsigned long end_pfn
= zone_end_pfn(zone
);
1517 const bool sync
= cc
->mode
!= MIGRATE_ASYNC
;
1519 cc
->migratetype
= gfpflags_to_migratetype(cc
->gfp_mask
);
1520 ret
= compaction_suitable(zone
, cc
->order
, cc
->alloc_flags
,
1522 /* Compaction is likely to fail */
1523 if (ret
== COMPACT_SUCCESS
|| ret
== COMPACT_SKIPPED
)
1526 /* huh, compaction_suitable is returning something unexpected */
1527 VM_BUG_ON(ret
!= COMPACT_CONTINUE
);
1530 * Clear pageblock skip if there were failures recently and compaction
1531 * is about to be retried after being deferred.
1533 if (compaction_restarting(zone
, cc
->order
))
1534 __reset_isolation_suitable(zone
);
1537 * Setup to move all movable pages to the end of the zone. Used cached
1538 * information on where the scanners should start (unless we explicitly
1539 * want to compact the whole zone), but check that it is initialised
1540 * by ensuring the values are within zone boundaries.
1542 if (cc
->whole_zone
) {
1543 cc
->migrate_pfn
= start_pfn
;
1544 cc
->free_pfn
= pageblock_start_pfn(end_pfn
- 1);
1546 cc
->migrate_pfn
= zone
->compact_cached_migrate_pfn
[sync
];
1547 cc
->free_pfn
= zone
->compact_cached_free_pfn
;
1548 if (cc
->free_pfn
< start_pfn
|| cc
->free_pfn
>= end_pfn
) {
1549 cc
->free_pfn
= pageblock_start_pfn(end_pfn
- 1);
1550 zone
->compact_cached_free_pfn
= cc
->free_pfn
;
1552 if (cc
->migrate_pfn
< start_pfn
|| cc
->migrate_pfn
>= end_pfn
) {
1553 cc
->migrate_pfn
= start_pfn
;
1554 zone
->compact_cached_migrate_pfn
[0] = cc
->migrate_pfn
;
1555 zone
->compact_cached_migrate_pfn
[1] = cc
->migrate_pfn
;
1558 if (cc
->migrate_pfn
== start_pfn
)
1559 cc
->whole_zone
= true;
1562 cc
->last_migrated_pfn
= 0;
1564 trace_mm_compaction_begin(start_pfn
, cc
->migrate_pfn
,
1565 cc
->free_pfn
, end_pfn
, sync
);
1567 migrate_prep_local();
1569 while ((ret
= compact_finished(zone
, cc
)) == COMPACT_CONTINUE
) {
1572 switch (isolate_migratepages(zone
, cc
)) {
1574 ret
= COMPACT_CONTENDED
;
1575 putback_movable_pages(&cc
->migratepages
);
1576 cc
->nr_migratepages
= 0;
1580 * We haven't isolated and migrated anything, but
1581 * there might still be unflushed migrations from
1582 * previous cc->order aligned block.
1585 case ISOLATE_SUCCESS
:
1589 err
= migrate_pages(&cc
->migratepages
, compaction_alloc
,
1590 compaction_free
, (unsigned long)cc
, cc
->mode
,
1593 trace_mm_compaction_migratepages(cc
->nr_migratepages
, err
,
1596 /* All pages were either migrated or will be released */
1597 cc
->nr_migratepages
= 0;
1599 putback_movable_pages(&cc
->migratepages
);
1601 * migrate_pages() may return -ENOMEM when scanners meet
1602 * and we want compact_finished() to detect it
1604 if (err
== -ENOMEM
&& !compact_scanners_met(cc
)) {
1605 ret
= COMPACT_CONTENDED
;
1609 * We failed to migrate at least one page in the current
1610 * order-aligned block, so skip the rest of it.
