1 /* Basic authentication token and access key management
3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
23 struct kmem_cache
*key_jar
;
24 struct rb_root key_serial_tree
; /* tree of keys indexed by serial */
25 DEFINE_SPINLOCK(key_serial_lock
);
27 struct rb_root key_user_tree
; /* tree of quota records indexed by UID */
28 DEFINE_SPINLOCK(key_user_lock
);
30 unsigned int key_quota_root_maxkeys
= 1000000; /* root's key count quota */
31 unsigned int key_quota_root_maxbytes
= 25000000; /* root's key space quota */
32 unsigned int key_quota_maxkeys
= 200; /* general key count quota */
33 unsigned int key_quota_maxbytes
= 20000; /* general key space quota */
35 static LIST_HEAD(key_types_list
);
36 static DECLARE_RWSEM(key_types_sem
);
38 /* We serialise key instantiation and link */
39 DEFINE_MUTEX(key_construction_mutex
);
42 void __key_check(const struct key
*key
)
44 printk("__key_check: key %p {%08x} should be {%08x}\n",
45 key
, key
->magic
, KEY_DEBUG_MAGIC
);
51 * Get the key quota record for a user, allocating a new record if one doesn't
54 struct key_user
*key_user_lookup(kuid_t uid
)
56 struct key_user
*candidate
= NULL
, *user
;
57 struct rb_node
*parent
= NULL
;
61 p
= &key_user_tree
.rb_node
;
62 spin_lock(&key_user_lock
);
64 /* search the tree for a user record with a matching UID */
67 user
= rb_entry(parent
, struct key_user
, node
);
69 if (uid_lt(uid
, user
->uid
))
71 else if (uid_gt(uid
, user
->uid
))
77 /* if we get here, we failed to find a match in the tree */
79 /* allocate a candidate user record if we don't already have
81 spin_unlock(&key_user_lock
);
84 candidate
= kmalloc(sizeof(struct key_user
), GFP_KERNEL
);
85 if (unlikely(!candidate
))
88 /* the allocation may have scheduled, so we need to repeat the
89 * search lest someone else added the record whilst we were
94 /* if we get here, then the user record still hadn't appeared on the
95 * second pass - so we use the candidate record */
96 refcount_set(&candidate
->usage
, 1);
97 atomic_set(&candidate
->nkeys
, 0);
98 atomic_set(&candidate
->nikeys
, 0);
100 candidate
->qnkeys
= 0;
101 candidate
->qnbytes
= 0;
102 spin_lock_init(&candidate
->lock
);
103 mutex_init(&candidate
->cons_lock
);
105 rb_link_node(&candidate
->node
, parent
, p
);
106 rb_insert_color(&candidate
->node
, &key_user_tree
);
107 spin_unlock(&key_user_lock
);
111 /* okay - we found a user record for this UID */
113 refcount_inc(&user
->usage
);
114 spin_unlock(&key_user_lock
);
121 * Dispose of a user structure
123 void key_user_put(struct key_user
*user
)
125 if (refcount_dec_and_lock(&user
->usage
, &key_user_lock
)) {
126 rb_erase(&user
->node
, &key_user_tree
);
127 spin_unlock(&key_user_lock
);
134 * Allocate a serial number for a key. These are assigned randomly to avoid
135 * security issues through covert channel problems.
137 static inline void key_alloc_serial(struct key
*key
)
139 struct rb_node
*parent
, **p
;
142 /* propose a random serial number and look for a hole for it in the
143 * serial number tree */
145 get_random_bytes(&key
->serial
, sizeof(key
->serial
));
147 key
->serial
>>= 1; /* negative numbers are not permitted */
148 } while (key
->serial
< 3);
150 spin_lock(&key_serial_lock
);
154 p
= &key_serial_tree
.rb_node
;
158 xkey
= rb_entry(parent
, struct key
, serial_node
);
160 if (key
->serial
< xkey
->serial
)
162 else if (key
->serial
> xkey
->serial
)
168 /* we've found a suitable hole - arrange for this key to occupy it */
169 rb_link_node(&key
->serial_node
, parent
, p
);
170 rb_insert_color(&key
->serial_node
, &key_serial_tree
);
172 spin_unlock(&key_serial_lock
);
175 /* we found a key with the proposed serial number - walk the tree from
176 * that point looking for the next unused serial number */
180 if (key
->serial
< 3) {
182 goto attempt_insertion
;
185 parent
= rb_next(parent
);
187 goto attempt_insertion
;
189 xkey
= rb_entry(parent
, struct key
, serial_node
);
190 if (key
->serial
< xkey
->serial
)
191 goto attempt_insertion
;
196 * key_alloc - Allocate a key of the specified type.