1612 if (cc
->direct_compaction
&&
1613 (cc
->mode
== MIGRATE_ASYNC
)) {
1614 cc
->migrate_pfn
= block_end_pfn(
1615 cc
->migrate_pfn
- 1, cc
->order
);
1616 /* Draining pcplists is useless in this case */
1617 cc
->last_migrated_pfn
= 0;
1624 * Has the migration scanner moved away from the previous
1625 * cc->order aligned block where we migrated from? If yes,
1626 * flush the pages that were freed, so that they can merge and
1627 * compact_finished() can detect immediately if allocation
1630 if (cc
->order
> 0 && cc
->last_migrated_pfn
) {
1632 unsigned long current_block_start
=
1633 block_start_pfn(cc
->migrate_pfn
, cc
->order
);
1635 if (cc
->last_migrated_pfn
< current_block_start
) {
1637 lru_add_drain_cpu(cpu
);
1638 drain_local_pages(zone
);
1640 /* No more flushing until we migrate again */
1641 cc
->last_migrated_pfn
= 0;
1649 * Release free pages and update where the free scanner should restart,
1650 * so we don't leave any returned pages behind in the next attempt.
1652 if (cc
->nr_freepages
> 0) {
1653 unsigned long free_pfn
= release_freepages(&cc
->freepages
);
1655 cc
->nr_freepages
= 0;
1656 VM_BUG_ON(free_pfn
== 0);
1657 /* The cached pfn is always the first in a pageblock */
1658 free_pfn
= pageblock_start_pfn(free_pfn
);
1660 * Only go back, not forward. The cached pfn might have been
1661 * already reset to zone end in compact_finished()
1663 if (free_pfn
> zone
->compact_cached_free_pfn
)
1664 zone
->compact_cached_free_pfn
= free_pfn
;
1667 count_compact_events(COMPACTMIGRATE_SCANNED
, cc
->total_migrate_scanned
);
1668 count_compact_events(COMPACTFREE_SCANNED
, cc
->total_free_scanned
);
1670 trace_mm_compaction_end(start_pfn
, cc
->migrate_pfn
,
1671 cc
->free_pfn
, end_pfn
, sync
, ret
);
1676 static enum compact_result
compact_zone_order(struct zone
*zone
, int order
,
1677 gfp_t gfp_mask
, enum compact_priority prio
,
1678 unsigned int alloc_flags
, int classzone_idx
)
1680 enum compact_result ret
;
1681 struct compact_control cc
= {
1683 .nr_migratepages
= 0,
1684 .total_migrate_scanned
= 0,
1685 .total_free_scanned
= 0,
1687 .gfp_mask
= gfp_mask
,
1689 .mode
= (prio
== COMPACT_PRIO_ASYNC
) ?
1690 MIGRATE_ASYNC
: MIGRATE_SYNC_LIGHT
,
1691 .alloc_flags
= alloc_flags
,
1692 .classzone_idx
= classzone_idx
,
1693 .direct_compaction
= true,
1694 .whole_zone
= (prio
== MIN_COMPACT_PRIORITY
),
1695 .ignore_skip_hint
= (prio
== MIN_COMPACT_PRIORITY
),
1696 .ignore_block_suitable
= (prio
== MIN_COMPACT_PRIORITY
)
1698 INIT_LIST_HEAD(&cc
.freepages
);
1699 INIT_LIST_HEAD(&cc
.migratepages
);
1701 ret
= compact_zone(zone
, &cc
);
1703 VM_BUG_ON(!list_empty(&cc
.freepages
));
1704 VM_BUG_ON(!list_empty(&cc
.migratepages
));
1709 int sysctl_extfrag_threshold
= 500;
1712 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1713 * @gfp_mask: The GFP mask of the current allocation
1714 * @order: The order of the current allocation
1715 * @alloc_flags: The allocation flags of the current allocation
1716 * @ac: The context of current allocation
1717 * @mode: The migration mode for async, sync light, or sync migration
1719 * This is the main entry point for direct page compaction.