197 * @type: The type of key to allocate.
198 * @desc: The key description to allow the key to be searched out.
199 * @uid: The owner of the new key.
200 * @gid: The group ID for the new key's group permissions.
201 * @cred: The credentials specifying UID namespace.
202 * @perm: The permissions mask of the new key.
203 * @flags: Flags specifying quota properties.
204 * @restrict_link: Optional link restriction for new keyrings.
206 * Allocate a key of the specified type with the attributes given. The key is
207 * returned in an uninstantiated state and the caller needs to instantiate the
208 * key before returning.
210 * The restrict_link structure (if not NULL) will be freed when the
211 * keyring is destroyed, so it must be dynamically allocated.
213 * The user's key count quota is updated to reflect the creation of the key and
214 * the user's key data quota has the default for the key type reserved. The
215 * instantiation function should amend this as necessary. If insufficient
216 * quota is available, -EDQUOT will be returned.
218 * The LSM security modules can prevent a key being created, in which case
219 * -EACCES will be returned.
221 * Returns a pointer to the new key if successful and an error code otherwise.
223 * Note that the caller needs to ensure the key type isn't uninstantiated.
224 * Internally this can be done by locking key_types_sem. Externally, this can
225 * be done by either never unregistering the key type, or making sure
226 * key_alloc() calls don't race with module unloading.
228 struct key
*key_alloc(struct key_type
*type
, const char *desc
,
229 kuid_t uid
, kgid_t gid
, const struct cred
*cred
,
230 key_perm_t perm
, unsigned long flags
,
231 struct key_restriction
*restrict_link
)
233 struct key_user
*user
= NULL
;
235 size_t desclen
, quotalen
;
238 key
= ERR_PTR(-EINVAL
);
242 if (type
->vet_description
) {
243 ret
= type
->vet_description(desc
);
250 desclen
= strlen(desc
);
251 quotalen
= desclen
+ 1 + type
->def_datalen
;
253 /* get hold of the key tracking for this user */
254 user
= key_user_lookup(uid
);
258 /* check that the user's quota permits allocation of another key and
260 if (!(flags
& KEY_ALLOC_NOT_IN_QUOTA
)) {
261 unsigned maxkeys
= uid_eq(uid
, GLOBAL_ROOT_UID
) ?
262 key_quota_root_maxkeys
: key_quota_maxkeys
;
263 unsigned maxbytes
= uid_eq(uid
, GLOBAL_ROOT_UID
) ?
264 key_quota_root_maxbytes
: key_quota_maxbytes
;
266 spin_lock(&user
->lock
);
267 if (!(flags
& KEY_ALLOC_QUOTA_OVERRUN
)) {
268 if (user
->qnkeys
+ 1 >= maxkeys
||
269 user
->qnbytes
+ quotalen
>= maxbytes
||
270 user
->qnbytes
+ quotalen
< user
->qnbytes
)
275 user
->qnbytes
+= quotalen
;
276 spin_unlock(&user
->lock
);
279 /* allocate and initialise the key and its description */
280 key
= kmem_cache_zalloc(key_jar
, GFP_KERNEL
);
284 key
->index_key
.desc_len
= desclen
;
285 key
->index_key
.description
= kmemdup(desc
, desclen
+ 1, GFP_KERNEL
);
286 if (!key
->index_key
.description
)
289 refcount_set(&key
->usage
, 1);
290 init_rwsem(&key
->sem
);
291 lockdep_set_class(&key
->sem
, &type
->lock_class
);
292 key
->index_key
.type
= type
;
294 key
->quotalen
= quotalen
;
295 key
->datalen
= type
->def_datalen
;
299 key
->restrict_link
= restrict_link
;
301 if (!(flags
& KEY_ALLOC_NOT_IN_QUOTA
))
302 key
->flags
|= 1 << KEY_FLAG_IN_QUOTA
;
303 if (flags
& KEY_ALLOC_BUILT_IN
)
304 key
->flags
|= 1 << KEY_FLAG_BUILTIN
;
307 key
->magic
= KEY_DEBUG_MAGIC
;
310 /* let the security module know about the key */
311 ret
= security_key_alloc(key
, cred
, flags
);
315 /* publish the key by giving it a serial number */
316 atomic_inc(&user
->nkeys
);
317 key_alloc_serial(key
);
323 kfree(key
->description
);
324 kmem_cache_free(key_jar
, key
);
325 if (!(flags
& KEY_ALLOC_NOT_IN_QUOTA
)) {
326 spin_lock(&user
->lock
);
328 user
->qnbytes
-= quotalen
;
329 spin_unlock(&user
->lock
);
336 kmem_cache_free(key_jar
, key
);
338 if (!(flags
& KEY_ALLOC_NOT_IN_QUOTA
)) {
339 spin_lock(&user
->lock
);
341 user
->qnbytes
-= quotalen
;
342 spin_unlock(&user
->lock
);
346 key
= ERR_PTR(-ENOMEM
);
350 spin_unlock(&user
->lock
);
352 key
= ERR_PTR(-EDQUOT
);
355 EXPORT_SYMBOL(key_alloc
);
358 * key_payload_reserve - Adjust data quota reservation for the key's payload
359 * @key: The key to make the reservation for.
360 * @datalen: The amount of data payload the caller now wants.
362 * Adjust the amount of the owning user's key data quota that a key reserves.
363 * If the amount is increased, then -EDQUOT may be returned if there isn't
364 * enough free quota available.
366 * If successful, 0 is returned.
368 int key_payload_reserve(struct key
*key
, size_t datalen
)
370 int delta
= (int)datalen
- key
->datalen
;
375 /* contemplate the quota adjustment */
376 if (delta
!= 0 && test_bit(KEY_FLAG_IN_QUOTA
, &key
->flags
)) {
377 unsigned maxbytes
= uid_eq(key
->user
->uid
, GLOBAL_ROOT_UID
) ?
378 key_quota_root_maxbytes
: key_quota_maxbytes
;
380 spin_lock(&key
->user
->lock
);
383 (key
->user
->qnbytes
+ delta
>= maxbytes
||
384 key
->user
->qnbytes
+ delta
< key
->user
->qnbytes
)) {
388 key
->user
->qnbytes
+= delta
;
389 key
->quotalen
+= delta
;
391 spin_unlock(&key
->user
->lock
);
394 /* change the recorded data length if that didn't generate an error */
396 key
->datalen
= datalen
;
400 EXPORT_SYMBOL(key_payload_reserve
);
403 * Instantiate a key and link it into the target keyring atomically. Must be
404 * called with the target keyring's semaphore writelocked. The target key's
405 * semaphore need not be locked as instantiation is serialised by
406 * key_construction_mutex.