1721 enum compact_result
try_to_compact_pages(gfp_t gfp_mask
, unsigned int order
,
1722 unsigned int alloc_flags
, const struct alloc_context
*ac
,
1723 enum compact_priority prio
)
1725 int may_perform_io
= gfp_mask
& __GFP_IO
;
1728 enum compact_result rc
= COMPACT_SKIPPED
;
1731 * Check if the GFP flags allow compaction - GFP_NOIO is really
1732 * tricky context because the migration might require IO
1734 if (!may_perform_io
)
1735 return COMPACT_SKIPPED
;
1737 trace_mm_compaction_try_to_compact_pages(order
, gfp_mask
, prio
);
1739 /* Compact each zone in the list */
1740 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
1742 enum compact_result status
;
1744 if (prio
> MIN_COMPACT_PRIORITY
1745 && compaction_deferred(zone
, order
)) {
1746 rc
= max_t(enum compact_result
, COMPACT_DEFERRED
, rc
);
1750 status
= compact_zone_order(zone
, order
, gfp_mask
, prio
,
1751 alloc_flags
, ac_classzone_idx(ac
));
1752 rc
= max(status
, rc
);
1754 /* The allocation should succeed, stop compacting */
1755 if (status
== COMPACT_SUCCESS
) {
1757 * We think the allocation will succeed in this zone,
1758 * but it is not certain, hence the false. The caller
1759 * will repeat this with true if allocation indeed
1760 * succeeds in this zone.
1762 compaction_defer_reset(zone
, order
, false);
1767 if (prio
!= COMPACT_PRIO_ASYNC
&& (status
== COMPACT_COMPLETE
||
1768 status
== COMPACT_PARTIAL_SKIPPED
))
1770 * We think that allocation won't succeed in this zone
1771 * so we defer compaction there. If it ends up
1772 * succeeding after all, it will be reset.
1774 defer_compaction(zone
, order
);
1777 * We might have stopped compacting due to need_resched() in
1778 * async compaction, or due to a fatal signal detected. In that
1779 * case do not try further zones
1781 if ((prio
== COMPACT_PRIO_ASYNC
&& need_resched())
1782 || fatal_signal_pending(current
))
1790 /* Compact all zones within a node */
1791 static void compact_node(int nid
)
1793 pg_data_t
*pgdat
= NODE_DATA(nid
);
1796 struct compact_control cc
= {
1798 .total_migrate_scanned
= 0,
1799 .total_free_scanned
= 0,
1800 .mode
= MIGRATE_SYNC
,
1801 .ignore_skip_hint
= true,
1803 .gfp_mask
= GFP_KERNEL
,
1807 for (zoneid
= 0; zoneid
< MAX_NR_ZONES
; zoneid
++) {
1809 zone
= &pgdat
->node_zones
[zoneid
];
1810 if (!populated_zone(zone
))
1813 cc
.nr_freepages
= 0;
1814 cc
.nr_migratepages
= 0;
1816 INIT_LIST_HEAD(&cc
.freepages
);
1817 INIT_LIST_HEAD(&cc
.migratepages
);
1819 compact_zone(zone
, &cc
);
1821 VM_BUG_ON(!list_empty(&cc
.freepages
));
1822 VM_BUG_ON(!list_empty(&cc
.migratepages
));
1826 /* Compact all nodes in the system */
1827 static void compact_nodes(void)
1831 /* Flush pending updates to the LRU lists */
1832 lru_add_drain_all();
1834 for_each_online_node(nid
)
1838 /* The written value is actually unused, all memory is compacted */
1839 int sysctl_compact_memory
;
1842 * This is the entry point for compacting all nodes via
1843 * /proc/sys/vm/compact_memory
1845 int sysctl_compaction_handler(struct ctl_table
*table
, int write
,
1846 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1854 int sysctl_extfrag_handler(struct ctl_table
*table
, int write
,
1855 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1857 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
1862 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1863 static ssize_t
sysfs_compact_node(struct device
*dev
,
1864 struct device_attribute