408 static int __key_instantiate_and_link(struct key
*key
,
409 struct key_preparsed_payload
*prep
,
412 struct assoc_array_edit
**_edit
)
422 mutex_lock(&key_construction_mutex
);
424 /* can't instantiate twice */
425 if (!test_bit(KEY_FLAG_INSTANTIATED
, &key
->flags
)) {
426 /* instantiate the key */
427 ret
= key
->type
->instantiate(key
, prep
);
430 /* mark the key as being instantiated */
431 atomic_inc(&key
->user
->nikeys
);
432 set_bit(KEY_FLAG_INSTANTIATED
, &key
->flags
);
434 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT
, &key
->flags
))
437 /* and link it into the destination keyring */
439 if (test_bit(KEY_FLAG_KEEP
, &keyring
->flags
))
440 set_bit(KEY_FLAG_KEEP
, &key
->flags
);
442 __key_link(key
, _edit
);
445 /* disable the authorisation key */
449 if (prep
->expiry
!= TIME_T_MAX
) {
450 key
->expiry
= prep
->expiry
;
451 key_schedule_gc(prep
->expiry
+ key_gc_delay
);
456 mutex_unlock(&key_construction_mutex
);
458 /* wake up anyone waiting for a key to be constructed */
460 wake_up_bit(&key
->flags
, KEY_FLAG_USER_CONSTRUCT
);
466 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
467 * @key: The key to instantiate.
468 * @data: The data to use to instantiate the keyring.
469 * @datalen: The length of @data.
470 * @keyring: Keyring to create a link in on success (or NULL).
471 * @authkey: The authorisation token permitting instantiation.
473 * Instantiate a key that's in the uninstantiated state using the provided data
474 * and, if successful, link it in to the destination keyring if one is
477 * If successful, 0 is returned, the authorisation token is revoked and anyone
478 * waiting for the key is woken up. If the key was already instantiated,
479 * -EBUSY will be returned.
481 int key_instantiate_and_link(struct key
*key
,
487 struct key_preparsed_payload prep
;
488 struct assoc_array_edit
*edit
;
491 memset(&prep
, 0, sizeof(prep
));
493 prep
.datalen
= datalen
;
494 prep
.quotalen
= key
->type
->def_datalen
;
495 prep
.expiry
= TIME_T_MAX
;
496 if (key
->type
->preparse
) {
497 ret
= key
->type
->preparse(&prep
);
503 ret
= __key_link_begin(keyring
, &key
->index_key
, &edit
);
507 if (keyring
->restrict_link
&& keyring
->restrict_link
->check
) {
508 struct key_restriction
*keyres
= keyring
->restrict_link
;
510 ret
= keyres
->check(keyring
, key
->type
, &prep
.payload
,
517 ret
= __key_instantiate_and_link(key
, &prep
, keyring
, authkey
, &edit
);
521 __key_link_end(keyring
, &key
->index_key
, edit
);
524 if (key
->type
->preparse
)
525 key
->type
->free_preparse(&prep
);
529 EXPORT_SYMBOL(key_instantiate_and_link
);
532 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
533 * @key: The key to instantiate.
534 * @timeout: The timeout on the negative key.
535 * @error: The error to return when the key is hit.
536 * @keyring: Keyring to create a link in on success (or NULL).
537 * @authkey: The authorisation token permitting instantiation.
539 * Negatively instantiate a key that's in the uninstantiated state and, if
540 * successful, set its timeout and stored error and link it in to the
541 * destination keyring if one is supplied. The key and any links to the key
542 * will be automatically garbage collected after the timeout expires.
544 * Negative keys are used to rate limit repeated request_key() calls by causing
545 * them to return the stored error code (typically ENOKEY) until the negative
548 * If successful, 0 is returned, the authorisation token is revoked and anyone
549 * waiting for the key is woken up. If the key was already instantiated,
550 * -EBUSY will be returned.
552 int key_reject_and_link(struct key
*key
,
558 struct assoc_array_edit
*edit
;
560 int ret
, awaken
, link_ret
= 0;
569 if (keyring
->restrict_link
)
572 link_ret
= __key_link_begin(keyring
, &key
->index_key
, &edit
);
575 mutex_lock(&key_construction_mutex
);
577 /* can't instantiate twice */
578 if (!test_bit(KEY_FLAG_INSTANTIATED
, &key
->flags
)) {
579 /* mark the key as being negatively instantiated */
580 atomic_inc(&key
->user
->nikeys
);
581 key
->reject_error
= -error
;
583 set_bit(KEY_FLAG_NEGATIVE
, &key
->flags
);
584 set_bit(KEY_FLAG_INSTANTIATED
, &key
->flags
);
585 now
= current_kernel_time();
586 key
->expiry
= now
.tv_sec
+ timeout
;
587 key_schedule_gc(key
->expiry
+ key_gc_delay
);
589 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT
, &key
->flags
))
594 /* and link it into the destination keyring */
595 if (keyring
&& link_ret
== 0)
596 __key_link(key
, &edit
);
598 /* disable the authorisation key */
603 mutex_unlock(&key_construction_mutex
);
605 if (keyring
&& link_ret
== 0)
606 __key_link_end(keyring
, &key
->index_key
, edit
);
608 /* wake up anyone waiting for a key to be constructed */
610 wake_up_bit(&key
->flags
, KEY_FLAG_USER_CONSTRUCT
);
612 return ret
== 0 ? link_ret
: ret
;
614 EXPORT_SYMBOL(key_reject_and_link
);
617 * key_put - Discard a reference to a key.
618 * @key: The key to discard a reference from.
620 * Discard a reference to a key, and when all the references are gone, we
621 * schedule the cleanup task to come and pull it out of the tree in process
622 * context at some later time.
624 void key_put(struct key
*key
)
629 if (refcount_dec_and_test(&key
->usage
))
630 schedule_work(&key_gc_work
);
633 EXPORT_SYMBOL(key_put
);
636 * Find a key by its serial number.
638 struct key
*key_lookup(key_serial_t id
)
643 spin_lock(&key_serial_lock
);
645 /* search the tree for the specified key */
646 n
= key_serial_tree
.rb_node
;
648 key
= rb_entry(n
, struct key
, serial_node
);
650 if (id
< key
->serial
)
652 else if (id
> key
->serial
)
659 key
= ERR_PTR(-ENOKEY
);
663 /* A key is allowed to be looked up only if someone still owns a
664 * reference to it - otherwise it's awaiting the gc.
666 if (!refcount_inc_not_zero(&key
->usage
))
670 spin_unlock(&key_serial_lock
);
675 * Find and lock the specified key type against removal.
677 * We return with the sem read-locked if successful. If the type wasn't
678 * available -ENOKEY is returned instead.
680 struct key_type
*key_type_lookup(const char *type
)
682 struct key_type
*ktype
;
684 down_read(&key_types_sem
);
686 /* look up the key type to see if it's one of the registered kernel
688 list_for_each_entry(ktype
, &key_types_list
, link
) {
689 if (strcmp(ktype
->name
, type
) == 0)
690 goto found_kernel_type
;
693 up_read(&key_types_sem
);
694 ktype
= ERR_PTR(-ENOKEY
);
700 void key_set_timeout(struct key
*key
, unsigned timeout
)
705 /* make the changes with the locks held to prevent races */
706 down_write(&key
->sem
);
709 now
= current_kernel_time();
710 expiry
= now
.tv_sec
+ timeout
;
713 key
->expiry
= expiry
;
714 key_schedule_gc(key
->expiry
+ key_gc_delay
);
718 EXPORT_SYMBOL_GPL(key_set_timeout
);
721 * Unlock a key type locked by key_type_lookup().
723 void key_type_put(struct key_type
*ktype
)
725 up_read(&key_types_sem
);
729 * Attempt to update an existing key.
731 * The key is given to us with an incremented refcount that we need to discard
732 * if we get an error.
734 static inline key_ref_t
__key_update(key_ref_t key_ref
,
735 struct key_preparsed_payload
*prep
)
737 struct key
*key
= key_ref_to_ptr(key_ref
);
740 /* need write permission on the key to update it */
741 ret
= key_permission(key_ref
, KEY_NEED_WRITE
);
746 if (!key
->type
->update
)
749 down_write(&key
->sem
);
751 ret
= key
->type
->update(key
, prep
);
753 /* updating a negative key instantiates it */
754 clear_bit(KEY_FLAG_NEGATIVE
, &key
->flags
);
765 key_ref
= ERR_PTR(ret
);
770 * key_create_or_update - Update or create and instantiate a key.