*attr
,
1865 const char *buf
, size_t count
)
1869 if (nid
>= 0 && nid
< nr_node_ids
&& node_online(nid
)) {
1870 /* Flush pending updates to the LRU lists */
1871 lru_add_drain_all();
1878 static DEVICE_ATTR(compact
, S_IWUSR
, NULL
, sysfs_compact_node
);
1880 int compaction_register_node(struct node
*node
)
1882 return device_create_file(&node
->dev
, &dev_attr_compact
);
1885 void compaction_unregister_node(struct node
*node
)
1887 return device_remove_file(&node
->dev
, &dev_attr_compact
);
1889 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1891 static inline bool kcompactd_work_requested(pg_data_t
*pgdat
)
1893 return pgdat
->kcompactd_max_order
> 0 || kthread_should_stop();
1896 static bool kcompactd_node_suitable(pg_data_t
*pgdat
)
1900 enum zone_type classzone_idx
= pgdat
->kcompactd_classzone_idx
;
1902 for (zoneid
= 0; zoneid
<= classzone_idx
; zoneid
++) {
1903 zone
= &pgdat
->node_zones
[zoneid
];
1905 if (!populated_zone(zone
))
1908 if (compaction_suitable(zone
, pgdat
->kcompactd_max_order
, 0,
1909 classzone_idx
) == COMPACT_CONTINUE
)
1916 static void kcompactd_do_work(pg_data_t
*pgdat
)
1919 * With no special task, compact all zones so that a page of requested
1920 * order is allocatable.
1924 struct compact_control cc
= {
1925 .order
= pgdat
->kcompactd_max_order
,
1926 .total_migrate_scanned
= 0,
1927 .total_free_scanned
= 0,
1928 .classzone_idx
= pgdat
->kcompactd_classzone_idx
,
1929 .mode
= MIGRATE_SYNC_LIGHT
,
1930 .ignore_skip_hint
= true,
1931 .gfp_mask
= GFP_KERNEL
,
1934 trace_mm_compaction_kcompactd_wake(pgdat
->node_id
, cc
.order
,
1936 count_compact_event(KCOMPACTD_WAKE
);
1938 for (zoneid
= 0; zoneid
<= cc
.classzone_idx
; zoneid
++) {
1941 zone
= &pgdat
->node_zones
[zoneid
];
1942 if (!populated_zone(zone
))
1945 if (compaction_deferred(zone
, cc
.order
))
1948 if (compaction_suitable(zone
, cc
.order
, 0, zoneid
) !=
1952 cc
.nr_freepages
= 0;
1953 cc
.nr_migratepages
= 0;
1954 cc
.total_migrate_scanned
= 0;
1955 cc
.total_free_scanned
= 0;
1957 INIT_LIST_HEAD(&cc
.freepages
);
1958 INIT_LIST_HEAD(&cc
.migratepages
);
1960 if (kthread_should_stop())
1962 status
= compact_zone(zone
, &cc
);
1964 if (status
== COMPACT_SUCCESS
) {
1965 compaction_defer_reset(zone
, cc
.order
, false);
1966 } else if (status
== COMPACT_PARTIAL_SKIPPED
|| status
== COMPACT_COMPLETE
) {
1968 * We use sync migration mode here, so we defer like
1969 * sync direct compaction does.
1971 defer_compaction(zone
, cc
.order
);
1974 count_compact_events(KCOMPACTD_MIGRATE_SCANNED
,
1975 cc
.total_migrate_scanned
);
1976 count_compact_events(KCOMPACTD_FREE_SCANNED
,
1977 cc
.total_free_scanned
);
1979 VM_BUG_ON(!list_empty(&cc
.freepages
));
1980 VM_BUG_ON(!list_empty(&cc
.migratepages
));
1984 * Regardless of success, we are done until woken up next. But remember
1985 * the requested order/classzone_idx in case it was higher/tighter than
1988 if (pgdat
->kcompactd_max_order
<= cc
.order
)
1989 pgdat
->kcompactd_max_order
= 0;
1990 if (pgdat
->kcompactd_classzone_idx
>= cc
.classzone_idx
)
1991 pgdat
->kcompactd_classzone_idx
= pgdat
->nr_zones
- 1;
1994 void wakeup_kcompactd(pg_data_t
*pgdat
, int order
, int classzone_idx
)
1999 if (pgdat
->kcompactd_max_order
< order
)
2000 pgdat
->kcompactd_max_order
= order
;
2003 * Pairs with implicit barrier in wait_event_freezable()
2004 * such that wakeups are not missed in the lockless
2005 * waitqueue_active() call.