771 * @keyring_ref: A pointer to the destination keyring with possession flag.
772 * @type: The type of key.
773 * @description: The searchable description for the key.
774 * @payload: The data to use to instantiate or update the key.
775 * @plen: The length of @payload.
776 * @perm: The permissions mask for a new key.
777 * @flags: The quota flags for a new key.
779 * Search the destination keyring for a key of the same description and if one
780 * is found, update it, otherwise create and instantiate a new one and create a
781 * link to it from that keyring.
783 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
786 * Returns a pointer to the new key if successful, -ENODEV if the key type
787 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
788 * caller isn't permitted to modify the keyring or the LSM did not permit
789 * creation of the key.
791 * On success, the possession flag from the keyring ref will be tacked on to
792 * the key ref before it is returned.
794 key_ref_t
key_create_or_update(key_ref_t keyring_ref
,
796 const char *description
,
802 struct keyring_index_key index_key
= {
803 .description
= description
,
805 struct key_preparsed_payload prep
;
806 struct assoc_array_edit
*edit
;
807 const struct cred
*cred
= current_cred();
808 struct key
*keyring
, *key
= NULL
;
811 struct key_restriction
*restrict_link
= NULL
;
813 /* look up the key type to see if it's one of the registered kernel
815 index_key
.type
= key_type_lookup(type
);
816 if (IS_ERR(index_key
.type
)) {
817 key_ref
= ERR_PTR(-ENODEV
);
821 key_ref
= ERR_PTR(-EINVAL
);
822 if (!index_key
.type
->instantiate
||
823 (!index_key
.description
&& !index_key
.type
->preparse
))
826 keyring
= key_ref_to_ptr(keyring_ref
);
830 key_ref
= ERR_PTR(-EPERM
);
831 if (!(flags
& KEY_ALLOC_BYPASS_RESTRICTION
))
832 restrict_link
= keyring
->restrict_link
;
834 key_ref
= ERR_PTR(-ENOTDIR
);
835 if (keyring
->type
!= &key_type_keyring
)
838 memset(&prep
, 0, sizeof(prep
));
841 prep
.quotalen
= index_key
.type
->def_datalen
;
842 prep
.expiry
= TIME_T_MAX
;
843 if (index_key
.type
->preparse
) {
844 ret
= index_key
.type
->preparse(&prep
);
846 key_ref
= ERR_PTR(ret
);
847 goto error_free_prep
;
849 if (!index_key
.description
)
850 index_key
.description
= prep
.description
;
851 key_ref
= ERR_PTR(-EINVAL
);
852 if (!index_key
.description
)
853 goto error_free_prep
;
855 index_key
.desc_len
= strlen(index_key
.description
);
857 ret
= __key_link_begin(keyring
, &index_key
, &edit
);
859 key_ref
= ERR_PTR(ret
);
860 goto error_free_prep
;
863 if (restrict_link
&& restrict_link
->check
) {
864 ret
= restrict_link
->check(keyring
, index_key
.type
,
865 &prep
.payload
, restrict_link
->key
);
867 key_ref
= ERR_PTR(ret
);
872 /* if we're going to allocate a new key, we're going to have
873 * to modify the keyring */
874 ret
= key_permission(keyring_ref
, KEY_NEED_WRITE
);
876 key_ref
= ERR_PTR(ret
);
880 /* if it's possible to update this type of key, search for an existing
881 * key of the same type and description in the destination keyring and
882 * update that instead if possible
884 if (index_key
.type
->update
) {
885 key_ref
= find_key_to_update(keyring_ref
, &index_key
);
887 goto found_matching_key
;
890 /* if the client doesn't provide, decide on the permissions we want */
891 if (perm
== KEY_PERM_UNDEF
) {
892 perm
= KEY_POS_VIEW
| KEY_POS_SEARCH
| KEY_POS_LINK
| KEY_POS_SETATTR
;
893 perm
|= KEY_USR_VIEW
;
895 if (index_key
.type
->read
)
896 perm
|= KEY_POS_READ
;
898 if (index_key
.type
== &key_type_keyring
||
899 index_key
.type
->update
)
900 perm
|= KEY_POS_WRITE
;
903 /* allocate a new key */
904 key
= key_alloc(index_key
.type
, index_key
.description
,
905 cred
->fsuid
, cred
->fsgid
, cred
, perm
, flags
, NULL
);
907 key_ref
= ERR_CAST(key
);
911 /* instantiate it and link it into the target keyring */
912 ret
= __key_instantiate_and_link(key
, &prep
, keyring
, NULL
, &edit
);
915 key_ref
= ERR_PTR(ret
);
919 key_ref
= make_key_ref(key
, is_key_possessed(keyring_ref
));
922 __key_link_end(keyring
, &index_key
, edit
);
924 if (index_key
.type
->preparse
)
925 index_key
.type
->free_preparse(&prep
);
927 key_type_put(index_key
.type
);
932 /* we found a matching key, so we're going to try to update it
933 * - we can drop the locks first as we have the key pinned
935 __key_link_end(keyring
, &index_key
, edit
);
937 key_ref
= __key_update(key_ref
, &prep
);
938 goto error_free_prep
;
940 EXPORT_SYMBOL(key_create_or_update
);
943 * key_update - Update a key's contents.
944 * @key_ref: The pointer (plus possession flag) to the key.
945 * @payload: The data to be used to update the key.
946 * @plen: The length of @payload.
948 * Attempt to update the contents of a key with the given payload data. The
949 * caller must be granted Write permission on the key. Negative keys can be
950 * instantiated by this method.
952 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
953 * type does not support updating. The key type may return other errors.
955 int key_update(key_ref_t key_ref
, const void *payload
, size_t plen
)
957 struct key_preparsed_payload prep
;
958 struct key
*key
= key_ref_to_ptr(key_ref
);
963 /* the key must be writable */
964 ret
= key_permission(key_ref
, KEY_NEED_WRITE
);
968 /* attempt to update it if supported */
969 if (!key
->type
->update
)
972 memset(&prep
, 0, sizeof(prep
));
975 prep
.quotalen
= key
->type
->def_datalen
;
976 prep
.expiry
= TIME_T_MAX
;
977 if (key
->type
->preparse
) {
978 ret
= key
->type
->preparse(&prep
);
983 down_write(&key
->sem
);
985 ret
= key
->type
->update(key
, &prep
);
987 /* updating a negative key instantiates it */
988 clear_bit(KEY_FLAG_NEGATIVE
, &key
->flags
);
993 if (key
->type
->preparse
)
994 key
->type
->free_preparse(&prep
);
997 EXPORT_SYMBOL(key_update
);
1000 * key_revoke - Revoke a key.
1001 * @key: The key to be revoked.
1003 * Mark a key as being revoked and ask the type to free up its resources. The
1004 * revocation timeout is set and the key and all its links will be
1005 * automatically garbage collected after key_gc_delay amount of time if they
1006 * are not manually dealt with first.
1008 void key_revoke(struct key
*key
)
1010 struct timespec now
;
1015 /* make sure no one's trying to change or use the key when we mark it
1016 * - we tell lockdep that we might nest because we might be revoking an
1017 * authorisation key whilst holding the sem on a key we've just
1020 down_write_nested(&key
->sem
, 1);
1021 if (!test_and_set_bit(KEY_FLAG_REVOKED
, &key
->flags
) &&
1023 key
->type
->revoke(key
);
1025 /* set the death time to no more than the expiry time */
1026 now
= current_kernel_time();
1028 if (key
->revoked_at
== 0 || key
->revoked_at
> time
) {
1029 key
->revoked_at
= time
;
1030 key_schedule_gc(key
->revoked_at
+ key_gc_delay
);
1033 up_write(&key
->sem
);
1035 EXPORT_SYMBOL(key_revoke
);
1038 * key_invalidate - Invalidate a key.
1039 * @key: The key to be invalidated.
1041 * Mark a key as being invalidated and have it cleaned up immediately. The key
1042 * is ignored by all searches and other operations from this point.