2007 smp_acquire__after_ctrl_dep();
2009 if (pgdat
->kcompactd_classzone_idx
> classzone_idx
)
2010 pgdat
->kcompactd_classzone_idx
= classzone_idx
;
2012 if (!waitqueue_active(&pgdat
->kcompactd_wait
))
2015 if (!kcompactd_node_suitable(pgdat
))
2018 trace_mm_compaction_wakeup_kcompactd(pgdat
->node_id
, order
,
2020 wake_up_interruptible(&pgdat
->kcompactd_wait
);
2024 * The background compaction daemon, started as a kernel thread
2025 * from the init process.
2027 static int kcompactd(void *p
)
2029 pg_data_t
*pgdat
= (pg_data_t
*)p
;
2030 struct task_struct
*tsk
= current
;
2032 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
2034 if (!cpumask_empty(cpumask
))
2035 set_cpus_allowed_ptr(tsk
, cpumask
);
2039 pgdat
->kcompactd_max_order
= 0;
2040 pgdat
->kcompactd_classzone_idx
= pgdat
->nr_zones
- 1;
2042 while (!kthread_should_stop()) {
2043 trace_mm_compaction_kcompactd_sleep(pgdat
->node_id
);
2044 wait_event_freezable(pgdat
->kcompactd_wait
,
2045 kcompactd_work_requested(pgdat
));
2047 kcompactd_do_work(pgdat
);
2054 * This kcompactd start function will be called by init and node-hot-add.
2055 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2057 int kcompactd_run(int nid
)
2059 pg_data_t
*pgdat
= NODE_DATA(nid
);
2062 if (pgdat
->kcompactd
)
2065 pgdat
->kcompactd
= kthread_run(kcompactd
, pgdat
, "kcompactd%d", nid
);
2066 if (IS_ERR(pgdat
->kcompactd
)) {
2067 pr_err("Failed to start kcompactd on node %d\n", nid
);
2068 ret
= PTR_ERR(pgdat
->kcompactd
);
2069 pgdat
->kcompactd
= NULL
;
2075 * Called by memory hotplug when all memory in a node is offlined. Caller must
2076 * hold mem_hotplug_begin/end().
2078 void kcompactd_stop(int nid
)
2080 struct task_struct
*kcompactd
= NODE_DATA(nid
)->kcompactd
;
2083 kthread_stop(kcompactd
);
2084 NODE_DATA(nid
)->kcompactd
= NULL
;
2089 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2090 * not required for correctness. So if the last cpu in a node goes
2091 * away, we get changed to run anywhere: as the first one comes back,
2092 * restore their cpu bindings.
2094 static int kcompactd_cpu_online(unsigned int cpu
)
2098 for_each_node_state(nid
, N_MEMORY
) {
2099 pg_data_t
*pgdat
= NODE_DATA(nid
);
2100 const struct cpumask
*mask
;
2102 mask
= cpumask_of_node(pgdat
->node_id
);
2104 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
2105 /* One of our CPUs online: restore mask */
2106 set_cpus_allowed_ptr(pgdat
->kcompactd
, mask
);
2111 static int __init
kcompactd_init(void)
2116 ret
= cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN
,
2117 "mm/compaction:online",
2118 kcompactd_cpu_online
, NULL
);
2120 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2124 for_each_node_state(nid
, N_MEMORY
)
2128 subsys_initcall(kcompactd_init
)
2130 #endif /* CONFIG_COMPACTION */