1044 void key_invalidate(struct key
*key
)
1046 kenter("%d", key_serial(key
));
1050 if (!test_bit(KEY_FLAG_INVALIDATED
, &key
->flags
)) {
1051 down_write_nested(&key
->sem
, 1);
1052 if (!test_and_set_bit(KEY_FLAG_INVALIDATED
, &key
->flags
))
1053 key_schedule_gc_links();
1054 up_write(&key
->sem
);
1057 EXPORT_SYMBOL(key_invalidate
);
1060 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1061 * @key: The key to be instantiated
1062 * @prep: The preparsed data to load.
1064 * Instantiate a key from preparsed data. We assume we can just copy the data
1065 * in directly and clear the old pointers.
1067 * This can be pointed to directly by the key type instantiate op pointer.
1069 int generic_key_instantiate(struct key
*key
, struct key_preparsed_payload
*prep
)
1073 pr_devel("==>%s()\n", __func__
);
1075 ret
= key_payload_reserve(key
, prep
->quotalen
);
1077 rcu_assign_keypointer(key
, prep
->payload
.data
[0]);
1078 key
->payload
.data
[1] = prep
->payload
.data
[1];
1079 key
->payload
.data
[2] = prep
->payload
.data
[2];
1080 key
->payload
.data
[3] = prep
->payload
.data
[3];
1081 prep
->payload
.data
[0] = NULL
;
1082 prep
->payload
.data
[1] = NULL
;
1083 prep
->payload
.data
[2] = NULL
;
1084 prep
->payload
.data
[3] = NULL
;
1086 pr_devel("<==%s() = %d\n", __func__
, ret
);
1089 EXPORT_SYMBOL(generic_key_instantiate
);
1092 * register_key_type - Register a type of key.
1093 * @ktype: The new key type.
1095 * Register a new key type.
1097 * Returns 0 on success or -EEXIST if a type of this name already exists.
1099 int register_key_type(struct key_type
*ktype
)
1104 memset(&ktype
->lock_class
, 0, sizeof(ktype
->lock_class
));
1107 down_write(&key_types_sem
);
1109 /* disallow key types with the same name */
1110 list_for_each_entry(p
, &key_types_list
, link
) {
1111 if (strcmp(p
->name
, ktype
->name
) == 0)
1115 /* store the type */
1116 list_add(&ktype
->link
, &key_types_list
);
1118 pr_notice("Key type %s registered\n", ktype
->name
);
1122 up_write(&key_types_sem
);
1125 EXPORT_SYMBOL(register_key_type
);
1128 * unregister_key_type - Unregister a type of key.
1129 * @ktype: The key type.
1131 * Unregister a key type and mark all the extant keys of this type as dead.
1132 * Those keys of this type are then destroyed to get rid of their payloads and
1133 * they and their links will be garbage collected as soon as possible.
1135 void unregister_key_type(struct key_type
*ktype
)
1137 down_write(&key_types_sem
);
1138 list_del_init(&ktype
->link
);
1139 downgrade_write(&key_types_sem
);
1140 key_gc_keytype(ktype
);
1141 pr_notice("Key type %s unregistered\n", ktype
->name
);
1142 up_read(&key_types_sem
);
1144 EXPORT_SYMBOL(unregister_key_type
);
1147 * Initialise the key management state.
1149 void __init
key_init(void)
1151 /* allocate a slab in which we can store keys */
1152 key_jar
= kmem_cache_create("key_jar", sizeof(struct key
),
1153 0, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
1155 /* add the special key types */
1156 list_add_tail(&key_type_keyring
.link
, &key_types_list
);
1157 list_add_tail(&key_type_dead
.link
, &key_types_list
);
1158 list_add_tail(&key_type_user
.link
, &key_types_list
);
1159 list_add_tail(&key_type_logon
.link
, &key_types_list
);
1161 /* record the root user tracking */
1162 rb_link_node(&root_key_user
.node
,
1164 &key_user_tree
.rb_node
);
1166 rb_insert_color(&root_key_user
.node
,